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Abstract— Using several ADCs (Analog to Digital Converters) 

in parallel with convenient time offsets is considered as an 
efficient way to push the speed limits of data acquisition systems. 
However, a serious drawback of this time-interleaving technique 
is that any mismatch between the channels will damage the 
precision. This paper gives a probabilistic description of the 
problem, studying the impact of time skews, gain and offset 
mismatches. The Probability Density Function (PDF) of both 
Signal-to-Noise Ratio (SNR) and Spurious-Free-Dynamic Range 
(SFDR) are explicitly calculated, giving access to important 
statistical parameters. It is shown that the SNR and SFDR 
dispersion should not be neglected in making practical 
considerations for design decisions. 
 

Index Terms—time-interleaving, parallel converters, ADC 
channel mismatch, Signal-to-Noise Ratio, Spurious-Free Dynamic 
Range. 
 

I. INTRODUCTION 

ANY applications are requiring faster and faster analog-
to-digital converters. In RF design, for example, the 

trend is to move the analog to digital conversion to front-end 
or to intermediate frequency, in order to implement digitally 
the filtering and signal processing. Therefore, very high speeds 
are expected for the ADCs and literature reports up to 6bits at 
1.3GHz [1]. However, these ADCs are usually flash or folding 
architectures, which are also resolution limited. Thus, it is 
becoming very difficult to go beyond these limits without 
losing too much precision or without using exotic and thus 
expansive technologies (HEMT in GaAs, optical or even 
superconducting ADCs) [2]. 

A possible way to gain some speed is to use the time-
interleaving technique, first presented by Black and Hodges 
[3]. Figure 1 shows a general sketch of the system. A number 
M of medium-speed ADCs are operated in parallel but the 
sampling instants between two consecutive ADCs are shifted 
by a fraction 1/M of their clock period. By multiplexing the 
channel output in a circular form, an equivalent high-speed 
ADC is obtained, that should have the same precision as the 
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channel ADCs but with a speed M times higher. The only full-
speed operation is the multiplexing, which is actually a digital 
operation. This technique trades area for speed in an 
approximately 1:1 ratio and can be used with almost any ADC 
architecture. Nevertheless, the drawbacks of this technique are 
two. One of them is that the ADC throughput and bandwidth 
are increased, but the latency will be the same as for the 
channel ADCs, which can be critical for some applications. 
But the most serious issue is that any mismatch between the 
channels will result in a resolution loss. 

 
Linearity mismatch will produce the appearance of noise 

spurs in the ADC output spectrum [4]. However, non-linearity 
is a common concern in ADC design and designers should 
manage to keep it low. Other sources of mismatch such as time 
skews in the sampling scheme will also degrade the 
performance as the signal will not be uniformly sampled. 
Random jitter has the same impact on the precision as for other 
ADCs, like flash ADCs or pipelined ADCs, and is not consid-
ered here. Time skews refer to systematic jitter between 
channels, which is specific to time-interleaved converters. 
Apart from time skews, offset and gain mismatches are also 
specially relevant. Indeed, for a single channel ADC, the exact 
value of gain or offset is not of much importance, as it will not 
affect the SNR or SFDR value. But for a time-interleaved 
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Fig. 1.  Scheme of an M-channel time-interleaved ADC 
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architecture much more care should be taken as gain and offset 
mismatches will generate noise spurs in the signal band.  

Estimations of the impact of these three kinds of mismatch 
on the SNR have already been proposed in other works [5]-[8] 
and even some solutions to cope with the mismatches have 
begun to appear in literature [9]-[11]. [5] settles the base of the 
spectrum study of non-uniformly sampled signals. Time-
interleaved ADCs are a direct application of this formalism 
and the author derives the expression of the expected SNR in 
the presence of time skews. [6] extends the study to the case of 
gain and offset mismatches and also derives an expression of 
the expected SNR for these mismatches. Reference [7] is also 
worth of mention as the authors take another approach and 
study the mismatch effect in the time domain. They are able to 
derive the SNR in the presence of the three kinds of mismatch 
simultaneously, but the expressions are available only for a 2-
channel and a 4-channel ADC. In [8], the multirate formalism 
is applied to time interleaved converters to study the impact of 
gain and offset mismatches. The authors make important 
statistical considerations but they do not bring these 
considerations down to the SNR. The work in this paper 
intends to give a deeper insight to the mismatch issue through 
a probabilistic treatment, completing the work presented in 
[12]. Closed expressions are developed for the probability 
density function of SNR and SFDR, as functions of the 
mismatch variance and the number of channels. The main 
interest to follow this probabilistic study is that it gives a more 
clear vision of the expected SNR or SFDR. Only a 
probabilistic model can provide precise information on the 
SNR dispersion. This practical information becomes of 
relevant importance for the establishment of safe design 
margins. 

The paper is organized as follows. Section 2 introduces the 
basics of the spectral analysis of time interleaved ADCs. 
Section 3 derives a closed form for the SNR probability 
density function and validates it through simulations. Section 4 
derives a closed form for the SFDR probability density 
function and validates it through simulations. Section 5 draws 
interesting information from the probabilistic model about the 
variation of the SNR and SFDR with the number of channels, 
it also shows how a designer could use the results of this study. 
Finally, Section 6 summarizes the conclusions of this paper. 

II. SPECTRAL ANALYSIS 
Shannon’s theorem implies that an ADC running at 

frequency fs cannot convert signal of frequency fin above fs/2, 
the Nyquist frequency. Indeed, above fs/2, the input signal and 
its alias at frequency fs-fin mix and cannot be separated. In a 
time-interleaved ADC, however, the aliases of all channel 
ADCs cancel each others when output signals are multiplexed, 
as it is illustrated in Fig. 2 for a 2-channel ADC. In this case, 
each elementary ADC is running at fe, and after the 
interleaving the overall sampling frequency becomes  fs=2fe. 

 
However, in the presence of mismatches, alias cancellation 

is not complete and some spurs will remain on the final 
spectrum. For an M-channel ADC with offset mismatch, spurs 
will appear at every Mth fraction of the sampling frequency 
(that is, fs/M, 2fs/M,..., (M-1)fs/M). In the same way, for gain 
mismatch and time-skews, spurs will appear at the frequencies 
of the signal modulated by tones at every Mth fraction of the 
sampling frequency (that is: fs/M+fin, fs/M-fin, 2fs/M+fin,, 2fs/M-
fin, ...). 

In that follows the same notation as in [5] and [6] is 
assumed, being: 

M --- the number of interleaved channels 
T=1/fs --- the equivalent sampling period of the ADC array 
tm --- the first real sampling instant of channel m, taking into 

account the time skews. 
( 1)m mt m T r T= − − , where rm is the time skew associated to 

channel m, expressed as a fraction of the sampling period. 
Only the errors due to gain mismatch, offset mismatch and 

time skews will be considered. Hence, the channel ADCs are 
modeled in the simplest way possible as a fixed delay followed 
by a perfectly linear device with variable slope and offset. 
Figure. 3 presents the z-domain model of an M-channel time 
interleaved ADC with the three discussed mismatches 

 
Gain errors are introduced multiplying the signal amplitude 

by a channel-dependent term, 1+am, while offset errors are 
considered with an additional term, dm. These three non-
idealities refer to mismatches due to the fabrication process 
and are assumed to be constant over time. That is an important 
point to ensure the validity of the Fourier transform that will 
be used in the following.  
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Fig. 2.  Alias cancellation in an ideal 2-channel time interleaved ADC 
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Working in the z-domain and considering the 
time-interleaved output sequence 0- ( ) nTI ADC n ∞

=
{ } as the sum 

of the upsampled sequences TIm of every channel,1 
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the authors in [5] and [6] obtain a general expression of the 
digital output spectrum that for the particular case of a 
sinusoidal input with ωin frequency and A0 amplitude, within 
the fundamental band [0, [sf , is  
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As stated before, we can see that the last two terms of (1) 
stand for spurs appearing as uncanceled alias of the signal 
around the Mth fractions of the sampling frequency. These two 
terms are due to both gain mismatch and time-skews. If only 
gain mismatches are considered, the magnitudes of these spurs 
are independent of the input signal frequency. This is not the 
case if only the time skews are considered as the term rm is 
multiplied by ωin, the input signal frequency. The faster the 
signal, the more important the error due to imprecise sampling. 
The first term of (1) stands for tones that appear at the Mth 
fractions of the sampling frequency and that are due to offset 
mismatch. 

The output spectrum expressed in (1) does not take into 
account the quantization error. But this is not important 
because if the mismatch errors are as small as the quantization 
error, the overall ADC can be considered almost ideal. If 
mismatches are kept small, signal power can be written as 
 2

0 / 2signalP A≅ . (2) 
Equation (1) is graphically represented for the case of a 3-

channel ADC, in Fig. 4. Every spectral line is drawn together 
with its corresponding k index as it is used in (1). Index k=0 is 
associated to the desired output signal.  

 
1 The output sequence has the following general rule 
- ( 1) ( )m m mTI ADC n M m ADC n⋅ + − =  with 1,...,m M∈{ }  the channel index 

and 0mn ≥  the sample index of the mth channel. 

 

III. PROBABILITY DENSITY FUNCTION FOR THE SNR 
To introduce the probability treatment, it will be assumed 

that all am, dm and rm in (1) are random variables distributed 
with a centered Normal law2, ~ (0; )m xx N σ , where σx is the 
interchannel standard deviation of the mismatch x (that stands 
for either a, d or r). These random variables can be normalized 
(standardized) such that 
 m x mx x= σ ′  with ~ (0;1)mx N′  (3) 

In the following development we will consider three initial 
assumptions: 
• one kind of mismatch will probably dominate over the 

others. So, only one kind of mismatch will be studied at a 
time. This assumption will be commented at the end of this 
section. 

• small time skews, which will allow the use of first order 
Taylor expansion, 

 1 1 2in mj r T in
in m r m

s

f
e j T r j r

f
− ω ≈ − ω = − π σ ′  (4) 

• the first spur due to the offset mismatch, appearing at f=0, is 
considered as the whole ADC offset. 
The procedure to carry out the probabilistic approach is 

illustrated in Fig 5.    

 
The objective of the treatment is to get a closed form for the 

SNR PDF (Probability Density Function of the SNR). This is 

 
2 A Normal Law is chosen as it is probably the most conservative 

assumption if no information on the technology mismatch is available. 
Moreover, at the ADCs level, the offset and gain mismatches as well as the 
time-skews can arise from lots of component mismatches. Then, to some 
extent, we can apply the Central Limit Theorem. 
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Fig. 5.  Procedure leading to the SNR probability density function 
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in principle possible, because the SNR can be seen as a 
random variable that is a function of other random variables 
with known distributions (the channel mismatches). However, 
such a calculation is not straightforward and an intermediate 
step will be taken by calculating the noise power. It will come 
out that this intermediate random variable has a well-known 
distribution that will allow the calculation of the SNR PDF. 

The first step is to get an expression of the noise power 
generated by the channel mismatches (see Fig. 5). The noise 
term corresponding to the offset mismatch will be the sum of 
all the spurs power at the Mth fractions of the sampling 
frequency. In the digital output spectrum, all the offset spurs 
correspond to the first term of (1). Then, the noise power can 
be written 
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Notice that the sum begins with k=1 in order to discard the 
spur at f=0, as stated before. After some simple developments 
(see Appendix A),  
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where 〈⋅〉  is the interchannel sample mean operator, 
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and the variable sd is the interchannel sample variance of the 
offset mismatch defined as 
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In the same way, the noise term arising from a gain 
mismatch can be extracted by making rm=0 in the second and 
third terms of (1). Then the noise power for gain mismatch 
results 
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Finally, if rm is small, which should be granted by design, 
the exponential term can be linearly expanded and the noise 
term for time skews becomes 
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It is easily seen that all the noise terms have the same form 
with respect to the random variables. Then, the probability 
treatment will be the same for all of them and only the first 
coefficient will make the difference between the different 
mismatches. 

The next step consists in finding the distribution of the noise 
power (see Fig. 5), which means evaluating the PDF of the 
interchannel sample variance sx. 

Here, the key point is to recognize that, as all the x’
m are 

distributed as N(0;1), then the sample variance sx is distributed 
like a well-known Chi-square law with M-1 degrees of 
freedom [13], 
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where Γ is the gamma function. 
Now that the PDF of the noise power is known, it is possible 

to deduce the PDF of the Signal-to-Noise Ratio (see Fig. 5). 
The general expression for any mismatch would be, 
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where applies 
2 2
0 /(2 )d dAλ = σ  for the offset mismatch, (13) 

21/a aλ = σ  for the gain mismatch and (14) 

[ ]2 2 2/(2 ) /( )r s in rf fλ = π σ  for the time-skews. (15) 
In (12), the function (Fx) relating the random variable SNRx 

to the random variable sx is a bijection. Therefore, it is possible 
to go a step forward and calculate the explicit probability 
density function of the SNR using the following relation for a 
variable change [13], 
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Using (12), it comes 
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Now, the final expression (17) will allow to make more 
direct computations and estimate confidence intervals for the 
SNR. Notice that the obtained standardized expression is 
common to the three types of mismatch, which means that their 
impact will be the same on the SNR. The only difference 
resides in the scaling parameters λx that are taken into account 
in (17) through the term xSNR


 given by (18). Actually, it is 

also possible to verify (differentiating) that this term is the 
most probable value of the SNR. 

Regarding the SNR estimate for the offset mismatch 
provided in [6], it can be proved that it would match the SNR-
most-probable value xSNR


, if the first spur (at k=0) were not 

accounted as noise. 
In order to verify the correctness of these probability density 

functions, the calculated results were compared to 2000 Monte 
Carlo simulations of a virtual 14-bit M-time interleaved ADC. 
The time-interleaved converter was modeled in MATLAB as 
an array of ideal converters and the non-idealities were 
introduced at the front-end of each channel (see Fig. 3). For 
each run, M random mismatch were sampled from a N(0; σx) 
law and applied to the channel ADCs. The FFT of the 
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distorted sine-wave output was then obtained and the SNR was 
evaluated.  

Figure 6 shows the results corresponding to the offset 
mismatch. The SNRd does spread over the distribution 
predicted by the mathematical model (17). 

 
In the same way, Fig. 7 represents the variation of the PDF 

for different time-skews in the case of M=4. The matching 
between the model and the simulation is once again very 
convincing. It can be noticed from Fig. 7 that the dispersion 
does not scale with the mismatch amplitude. The gain 
mismatches would provide the same kind of curves. Extensive 
simulations have been carried out to cover a wide range of 
cases but are not presented here for the sake of brevity. Indeed, 
(17) shows that the PDFs have the same normalized form for 
the three kinds of mismatch. 

 
At the beginning of this section, it was assumed that one 

kind of mismatch would dominate over the others. 
Nevertheless, it is legitimate to wonder what can happen if this 
is not the case. Actually, it is possible to follow the reasoning 
presented in this section without making the approximation of 
only one mismatch at a time. It can easily be shown that the 
total noise comes to be the sum of the three noise contributions 

already calculated, Ntot=Na+Nr+Nd. However, it becomes very 
difficult to extract the close form of the probability density 
function of such a sum. Indeed, what has to be done is to 
calculate the convolution product of three weighted Chi-square 
functions. This problem has no simple solution unless the 
coefficients of the variables are the same, that is, λa=λr=λd (see 
(13) to (15)). In that case, it could be shown that the resulting 
variable would follow a Chi-square law with 3(M-1) degrees of 
freedom and weight 3/λ instead of (M-1) degrees of freedom 
and weight 1/λ. Similarly, if two of the three contributions are 
of the same order an the third has a much lower weight, the 
sum would follow a Chi-square law with 2(M-1) degrees of 
freedom and weight 2/λ.  

IV. PROBABILITY DENSITY FUNCTION FOR THE SFDR 
Figure 8 shows the flow of the procedure to obtain the PDF 

of the Spurious-Free Dynamic Range (SFDR). The reasoning 
is very similar to the SNR case and, once again, we will follow 
the same steps for the 3 types of mismatch. The first step 
consists in calculating the PDF of the power of kth spur which 
a priori should depend on the value of k that defines the spur 
position in the spectrum. The second step consists in getting 
the PDF of the power maximum, and the last step finally 
deduces the PDF of the SFDR. 

 
According to the flow presented in Fig. 8, the first task is to 

calculate an expression of the power density of a spur due to 
the offset mismatch, 
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For the gain mismatch the result is very similar. 
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For the time-skews,  the orders higher than the first in the 
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Taylor development of (4) have been neglected, 

 

[ ]
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It appears clearly that the probability treatment will be the 
same for the three mismatch contributions, as the term Sx(k) 
has the same form in (19), (20) and (21). Therefore, one can 
treat the case of the offset mismatch and then take the results 
to the gain mismatch and time-skew cases.3 

An equation relating the spur power to the mismatch 
random variables has been obtained, so the next step of the 
flow described in Fig. 8 consists in finding the probability 
density function of the spur power. 

Notice that in (19), (20) and (21), another symmetry exists, 
( ) ( )spur spur

x xP k P M k= − , therefore, hereinafter only the spurs 
corresponding to the integers k comprised between 1 and 
M/2 are going to be considered for SFDR calculation. 

Let us consider the case M=4. The first spur at k=1 is 
computed as the sum of the channels offset over the 4th-order 
roots of unity (see Fig. 9a). For k=3, the spur power is the 
same as for k=1. However, for k=2, the sum is performed over 
the square roots of unity in only one dimension of the phase 
plane. 

For k=1. the power would behave as 
 2 2

4 2 3 14
( 1) ( ) ( )d M

S k d d d d
=

= = − + −′ ′ ′ ′  (22) 
But for k=2, it would behave as 

 2
4 2 3 14

( 2) ( )d M
S k d d d d

=
= = + − −′ ′ ′ ′  (23) 

For other values of M (see Fig. 9b for the case of M=5), the 
same phenomenon can be observed. 

 
If k is different from M/2 (which is always the case when M 

is odd) the offset contributions should be projected on the two 

 
3 The relationship between the variable Sx(k) and the sample variance 

defined in (8) is 
1

1
(1/ ( 1)) ( )

M
x xk

s M M S k
−

=
= − ∑ . 

dimensions of the phase plane and all the spurs would have the 
same type of PDF, but for the spur in k=M/2 with M even, the 
PDF would be different because all the offset contributions 
project on the same dimension. This demonstration is 
presented in the Appendix B. 
 

Expanding (22) and (23) for k different from M/2, it results, 

 
2 2

2 1 1

( )
M

Mx m mk
m m

S k x x
Μ/2

≠
= = + Μ/2

   
⇔ +′ ′     

∑ ∑  (24) 

and for k=M/2 with M even, 

 
2

2 1

( )
M

Mx mk
m

S k x
=

=

 
⇔ ′  ∑  (25) 

The sum of n variables distributed as a Normal law N(0;1) is 
distributed as a Normal law (0; )N n , and the sum of ν 
squared variables distributed as N(0;1) is distributed as a Chi-
square law with ν degrees of freedom [13]. So (24) and (25) 
lead to 

 
/

2
2

2

2 2( ) ~ ( ) ( ) , 0
s M

Mx ok

s eS k h s s
M M M
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≠
= χ = >  (26) 
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2

1( ) ~ ( ) ( ) , 0
2

s M

Mx ek

s eS k h s s
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−

=
= χ = >

π
 (27) 

The next step to obtain the SFDR PDF is to get the PDF of 
the maximum power density, 

{ }max ( )spur spur
x xk

P P k=


, { }1,2,..., / 2k M∈   . 

The similarities in the relationships (19), (20) and (21) 
justify that it is only necessary to find the PDF of the 

{ }max ( )x xk
S S k=


. 

As stated in [13], the Cumulative Density Function (CDF) 
of the maximum of a set of independent random variables is 
the product of their individual CDFs. Although it is not 
obvious that the spurs are statistically independent, the fact 
that for different spurs the offset contributions are summed in a 
different order compensates the fact that the contributions are 
actually the same (see Fig. 9b) and therefore, produces an 
independent statistic behavior (the exact demonstration is 
made in the Appendix C). 

The PDF of the maximum becomes (differentiating the 
CDFs product): 
• if M is odd, all the (M-1)/2 spurs have the distribution of 

(26), 

( ) 1max 2
odd

1max ( )} ~ ( ) ( ) ( )
2

M

ox x o o ok M

MS S k h s H s h s−−
= { = ⋅


 (28) 

• if M is even, (M/2-1) spurs behave as (26) and the spur at 
k=M/2 behaves as (27), 

 
( )

max

even

2
2

max( ( ; )) ~ ( ) ...

( ) ( 1) ( ) ( ) ( ) ( )
2

ex x ek M

M

o e o e o

S S k M h s

MH s H s h s h s h s−

= =

 = ⋅ − +  



 (29) 

The functions Ho and He are the integrals (the CDFs) of the  
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Fig. 9.  a) Spur generation as function of index k for M=4 (even) channels 

b) Spur generation as function of index k for M=5 (odd) channels 
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PDFs ho and he respectively, 
 /( ) 1 , 0s M

oH s e s−= − >  (30) 

 ( ) erf , 0
2e

sH s s
M

 
= >  

 (31) 

Finally, the last step to obtain the SFDR PDF is to realize 
the variable change using the SDFR definition in the same way 
that it was made in (16). 

It should be considered that the power density of a 
sinusoidal signal in inf f=  is 2

0/ 2 / 4signalP A≈ , then, the 
definition of the SFDR provides 

 
2/ 2

10log 10log ( )signal x
x x xspur

x x

P M
SFDR F S

P S
   λ′

= = = ′     


   (32) 

where / 2, ,d d a a r rλ = λ λ = λ λ = λ′ ′ ′  (see (13), (14), (15)). 
Using (28), (29) and (32), the SFDR probability density 

function becomes: 
• for M odd, 

1
2

( 1)

( 1)( ) (1 )
2 SFDRx

x

u u
SFDR x

u e

h SFDR u e e
−α⋅

ν
−− −

= ν+ λ′

ν ν +
= α ⋅ −  (33) 

• for M even, 
/ 2

/ 2

( 1)

( ) ( 1) (1 )

1 ( / 2)
2( 1)

1 (1 )
( 1) 2 SFDRx

x

u
SFDR x

u

u u

u e

h SFDR u e

e erf u

e e
u −α⋅

− ν

−

− −

= ν+ λ′

= α ν + − ⋅

 ν −
+ ν +


+ − 

ν + π 

 (34) 

where the coefficients α and ν were defined in (18). 
The correctness of the derived PDFs is verified comparing the 
values obtained from the equations to 2000 Monte Carlo 
simulations. For each run, M random offsets were sampled 
from a N(0; σd) law and taken into account into the same ADC 
model that has been used in Section 3. The FFT of the 
distorted sine-wave output was then obtained and the SFDR 
was evaluated. Figure 10 presents a simulation  for time skews 
with σr=0.005 and fin=fs/2. The matching between the model 
and the simulation is very good, for both M even and odd. 

 
In Fig. 11, an ADC with 4 channels has been simulated for 

different values of time-skews. The results are also in good 
agreement with the prediction. Moreover we can notice that, as 
for the SNR, the dispersion does not depend on the amplitude 
of the time-skews. Simulations for offset mismatch and gain 
mismatch have also been realized and exhibit the same level of 
agreement with the model than the one presented here for 
time-skews. They are not presented for the sake of brevity. 

 

V. RESULT DISCUSSION 
The mathematical model obtained through the probabilistic 

treatment described along this paper intends to provide a 
deeper and clearer understanding of the channel mismatch 
issue in time-interleaved ADCs. Various benefits can be drawn 
from this approach that could not be foreseen with previous 
simpler models. Indeed, in the same way that a measurement is 
meaningful only if its precision is known, a parameter estimate 
should always be provided together with a confidence interval 
or some other information on its dispersion. In Fig. 12, the 
variation of the dispersion in SNR due to offset mismatch is 
represented as function of the number of channels. As was 
stressed in Section 3, the SNR PDFs have the same form for 
the three kinds of mismatch. The only difference arises in the 
scaling of the λx parameters (see (13) to (15)). 

 
Therefore, the gain mismatch and time skews would follow 

the same trend as the offset mismatch in Fig. 12. It is worth 
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Fig. 11.  SFDR probability density function for M=4, with different time-
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noticing in Fig. 12 the strong dependence of the dispersion on 
M. It can be calculated that for M=2 the 90% confidence 
interval is as large as 27dB (i.e. 4.5 effective bits), whereas for 
M=8 it reduces to only 8dB (i.e. 1.3 effective bits).  

Usually most designs are likely to implement a small 
number of channels in order to limit the chip area. But as can 
be seen in Fig. 12, for small values of M, the SNR dispersion 
is quite large, and this information should thus be taken into 
account when fixing the design goals. Therefore, the result 
given by the SNR estimate proposed in [6] reveals to be 
misleading, underestimating mismatch impact. In the same 
way, Fig. 13 shows the evolution of the expected SFDR 
together with its standard deviation. Here again the importance 
of the dispersion for small values of M can be seen. Moreover, 
it could be interesting to comment two other issues. The first 
one is that the SFDR is actually increasing with the number of 
channels. When the number of channel is increased, more 
spurs appear in the signal band. The mean total noise, which 
has been seen to remain near constant with M (see Fig. 12) is 
splitted between more and more spurs. As a result, the mean 
height of each spur decreases and the SFDR increases. This is 
quite intuitive as a spur is formed by an average of the rotated 
channel alias. As the channel contribution is zero mean, the 
average will tend to zero when M tend to the infinite. 
However, this trend is not as significant as it could be expected 
(only 3dB are gained from 2 to 8 channels). Indeed, the SFDR 
does not rely on the mean spur but on the highest spur. 
Therefore, the fact that the overall spur height decreases is 
somewhat compensated by the fact that there are more spurs, 
and thus more possibility to get a high spur. The other 
interesting issue is that even channel numbers give worse 
SFDR results than odd channel numbers. This is due to the fact 
that the spurs which correspond to k=M/2 (for M even), have a 
more dispersed height than the other, making them more likely 
to be the maximum spur, which determines the SFDR. 

  
Therefore, it appears clearly that this mathematical model 

should help the designer to establish safe margins. A possible 
way to do this is evaluating the yield of a given design. Indeed, 
if the SNR design specification is, for instance, 60dB, the yield 
can be defined as the probability that the implemented ADC 

has an SNR greater than 60dB. That is 

 
60

( )
xSNRY h d

∞
= ξ ξ∫  (35) 

Based on (35), the Fig. 14 shows the evolution of the yield 
as function of the offset mismatch, for different M values. The 
offset mismatch is expressed in Least Significant Bit (LSB) of 
a 10 bit ADC. It can be seen that, if the mismatch is as high as 
1LSB, the 2-channel architecture is preferable as it will 
provide a yield of 68%, versus a yield of only 22% for an 8-
channel architecture. However, if mismatch of only 0.5LSB is 
managed, the trend is reversed and a 2-channel ADC will give 
a yield of 95.5% versus 97.5% for the 8-channel ADC. This 
means that the high dispersion of the 2-channel architecture 
could be advantageous, as some ADCs will manage to reach 
the specification, but yield escapes could also be more likely. 
A point has been marked on Fig. 14 that is about common to 
all curves. It can be seen that for an offset mismatch above 0.6 
LSB, the yield will be lower than 90% whatever the number of 
channels. 

 
The information on the SNR and SFDR should thus be 

considered in early phases of the design. Thanks to the model, 
if a designer is able to estimate the expected offset and gain 
error for a given channel ADC and the expected time-skews 
associated with a given clocking scheme, he can assess the 
expected yield of an M-time interleaved architecture. If the 
yield of the planned architecture is too low, he has to evaluate 
the cost of any corrective action. These corrective actions 
could be the addition of a calibration scheme, an architecture 
change or even a technology change. Let us take a brief 
example: a designer wants to build a 200MHz 12-bit ADC. He 
planned to use a 2-channel pipeline architecture but the 
estimation of the offset variance lead him to a poor yield. One 
solution could be to add a calibration scheme such as proposed 
in [4], leading to an important increase of the required digital 
resources. Another solution could be to build a 4-channel 
ADC. Each channel ADC would thus have a 50MHz output 
rate instead of 100MHz. However, using a clock at 100MHz, 
the extra phase may be used for offset cancellation purpose. 
Another possible corrective action could be to share as many 
blocks as possible between the channels that work in opposite 
phases. If an M-channel ADC is built in this way, it behaves as 
if it had M/2 channels from a mismatch point of view. This is 
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of particular interest in the case of a 2-channel ADC if the 
mismatches are reduced in a sufficient amount. Conversely, 
one can start from the SNR and SFDR desired yield and 
translate this information in terms of mismatches. Then the 
designer has to evaluate how these new specifications are best 
reached. It is still up to the designer to value the different 
trade-off. 

VI. CONCLUSIONS 
Time-interleaving is an appealing technique to improve the 

analog-to-digital conversion speed. However, this strategy will 
damage the ADC resolution unless the channel mismatches are 
kept small.  

In this paper, the impact of the gain and offset mismatches, 
as well as of the time-skew on the SNR and the SFDR of the 
resulting ADC have been studied from a probabilistic point of 
view. The obtained expressions for the Probability Density 
Functions provide designers with important information which 
should help to solve design trade-off, to tailor safer margins or 
to fix clear goals for developing mismatch calibration 
strategies. Some of the relevant conclusions that can be drawn 
from the application of the given models can be summarized as 
follows. Concerning the SNR, its most probable value remains 
about the same when varying the number of channels but its 
dispersion is very high for a small number of channel. 
Concerning the SFDR, its most probable value increases with 
the number of channels and is higher for an odd number of 
channel than for an even number. As for the SNR, its 
dispersion also exhibits a high value for a small number of 
channels. 

APPENDIX 

A. Noise Power calculation 
Let’s sketch the steps to come out with (6) from (5), 
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where 
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Using conjugate complexes and the Kronecker’s delta nmδ , 
we will arrive to the sample variance of the set mx{ }  
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If ~ ( ; )m x xx N µ σ  and we use the standardized 
variables ( ) /m m x xx x= − µ σ′ , we obtain, finally, 

 2 2 1
x x m m x x

MN x x s
M

2 −
∝ σ ⋅ 〈( − 〈 〉) 〉 = σ ⋅′ ′  (37) 

B. PDF for the power density of an spur 
In order to calculate the probability of a spur power, we 

have to find the PDF of the variable 
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with (2 / )km k m Mϕ = π . The relationship between  
We can easily write 
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The last quadratic term is zero if / 2k M=  when M is even 
(this case we will denote hereinafter only with / 2k M= ). 

The random variables ,x kSX  and ,x kSY  of (39) are 
independent. They are projections of a Normal variable over 
two orthogonal dimensions (the real and imaginary axis) [13]. 

As each mismatch mx′  is Normal N(0; 1), then the above 
linear combinations, ,x kSX  and ,x kSY , are also Normal 
distributions, 
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The variances are 
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If 
/ 2

( )x k M
S k

≠
 is the sum of two independent squared 

normal variables then it behaves like a Chi-square law with 
two degrees of freedom 2

2χ , and when / 2k M=  is distributed 

as the square of a normal variable, like a 2
1χ . 

C. Statistical independence between spur powers 
To demonstrate that two spur powers, ( ), ( )spur spur

x xP k P l  with 

, 1,...,k l ∈{ Μ/2}  are statistically independents, we should 
keep in mind that the relationship between the total noise 
power Nx and the individual power of each spur ( )spur

xP k  is 
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or the same using the definitions (8) and (38), 
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Developing (44) we have an expression that verify the 
conditions of Cochran’s theorem [14], 
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 (45) 

This is a very important theorem which allows us to 
decompose sums of squares into several quadratic forms and 
identify their distributions to Chi-square 2

νχ  and establish their 
mutual independence. Under these conditions the quadratic 
forms ( ) 1,... / 2xS k k M{ }, ∈{  }  are statistically independent 
and therefore, the spur powers are also independent. 
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