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Abstract

Existing models for partial discharge (PD) propagation based on a single attenuation constant are unable to explain how each fre-

quency component travels with a different propagation velocity. This paper proposes a new model based on a complex propagation

term whose real component does not depend on the frequency ( f ), and whose imaginary part is modeled with a second order poly-

nomial in f . The proposed model explains how the PD is attenuated, delayed, and dispersed due to the fact that each frequency

component is differently delayed.

A closed-form expression is proposed for the PD peak value and width, and a method to derive the model parameters from a

reference model existing in the bibliography. Simulation results show that the peak value and width of the propagated PD pulse are

similar to those obtained with the proposed model. Additionally, the proposed model provides the velocity of each PD frequency

component, which is crucial to get an accurate estimation of the PD source location.

The parameters of the proposed model have been estimated using a vector network analyzer for a XLPE cable. These results have

been compared to the measurement obtained in a medium voltage test bench where intentionally induced PDs have been captured

and processed, confirming the results of attenuation, delay and dispersion predicted by the proposed model.

Keywords: Partial discharges, propagation model, distribution MV cables.

1. Introduction

The observation of the phenomenon known as partial dis-

charge (PD) in cables allows engineers to predict imminent fail-

ures in medium voltage (MV) distribution networks. Locating

PD sources allows to identify the cable degraded areas and, pre-

ventively, replace it to avoid a power outage that could affect

hundreds of subscribers.

To get an accurate location of the area where partial dis-

charges are being generated, it is necessary to know how these

PDs propagate along the cable. Published propagation models

are based on classical transmission line (TL) approaches [1–5].

But these models have the following disadvantages:

- It is difficult to estimate their parameters, mainly due to the

cable complex structure, as well as the lack of knowledge

about the high frequency behavior of its materials [2].

- Existing propagation models for partial discharges, includ-

ing those based on transmission lines, usually yield to a

nearly constant propagation velocity [2, 6]. However, ex-

perimental results shown in [1] or [2] demonstrate that

this velocity depends on the PD frequency components.
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This dependence leads to dispersion, i.e the pulse spreads

because each frequency component travels at a different

propagation velocity [7]. It is well-known that disper-

sion has a significant effect on the pulse shape [8], as well

as negative implications for PD location using techniques

such as Time Domain Reflectometry (TDR) [3]. Disper-

sion has also negative effect on PD pattern classification

and recognition [9].

- Understanding how the propagation velocity varies with

frequency, or even with cable aging, is crucial for an accu-

rate location of the PD source [5].

Dispersion is mainly due to the high frequency behavior of

the semiconducting layer [8]. In addition, small variations of

the characteristic impedance along the cable, especially due to

aging, also leads to dispersion [5].

Dispersion is modeled in the bibliography by means of a TL

model where the propagation term is a real value that linearly

depends on the frequency [10]. Thus, dispersion appears be-

cause the high frequency components are highly attenuated.

Consequently, the signal bandwidth is reduced, and the original

PD shape is spread in the time domain. Since the propagation

term is real, this model is unable to explain how each spectral

component travels at a different speed.

Present techniques for fault location use those less attenuated

spectral components to estimate the fault location. As the fre-
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quency components could change, even from experiment to ex-

periment, due to changes in external conditions, or due to cable

aging, assuming the same propagation velocity for every fre-

quency component can yield a non-negligible error in the fault

location.

This paper proposes a new propagation model for medium

voltage cables. This model can be used to study the propagation

of PDs, or even other transient phenomenon (lighting impulses,

switching transients or breakdowns). It is based on the contribu-

tions of Marcuse in the field of light pulse propagation in single-

mode optical fibers [11]. The proposed model approaches the

attenuation term as frequency invariant, since the useful parts

of the spectrum of the signals measured at the cable ends ex-

hibit a low dependence with frequency. The phase term is ap-

proximated by a second order polynomial in frequency. This

approximation allows to explain how the propagation velocity

varies with frequency leading to dispersion.

A simple method valid for both, symmetric and asymmetric

pulses, is proposed in this paper to estimate the model param-

eters from the reference model in [10]. The results obtained

with the proposed model are compared by simulation to those

obtained with the model of that reference.

The main advantage of the proposed model is that the model

parameters can be estimated from experimental measurements,

and two methods are proposed here. The first one uses a vector

network analyzer (VNA) to measure the frequency response of

a cable sample. In the second technique, partial discharges are

captured in a degraded cable and digitally processed to measure

the pulse dispersion due to cable propagation. Experimental

results obtained with a XLPE MV cable are shown to illustrate

these methods.

This paper is organized in 5 additional sections. Section 2

describes the proposed propagation model for both, symmetric

and asymmetric pulses. Section 3 describes how to extract the

model parameters from the reference model described in [10].

Section 4 illustrates how the proposed model agrees with the

experimental measurements. In section 5 we discuss some key

aspects related to location of partial discharges that can be ad-

dressed with the proposed model. Finally, some conclusions are

drawn in section 6.

2. Proposed propagation model

A transfer function H(ω, L), shown in (1), is proposed to

model the propagation of PDs in MV cables. In (1), γ(ω) is the

complex propagation term, and L is the propagated distance.

H(ω, L) = exp(−γ(ω)L) (1)

where: γ(ω) = α0 + jβ(ω).

The real part of the propagation term, α0, is responsible for

PD power reduction in 8.68α0 dB/m. A typical value for α0 is

0.03 dB/m.

Concerning the imaginary part of the propagation term, or

phase term β(ω), it models the phase variation due to propaga-

tion. Term β(ω) determines the propagation velocity, the prop-

agation delay, and is responsible for pulse dispersion. Unlike

most of the models proposed in the literature, which assume

β(ω) to have a linear dependence with ω, the model proposed

here assumes a quadratic dependence with ω as shown in (2).

β(ω) = β0 + β1ω + (1/2)β2ω
2, (2)

where: β1 = ∂β/∂ω|w=0 and β2 = ∂
2β/∂ω2|w=0.

Delay constant β1 is responsible for the delay (also called

group delay) of the initial pulse after travelling a distance L.

The propagation time tp = β1L can be considered to be the mean

value of the propagation delay of every spectral components in

the propagated pulse. Constant β2, or dispersion constant, is

responsible for the spreading of the initial pulse shape due to

the fact that each spectral component propagates at a different

speed.

2.1. Gaussian pulses

Expression (3) models an initial gaussian pulse with ampli-

tude and deviation A0 and σ0, respectively. Figure 4(a) shows

this signal. Using the proposed propagation model, the result-

ing propagated pulse at a distance L is shown in (4), where it can

be observed that: a) the resulting pulse is gaussian too; b) it has

been be attenuated (AL is the resulting peak value and even if

we consider a non dissipative (α0 = 0) medium, the peak value

would be reduced due to dispersion if β2 , 0); c) it has been

phase delayed in an amount of θL radians; d) it has been time

delayed tp seconds; and e) it has been dispersed along the cable:

the original deviation σ0 has grown up to σL due to dispersion.

v(t, 0) = A0 exp(−t2/2σ2
0). (3)

v(t, L) = AL exp(− jθL) exp(−(t − tp)2/2σ2
L), (4)

where:

σL = (σ2
0 + β

2
2L2/σ2

0)1/2,

AL = A0σ0(σ4
0 + β

2
2L2)−1/4 exp(−α0L),

θL = β0L + arctan(β2L/2σ2
0) − . . .

β2L/2(σ4
0 + β

2
2L2), and

tp = β1L.

2.2. Asymmetric pulses

The skewed nature of the PD pulse is modeled in [10] by

means of a sum of delayed gaussian functions. Using NG com-

ponents, the resulting pulse waveform is given in (5), where

A0,k, σ0,k, and τ0,k are the peak, typical deviation, and delay

values of the gaussian component k, respectively. Figure 6(a)

shows the asymmetric pulse generated using this model.

v(t, 0) = Ap

NG∑

k=1

A0,k exp(−(t − τ0,k)/(2σ2
0,k)), (5)

where:

A0,k = 0.2245 exp(−k/10),

τ0,k = 10−9(k + 5000), and

σ0,k = 10−9 exp(k0.25)/
√

2.
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Figure 1: Relationship between the proposed and the Oussalah model: Lα0

and Lβ2/σ
2
0

are the adimensional attenuation and dispersion constants of the

proposed model, respectively. Lα1/σ0 is the attenuation constant of the model

defined in [10].

Assuming that the propagation medium is linear, the expres-

sion in (6) describes the L meter propagated asymmetric pulse,

where α0, β1, and β2 are the attenuation, delay, and dispersion

constants of the proposed method. The resulting v(t, L) signal

is composed of NG gaussian components, where AL,k, σL,k, and

τL,k are the amplitude, deviation, and delay of the k-th compo-

nent, respectively.

v(t, L) = Ap

NG∑

k=1

AL,k exp(−(t − τL,k)/(2σ2
L,k)), (6)

where:

AL,k = A0,k exp (−α0L)σ0,k(σ4
0,k + β

2
2L2)−1/4,

σ2
L,k = σ

2
0,k + (β2L/σ0,k)2,

τL,k = τ0,k + β1L.

3. Model fitting

This section proposes a procedure to estimate the attenua-

tion (α0) and dispersion (β2) constants of the proposed model,

from the (also called) attenuation constant (α1) of the model

proposed by Oussalah et al. in [10]. Let’s remind that the Ous-

salah model considers a real propagation term γ(ω) = α1ω,

where parameter α1 is called the attenuation constant.

The dispersion constant β2 of our model is computed by

equalling the expressions for the deviation σL in both mod-

els. The numerical solution in a graphical way is shown in Fig-

ure 1, where the adimensional dispersion constant (Lβ2/σ
2
0
) of

the proposed model is depicted versus the adimensional attenu-

ation constant (Lα1/σ0) of the Oussalah model.

The expressions of the peak values (AL) are used in both

models to derive the attenuation constant α0. Figure 1 also
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Figure 2: Flowchart to estimate the attenuation (α0) and dispersion (β2) con-

stants of the proposed model from the (also called) attenuation constant α1 pro-

posed in [10]. Two different flows are shown for the symmetric and asymmetric

pulses.

shows the adimensional attenuation constant (Lα0) of the pro-

posed model versus the adimensional attenuation constant

(Lα1/σ0) of the reference one. Note that, in order to estimate

α0, we need the previously estimated value of β2. The delay

constant β1 cannot be derived from the Oussalah model since

the propagation delay is ignored in that approach.

The following subsections describes the procedure to obtain

the attenuation and dispersion constants for both, symmetric

and asymmetric pulses. The flow diagram of Figure 2 summa-

rizes the proposed procedure.

3.1. Symmetric pulse

Once α1 is known, and accounting for the initial deviationσ0

that determines the spectral components of the original pulse,

the following procedure is proposed to estimate the model pa-

rameters for the symmetric case (see Figure 2):

1. Compute the adimensional attenuation constant of the

Ousalah model, choosing any value of L in the abscissa

of Figure 1. For example, for a MV cable with α1 =

4e-11 s m−1, using a gaussian pulse with σ0 = 2 ns, at

L = 300 m, the resulting adimensional attenuation con-

stant of the Oussalah model is Lα1/σ0 = 6. The selected

value for σ0 is especially important to estimate α0, and

it is related to the transient phenomenon under study. The

selected one is widely used for partial discharges in cables.

2. The parameters of the proposed model will be estimated

using Figure 1. For the above example, the resulting value

of the dispersion and attenuation adimensional constants

are, respectively: Lβ2/σ
2
0
= 7.50, and Lα0 = 1.03. Then,

the estimated model parameters are: α0 = 3.44e-3 m−1

and β2 = 0.10 ns2m−1.

3.2. Asymmetric pulses

As the constants α0 and β2 are conditioned by the initial

pulse deviation σ0, we will derive as many values of these

3
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Figure 3: Simulation of:(a) peak value, and (b) deviation, versus distance for

symmetric pulse propagation.
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Figure 4: Example of symmetric pulse propagation: (a) initial pulse, (b) pulse

shape after 300 meters of propagation. tL = tp(L = 300) is the propagation

delay.

constants as the number of gaussian components used to ini-

tially build the asymmetrical pulse. Let α0,k and β2,k be the

propagation constants for the k-th component of the proposed

model derived with the same constant α1, and using the initial

deviations σ0,k. For example: using a MV cable with α1 =

4e-11 sm−1, the resulting attenuation constants are in the inter-

val α0,1 = 3.5e-3 m−1 to α0,60 = 1.22e-3 m−1, while the disper-

sion constants are in the range from β2,1 = 9.62e-2 ns2m−1 to

β2,60 = 6.78e-1 ns2m−1.

A simplified model for the asymmetric pulse propagation is

also proposed here where the NG pairs of propagation constants

{α0,k, β2,k} are replaced by a single pair of averaged propaga-

tion constants {α̂0, β̂2}. They are computed as shown in (7) and

(8), where the propagation constants have been averaged and

weighted with the component amplitude of each gaussian com-

ponent A0,k. The resulting values for the example above are:

α̂0 ≃ 2.54e-3 m−1 and β̂2 ≃ 0.21ns2m−1

α̂0 =

NG∑

k=1

α0,kA0,k/

NG∑

k=1

A0,k (7)

β̂2 =

NG∑

k=1

β2,kA0,k/

NG∑

k=1

A0,k (8)

3.3. Simulation results

The propagation of a gaussian pulse has been simulated in a

cable using both, the transfer function proposed in this paper,

and the model presented in [10]. The initial peak value of the

gaussian pulse is A0 =1V, and its initial deviation is σ0 =2 ns.

The proposed model is configured with α0 = 3.4e-3 m−1, and

β2 = 0.1 ns2m−1. The Oussalah model uses α1 = 4e-11 m−1s.

Figure 3 draws the peak value AL and deviation σL versus L,

for the proposed and the Oussalah models. For comparison pur-

poses this figure also shows the theoretical behavior of those

variables given in (4) and [10].

To obtain the simulated results, the value of the transfer func-

tion in every model was computed for every distance L; this

value was multiplied by the Fourier transform of the initial

pulse, and the resulting function was anti-transformed to the

time domain. Finally, the peak and deviation values were esti-

mated by means of the gaussian function that fits the best the

simulation results. Note that the Oussalah model provides a

non-gaussian shaped function.

Simulated peak values depicted in Figure 3(a) shows that: 1)

simulation and theoretical results are very similar, even though

the Oussalah model provides a pulse which is symmetrical but

not gaussian; and 2) both simulated models perform similarly,

especially for L > 400 m. Furthermore, the values of the de-

viation σL for both models, obtained by simulation, are shown

in Figure 3(b), along with their theoretical values. This figure

shows that these four values (theoretical and simulated ones for

each model) are almost equal in the distance interval analyzed

here.

For the sake of visual comparison, Figure 4(b) shows the

shape of the initial pulse (in Figure 4(a)) after having travelled

4
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Figure 5: Simulation of: (a) peak value, and (b) FWHM, versus distance for

asymmetric pulse propagation.
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Figure 6: Example of asymmetric pulse propagation: (a) initial pulse, (b) pulse

shape after 300 meters of propagation. tL = tp(L = 300) is the propagation

delay.

300 meters, for both, the proposed and the Oussalah models.

In this figure we can see that both pulses have the same peak

value (0.13 V), and the same deviation (σL = 15 ns). The pulse

shape of the proposed model is gaussian while the other one is

symmetric but not gaussian.

In order to validate the proposed model for asymmetric

pulses, the propagated pulse is rebuilt from the resulting am-

plitudes and deviations of the k-th gaussian component, AL,k

and σL,k, respectively. To obtain the propagation constants, the

method proposed in Section 3 has been used with, both, a set of

NG propagation constants {α0,k, β2,k}, and a single pair of aver-

aged propagation constants {α̂0, β̂2}. Once the pulse has been

rebuilt, its peak and width values were estimated. To com-

pute the pulse width, the FWHM (Full Width Half Maximum)

value has been used, due to the asymmetric nature of the pulse

shape. For L high enough, the pulse becomes symmetric, so

that it can be approximated by a gaussian function. In that case,

FWHM≈ 2.35σ, where σ is the gaussian pulse deviation.

The peak value AL and the FWHM pulse width versus dis-

tance L are shown in Figure 5, for both, the model described in

[10] and the proposed model. We can observe that both models

behave almost identical, even when the averaged propagation

constants α̂0 and β̂2 are used.

Figure 6 shows the shapes of an initially asymmetric pulse

that propagates according to the proposed model and the model

of reference [10]. In Figure 6 (a) we can see the initial asym-

metric pulse, with a FWHM pulse width of 18 ns and a peak

value of 1 V. Figure 6(b) depicts the symmetric pulse shape

after having been propagated L = 300 m, using the proposed

model with the full set of propagation constants, the proposed

model with the averaged value of the propagation constants,

and the Oussalah model. The proposed model provides a pulse

shape similar to the results obtained in [10]. Slight differences

can found in the peak value (0.40 vs. 0.43) when the averaged

model is used, but the resulting FWHM pulse widths have a

similar value (44 ns) in any case.

4. Experimental results

4.1. VNA measurements

Using a VNA the scattering parameter S 21 of a 42.5 m long

new MV XLPE cable has been measured, in order to estimate

the attenuation term α( f ) and the phase term β( f ) of its trans-

fer function. The lower bound of the frequency interval is set

to 1 MHz, as the current transformers used to measure the par-

tial discharges reject lower frequency components. Despite PD

spectral components can initially reach up to GHz, propagation

makes the highest components to become extinct in a few me-

ters [8]. Setting the upper limit to 50 MHz, a proper frequency

range is selected.

The experimental results have been fitted in the minimum

mean squared error sense, regarding the estimation of the atten-

uation, delay, and dispersion constants (α0, β1, β2) for the pro-

posed model, and the attenuation constant (α1) for the model of

reference [10]. These results are shown in Table 1. Note that
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the measured dispersion constant β2 is negative, indicating that

the group propagation velocity increases with frequency.

A similar MV cable was simulated in [8], providing a veloc-

ity versus frequency curve. Selecting some points of this curve,

we have estimated β1 in the interval [5.7, 6.2] ns/m, which de-

creases with frequency in the spectral interval under study, and

β2 = −0.796 ns2m−1. Simulation results obtained in that paper

are close to those experimentally obtained here; moreover, the

value estimated for α1 is also similar to that reported in [10] for

XLPE cables.

By following the procedure described above, the measured

α1 is now used to adjust the proposed model. Using an ini-

tial deviation σ0 = 5 ns, we obtain α0 = 4.40e-3 m−1 and

|β2| = 0.491 ns2m−1. Note that the proposed method is unable

to resolve whether the sign of the dispersion constant is positive

or negative.

4.2. Partial discharge measurements

In this section we describe the results obtained in a medium

voltage test bench, where a XLPE cable was stressed at operat-

ing conditions (18 kV) without load. The dielectric was artifi-

cially damaged in a small region close to one of the cable ends

until partial discharges appeared. These PDs were acquired at

both cable ends, and properly processed to estimate the model

parameters.

4.2.1. Scheme of reference

The diagram of Figure 7 shows the scheme of reference. Two

current transformers were installed at both cable ends. These

components are broadband inductive sensors that are responsi-

ble for sensing the PD pulses. According to standard [12], the

selected sensor was an ultra wide band coupler.

The cable was degraded by drilling holes that affected the

thermoplastic sheath, the semiconducting layer, and the insula-

tion. In Figure 7, the degraded area was located L1 meters from

one of the ends, labeled as Near End, and L2 meters from the

other one (labeled as Far End). As shown in Figure 7, L2 >> L1

is assumed .

In Figure 7 x(t, 0) is the original PD signal, and signals

x(t,−L1) and x(t, L2) are the signals captured by sensors located

at the near and far ends, respectively. Both signals are acquired

synchronously using a digital oscilloscope triggered by the near

end signal. The sample frequency was set to 500 MHz, and a

proper dynamic range for each channel was selected. Captured

signals were stored to be off-line processed.

Table 1: Summary of experimental results: using a vector network analyzer,

and measuring the PDs as described in section 4.2

α1 α0 β1 β2

Method [s m−1] [m−1] [ns m−1] [ns2 m−1]

VNA 5.16e-11 3.37e-3 5.72 -0.7121

Direct PD

measure n/a 3.40e-3 5.92 ±0.761

Near
End

L2

MV cable

Degraded
 area

L1

Sensor
Far
End

Sensor

Osciloscope
x(t,−L1)

sNE(t)

sFE(t)

x(t,0)

x(t,L2)

f

Narrow-band
BPF

Envelope
estimator

z =0

Digital Processing

z =L
2

z =−L
1

Figure 7: Test bench description, and definition of main variables

4.2.2. Digital processing

Digital processing was used to estimate the delay and dis-

persion due to propagation along the cable of a small spectral

interval of the PD signal. A narrow band pass filter (NB-BPF)

is used whose center frequency fc is tunable. The selected im-

pulse response is finite and gaussian, providing a linear phase

response. When the wide-band signal x(t,−L1) is filtered, the

resulting spectrum is also gaussian, centered in the same fre-

quency, and with the same bandwidth as the filter. On the other

hand, when the far end signal x(t, L2) is filtered, we should ob-

tain a signal whose frequency domain spectrum is conformed

by the cable response as well as by the filter. The resulting sig-

nals are shifted to the baseband from fc by means of an envelope

estimation. Thus, signals sNE (t) and sFE (t) are the baseband

near end and far end envelopes, respectively.

4.2.3. Experimental estimation of α0, β1, and β2

The attenuation, delay, and dispersion constants of the pro-

posed model can be extracted from the baseband signals sNE (t)

and sFE (t). The solution is only valid for a small frequency in-

terval around the center frequency fc. The linear effects coming

form sensors, capture system, and digital processing are unbi-

ased since they affect in the same way to both signals.

To compute the attenuation constant expression (9) was used,

where PNE and PFE are the powers of signals sNE (t) and sFE (t),

respectively. To estimate the delay constant, the delay between

the near and far end envelopes (∆td) was detected using a sim-

ple cross-correlation method. Constant β1 was calculated ac-

cording to (10).

α0 = ln(PNE/PFE )/2(L2 − L1) (9)

β1 = ∆td/(L2 − L1) (10)

We can estimate the dispersion constant β2 in two different

ways:

1. By measuring the delay constant β1 for each center fre-

quency fc. Then, β2 can be estimated by computing the

derivative of β1 with respect to frequency. This tech-

nique is inaccurate, as β2 has not a significant effect on

6



the propagation delay. For example, for a 300 m long

cable with β2 = 0.5ns2m−1, and considering a spectral

interval of 5 MHz, the group delay is expected to shift

±(0.5· 2π· 5e6)· 300 = ±4.7ns. That is, less than 3 sam-

ples using the sampling frequency of our test bench.

2. We can also estimate the dispersion constant by measuring

the PD dispersion, i.e. measuring the spreading of the PD

pulse due to propagation along the cable. This dispersion

is also observed in signals sNE (t) and sFE (t). This tech-

nique was chosen here to estimate β2.

Expression (11) shows the proposed formulae for the devi-

ation of the near and far end baseband signals (σNE and σFE ,

respectively). In this expression, σ0 is the initial PD deviation

(assuming it is gaussian), σs is the dispersion due to the sen-

sor used to capture the PD signal (we assume that its impulse

response is also gaussian and similar in both ends), and σNBPF

is the deviation of the gaussian impulse response of the narrow

band pass filter (equal in both ends). It should be noted that the

digital filters do not disperse the PD as their phase response is

linear but, as its frequency response is band-limited, they will

spread the incoming pulses.

Although in (11) σ0 is unknown, it can be indirectly esti-

mated using an additional signal measurement: the signal cap-

tured at the cable near end. The deviation of this signal (σ1) is

approximated in (13). Combining (12) and (13) we obtain an

expression for the initial deviation σ0 in (14). This approxima-

tion is valid when L1 is large enough so as to make the captured

pulse to become symmetrical, and assuming that the impulse

response of the selected sensor also behaves gaussian.

σ2
NE = σ

2
0 + (β2L1/σ0)2 + σ2

s + σ
2
NBPF , (11)

σ2
FE = σ

2
0 + (β2L2/σ0)2 + σ2

s + σ
2
NBPF .

σ2
FE − σ

2
NE = (L2

2 − L2
1)(β2/σ0)2 (12)

σ2
1 = σ

2
0 + (β2L1/σ0)2 + σ2

s (13)

σ2
0 = σ

2
1 − σ

2
s − (σ2

FE − σ2
NE )(L2

1/(L
2
2 − L2

1)) (14)

4.2.4. Results

The test bench of Figure 7 has been built with L1 = 1.5 m

and L2 = 304 m. The cable was artificially damaged until a

high frequency activity due to PDs in the degraded area was

observed. The center frequency was tuned to fc = 3 MHz with

a FWHM bandwidth of 1 MHz (the equivalent time response

deviation is σBPF = 0.37µs). This center frequency was se-

lected because the signal level measured at the far end was high

enough when compared to other spectral components.

The FWHM bandwidth of the selected current transformer,

measured with a VNA, was 50 MHz (the equivalent time do-

main deviation is σs = 7.51 ns). It was observed that frequency

components bellow 1 MHz were highly attenuated.

During the test campaign, thousands of partial discharges

were captured. Each test sequence provided about 4610 cap-

tures that were considered as valid, and they were later pro-

cessed to estimate the proposed model parameters.

−50 −25 0 25 50 75 100 125 150 175 200
−0.05

0

0.1

0.2

time [ns]

S
ig

na
l c

ap
tu

re
d 

[V
]

 

 
x(t,−L

1
)

FWHM≈10.92 ns

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.3

0.6

1

time [µs]

N
or

m
. v

al
ue

s

 

 
s
NE

(t)

s
FE

(t)
∆t

p
 = 1.83 µs

(b)

Figure 8: Example of measured PD signal: (a) near end signal, (b) baseband

envelopes.

Figure 8(a) shows, as an example, the near end signal

x(t,−L1), which exhibits a FWHM pulse width of 10.92 ns and

a peak value of 200 mV. The resulting near and far end baseband

signals are shown in Figure 8(b), where the estimated delay be-

tween them is also displayed. It is evident that sFE (t) is spread

when compared to sNE (t).

The power of the baseband envelopes was estimated and,

using (9), the attenuation constant was estimated to be α0 =

3.401e-3. The delay between these signals was also mea-

sured, and using (∆tp), the resulting delay constant was β1 =

5.922 ns m−1. The resulting mean value of β2 was 0.76 ns2m−1,

with a standard deviation of 0.19 ns2m−1. Note that the pro-

posed method is unable to estimate the sign of the dispersion

constant, although it is easy to determine it.

Before the computation of β2, σ0 was estimated using (14),

and the measured values of σNE and σFE . The measured mean

value of the initial deviation σ0 was 1.79 ns with a standard de-

viation of 0.37 ns (see Figure 9(a)). In addition, the histograms

of the measured deviation of the baseband signals shown in Fig-

ure 9(b) clearly exhibit the dispersion (or pulse spread) due to

propagation. This histogram shows that the near end baseband

signal is narrower (188 ns) than the far end one (229 ns).

5. Discussion

This section discusses some issues related to propagation that

affect PD source location techniques accuracy in MV cables.

5.1. Excessive attenuation at certain frequencies

During the test campaign, some spectral components were

observed to be highly attenuated at the far end. Additional fac-

tors, such as resonances or signal coupling, are responsible for

some components to be extinguished. As a consequence, these

components are not suitable to be used for PD source location.
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Figure 9: Experimental results: (a) histogram of the estimated PD initial devia-

tion σ0; (b) histograms of baseband signals envelope deviations σNE and σFE ;

and (c) histogram of the measured dispersion constant β2.

The method proposed in Figure 7 allows us to select the most

suitable spectral components for source location.

5.2. Attenuation and dispersion

In [10] an expression for AL is proposed that takes into ac-

count the dissipative phenomenon that occurs in the cable. We

propose an alternative expression for AL in (4), where we can

distinguish two terms: a dissipative term, that depends on the

attenuation constant α0, and a dispersive term, that depends on

the dispersion constant β2. Figure 10 depicts the evolution of

both terms versus distance. We can observe that, when propa-

gated distances are below 300 m (most of urban MV infrastruc-

ture), both terms are comparable. In those cases, the effect of

dispersion in PD source location cannot be neglected.

5.3. Attenuation dependence with frequency

A PD is, in its early stage, a very fast phenomenon (it lasts for

only a few nanoseconds, typically). Along the cable propaga-

tion, higher frequency components are attenuated due to con-

ductor and dielectric losses, and particularly, due to the high

frequency properties of the semiconducting layer. That is the

reason why many papers in the literature model the real part

of the propagation term as highly dependent on frequency (lin-

early in the case of [10]).

0 200 400 600 800
0

5

10

15

20

 L [m]

 A
0/A

L
  [

dB
]

 

 
Looses
Dispersion

Figure 10: Peak value reduction due to attenuation and dispersion using a cable

with α0 = 3.44e-3 m−1 and β2 = 0.10 ns2m−1.

The attenuation of higher frequency components due to prop-

agation is responsible for the fact that only a small interval

of the original PD spectrum reaches the cable ends where the

PD sensors are installed. Although the attenuation constant is

known to be dependent on frequency ([13]), an averaged value

of the attenuation constant α0 can be computed in the band-

width of interest. This averaging process should take into ac-

count the PD spectral components and the instrumentation, if

they are known from actual measurements or can be estimated

from previous measurements.

For example: in a XLPE cable 500 meters long with α1 =

4e-11 s/m, components located at 500 MHz, 100 MHz and 50

MHz would be attenuated 546 dB, 109 dB and 56 dB, respec-

tively. Then, the effective bandwidth of the captured PD signal

useful for post-processing is limited to something less than 50

MHz, although the bandwidth of the original signal is much

greater in the origin. Even more, if the low pass behavior of the

sensors is taken into account, the useful part of the spectrum

will be further reduced. In this effective bandwidth we propose

to simplify the attenuation to be frequency invariant.

5.4. Delay and dispersion constants

The VNA shows a negative dispersion constant in the mea-

sured spectral interval. Thus, the propagation velocity increases

with frequency.

But the measured values for β2 are so small that the ex-

pected variation in the propagation velocity is negligible from

one spectral component to another (inside the captured band-

width). In terms of propagation delay, two spectral components

separated ∆ f will be relatively delayed ∆tp = 2πL∆ f |β2| where

L is the propagated distance. For example, using the measured

β2 in a 500 m long cable with ∆ f = 20 MHz, a ∆tp of 6 ns

is obtained. In terms of travelled distance, it is hardly one me-

ter. This figure could make us to conclude that dispersion is
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Figure 11: Example of propagation velocity variation due to non zero disper-

sion coefficient β2.

irrelevant to PD source location.

We have observed that, in some frequency components, the

phase term exhibits a significant non lineal behavior leading to

a higher value of β2. Then, the variation of the propagation ve-

locity from one frequency component to another is not as small

as it was in our experiment.

5.5. Location errors due to propagation velocity variation

From the point of view of location techniques (for example

to assess the cable state in order to repair the degraded area), it

is critical to know the precise value of the group delay β1 for

each frequency component used to estimate the overall delay,

and thus, to compute the propagated distance.

The example shown in the diagram of Figure 11 depicts how

varies β′, the first derivative of the phase term β versus fre-

quency, in a spectral interval of 20 MHz. According to the

proposed model, this variation is linear, and its slope is the dis-

persion constant (β2 = −0.76ns2m−1 in this example). Note

that this diagram shows the group delay (inverse of the group

velocity) for each frequency component.

In the frequency upper limit shown in Figure 11, labeled

as fB, β′
B

is lower since the dispersion constant is negative,

whereas in the lower boundary ( fA) the group delay β′
A

is

greater. The equivalent propagation velocity for the three fre-

quency components under study (labeled as A, B, and 0) are

also shown in Figure 11. As a first approach, we can consider

that the signals captured at the cable end (or cable ends) contain

significant and similar spectral components in the whole fre-

quency interval (this case is drawn in dark gray in Figure 11).

Then, the propagation velocity will be 170 m/µs (1/β′
0
), that

yields to an estimated distance L0 =1020 m (for example for a

given measured propagation delay of 6 ns). Let us consider now

that only a small part of the frequency components are available

for location (in the extreme of the bandwidth, drawn in black

and light gray in Figure 11). Such situation can arise either, be-

cause the rest of the components become extinct due to attenua-

tion or destructive interference, or simply because an important

amount of synchronous impulsive noise degrade these compo-

nents. In these cases, the propagation velocity used to deter-

mine the estimated distance would be different (vp,A or vp,B),

and the corresponding estimated distances (LA and LB) would

be, for the same measured time delay, rather different to L0.

The scheme proposed in Figure 7 allows us to select the most

suitable frequency interval to be used for location purposes.

And, for an accurate estimation of the fault location, the val-

ues of β1 and β2 provided by the model proposed in this paper

are necessary.

6. Conclusions

This paper proposes a propagation model based on three pa-

rameters: one that models the signal attenuation, and two oth-

ers that model its phase variation (the delay and the dispersion

constants). When compared to other models, the proposed one

exhibits similar peak and width values for both, originally sym-

metric and asymmetric pulses.

Two methods to estimate the model parameters are also pro-

posed: starting from the classical frequency dependent attenua-

tion constant described in the bibliography, or by using a vector

network analyzer. Both methods provide similar results.

The main advantage of the proposed model is that the re-

lationship between the propagation velocity and frequency, as

well as the peak reduction and the PD spread due to dispersion,

can be now quantified. We demonstrate that peak reduction due

to dispersion cannot be underestimated, especially in urban dis-

tribution cables.

A method to estimate the dependence of the delay and disper-

sion constant with frequency is also proposed. In this method

PD pulses are digitally processed in a narrow frequency inter-

val. Using this technique we also obtained an estimation of the

initial width of PD pulses in a XLPE cable.

The model and related techniques proposed in this paper give

a more comprehensive view of PD propagation, contributing to

a better understanding of this phenomenon and improving the

accuracy of PD source location.
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