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Using simulated annealing to solve the daily 

drayage problem with hard time windows 

Escudero-Santana, A1; Cuberos-Gallardo, M; Muñuzuri, J; Cortés, P. 

Abstract Drayage is the stage of the intermodal transport that deals with transport 

of freight on trucks among the intermodal terminal, and customers and suppliers 

that are located in its hinterland. This work proposes an algorithm based on simu-

lated annealing heuristics to solve the operations of drayage. This algorithm has 

been used to solve battery problems, demonstrating the validity and suitability of 

its results, which were compared with exact method. 

Keywords: Drayage; intermodality; simulated annealing; hard time windows.  

1 Introduction 

Between the different ways of carrying out the transport of goods, the highest 

growth is on the intermodal transport, which is a particular way of multimodality. 

It consists in using different modes of transport to carry a unit load. This feature 

allows to reduce the time the goods must spend in intermodal terminals, due to the 

replacement of the operations of loading and unloading of goods from a container 

to another by loading and unloading of containers between different means of 

transport. 

This paper focuses on a problem of land transport, the Daily Drayage Problem 

(DDP). This issue provides the connection between the intermodal terminal and its 

hinterland, including the operations of loading and unloading containers in vehi-

cles (Jula et al., 2005). The DDP aims to optimize the tasks of container shipments 

from the terminal to customers and suppliers, and viceversa. This type of problem 

is a specific vehicle routing problem with time windows (VRPTW), where the ca-
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pacity of the vehicle is defined as a binary variable, so vehicles must be uploaded 

or downloaded.  

 The DDP has been solved with different methods. Caris and Janssen (2009) 

propose a local search heuristic, Caris and Janssen (2010) develop a simulated an-

nealing, Smilowitz (2006) prove a roll-on horizon method, Zang et at. (2009) and 

Xue et al (2015) use a tabu search, and presents a viral method to solve the prob-

lem. 

This work aims to solve the daily drayage problem by means of an algorithm 

based on the heuristic of simulated annealing. Section 2 gives an approach of the 

daily drayage problem. The state of art of simulated annealing is presented in sec-

tion 3. The results obtained are shown in section 4. Finally, several conclusions 

are drawn in section 5. 

2 Problem description 

Drayage is the beginning and the end of the intermodal transport chain. It is com-

posed of the operations of collection and delivery of empty containers in the de-

posits, collecting the goods, loading and unloading in intermodal terminals, and 

delivery charge to the recipient. At this stage, it is considered that the trucks could 

be in three different states: loaded with a full container, loaded with an empty con-

tainer, or without charge. 

The two fundamental operations of the transport are the pick-up and delivery of 

containers. These operations always occur in a particular facility (client, depot or 

terminal). However, the movement of a container may be carrying out more opera-

tions. The need to have containers available at different points at certain times 

makes it essential the transport of empty containers. Also, depending on the prop-

erty of the containers (containers may belong to the charger, the recipient or the 

company responsible for the main journey), there will be more or less empty re-

turn journeys. These movements must be reduced to the maximum with the objec-

tive of maximizing the transport load factor. 

These tasks must be performed within some time windows if a good perfor-

mance of the intermodal chain is required. This peculiarity makes the problem to 

solve to be defined as a DDPTW, where there are several tasks, T, which should 

be covered with a combination of vehicles, V, within certain time windows. The 

problem is to assign each task to a vehicle so that the generated costs are mini-

mized. 

For the formulation of the problem, several simplifications have been conduct-

ed to facilitate the modelling:  

• Vehicles are similar in terms of capacity and technical characteristics 

• Fixed costs are the same for all vehicles. 
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• Variable costs are proportional to the distance travelled. 

• There is only a deposit, which is located within the intermodal terminal. 

• Only importation and exportation tasks are carried out. 

3 The simulated annealing algorithm 

The simulated annealing (SA) algorithm is an iterative method for solving combi-

natorial and optimization problems (Kirkpatrick, 1984). The main attraction of the 

algorithm is its convergent behaviour to the optimum of the problem. This is 

achieved because the algorithm allows to accept worse quality solutions in each 

interaction, allowing the search not to be complete when a local optimum is found. 

The algorithm is based on the process of annealing of metals and ceramics for 

crystallized materials, with minimum internal energy. In this process the tempera-

ture of the material rises to crystallize, thus increasing its internal power, and sub-

sequently allowing to cool slowly. In this process of the loss of energy, the parti-

cles that make up the material move in search of positions of lower energy, thus 

achieving the crystallized form. 

There have been some authors who have used the Simulated Annealing algo-

rithm to find near-optimal solutions in various problems of combinatorial optimi-

zation (Chiang and Russell, 1996; Eglese, 1990). 

3.1 Solution encoding 

The form of the solution has been considered a vector that includes numbers from 

1 to n + m, where n is the number of tasks that should be covered and m the num-

ber of available vehicles. In the solution, each number from 1 to n corresponds to 

a task, while the numbers from n+1 to n+m correspond to vehicles. The interpre-

tation of the solution is the following: each vehicle must cover all the tasks until 

another number corresponding to another vehicle is found. This is illustrated with 

an example in Table 1, where there are 3 vehicles that must cover 6 tasks. 

Table 1 Examples of interpreting a matrix solution 

Matrix solution Interpretation 

[7 1 2 8 3 4 5 9 6] The vehicle 7 covers tasks 1 and 2. The vehicle 8 covers tasks 3, 4 and 5. 

The vehicle 9 covers task 6 

[7 1 2 3 4 8 9 5 6] The vehicle 7 covers tasks 1, 2, 3 and 4. The vehicle 8 is free. The vehicle 

9 covers tasks 5 and 6 
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3.2 Algorithm 

The algorithm developed to solve de DDPTW follows the next steps: 

1. Firstly, an initial vector solution is randomly created, S0. Best solution, Sbest= 

S0 

2. That solution is evaluated using the objective function, f(S0). 

3. The neighbourhood of solution is generated, N(S0). Searching of neighbour 

solutions is implemented by swapping all the numbers of the current solution. 

Each new permutation between two numbers (either vehicles or tasks) gener-

ates a new solution. 

4. A solution from the neighbourhood is randomly chosen, S’ in N(S0), and its 

cost is calculated by evaluating it in the objective function f(S’). 

5. This new solution is adopted as a solution with a probability P, depending on 

the improvement of the new solution with respect to the current solution, 

δ=f(S’)-f(S0). 

• P = 1  if δ<0 

• P = e- δ/t  if δ > 0 

6. If  δ<0, then , Sbest= S’ 

7.  The process (3-5) is repeated L times for each value of t. 

8. t is updated with the cooling function, α(t). 

9. The process is repeated until the stop condition, tmin. 

Parameters of the SA are: 

• Temperature, t: temperature is a control parameter that determines the probabil-

ity of accepting a new solution as one whose cost is greater than the current so-

lution, allowing that way to escape from local minima. 

• Cooling function, α(t): determines the speed with which the temperature de-

creases.   

• Initial temperature, t0: determines the value of temperature when the process 

starts. 

• Final temperature, tmin: marks the algorithm stop condition. 

• Length of the string, L: sets the number of iterations which the algorithm makes 

for each value of the temperature.  

The value of parameters should be set based on the experience. In the present 

work, the value of L depends on the size of the problem, to allow for more thor-
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ough searches on larger problems. The values of the defined parameters are shown 

in Table 2. These values were selected by mean different experiments. These ex-

periments were done on the Solomon Benchmark.  

Table 2 Parameters of the algorithm 

Parameter Value 

t0 50 

tmin 1 

α(t) tk+1=tk/(1+0.005·tk) 

L 10 

4 Results 

The solved problems are part of a battery of problems generated in Escudero et al. 

(2015), which is an adaptation of the Benchmarking created in Solomon (1987) 

for the VRPTW. It is a battery of 12 Random problems (R), 9 Cluster problems 

(C) and 8 Random + Cluster problems (RC). 

The problems have been solved by considering hard time windows where the 

delay in the solution are not allowed, so the total cost generated by a solution can 

be broken down into two distinct costs: 

• Cost per distance: is the cost that is directly dependent on the total distance 

travelled. It has a value of 1. 

• Cost per vehicle: fixed cost associated with the use of each vehicle. This cost 

has a value of 10 per vehicle, and will be 0 when the car is idle.  

Further details of the problem are the average speed of vehicles, 60 km/h, and 

the time of loading and unloading, estimated both in 15 minutes. 

Results are shown in Table 3, Table 4 and Table 5. Every instance was runned 

10 times. It is clear that the execution times increase as the size of the problem in-

creases. However, for problems of the same size, these times are very similar, and 

then the computational load only depends on the size of the problem to solve, and 

no other variants as the random initial solution. 

In Table 6 a comparison between SA results and the results of exact method 

(Gurobi) is shown. Gurobi use different methods as heuristics, branch and bound 

and cutting planes. It is important to consider that Gurobi present a tolerance of 

10e-4 on the constraints. Despite this, gap between SA and Gurobi is low. On exe-

cution time, Gurobi was tested with test R3. Result of Gurobi for 25 tasks is 

872,63 with an execution time of 105,29 seconds; for 50 tasks, the best result 

reaches by Gurobi after one hour is 1784,31 (SA present a gap of 0,01%), and for 
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100 tasks the best result provides by Gurobi in one hour is 3928,68 (result of SA is 

3258,15).  

 

 

Table 3 Solutions of problems with 25 tasks 

Test 

 
Class R 

 

Class C 

 

Class RC  
Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

 

Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

 

Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

1 

 
1082,40 1061,60 17,17 

 

712,48 700,31 15,24 

 

1483,64 1477,84 23,52 

2 

 
1028,84 1024,80 22,91 

 

674,24 669,11 23,16 

 

1196,23 1184,52 28,01 

3 

 
878,63 872,63 29,39 

 

687,90 681,83 28,19 

 

1152,57 1149,75 32,38 

4 

 
870,85 858,57 32,60 

 

685,83 672,05 30,85 

 

1123,01 1117,93 33,52 

5 

 
1047,00 1034,16 21,70 

 

700,51 678,97 18,54 

 

1400,87 1398,12 25,25 

6 

 
1000,27 994,00 25,04 

 

740,17 735,03 16,68 

 

1391,96 1379,84 30,96 

7 

 
971,65 968,02 29,44 

 

683,71 673,07 19,51 

 

1288,03 1283,02 33,56 

8 

 
936,16 929,04 31,32 

 

656,04 649,04 32,51 

 

1221,58 1178,61 34,58 

9 

 
955,85 949,89 26,72 

 

680,36 669,08 26,17 

    

10 

 
909,60 901,92 32,51 

        

11 

 
943,31 933,33 30,60 

        

12 

 
933,02 928,28 29,97 

        

 

Table 4 Solutions of problems with 50 tasks. 

Test 

 
Class R 

 

Class C 

 

Class RC  
Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

 

Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

 

Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

1 

 
2180,61 2067,84 55,60 

 
1512,98 1488,72 45,92 

 
3035,65 2961,35 71,22 

2 

 
1967,81 1953,58 76,98 

 
1481,07 1459,34 69,06 

 
2635,28 2607,01 79,72 

3 

 
1814,64 1803,51 89,71 

 
1464,92 1450,70 82,46 

 
2428,31 2408,62 92,74 

4 

 
1751,74 1743,88 97,05 

 
1490,76 1481,47 90,10 

 
2335,36 2328,00 99,38 

5 

 
1980,13 1962,87 72,10 

 
1499,15 1476,95 51,86 

 
3112,31 3084,84 77,13 

6 

 
1875,62 1861,08 82,57 

 
1553,13 1523,48 56,13 

 
3036,86 2987,29 85,23 

7 

 
1811,35 1802,20 90,14 

 
1496,73 1482,13 58,32 

 
2613,20 2568,27 99,70 

8 

 
1736,29 1724,52 97,41 

 
1424,04 1408,66 93,19 

 
2540,98 2439,32 100,27 

9 

 
1860,88 949,89 86,23 

 
680,36 669,08 78,58 

    

10 

 
1822,91 901,92 99,29 

        

11 

 
1789,42 933,33 99,00 

        

12 

 
1772,77 928,28 99,85 
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Table 5 Solutions of problems with 100 tasks. 

Test 

 
Class R 

 

Class C 

 

Class RC  
Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

 

Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

 

Ave. 

Cost 

Min. 

Cost 

Exe. 

Time 

1 

 
3923,88 3858,50 206,63  

3648,29 3587,18 183,88  
4825,37 4729,63 251,85 

2 

 
3642,99 3584,55 270,91  

3559,44 3491,33 260,82  
4356,98 4293,25 312,33 

3 

 
3285,65 3258,15 338,09  

3467,24 3424,08 323,41  
4088,93 4043,49 343,73 

4 

 
3165,90 3144,81 384,41  

3427,53 3401,51 361,84  
4037,85 3998,86 368,07 

5 

 
3599,15 3544,08 256,46  

3662,17 3582,56 198,37  
4849,72 4740,79 302,30 

6 

 
3462,41 3424,64 315,75  

3527,42 3471,54 283,27  
4718,19 4543,67 331,38 

7 

 
3259,01 3236,06 339,87  

3572,76 3505,77 235,40  
4283,26 4234,76 371,39 

8 

 
3145,32 3121,36 370,67  

3339,09 3327,02 374,37  
4145,33 4105,18 389,17 

9 

 
3412,79 3356,38 319,47  

3464,77 3431,89 296,95     

10 

 
3307,31 3245,70 359,75         

11 

 
3401,02 3373,58 354,43         

12 

 
3203,80 3167,17 379,95         

 

Table 6 SA algorithm vs. Exact method (Class R – 25 tasks) 
 

SA Gurobi Gap 

R25-1 1061,60 1061,60 0,00% 

R25-2 1024,80 1009,66 1,48% 

R25-3 872,63 862,63 1,15% 

R25-4 858,57 848,10 1,22% 

R25-5 1034,16 1023,36 1,04% 

R25-6 994,00 985,41 0,86% 

R25-7 968,02 965,33 0,28% 

R25-8 929,04 919,03 1,08% 

R25-9 949,89 939,88 1,05% 

R25-10 901,92 891,92 1,11% 

R25-11 933,33 931,72 0,17% 

R25-12 928,28 919,95 0,90% 

5 Conclusion 

Simulated Annealing is a widely used meta-heuristic in the resolution of optimisa-

tion problems. Several research papers have been able to verify its usefulness. A 

great advantage is its proved convergence to optimum. The convergence is 

achieved through a process of slow cooling. It involves high execution times, and 

thus, computational cost of the algorithm that can not be assumed. So, an adequate 
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setting of the parameters is extremely important, mainly both the cooling function 

and the length of the spring, so that an equilibrium between computational cost 

and goodness of the solution could be accomplished. 

Related to the DDPTW, it is necessary to analyse the suitability of the algo-

rithm with regard to this kind of problems. Analysing the reached results, it is 

concluded the algorithm achieves satisfactory results in comparison with the clas-

sical heuristic, in spite of its greater computational cost.  Therefore, the applica-

tion of SA to solve the DDPTW is appropriate for solving problems without an 

excessive level of response time, such as the planning of daily routes. Neverthe-

less, it is not suitable to solve real-time problems.  

An important concern about the usefulness of SA in the field of drayage is its 

convergence. So, this method could be used as a comparison tool for future devel-

opment. 
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