
Fostering SLA-Driven API Specifications

Antonio Gamez-Diaz1, Pablo Fernandez1, and Antonio Ruiz-Cortes1

Universidad de Sevilla?,
{agamez2, pablofm, aruiz}@us.es

Abstract. Software architecture tendencies are shifting to a microser-
vice paradigm. In this context, RESTful APIs are being established the
standard of integration. API designer often identifies two key issues to
be competitive in such growing market. On the one hand, the generation
of accurate documentation of the behavior and capabilities of the API to
promote its usage; on the other hand, the design of a pricing plan that
fits into the potential API user’s needs.
Besides the increasing number of API modeling alternatives is emerging,
there is a lack of proposals on the definition of flexible pricing plans
usually contained in the Service Level Agreements (SLAs).
In this paper we propose two different modeling techniques for the de-
scription of SLA in a RESTful API context: iAgree and SLA4OAI.

1 Introduction

In recent years, there has been a trend towards a new architectural style that
has been called microservice. This style requires that each component (a mi-
croservice) can evolve, scale and deploy independently to the rest, increasing the
flexibility of the system as a whole; in fact, this approach has been the architec-
tural style of choice in demanding web applications such as eBay, Amazon and
Netflix [7].

From an engineering perspective, a key element of these architectures with
respect to the modeling and implementation of microservices is the usage of the
RESTful paradigm. This paradigm provides a unified approach to identify the
granularity and operational interface of microservices that has a high degree of
extensibility. In particular, RESTful provides a lighter approach for building,
deploying and scaling microservices more effectively. Moreover, this approach is
aligned with the fundamental web principles as part of the HyperText Trans-
fer Protocol (HTTP). This microservice tendency represents a recent shift in
software engineering towards API-driven development; in such context, a fast
feedback on the API design can be facilitated by modeling and visualizing the
designed API behavior during early stages of the development process.

? This work has been partially supported by the European Commission (FEDER), the Spanish and
the Andalusian R&D&I programs (grants TIN2015-70560-R (BELI), P12–TIC-1867 (COPAS)
and and TIN2014-53986-REDT (RCIS)) the FPU scholarship program, granted by the Spanish
Ministry of Education, Culture and Sports (FPU15/02980).

As APIs are gaining notoriety and API marketplaces are increasingly grow-
ing, at least two key aspects can be identified: i) ease of use for its potential
developers; ii) a flexible usage plan that fits their customer’s demands.

Regarding the ease of use perspective, whereas the awareness for the need of
documenting the low-level HTTP details of the static structure of RESTful APIs
has resulted with several tools, such as Swagger/OpenAPI, there is still a lack
of support for conceptual modeling and visualization of REST API’s dynamics.
Furthermore, reaching a certain resource state frequently requires undertaking a
predefined sequence of interactions or choosing among different alternative paths,
thus shifting from the concept of a single RESTful interaction to the concept
of a RESTful conversation. As conversations become more complex, visualizing
them (e.g., by means of modeling techniques such as BPMN choreographies
or RESTalk) can help decrease the cognitive load for both API designers and
clients, who need to communicate their designs and understand how to correctly
use the API.

Conversely, from the plans perspective, to the best of our knowledge, there
does not exist a widely accepted model to describe usage plans including ele-
ments such as cost, functionality restrictions or invocation rate limits. In this
context, authors have proposed the SLA4OAI extension in the OAI Community
in order to address this issues. On the other hand, a number of API manage-
ment platforms, commonly known as API Gateways [3], have tried to address
the problem of modeling usage plans but they are typically constrained by their
platform architecture and do not provide an inter-operable nor vendor-neutral
usage plan specification. A formal definition of these plans can foster new entic-
ing challenges, such as the automatic analysis of optimal cloud offerings [4] or
analysis of temporal aspects [6].

Despite the fact that there exists some modeling techniques for describing
API documentation (e.g. OpenAPI specification), pricing plans for APIs (e.g.
SLA4OAI) and RESTful conversations (e.g. RESTalk), to the best of our knowl-
edge, there is not a unified model able to integrate all of these modeling view-
points.

The rest of this paper is structured as follows: Section 2 describes the iAgree
proposal for modeling general SLAs in different ecosystems. Conversely, Section
3 presents SLA4OAI, a proposal for describing SLAs in the context of RESTful
APIs. Next, Section 4 illustrates the SLA modeling with iAgree and SLA4OAI
through an example. Finally, Section 5 summarizes and identifies the challenges
to be addressed.

2 iAgree

iAgree1 is an open source language for describing Service Level Agreements
(SLAs) in a vendor-neutral way. iAgree is intended to model, including, but not
limited to, two main scenarios: computational services (e.g., RESTful APIs) and
1 http://iagree.specs.governify.io/

http://iagree.specs.governify.io/

Fig. 1. iAgree elements.

human services (e.g., business processes). iAgree has evolved notoriety since the
preliminary versions described in [8].

An iAgree description is a JSON or a YAML document based upon JSON-
Schema2 with the structure defined in Figure 1.

Specifically, an iAgree model typically includes the following parts:

SLA Object: every iAgree document contains the following sections: id (unique
identification), version (document version), type (type based on the SLA life-
cycle), context (holds the main information of the SLA context) and terms
(holds the main information of the SLA terms).

ContextObject: holds the main information of the SLA context. iAgree (iA-
gree specification version), provider (owner/host of the service), consumer
(entity that consumes the service), infrastructure (provides information about
the tools used for SLA storage, calculation, governance,), validity (holds the
main information of the SLA validity) and definitions (holds the main infor-
mation of the SLA definitions).

ValidityObject: holds the main information of the SLA validity. initial (start
date of the SLA according to ISO 8601 time format), timeZone (time zone

2 http://json-schema.org

http://json-schema.org

of the SLA according to ISO 8601 time zone format) and end (end date of
the SLA according to ISO 8601 time format).

DefinitionsObject: holds the main information of the SLA definitions. schemas
(definition schemas) and scopes (definition scopes).

TermsObject: holds the main information of the SLA terms. pricing (holds
the main information of the SLA pricing), metrics (holds the main infor-
mation of the SLA metric.), guarantees (holds the main information of the
SLA guarantees.), configurations (holds the main information of the SLA
configurations.), quotas (holds the main information of the SLA quotas.),
rates (holds the main information of the SLA rates).

PricingObject: holds the main information of the SLA pricing. cost (cost asso-
ciated to this service), currency (currency used to express the cost according
to ISO 4217. Samples: USD, EUR, or BTC for US dollar, euro, or bitcoin,
respectively) and billing (holds the main information of the SLA billing).

BillingObject: holds the main information of the SLA billing. period (period
used for billing. Supported values are: onepay: unique payment before start
using the service; daily: billing at the end of every day; weekly: billing at
the end of every week; monthly: billing at the end of every month; quar-
terly: billing at the end of every quarter; yearly: billing at the end of every
year), initial (start date of the billing cycle according to ISO 8601 time for-
mat), penalties (holds the main information of the SLA billing penalties)
and rewards (holds the main information of the SLA billing rewards).

MetricsObject: holds the main information of the SLA metrics. metridId
(holds the main information of an SLA single metric).

MetricObject: holds the main information of the SLA single metric. schema,
type and scope

CompensationObject: holds the main information of the SLA single compen-
sation. over (metrics involved in the compensation calculation process), of
(holds the main information of the SLA scoped compensations), aggegatedBy
(compensation aggregation function), groupBy (compensation aggrupation
function), upTo (compensation limit)

ScopedCompensationObject: holds the main information of the SLA single
scoped compensation. value (scoped compensation value) and condition
(scoped compensation condition).

GuaranteeObject: holds the main information of the SLA single scoped com-
pensation. id (guarantee unique identification), scope (guarantee scope), of
(holds the main information of the SLA scoped guarantees).

ScopedGuaranteObject: holds the main information of the SLA single scoped
guarantee. scope (scoped guarantee scope), objective (guarantee objective),
with (definition of metrics referenced in scope attribute), window (guarantee
window), evidences (guarantee evidences), penalties (holds the main infor-
mation of the SLA guarantee penalties), rewards (holds the main information
of the SLA guarantee rewards).

WindowObject: holds the main information of the SLA guarantee window.
initial (start date of the window according to ISO 8601 time), end (end date
of the window according to ISO 8601 time), type (window type), period

(used period. Supported values are: daily: at the end of every day; weekly:
at the end of every week; monthly: at the end of every month; quarterly: at
the end of every quarter; yearly: at the end of every year).

ConfigurationsObject: holds the main information of the SLA configura-
tions. configurationId (holds the main information of the SLA configura-
tions).

ConfigurationObject: holds the main information of the SLA configurations.
scope (configuration scope), of (holds the main information of the SLA
scoped configuration).

ScopedConfigurationObject: holds the main information of the SLA sin-
gle scoped configuration. scope (configuration scope), value (configuration
value).

QuotaObject: holds the main information of the SLA single quota. id (quota
unique identification), scope (quota scope), over (metrics involved in the
quota calculation process), of (holds the main information of the SLA scoped
quotas).

ScopedQuotaObject: holds the main information of the SLA single scoped
quota. scope (scoped quota scope), limits (holds the main information of an
SLA scoped quota limit).

LimitObject: holds the main information of the SLA scoped quota/rate limit.
max (quota/rate maximum value), period (used period. Supported values
are: daily: at the end of every day; weekly: at the end of every week; monthly:
at the end of every month; quarterly: at the end of every quarter; yearly: at
the end of every year).

RateObject: holds the main information of the SLA single rate. id (rate unique
identification), scope (rate scope), over (metrics involved in the rate calcu-
lation process), of (holds the main information of the SLA scoped rates).

ScopedRateObject: holds the main information of the SLA single scoped
rate. scope (scoped rate scope), limits (holds the main information of an
SLA scoped rate limit).

3 SLA4OAI

A number of proposals have emerged towards formalizing API definitions, but
they are rarely used in practice. Web Application Description Language [5],
a specification language for RESTful APIs was the first one to be proposed.
Other proposals such as API Blueprint3, RAML4, IODocs5, or Swagger6 also
addressed this API formalization goal. However, they were not widely adopted
in the industry [1].

Nonetheless, since the Swagger specification was released to the community
major improvements have been made over the initial proposal, such as defining
3 https://apiblueprint.org/
4 https://raml.org
5 https://github.com/mashery/iodocs
6 https://swagger.io

https://apiblueprint.org
https://raml.org
https://github.com/mashery/iodocs
https://swagger.io

links between resources or supporting different mechanisms of API invocation.
This fact yielded the creation of the OpenAPI Initiative (OAI)7, an open source
consortium hosted by The Linux Foundation and supported by a growing num-
ber of leading industrial stakeholders (e.g., Google, IBM, SmartBear, PayPal or
3Scale). The OAI, therefore, is a vendor-neutral, portable and open specifica-
tion for the creation, evolution, and promotion of a description format for APIs
represented in JSON or YAML files.

An OpenAPI specification (OAS) document, typically contains several el-
ements, namely: API general information (e.g., title, description and version);
API endpoints, specifically the deployment server URL enabling, thereby, having
multiple endpoints differencing production and developing stages by means of
the combination of the deployment URL with the relative resource ; a number
of schemas, defining common data structures used in the API.

Notwithstanding, the key concept in an OAS document is the paths section,
in which it is defined each individual endpoint (i.e., resource path) and the HTTP
methods (i.e., resource operations) supported by these endpoints. Operations
can have parameters passed via URL path, query string, header or cookies. If
an operation sends a request body, the body content and media type can be
described as well.

An enticing feature of the OpenAPI Specification (OAS) is the capability
of being extended with the definition of custom properties starting with x- .
This fact paves the way for customizing or adding additional features according
to specific business needs. Specifically, SLA4OAI represents an example of such
extension capabilities. As depicted in Code 1.2, SLA4OAI8 provides a model for
describing SLA in APIs in a neutral vendor flavor way. This extension is intended
support for different pricing aspects so that API management tools can import
and measure key metrics and build SLAs for APIs in a standard way. This point
is especially interesting in the context of industrial API Gateways since previous
works point out that most real API providers apply limitations (such as quotas
and rates limitations depending on the pricing plan subscribed by clients) [2].

We define an SLA-driven OAS as an OAS document which has been extended
with an optional attribute, x-sla , with a URI pointing to the JSON or a YAML
document that contains different sections, as depicted in the fragment shown in
Code 1.2. Next, each section is briefly described beneath:

SLA Object: every SLA4OAI document contains the following sections: con-
text (holds the main information of the SLA context), infrastructure (pro-
vides information about tooling used for SLA storage, calculation, gover-
nance, etc.), pricing (global pricing data), metrics (a list of metrics to use in
the context of the SLA), plans (a set of plans to define different service levels
per plan), quotas (global quotas, these are the default quotas, but they could
be overridden by each plan late), rates (global rates, these are the default
rates, but they could be overridden by each plan late), guarantees (global

7 https://www.openapis.org
8 https://github.com/isa-group/SLA4OAI-Specification

https://www.openapis.org
https://github.com/isa-group/SLA4OAI-Specification

guarantees, these are the default guarantees, but they could be overridden
by each plan late),configuration (define the default configurations, later each
plan can override it).

ContextObject: id (the identification of the SLA context), version (indicates
the version of the SLA format), api (indicates a URI (absolute or relative)
describing the API to instrument described in the OpenAPI format), type
(the type of SLA based on the life-cycle of agreement, that is, plans or
instance), provider (provider information: data about the owner/host of the
API. This field is required in case of the context type is instance), consumer
(consumer information, data about the entity that consumes the service. This
field is required in case of the context type is instance), validity (availability
of the service expressed via time slots. This field is required in case of the
context type is instance).

ValidityObject: effectiveDate (the starting date of the SLA agreement using
the ISO 8601 time intervals format), expirationDate (the expiration date of
the SLA agreement using the ISO 8601 time intervals format).

InfrastructureObject: supervisor (location of the SLA Check service end-
point), monitor (location of the SLA Metrics endpoint), name (optional
endpoints of SLA governance infrastructure).

PricingObject: cost (cost associated to this service. Defaults to 0 if unspeci-
fied), currency (currency used to express the cost. Supported currency values
are expressed in ISO 4217 format. Samples: USD, EUR, or BTC for US dol-
lar, euro, or bitcoin, respectively. Defaults to USD if unspecified), billing
(period used for billing. Supported values are: onepay Unique payment be-
fore start using the service. - daily Billing at end of the day. - weekly Billing
at end of the week. - monthly Billing at end of the month. - quarterly Billing
at end of the quarter. - yearly Billing at end of the year. Default to monthly
if unspecified).

MetricsObject: name (definitions of metrics with name, types and descrip-
tions), name (reference to pre-existing metrics in external file).

MetricObject: type (this is the metric type accordingly to the OAI speci-
fication format column), format (the extending format for the previously
mentioned type. See Data Type Formats for further detail), description (a
brief description of the metric), unit (the unit of the metric), resolution (de-
termine when this metric will be resolved. If value checks the metric will
be sent before the calculation of SLA state, else if value is consumption the
metric will be sent after consumption).

PlansObject: planName (describes a usage plan for the API with its associated
costs, availability and guarantees).

PlanObject: configuration (configuration parameters for the service tailored
for the plan), availability (availability of the service for this plan expressed
via time slots using the ISO 8601 time intervals format), pricing (specific
pricing data for this plan. Overrides default pricing data defined before),
quotas (specific quotas data for this plan. Overrides default quotas data
defined before), rates (specific rates data for this plan. Overrides default

rates data defined before), guarantees (specific guarantees data for this plan.
Overrides default guarantees data defined before).

QuotasObject: pathName (describes the API endpoint path quota configura-
tions).

RatesObject: pathName (describes the API endpoint path rate configura-
tions).

GuaranteesObject: pathName (describes a level of the guarantee supported
by the plan).

GuaranteeObject: MethodName (an object describes the guarantee level).
GuaranteeObjectiveObject: objective (the objective of the guarantee), pe-

riod (the period of the objective, that is, secondly, minutely, hourly, daily,
monthly or yearly), window (the state of the Objective, that is, dynamic or
static), scope (the scope of who request the service).

PathObject: methodName (the operations attached to this path).
OperationObject: metricName (the allowed limits of the request).
LimitObject: max (max value that can be accepted), period (the period of

the objective, that is, secondly, minutely, hourly, daily, monthly or yearly),
scope (the scope of who request the service).

ConfigurationsObject: name (configurations description).

4 Running example

In this section, we consider the example of a very simple RESTful service with
a single endpoint (/pets) with two methods: GET and POST for the retrieving
and creation of pet resources.

Codes 1.1 and 1.2 depict a comparison of the SLA modeling in iAgree and
SLA4OAI. Specifically, the iAgree example defines both quotas and rates over
requests by means of a scope for each tuple composed by a plan (e.g., free),
resource (e.g., /pets), operation (e.g., post). Next, over this scope, some limits
are being applied (e.g., a maximum of 10 in a daily period). Conversely, SLA4OAI
is a bit more simpler, being not needed to specify a complex scope; defining,
inside a specific plan , the path (e.g. /pets) and method (e.g., post) under the
rates or quotas objects.

� �
1 terms :
2 pricing :
3 ...
4 configurations :
5 ...
6 metrics :
7 requests :
8 ...
9 scope :

10 resource : ...
11 operation : ...
12

13 quotas :
14 - id: quotas_requests
15 scope :
16 plan: ...
17 resource : ...
18 operation : ...
19 over:
20 requests : ...
21 of:
22 - scope :
23 plan: free
24 resource : /pets
25 operation : post
26 limits :
27 - max: 10
28 period : daily
29 ...
30

31 rates :
32 - id: rates_requests
33 scope :
34 plan: ...
35 resource : ...
36 operation : ...
37 over:
38 requests : ...
39 of:
40 - scope :
41 plan: free
42 resource : /pets
43 operation : get
44 limits :
45 - max: 1
46 period : secondly� �

Code 1.1. iAgree document example.

� �
1 plans :
2 free:
3 pricing :
4 cost: 10
5 rates :
6 /pets
7 get:
8 requests :
9 - max: 1

10 period : secondly
11 quotas :
12 /pets:
13 post:
14 requests :
15 - max: 10
16 period : daily
17 pro:
18 ...� �

Code 1.2. SLA4OAI document
example.

5 Conclusions

In this paper, we have presented iAgree and SLA4OAI, two different proposals
for the definition of pricing plans. On the one hand, iAgree is intended to model
a large number of scenarios, including both human services, such as SLAs for
business processes, and computational services, such as SLAs for RESTful APIs.
Alternatively, SLA4OAI’s goal is not model a wide range of SLA scenarios, but
focus on a specific domain: RESTful APIs that specify limitations such as quotas
and rates and are going to be modeled using a standard specification. In this
context, we leverage of the extension points of the OpenAPI Specification (OAS)
for building SLA4OAI that establishes a relationship between the API resources
defined in the OAS document and the limitations (i.e., rates and quotas) for
each one.

We plan to open the SLA4OAI model to the OpenAPI Initiative (OAI) com-
munity in order to obtain feedback and use it to improve the model and validate
our proposal in other scenarios. This is one of the motivations of developing two
SLA specifications, iAgree and SLA4OAI, in parallel. Furthermore, as part of the
verification process, we plan to validate the iAgree model in different industrial
scenarios derived from ICT projects.

As future work, we pretend to be able to model more sophisticated REST-
ful scenarios in which there exists a conversation between API consumers and
providers.

References

1. Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. Example-driven
web API specification discovery. In LNCS, volume 10376 LNCS, pages 267–284.
Springer, Cham, 7 2017.

2. Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes. An Analysis
of RESTful APIs Offerings in the Industry. In Service-Oriented Computing: 15th
International Conference, pages 589–604. 11 2017.

3. Antonio Gámez-Díaz, Pablo Fernández-Montes, and Antonio Ruiz-Cortés. Towards
SLA-Driven API Gateways. In Actas de las XI Jornadas de Ingeniería de Ciencia
e Ingeniería de Servicios, 2015.

4. José María García, Octavio Martín-Díaz, Pablo Fernandez, Antonio Ruiz-Cortés,
and Miguel Toro. Automated analysis of cloud offerings for optimal service provi-
sioning. In ICSOC 2017. Springer, 2017.

5. Marc J Hadley. Web Application Description Language (WADL). Search, 12(TR-
2006-153):1–31, 2006.

6. Octavio Martín-Díaz, Antonio Ruiz-Cortés, Amador Durán, and Carlos Müller. An
Approach to Temporal-Aware Procurement of Web Services. In ICSOC 2005, vol-
ume LNCS 3826, pages 170–184. 2005.

7. T. Mauro. Microservices at Netflix: Lessons for Architectural Design.
8. Carlos Muller. On the Automated Analysis of WS-Agreement Documents. PhD

thesis, Universidad de Sevilla, 2013.

	Fostering SLA-Driven API Specifications
	Introduction
	iAgree
	SLA4OAI
	Running example
	Conclusions

