
SIR: A New Wireless Sensor Network Routing
Protocol Based on Artificial Intelligence

Julio Barbancho, Carlos León, Javier Molina, and Antonio Barbancho

Department of Electronic Technology, University of Seville,
C/ Virgen de Africa, 7. Seville 41011, Spain

Tel: (+034) 954 55 71 92, Fax: (+034) 954 55 28 33
{jbarbancho, cleon, fjmolina, ayboc}@us.es

Abstract. Currently, Wireless Sensor Networks (WSNs) are formed by
hundreds of low energy and low cost micro-electro-mechanical systems.
Routing and low power consumption have become important research is-
sues to interconnect this kind of networks. However, conventional Quality
of Service routing models, are not suitable for ad hoc sensor networks,
due to the dynamic nature of such systems. This paper introduces a new
QoS-driven routing algorithm, named SIR: Sensor Intelligence Routing.
We have designed an artificial neural network based on Kohonen self
organizing features map. Every node implements this artificial neural
network forming a distributed intelligence and ubiquitous computing
system.

Keywords: Wireless sensor networks (WSN); Ad hoc networks, Qual-
ity of service (QoS); Routing; Artificial neural networks (ANN); Self-
Organizing Map (SOM).

1 Introduction

Due to the sensor features (low-power consumption, low radio range, low mem-
ory, low processing capacity, and low cost), self-organizing network is the best
suitable network architecture to support applications in such a scenario. Goals
like efficient energy management, high reliability and availability, communication
security, and robustness have become very important issues to be considered.

Many research centers in the whole world have focused their investigations in
this kind of networks [1]. We present in this paper a new routing algorithm which
introduces artificial intelligence (AI) techniques to measure the QoS supported
by the network.

The wireless sensor networks (WSN) architecture as a whole has to take into
account different aspects, such as the protocol architecture; Quality-of-Service,
dependability, redundancy and imprecision in sensor readings; addressing struc-
tures, scalability and energy requirements; geographic and data-centric address-
ing structures; aggregating data techniques; integration of WSNs into larger
networks, bridging different communication protocols; etc. [2].



2 SIR: Sensor Intelligence Routing

The necessity of connectivity among nodes introduces the routing problem. In
a WSN we need a multi-hop scheme to travel from a source to a destiny. The
problem is solved by a technique called network backbone formation.

We propose a modification on Dijkstra’s algorithm to form the network back-
bone, with the minimum cost paths from the base station or root, r, to every
node in the network. We have named this algorithm Sensor Intelligence Routing,
SIR, which is described as follows in table 1.

Table 1. SIR algorithm

#1: Set up phase: #3: ∀ vi ∈ T ∩ Γ (vj) calculate ti := d(vj) + wji

d(r) = 0 If ti < d(vi) do d(vi) = ti

d(vi) =
�

wri if vi ∈ Γ (r)
∞ if vi /∈ Γ (r)

�
#4: If |T | > 0 go to #2

Γp(vi) =
�

r if vi ∈ Γ (r)
0 if vi /∈ Γ (r)

�
If |T | = 0 stop

#2: Find a vj ∈ T such as
d(vj) = min{d(vi)|vi ∈ T}
Do T = T − {vj}

Once it is designed the backbone formation algorithm, we have to define the
way of measuring the edge weight parameter, wij .

We use a QoS definition based on three types of QoS parameters: timeliness,
precision and accuracy. Due to the distributed feature of sensor networks, our
approach measures the QoS level in a spread way, instead of an end-to-end
paradigm. Each node tests every neighbor link quality with the transmissions
of a specific packet named ping. With these transmissions every node obtains
mean values of latency, error rate, duty cycle and throughput. These are the four
metrics we have define to measure the related QoS parameters.

Once a node has tested a neighbor link QoS, it calculates the distance to root
using the obtained QoS value. The expression 1 represents the way a node vi

calculates the distance to root through node vj , where qos is a variable which
value is obtained as an output of a neural network. This tool is described in
section 2.1.

d(vi) = d(vj) · qos (1)

2.1 SOM: Self Organizing Map

One of the most powerful mechanism developed in AI is the Self-Organizing
Map (SOM) model [3], created by Teuvo Kohonen in 1982, at the University of
Helsinky, Finland.

In SOM we can distinguish two phases: learning phase, and execution phase.
SOM gives an output denoted by qos. This value is returned by a function

Θ defined by the SOM user, according to his aims. Θ depends on the winning
neuron: qos = Θ (g). In section 3 we define this function.



3 Performance Evaluation by Simulation

Due to the desire to evaluate the SIR performance, we have created two simu-
lation experiments running on our wireless sensor network simulator OLIMPO.
Every node in OLIMPO implements a neural network (online processing).

We have focused our simulation on a wireless sensor network composed by
4000 nodes covering an area of 87 Km2. This is the typical area of a european
medium size city like Seville (Spain) or Zurich (Switzerland). The density of
nodes which are within the transmission radius of a node es 7.

Noise influence over a node has been modelled as an Additive Gaussian White
Noise, (AWGN). Noise power has been modelled as a stochastic variable with a
mean value expressed as a percentage of the antenna sensibility; and a standard
deviation expressed as a percentage of its mean value.

Our SOM has a first layer formed by four input neurons, corresponding with
every metric (latency, throughput, error rate and duty cycle); and a second layer
formed by twelve output neurons forming a 3x4 matrix.

Next, we detail our SOM implementation process.

Learning Phase. In order to organize the neurons in a two dimensional map,
we need a set of input samples x(t)=[latency(t),throughput(t),error-rate(t),duty-
cycle(t)]. This samples should consider all the QoS environments in which a link
communication between a pair of sensor nodes can work. For that reason we have
to create the special environments. These scenarios are implemented by different
noise simulations. In our research we created a WSN over OLIMPO composed by
4000 sensor nodes. In this network, we chose a pair of nodes (let us denote them
as v800 and v1250) and introduced a low power noise into one of them (e.g. v1250).
According to the input requirements, we had to measure the QoS metrics. In that
sense, we ran a ping application 50 times at node v800. This application pings
are sent from node v800 to node v1250. Ping requires acknowledgment (ACK).
The way node v800 receives ACKs will determine a specific QoS environment,
expressed on the four elected metrics: latency (seconds), throughput (bits/sec),
error rate (%) and duty cycle(%) [4]. This process was repeated 100 times while
increasing the noise power.

With the set of 100 input samples we trained our neural network. This process
was implemented on a personal computer using the MATLAB� neural toolbox
(offline processing).

Once we had ordered the neurons on the Kohonen layer, we identified each
one of the set of 100 input samples with an output layer neuron. According to
this procedure the set of 100 input samples were distributed over the SOM. We
realized that input samples obtained from a similar noisy environment and with
similar QoS features were allocated in a specific region of the SOM. Consequently
we obtained a map formed by clusters, where every cluster corresponded with
a noise level introduced at the environment and consequently a specific QoS.
Furthermore, a synaptic-weight matrix is formed, where every synapsis identifies
a connection between input and output layer.



In order to quantify the QoS level we studied every cluster features and as-
signed a value between 0.2 and 10, according to the level of noise introduced.
This assignment was based on our experience as experts in networks. In that
way we defined the output function Θ(i, j), i ∈ [1, 3], j ∈ [1, 4] with twelve values
corresponding with every neuron (i, j), i ∈ [1, 3], j ∈ [1, 4].

Execution Phase. Every sensor node measures the QoS of its links collecting
input samples and running the wining neuron election algorithm. For example, if
a specific input sample is quite similar than the synaptic-weight-vector of neuron
(2,2), this neuron will be activated. After the winning neuron is elected, the node
uses the output function Θ to assign a QoS estimation, qos. Finally this value is
employed to modified the distance to root (eq. 1).

Our SIR algorithm has been evaluated by the realization of two experiments
detailed as follows.

Experiment #1. First, a wireless sensor network with 4000 nodes is created.
The network backbone is formed using SIR algorithm, as detailed in table 2.
However, no SOM is applied, so, the distance from a node vi to root d(vi) is not
modified by the neighbor link quality, qos (eq.1). We have called this algorithm
as No AI algorithm.

Next, a high level of noise is introduced at nodes v100 and v200, figure 1.c.
Finally, a specific node (e.g. node number v300) runs the ‘Transmit clock to

base station’ application. Node v300 sends 10 packets to root to measure the
latency. Every packet contains ‘clock’ information.

��� ���
noisy stations noisy stations

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Mean noise (% Ps) (when noise standard deviation is set to 50% of Mean Noise)

Clock latency
      (sec)  

SIR routing 
  algorithm 

NoAI routing 
   algorithm 

��� ���

0
50

100
150

200

0

50

100

0

5

10

15

20

25

30

Noise standard   
      deviation  
(% Mean noise)   Mean noise (% Ps)

Clock latency
      (sec)  

Fig. 1. (a) Clock latency measurement: No AI performance (b) Clock latency measure-
ment: SIR versus No AI (c) Network backbone formation based on No AI algorithm
(d) Network backbone formation based on SIR algorithm.



Figure 1.a represents clock latency depending on the level of the noise power
introduced at nodes v100 and v200.

Experiment #2. This experiment is similar than experiment #1, but in this
case, the distance d(vi) is modified by the neighbor link quality, using equation
1. The network backbone is formed in such a way that the path created from
the node v300 to root does not contain the noisy nodes, figure 1.d.

Figure 1.b shows SIR algorithm performance compared with No AI algorithm
performance. As depicted in this figure, if the mean noise is low, both algorithm
performances are excellent. In this case, the path from the node v300 to root
contains nodes v100 and v200. However, when the mean noise grows up above
the antenna sensibility SIR algorithm performance improves No AI algorithm
performance, maintaining the QoS. In this case, the path from the node v300 to
root does not contain the noisy nodes.

4 Conclusion and Future Works

SIR has been presented in this paper as an innovative QoS-driven routing algo-
rithm based on artificial intelligence. This routing protocol can be used over wire-
less sensor networks standard protocols, such as IEEE 802.15.4 and Bluetooth�,
and over other well known protocols such as Arachne, SMACS, EAR, LEACH,
etc.

The inclusion of AI techniques (e.g. neural networks) in wireless sensor net-
works has been proved to be an useful tool to improve network performances.
An additional advantage is the low cost the AI implementation represents.

The great effort made to implement a SOM algorithm inside a sensor node
means that the use of artificial intelligence techniques can improve the WSN per-
formance. According to this idea, we are working on the design of new protocols
using this kind of tools.

References

1. I.F. Akyildiz, Y. Su, W. Sankarasubramaniam, and E. Çayirci. Wireless sensor
networks: A survey. Computer Networks, Elsevier, 38:393–422, December 2002.

2. F.J. Molina, J. Barbancho, and J. Luque. Automated meter reading and SCADA
application. Lecture Notes in Computer Science, Springer Verlag, 2865:223–234,
October 2003.

3. T. Kohonen. The self-organizing map. In Proccedings of the IEEE, volume 78, pages
1464–1480, 1990.

4. R. Iyer and L. Kleinrock. QoS control for sensor networks. In IEEE International
Conference on Communications, ICC’03, volume 1, pages 517–521. IEEE Press,
May 2003.


	Introduction
	SIR: Sensor Intelligence Routing
	SOM: Self Organizing Map

	Performance Evaluation by Simulation
	Conclusion and Future Works


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




