
UNIVERSIDAD DE SEVILLA

DOCTORAL THESIS

Design of Trusted Piecewise Affine
Controllers and Virtual Sensors into

CMOS Integrated Circuits

Author:
Macarena C. MARTÍNEZ RODRÍGUEZ

Supervisors:
Dr. Iluminada BATURONE
Dr. Piedad BROX

A thesis submitted for the degree of
Doctor of Philosophy

http://www.us.es

iii

Acknowledgements
This research work has been developed at the Instituto de Micro-

electrónica de Sevilla (IMSE, CNM), CSIC, Universidad de Sevilla. This
work was supported in part by TEC2014-57971-R, IPT-2012-0695-390000,
TEC2011-24319, TEC2008-04920 projects from the Spanish Government,
P08-TIC-03674 project from the Andalusian Regional Government (with
support from the PO FEDER-FSE), and FP7-INFSO-ICT-248858 project
from European Community. It was supported by FPI fellowship program
for Students from Spanish Government (October 2013- January 2018). Dur-
ing 2015 a stay of 3 months has been accomplished at the ‘‘Computer
Security and Industrial Cryptography group (COSIC)’’ of the KU Leuven,
Belgium supported also by FPI fellowship program.

I would like to thank my thesis directors for their patient guidance,
encouragement and advice during this stage. Firstly, I would like to thank
Lumi for contributing with her enormous capacity for global and critical
vision, as well as her meticulousness and perseverance. I would also like
to thank Piedad for her encouragement and guidance on a daily basis
achieving a relationship beyond the professional perspective.

I’d like to thank anyone who invest his time on helping me and make
my work more fruitful, particularly Adrián, Lola and Jose Miguel, all the
colleges that have worked in PB-12 to make our office a good environment
to work each day, and all the members of the TIC-180 (¡ánimo equipo!).

Por último, dar las gracias a mis padres por dejarme soñar, equivocarme
y crecer. También a mis hermanas por las risas y a Jorge por todo lo
compartido. Y pedir perdón a Leo por no sentirme culpable de quitarle su
tiempo. Estoy convencida que en el futuro lo comprenderá.

v

Preface
I started my research activities collaborating in the tasks of the Eu-

ropean Project MOBY-DIC (‘‘Model-based synthesis of digital electronic
circuits for embedded control’’, FP7-ICT: 2009-2012). This project was
focused on developing a unique paradigm and supporting tool chain for
the design of embedded control systems, with the aim of reducing both
design costs and time to market. Particularly, the project was centred on
applying PieceWise Affine (PWA) controllers into automotive products.
My participation in this project was the germ of this Ph.D. study: the de-
sign of PWA functions into Complementary Metal-Oxide-Semiconductor
(CMOS) Integrated Circuits (ICs).

Nowadays, there is a growing interest in smart devices with not only
embedded controllers (to act in response to measures) but also embedded
sensors (to measure variables of interest either direct or virtually), thus pro-
viding autonomous intelligence in the physical system they are included.
Consumer products in our homes, professional equipment, health care,
and automotive and transportation systems all heavily rely on embedded
control and sensing technologies. The Internet of Things (IoT) ecosystem
is a clear deployment scenario for these devices.

The hypothesis in this Ph.D. work was that trusted hardware real-
izations of PWA functions into configurable and programmable CMOS
ICs could increase widely the horizons of application of embedded con-
trollers and virtual sensors. To validate this hypothesis, the first challenge
was the development of architectures that overcome the proposals in the
state-of-the-art. To implement and verify them, a hardware design flow
was developed and employed to generate PWA functions with Applica-
tion Specific Integrated Circuits (ASICs) and programmable devices as
Field-Programmable Gate Arrays (FPGAs).

In order to reduce time-to-market of these designs, an automated and
integrated design flow was used to apply them as embedded controllers
and virtual sensors. In the case of embedded control, the design flow is
based on a model-based methodology, which applies model predictive
control (MPC) and uses a Matlab toolbox to extract the PWA controllers
from mathematical models of the physical system to control, obtaining
the parameters needed to program and configure the proposed ASIC and
FPGA hardware realizations of the PWA controllers. Several cases of study
were addressed to illustrate the high-performance in terms of area, power,

vi

and speed of the resulting embedded controllers into nanometer CMOS
ICs.

In the case of embedded sensors, PWA virtual sensors are employed
to model non-linear relations between input variables which are easy to
measure and output variables which are costly to evaluate directly. The
parameters needed to program and configure the proposed ASIC and
FPGA hardware realizations of the PWA virtual sensors were obtained
with an identification algorithm that uses numerical input-output data
obtained from experiments or simulations. Since PWA systems are a subset
of fuzzy systems, a design methodology based on Xfuzzy environment is
presented. A case of study from the automotive domain was selected to
illustrate the performance of the resulting nanometer CMOS ICs acting as
virtual sensors.

In spite of the importance of embedded control and sensing systems in
daily life, there is a surprising lack of security primitives to protect them.
The inclusion of security is crucial to guarantee not only data privacy and
authenticity but also device authenticity, thus increasing the horizons of
application of embedded controllers and virtual sensors. Hence, another
challenge addressed in this Ph.D. Dissertation was the design of trusted
PWA hardware. For that purpose, lightweight cryptographic primitives
were analysed and the most suitable were selected to be included in the
proposed ASIC realizations. A prototype of trusted virtual sensor that of-
fers privacy, authenticity and integrity of the virtually sensed measurement
and the circuit itself was designed into a 90-nm CMOS ASIC.

In summary, the goals addressed with this Ph.D. work are the follow-
ing:

• Review the state-of-the-art in the microelectronic design of PWA
functions for model predictive control (MPC) and virtual sensing.

• Review the state-of-the-art in cryptographic primitives suitable to be
included in embedded PWA controllers and virtual sensors.

• Design of efficient hardware architectures to generate PWA functions.

• Design of trusted hardware for embedded control and sensing using
PWA functions and cryptographic primitives.

• Develop a high-level design flow to implement and verify PWA
solutions in FPGAs and ASICs for control and sensing applications.

vii

• Validate the architectures and design flow with ASIC and FPGA
prototypes using a CMOS nanometric technology.

• Evaluation of the proposed PWA solutions in hardware with cases
of study of embedded control and virtual sensing domains.

The Thesis is organized in eight chapters. The first chapter introduces
the main issues addressed with this research work. The following six chap-
ters gather the main results. Dissertation culminates with the discussion
and conclusions of the achievements.

ix

Contents

Acknowledgements iii

Preface v

1 Introduction 1
1.1 Piecewise affine (PWA) functions 5

1.1.1 Generic PWA form based on binary search tree (PWAG) 6
1.1.2 Generic PWA form based on lattice (PWAL) 7
1.1.3 Simplicial PWA functions (PWAS) 10
1.1.4 Hyperrectangular PWA functions (PWAR) 11

1.2 PWA forms for Model Predictive Control (MPC) 12
1.3 PWA forms for virtual sensors 15
1.4 Trusted controllers and sensors 16
1.5 Conclusions . 17

2 Hardware architectures to implement PWA functions 19
2.1 Architecture for PWAG form 19
2.2 Architecture for PWAL form 19
2.3 Architecture for multiple PWA forms 19
2.4 Comparison between architectures 20
2.5 Conclusions . 22

3 Hardware design flow to implement PWA functions 23
3.1 Hardware design flow for ASICs 23

3.1.1 Manufactured ASICs 23
3.2 Hardware design flow for FPGAs 24
3.3 Hardware verification . 24
3.4 Conclusions . 24

4 PWA solutions in hardware for Model Predictive Control 25
4.1 The Moby-dic Toolbox . 25

x

4.2 Methodology to configure and program PWA ASICs with
the Moby-dic Toolbox . 26

4.3 Methodology to extract PWAL form from Moby-dic Toolbox 27
4.4 Application examples . 27
4.5 Conclusions . 28

5 PWA solutions in hardware for virtual sensors 29
5.1 Identification algorithm for PWAR virtual sensors 29
5.2 Methodology using Xfuzzy environment 32
5.3 Application example . 33
5.4 Conclusions . 35

6 Cryptographic modules for PWA solutions in hardware 37
6.1 Description of candidate modules 38

6.1.1 Hash-based Message Authentication Code (HMAC)
based on the PHOTON hash function 38

6.1.2 AEGIS Authenticated Cipher 38
6.1.3 ASCON Authenticated Cipher 38

6.2 Comparative analysis of the cryptographic modules 38
6.3 Conclusions . 38

7 ASIC design of a trusted PWA virtual sensor 39
7.1 Functional and architectural description 39

7.1.1 PWAR Unit . 40
7.1.2 Cryptographic Unit 42
7.1.3 Control Unit . 43

7.2 Features of the trusted virtual sensor 44
7.3 Implementation results . 45
7.4 Conclusions . 47

8 Conclusions 49

A Brief CV 53
A.1 Journal Papers . 53
A.2 Conference Papers . 54
A.3 Other Merits . 55
A.4 Projects . 56

Bibliography 57

xi

List of Figures

1.1 Example of a PieceWise Affine function of a two-dimensional
domain. 2

1.2 Different partitions of a bi-dimensional input domain into
polytopes. 3

1.3 (a) A binary search tree (BST). (b) Polytopes. 6
1.4 Example of a one-dimensional PWA function. 9
1.5 Example of a hyperrectangular single-resolution partition

of a two-dimensional domain. 12

4.1 Design flows for circuits implementing controllers: (a) Tra-
ditional (b) Moby-dic proposal. 26

4.2 Scheme of the Moby-dic Toolbox. The functionalities added
with our research are depicted in gray. 27

5.1 Vehicle yaw rate estimation by a PWAR virtual sensor. . . 33
5.2 HIL simulation of the PWAR virtual sensor. 34

7.1 Architectural scheme of the proposed CMOS sensor. 41
7.2 State diagram of the Control Unit. 43
7.3 Timing of configuration mode. 45
7.4 Timing of trusted sensing mode. 46
7.5 Layout of the trusted virtual sensor using AEGIS. 47

xiii

List of Tables

2.1 Comparison between architectures. 20

5.1 Error comparison between virtual sensors. 34

7.1 Information in the NVM used by the AEGIS module. . . . 45
7.2 Area and power consumption during trusted sensing mode. 46

xv

List of Algorithms

1 Pseudo-code of PWAR virtual sensor algorithm. 31

xvii

A mis padres.
A Leo.

1

Chapter 1

Introduction

From long time ago, PieceWise Affine (PWA) functions have been
widely employed to approximate nonlinear systems in many theoretical
domains, such as circuit or control theory, due to their low computational
cost and low analytical complexity [1–7]. Many engineering applications
in the embedded control area demand hardware implementations of PWA
functions to meet the size, power and/or response time constraints im-
posed not only by the need of generating a control action but also to
estimate the variables involved in the control problem [8–12]. PWA func-
tions are of immediate application in Model Predictive Control (MPC) [7,
9–15] or problems solved by Fuzzy Logic-based systems [16–20]. PWA
functions are also employed to implement virtual sensors [8, 21–23]. They
are usually implemented as software installed in the electronics units but
faster responses, smaller sizes and lower power consumption are obtained
with hardware implementations. Other application of the PWA functions
are approximation of dynamical systems [5, 24], and neural networks [25].

A PWA function provides a linear (affine) output for each region in
which the input domain is partitioned. An example of a PWA function
with two inputs and one output is shown in Fig. 1.1. The number of
regions of this example is 12.

PWA functions have been studied in circuit theory for a long time [26,
27]. Many contributions on the electronic implementation of multi-input
or multi-variate PWA functions can be found. Among them, analog imple-
mentations [28–32] and mixed-signal [32, 33] may not be robust enough
for certain applications, so digital implementations are usually proposed,
either on Digital Signal Processor (DSP) boards [16, 17], or reconfigurable
hardware, as for instance Field Programmable Gate Arrays (FPGAs) [10,

2 Chapter 1. Introduction

0
3

6
9

12

0
3

6
9

−5

0

5

10

15

x1x2

fPWA

FIGURE 1.1: Example of a PieceWise Affine function of a
two-dimensional domain.

18, 34–38], or on Application Specific Integrated Circuits (ASICs) [39, 40].
Other digital circuit architectures for MPC are conceived to be imple-
mented on FPGAs or ASICs [9, 12]. Concerning ASIC implementations,
the two latter works include a feasibility study in 130-nm Complemen-
tary Metal-Oxide-Semiconductor (CMOS) technology. DSP and FPGA
implementations are easy to design and to adjust to the application. The
software executed by a DSP-based realization can be changed depending
on the application and the hardware employed by a FPGA-based solution
can be configured after manufacturing (since it is field programmable).
Very Large Scale Integration (VLSI) implementations on ASICs provide
the highest performance in terms of size, power and speed, and are the
cheapest solution when the number of units required is high. Increasingly,
the tendency is to handle applications that require embedded control so-
lutions in the digital domain (automotive, robotics, aviation, automation
systems, etc.), where ASIC solutions are of immediate applications [41–43].
As drawback, they are not so versatile as DSPs or FPGAs. The advantages
and drawbacks of several platforms for embedded systems and fuzzy
logic-based systems are described in [44] and [45], respectively.

Several approaches have been adopted for implementing PWA func-
tions. They differ in how the affine function corresponding to the input
is found (the point location problem) and how the input domain is parti-
tioned into polytopes. The most widespread form of generating a PWA
function is to allow any kind of polytopic partition (Fig. 1.2(a)). A way to
evaluate generic PWA functions requires the exploration of a binary search
tree (BST) in order to find the polytope that the input belongs to, but this

Chapter 1. Introduction 3

(a) Generic partition (b) Simplicial partition (c) Rectangular partition

FIGURE 1.2: Different partitions of a bi-dimensional input
domain into polytopes.

can be a slow solution if the tree depth is high [46]. Such generic PWA
functions evaluation is referred to as PWAG form. This realization strategy
has been implemented digitally in both FPGAs and ASICs [9, 34].

A way to accelerate the exploration of the BST is described in [14]. It is
based on multiway trees that compute in parallel several branches of the
BST.

A solution to reduce the BST complexity is proposed in [15]. It is based
on the concept of hash tables and the associated hash functions. Hence,
it is called PWAG-hash. The algorithm is based on two stages. During
the first stage, the domain is divided into hyper-rectangular partitions
(see Fig. 1.2(c)) and the polytopes into a determined hyper-rectangle are
identified. In the second stage, a simpler BST is applied for the subset of
polytopes identified in the previous stage. A hardware implementation of
this algorithm is presented in [35].

Another way to evaluate generic PWA functions is the lattice form
(PWAL), which does not need to find the polytope where the input is
located and therefore, requires many fewer parameters to define the PWA
function over any kind of polytopic partition [47, 48]. PWAL is mainly
used to address continuous PWA functions.

Other implementations generate PWA functions defined over partic-
ular partitions of the input domain [4, 11, 16, 32, 36, 37, 39]. Simplicial
PWA (PWAS) functions are defined over non-overlapping hypertriangular
regions called simplices (1.2(b)). One great advantage of PWAS functions
is that, given the simplicial partition, they can be designed easily to ap-
proximate any non-linear function by applying least-square minimization.

4 Chapter 1. Introduction

Several digital architectures for implementing PWAS functions have been
reported in literature [16, 19, 32, 37, 40, 49, 50]. A solution based on DSPs
is reported in [16], and a mixed-signal ASIC is described in [32]. More
recently, an architecture has been developed to implement PWAS functions
with FPGAs. Two versions of this architecture, one parallel and one serial,
are described in [37]. However, PWAS functions are affected by two limita-
tions. Firstly, the number of parameters to define a PWAS function grows
exponentially with the number of input variables, which is known as the
‘‘curse of dimensionality’’. This is why reported ASIC implementations
for PWAS functions use a low number of partitions per dimension, thus
generating a reduced subset of PWA functions [19, 39, 40]. Secondly, not
all PWA functions can be expressed by a PWAS function, but only a subset
of them.

A simple partition of the input domain is a hyperrectangular partition
(1.2(c)). PWA functions defined over hyperrectangular partitions (PWAR)
have been employed to approximate explicit model predictive controllers
in [51]. The input domain can be divided into single-resolution partitions,
thus leading to a domain partitioned into equally-sized hyperrectangles.
Other option is the division of each state axis of the input domain not just
into intervals with a single resolution, but instead divided subsequently
into higher and higher levels of resolution by halving the subintervals
each time, up to some chosen maximum resolution. This partition of
the input domain is known as multi-resolution hyperrectangular. Digital
architectures for the implementation of PWAR functions in FPGAs have
been introduced in [36]. From a hardware point of view, PWAR functions
are even simpler than PWAS ones. As drawback, their approximation
capability is inferior.

Hardware solutions that implement simplicial and hyper-rectangular
approaches usually provide faster responses than solutions that implement
a generic approach, PWAG or PWAL.

Interconnected PWA functions working in a hierarchical way called
hierarchical PWA (PWAH) have also been reported together with solutions
implemented on FPGAs [CV14] and [38]. PWAH consists of single-input
single-output PWA modules connected in cascade so that the memory
required increases linearly instead of exponentially with the input dimen-
sion. Their problem is that they are not suitable to implement any PWA
function but a subset of them.

1.1. Piecewise affine (PWA) functions 5

Following the mathematical formalism associated to the PWA functions,
a review of the state-of-the-art of the PWA functions for MPC and for
virtual sensors, and their hardware security concerns is presented in the
rest of the chapter.

1.1 Piecewise affine (PWA) functions

A generic PWA function with multiple inputs and multiple outputs,
FPWA(x): Rn→ Rm, can be represented by:

FPWA(x) =


∑n

j=1 f
1
ij · xj + f1

i0, if x ∈ Ωi

· · ·∑n
j=1 f

m
ij · xj + fmi0 , if x ∈ Ωi

(1.1)

where x ∈ S ⊂ Rn, F =
{
f1 . . . fm

}
is a set of matrices of dimensions

(n+ 1)×Θ, and the S domain is divided into Θ polytopes:

S =
Θ⋃
i=1

Ωi (1.2)

Figure 1.2(a) shows a two-dimensional input domain that is divided
into 21 polytopes.

The PWA function is defined over a n-dimensional compact S domain
as follows:

S = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n} (1.3)

For a single output, the expression in (1.1) is as follows:

fPWA(x) =
n∑
j=1

fij · xj + fi0, if x ∈ Ωi (1.4)

6 Chapter 1. Introduction

!"
!"

#$"

#%"
!" !"

&'"

#("
!"

#'"

&(" &$"

&%" &)"
!" !"

!"

*++,"

(a)

root e1

e2e3

P5P3e4P4

P1P2

P5
P2

P4

P3

P1

x11

1

e3

e4

x2 e1 e2

(X,Y)

(b)

FIGURE 1.3: (a) A binary search tree (BST). (b) Polytopes.

For the sake of simplicity, different strategies to implement PWA func-
tions with a single output are summarized in the following.

1.1.1 Generic PWA form based on binary search tree (PWAG)

In order to evaluate fPWA(x) (eq. 1.4), the first required step is to find
the index i such that x ∈ Ωi. Something that is similar to the point location
problem in the computational geometry field. This problem can be solved
by constructing a BST, as presented in [46]. By exploring the tree on line,
from the root to a leaf, it is possible to locate the polytope containing the
input vector. A relatively small number of boundary conditions (

∑n
j=1 hkj ·

xj + hk0 < 0 with k = 1, . . . , E) have to be computed. The tree is usually
constructed to minimize its depth (maximum distance between the root
and the leafs) by a proper node-boundary assignment. In the same way,
a maximum symmetry of the tree is desired in order to optimize timing
performances. The result is that the time to evaluate the PWA function can
be logarithmic in the number of polytopes [52].

As example, a binary search tree is illustrated in Fig. 1.3. The way this
tree is explored for the point (X,Y) depicted in Fig. 1.3(b) is highlighted in
Fig. 1.3(a). Given an input x, the tree is explored starting from the root by
checking if

∑n
j=1 hkj · xj + hk0 < 0 (to see if the input point is at one side

of the domain split by the first edge, e1, or at the other). If this condition
holds true, the right branch is selected, otherwise the choice is the left
branch. This procedure is repeated until a leaf node is reached. The path
followed is e1 ≤ 0→ e2 ≤ 0→ P5.

1.1. Piecewise affine (PWA) functions 7

The point location problem requires the iterative evaluation at each
tree node of affine functions whose parameters (hk) are real values. Once
the search is finished, the generation of the PWA function requires the
evaluation of another affine function whose parameters (fi) are also real
values.

1.1.2 Generic PWA form based on lattice (PWAL)

According to the notation in [48], the expression in eq. (1.4) can be
expressed as:

fPWA(x) =
n∑
j=1

fij · xj + fi0 = l(x|fi) = li(x) if x ∈ Ωi (1.5)

PWAL functions are able to implement any continuous PWA function
by using its parameter, F and structure, ψ, matrices [47], as follows:

fPWAL(x) = L(x|F,ψ) = min
1≤i≤Θ

 max
1 ≤ j ≤W
ψij = 1

{lj(x)}

 (1.6)

The structure matrix, ψ=[ψij] is a Θ×W zero-one matrix obtained by
applying the methodology described in [48], which indicates (with ψij =‘
1 ’) which affine functions are considered. Its elements are calculated as:

ψij =

{
1 if li(x) ≥ lj(x), ∀xεΩi

0 otherwise
(1.7)

The parameter matrix, F=[f1, . . ., fW], is a W×(n + 1) matrix whose
rows, fi, contain the coefficients and the offset of the affine functions used
by the PWA function (W ≤ Θ).

For a multiple-output PWAL function, different structure and parame-
ter matrices are evaluated for each output.

8 Chapter 1. Introduction

The value of the fPWAL(x) is evaluated by the following the steps:
(i) read successively the elements (ψij) of the structure matrix, starting
from the first row and the first column, and, for each row, i, retrieve fj if
ψij =‘ 1 ’, (ii) evaluate the maximum between all the affine expressions for
each row, and (iii) calculate the minimum between the maximum results.

1.1.2.1 The simplest PWAL form

The way to obtain the simplest PWAL form of a continuous PWA
function was addressed in [48, 53–56]. Herein, the algorithm used to find
the simplest PWAL form of a PWA function with the form described in
(1.6) is the one presented in [48] and updated in [53] and [54]. The steps of
the algorithm can be summarized as follows:

• Given an explicit PWA function, record the local affine functions
(li(x), 1 ≤ i ≤ Θ), the constrained inequalities (

∑n
k hkj · xj + hk0 ≤

0, k = 1, ..., E) that define the polytopes, and the vk vertexes of each
polytope Ωi.

• Calculate the values of each affine function at each set of vertexes,
li(vk).

• Calculate the structure matrix using

ψij =

{
1

0

if li(vk) ≥ lj(vk), 1 ≤ k ≤ ki
otherwise

(1.8)

for 1 ≤ i, j ≤ Θ.

• Simplify the rows in the structure matrix as described in Lemma3
in [48]. After such simplification, the rows of the new simplified
structure matrix correspond to super-regions made up of several
polytopes. Super-regions can be concave or even disconnected.

• Simplify the columns in the structure matrix and the consequent
rows in the parameter matrix as described in Lemma 1 in [54]. After
this last step, super-regions that are not involved in the PWA function
are removed.

The new simplified structure matrix is ψ̃ ∈ RX×V and the new sim-
plified parameter matrix is F̃ ∈ RV×(n+1), with X ≤ Θ and V ≤ W ≤ Θ.

1.1. Piecewise affine (PWA) functions 9

3

2

1

1 2 3 4 5 6

fPWA

x

FIGURE 1.4: Example of a one-dimensional PWA function.

The simplest PWAL form, L(x|F̃ , ψ̃), of the PWA function, fPWA(x), is the
following:

L(x|F̃ , ψ̃) = min
1≤i≤X

{
max

1≤j≤V,ψ̃ij=1

{
l̃j(x)

}}
,∀x ∈ Rn (1.9)

This calculates the minimum ofX maxima, where each maximum is ap-
plied to as many affine functions as there are logic 1’s in the corresponding
row of ψ̃.

As example, let us consider the PWA function shown in Fig. 1.4 and
described as follows:

fPWA(x) =


l1(x) = 2x+ 1 if 0 ≤ x ≤ 1

l2(x) = −3x+ 6 if 1 ≤ x ≤ 2

l3(x) = 0.75x− 1.5 if 2 ≤ x ≤ 6

(1.10)

The structure matrix, ψ, calculated as in 1.7 and the parameter matrix,
F , are given by:

ψ =

1 0 1
0 1 1
0 1 1

 F =

 2 1
−3 6
0.75 −1.5

 (1.11)

The PWAL form calculated as in 1.6 is the following:

10 Chapter 1. Introduction

fPWA(x) = min


max {l1(x), l3(x)} ,
max {l2(x), l3(x)} ,
max {l2(x), l3(x)}

 (1.12)

which can be simplified.

The simplification procedure explained above allows obtaining the
simplified structure matrix, ψ̃, and the simplified parameter matrix, F̃ . In
this case, only the structure matrix is simplified:

ψ̃ =

[
1 0 1
0 1 1

]
F̃ =

 2 1
−3 6
0.75 −1.5

 = F (1.13)

Hence, the simplest PWAL form of the function in Fig. 1.4 is given by:

fPWA(x) = min
{
max {l1(x), l3(x)} ,max {l2(x), l3(x)}

}
(1.14)

1.1.3 Simplicial PWA functions (PWAS)

PWAS functions are characterized by a regular partition.

The generic instance in (1.3) can always be reported to this particular
instance:

S = {z ∈ Rn : 0 ≤ zi ≤ mi, i = 1, . . . , n} (1.15)

The equation in (1.15) is obtained by applying a proper affine transfor-
mation [57]:

z = T (x) (1.16)

We also assume that every dimensional component zi of the S domain
is partitioned into mi subintervals of unitary length. Consequently, the

S domain is partitioned into
n∏
i=1

mi regions and contains N =
n∏
i=1

(mi + 1)

vertices [32]. Each one of these regions can be further partitioned into n!

1.1. Piecewise affine (PWA) functions 11

non-overlapping regions called simplices. The PWAS function is affine
over each simplex of the partitioned S domain.

The value of the PWAS function can be evaluated as a linear interpola-
tion of a subset of n+ 1 coefficients cj (for an n-dimensional function):

fPWAS(z) =
n∑
j=0

µjcj (1.17)

where the interpolation weights µj depend on z, the vertices surround-
ing z are n+ 1 [32], and cj are the values of the function at the vertices vj
of the simplex containing z are cj .

The value of fPWAS(z) is evaluated following the steps: (i) find the
vertices of the simplex that the input z belongs to, (ii) retrieve cj from
a memory, (iii) calculate the coefficients µj for the given input z, and

(iv) evaluate the affine expression
n∑
j=0

µjcj . For a multiple-output PWAS

function, this process is repeated for each output variable using different
coefficients (cj) for each one.

1.1.4 Hyperrectangular PWA functions (PWAR)

PWAR functions are also characterized by a regular partition of the S
domain. Each axis of the S domain can be subdivided into mRi subinter-
vals of the same amplitude:

αi =
bi − ai
mRi

(1.18)

and

mRi = 2ti , with ti ∈ N (1.19)

yielding many possible partitions.

12 Chapter 1. Introduction

x
2

b
2

a
2

a
1

b
1

x
1

FIGURE 1.5: Example of a hyperrectangular single-
resolution partition of a two-dimensional domain.

Consequently, the domain is divided into
n∏
i=1

mRi = 2

n∑
i=1

ti
identical

hyperrectangles. This kind of partition is called a ‘single-resolution hyper-
rectangular partition ’ [36]. Figure 1.5 shows a two-dimensional S domain
partitioned into single-resolution hyperrectangles with mR1=22=4, and
mR2=23=8.

The value of fPWAR(x) is evaluated following the steps: (i) find the
hyperrectangle that the input (x) belongs to, (ii) retrieve fi = [fin . . . fi0]
from a memory, and (iii) evaluate the affine expression

∑
j
fij · xj + fi0. For

a multiple-output PWAR function, this process is repeated for each output
variable using different parameters (fi) for each one.

1.2 PWA forms for Model Predictive Control (MPC)

A great advantage of PWA functions is their capability to approximate
any nonlinear behavior within any specified error. They are also the
simplest extension to linear functions with which engineers are familiar.
The use of PWA functions in the control community started with the
seminal work in [6]. Some years later, the development of PWA analysis
and synthesis techniques was favored by the advent of new computational
techniques and environments, such as [58] and [59]. More recently, PWA

1.2. PWA forms for Model Predictive Control (MPC) 13

functions have arisen naturally as a solution to many engineering problems
such as those of MPC.

Model predictive controllers have become popular as a way of ap-
proaching non-linear controllers for linear systems with constraints, PWA
systems and both non-linear constrained and hybrid systems [7, 9, 60,
61]. Let us consider the problem of regulating to the origin the linear
discrete-time system:

x(t+1)=Ax(t)+Bu(t)
y(t)=Cx(t)

(1.20)

with the constraints:

ymin ≤ y(t) ≤ ymax, umin ≤ u(t) ≤ umax, for t > 0 (1.21)

where x(t)εRn, u(t)εRm and y(t)εRp are the state, input, and output
vectors, respectively, and the pair (A, B) is stabilizable.

The optimization problem that arises in MPC and is solved at each time
instant, t, is as follows:

min
U


J(U, x(t)) = xT

t+Ny |t
· P · xt+Ny |t

+
Ny−1∑
k=0

[
xT

t+k|t
·Q · xt+k|t + uT

t+k ·R · ut+k

]
 (1.22)

where

U , {ut, ..., ut+Nu−1} (1.23)

is subject to

xt|t = x(t)

ymin ≤ yt+k|t ≤ ymax k = 1, ..., Nc

umin ≤ ut+k ≤ umax k = 0, ..., Nc

xt+k+1|t = Axt+k|t +But+k k ≥ 0

yt+k|t = Cxt+k|t k ≥ 0

ut+k = Kxt+k|t Nu ≤ k ≤ Ny

(1.24)

14 Chapter 1. Introduction

where the predicted state vector at time t + k, xt+k|t is obtained by
applying the input sequence ut, ..., ut+Nu−1 to the system model (1.20)
starting from the state x(t); Ny, Nu, Nc are the output, input, and constraint
horizons, respectively; K is some feedback gain; and it is assumed that
Q = QT � 0, R = RT � 0, and P � 0, where QT denotes the transpose of
Q [62].

The solution of the optimization problem in (1.22) to (1.24) is a PWA
controller u(x) : M ⊂ Rn → Rm as follows [7, 62]:


u1(x) =

∑n
j=1 f

1
ij · xj + f1

i0,

· · · x ∈ Ωi

um(x) =
∑n

j=1 f
m
ij · xj + fmi0 ,

(1.25)

where xεRn is the input to the controller function, which is usually the
state vector fully measured at time t, x(t); and f iεRm×n+1 are gain and
offset matrices. The input domain,M , is partitioned into θ non overlapping
regions, called polytopes , M = Ω1 ∪ ...∪ΩD. Each polytope, Ωi, is defined
as a closed set of points delimited by Ei edges in the form of (n − 1)-

dimensional hyper-planes,
n∑
j=1

hkj · xj + hk0 = 0, as follows:

Ωi = {xεRn|
n∑
j=1

hkj · xj + hk0 6 0, k = 1, ..., Ei} (1.26)

where hkεRn+1.

Evaluation of the explicit MPC approach in (1.25) is much simpler than
solving the optimization problem in (1.22) to (1.24) on line.

Explicit MPC approaches in (1.25) usually employ generic partition,
so simplicial and hyper-rectangular approaches have to approximate the
generic polytopes with simplexes or hyper-rectangles. This type of approx-
imation may negatively impact the controller performance, in particular,
its closed-loop stability.

1.3. PWA forms for virtual sensors 15

1.3 PWA forms for virtual sensors

A virtual sensor estimates the value of a variable that is very difficult
or costly to measure physically by modeling the relation between that
variable and others that can be measured easily with low-cost commercial
sensors. The use of virtual sensors has increased continuously since the
early 1980s in a wide number of industrial applications, such as building
monitoring [63], robotics [64], process control [65, 66], or automotive engi-
neering [67]. In the latter case, for example, virtual sensors are employed
to monitor vehicle and driving status as well as road conditions and even
communication between vehicles [67–69]. The model that relates input and
output variables can be derived from fundamental physical laws using ad-
justable parameters, from empirical data of the input and output variables
without any knowledge of the physical process (usually referred to as
black-box models), or a combination of physical and empirical knowledge
(a gray-box model). Neural networks and fuzzy logic techniques are used
widely to obtain black- and gray-box models [68, 69]. PWA virtual sensors
are also employed to provide black-box models [8, 22, 23].

Virtual sensors are usually implemented as software installed in the
electronic control units [22, 68, 69]. However, faster responses, smaller
sizes and lower power consumption are achieved if virtual sensors are
implemented in hardware. Solutions that employ PWAS models imple-
mented in FPGAs were proposed in [8, 23]. PWAS-based virtual sensors
are simpler to implement in FPGAs than neural-network-based sensors
and provide higher computation speed, as shown in [23]. FPGA implemen-
tations of PWA functions based on hyper-rectangular partitions (PWAR-
based models) are further simpler than PWAS-based models, as shown
in [36]. Taking into account that the sensor market size is growing (in the
automotive industry, for example, approximately 22 billion sensors are
estimated to be used per year by 2020 [70]), a CMOS Integrated Circuit
(IC) solution for virtual sensors is very interesting since it can provide a
minimum unitary cost with high performance in terms of area, power and
speed.

16 Chapter 1. Introduction

1.4 Trusted controllers and sensors

People will be surrounded in the Internet of Things (IoT) ecosystem by
a growing number of smart devices with sensors (for example PWA vir-
tual sensors) and actuators (for example PWA controllers), which capture
information about our environments and act upon them autonomously
(our cities, homes, cars or bycicles and even our body). As a matter of
fact, people already interact more with or through these devices instead
of interacting directly. The IoT infraestructure is aimed at improving our
quality of life. Hence, security is becoming very important in the IoT
environment [71, 72].

Nowadays, virtual sensors and controllers are usually part of ubiqui-
tous and distributed networks such as critical infrastructures. The receiver
of the data must trust in the data originated from the device. The way is to
confirm that data have not been tampered with, altered or changed. Not
only data integrity but also device integrity must be ensured. The reliabil-
ity of the data should be ensured by authentication of their origin. Message
authentication codes (MACs) are the usual constructions employed to en-
sure data integrity [73]. The MAC construction that has become more
popular over the last decade is the HMAC. HMAC, standardized in [74],
is an approach to implement MAC using a two-pass hash-based MAC
that avoids the weakness of previous constructions. The problem with
many existent HMACs is that their primary targets are high transmission
rates of data with long key spaces, but do not pay so much attention to
area or power consumption. This makes them not suitable for resource
constrained scenarios like IoT devices, which have limited computational
and memory capabilities. Lightweight cryptographic primitives should be
employed. Specific lightweight hash functions based on sponge construc-
tions have been proposed, as is the case of SPONGENT [75], Quark [76],
and PHOTON families [77, 78].

There is also a growing interest in the use of lightweight cryptographic
protocols for IoT devices so as to ensure that data transmitted are con-
fidential, which is required by applications using sensitive information
[79, 80]. In these cases, not only message authentication but also mes-
sage encryption is required. CAESAR competition is evaluating different
authenticated encryption schemes that are fast in software and efficient
in hardware [81]. The idea is to combine encryption and authentication
into a single algorithm, called Authenticated Encryption, so as to obtain

1.5. Conclusions 17

smaller area and power consumption compared to two separate algo-
rithms. Among the CAESAR candidates, AEGIS [82] and ASCON [83, 84]
have been selected for the trusted PWA controllers and virtual sensors
analyzed herein. AEGIS is based on the AES encryption round function
while ASCON is based on sponge constructions like PHOTON.

The usual way to ensure the integrity of a device is to check that it
knows a cryptographic key. However if the key is stored in the device
memory, it can be attacked [85] and a counterfeit device can be fabricated.
The problem of counterfeit chips is so significant that the Semiconductor
Industry Association (SIA) maintains an anti-counterfeiting task force. A
solution is the use of Physical Unclonable Functions (PUFs) inside the
device hardware, which ensures that the device has a unique inherent
identity given, in general, by the variability of its manufacturing process
[86]. Among the wide number of PUFs proposed in the literature, PUFs
based on Static Random Access Memories (SRAMs) are a good alternative
since both CMOS PWA controllers and virtual sensors require SRAMs for
its functionality. The start-up values of the SRAM cells are employed to
generate the random seeds required by the cryptographic primitives as
well as to recover the cryptographic key [87]. The key is not stored any-
where but recovered whenever needed by using a Helper Data Algorithm
that employs non-sensitive data (known as Helper Data) and the response
of the PUF (herein the start-up values of SRAM cells are considered) [86].
An impostor device is not able to provide a similar PUF response and,
hence, is unable to recover the key while the genuine device is able to prove
its authenticity against aging and variations of the operation conditions,
namely, temperature and power supply voltage.

1.5 Conclusions

Microelectronic designs to implement PWA functions in different forms
are required in many application domains, particularly for model predic-
tive controllers and for virtual sensors. The inclusion of cryptographic
modules is crucial in hardware PWA realizations that are part of the IoT
infrastructure.

In the following, Chapter 2 presents several architectures for different
PWA forms and compares them. In Chapter 3, a hardware design flow for
ASICs and for FPGAs is presented. Chapter 4 summarizes how the design

18 Chapter 1. Introduction

flow is integrated into a CAD environment to design model predictive
controllers and presents several application examples. In Chapter 5, an
algorithm to design virtual sensors using the PWAR form is described.
The algorithm is applied using the XFuzzy enviroment and an application
example is detailed. In Chapter 6, the hardware design of cryptographic
modules is exposed, and a trusted virtual sensor using AEGIS is described
in Chapter 7. Finally, the global conclusions of this Ph.D. Dissertation are
given in Chapter 8.

19

Chapter 2

Hardware architectures to
implement PWA functions

In this Chapter several architectures for different PWA forms are pre-
sented and compared.

2.1 Architecture for PWAG form

The architecture proposed in this section is explained in detail in [CV5]
and in the patent [CV16]. The method to explore the BST is detailed in the
patent of addition [CV15].

2.2 Architecture for PWAL form

A preliminary version of this digital architecture for implementing
PWAL functions with two inputs and one output was presented in [CV13].
That architecture is addressed to FPGAs from Xilinx and uses the Xilinx
DSP blockset for Simulink in System Generator. The final version of the
architecture exposed in this section is described in datail in [CV4].

2.3 Architecture for multiple PWA forms

The architecture is described in [CV3].

20 Chapter 2. Hardware architectures to implement PWA functions

2.4 Comparison between architectures

Let us compare several ways of implementing multivariate PWA func-
tions reported in literature with the architectures proposed in this Disser-
tation.

TABLE 2.1: Comparison between architectures.

Latency Bits Multi- Generic

(Ncc) to store pliers PWA

PWAG_s [34]
n + 2d + nd + 2 nbit(n + 1)(Θ + E) 1 Yes

in FPGA

MultiTree [14]
hM + 2 − nM Yes

in FPGA

PWAG-hash [35] 12 + Θ + 6 ·mo+ nbit(n + 1)(Θ + E)+
n Yes

in FPGA max(
∑

k∈J Ek) T log2E + 1

PWAH [38]
n nbit

∑n
i=1 3mi − 1 1 No

in FPGA

PWAR_s [36]
n + 2 nbit(n + 1)

∏n
i=1 mi 1 No

in FPGA

PWAR_p [36]
2 nbit(n + 1)

∏n
i=1 mi n No

in FPGA

PWAS_s [37]
n + 4 nbit(n + 1)

∏n
i=1 (mi + 1) 1 No

in FPGA

PWAS_p [37]
3 nbit(n + 1)

∏n
i=1 (mi + 1) n + 1 No

in FPGA

Proposed
n + 2d

nbit(n + 1)(Θ + E)+
n Yes

PWAG Nlog2T

Proposed
n + U + 1

nbit(n + 1)V +
2n Yes

PWAL U(log2X + 1)

Table 2.1 summarizes their features in terms of latency (number of clock
cycles to provide the output), memory (bits to store), computing resources
(multipliers), and capability of implementing or not PWA functions with
generic partitions of the input domain. The architecture labeled PWAG_s is
an architecture that calculates a PWA function based on a BST constructed
off-line, with an arithmetic unit implemented as a multiplier-accumulator
reported in [34]. The architecture based on multiway trees reported in

2.4. Comparison between architectures 21

[14] is labeled MultiTree. The architecture labeled PWAG-hash is the
proposal in [35]. PWAH is the architecture reported in [38] and consists
of single-input single-output PWA modules connected in cascade. The
architecture based on the hyper-rectangular partition proposed in [36]
is labeled PWAR_s for the serial version and PWAR_p for the parallel
version. The mostly serial and mostly parallel architectures based on
simplicial partition, as presented in [37], are labeled PWAS_s and PWAS_p
respectively.

The symbols employed in the comparison are: the input dimension of
the PWA function (n), the depth of the BST (d), the number of nodes in the
BST (N), the number of hyper-rectangular partitions of the domain in the
PWAG-hash implementation (m0), the subset of polytopes that are directly
searched (J), Ek are the edges of the polytopes in the subset k in PWAG-
hash form, the number of different local affine functions (V), the number of
edges defining the polytopes (E), the number of bits representing the input
(nbit), the number of vertices in the simplicial partition,

∏i=n
i=1 (mi + 1), mi

being the number of partitions for each input, the order of the trees in the
Multitree (M), the internal height of the Multitree (hM) and U , which is
related to the number of logic 1’s in the simplified structure matrix (ψ̃).

The proposed PWAG architecture offers better time responses since the
computation of the edges and affine function is carried out in parallel. In
addition, it allows on-line programmability of the BST.

The performance of PWAL architecture improves as the value of U
gets smaller, since U is related to the stored parameters and the response
time. Compared to the proposed PWAG architecture, the proposed PWAL
architecture offers the advantage of requiring less memory while maintain-
ing competitive performance in terms of latency if the value of U is small.
However, if the PWAL form does not simplify enough and the depth d of
the BST in the PWAG form is small, then PWAG architecture offers better
performance. Therefore, depending on the PWA function, PWAG or PWAL
forms offer better performance.

Compared to PWAS, PWAR and PWAH architectures, the proposed
PWAG and PWAL architectures are more versatile since they can generate
any continuous PWA function defined over a generic partition without
approximations. The continuity property is not necessary in the PWAG
form.

22 Chapter 2. Hardware architectures to implement PWA functions

2.5 Conclusions

Several architectures have been proposed for the hardware realization
of PWA functions: an architecture for the PWAG form, an architecture for
the PWAL form, and an architecture for multiple PWA (PWAR, PWAS,
and PWAL) forms. The architecture for PWAG is the only generic form
available in the literature that allows on-line programmability. The PWAL
form provides smaller time responses than the PWAG form for many
continuous PWA functions. The architecture for multiple PWA forms
allows selecting the best form among PWAL, PWAS, and PWAR depending
on the application, without increasing significantly the cost in resources
and power consumption.

23

Chapter 3

Hardware design flow to
implement PWA functions

A hardware design flow for ASICs and for FPGAs is presented in the
following. It has been applied to implement the PWAL form in ASIC and
FPGAs, and to implement, fabricate and verify the PWAG form and the
PWAR, PWAS, and PWAL forms into two different ASICs.

3.1 Hardware design flow for ASICs

This implementation is described in [CV5].

3.1.0.1 PWAL implementation

This implementation is described in [CV4].

3.1.0.2 PWAX implementation

This implementation is described in [CV3].

3.1.1 Manufactured ASICs

Two ASICs were fabricated. A first ASIC that implements the PWAG
form explained in the section 2.1, so called PWAG ASIC [CV5]. , and a

24 Chapter 3. Hardware design flow to implement PWA functions

second ASIC, called PWAX ASIC, that implements multiple PWA forms
(PWAS, PWAR, PWAL) [CV3], thus, covering all the PWA forms addressed
in this Dissertation.

3.2 Hardware design flow for FPGAs

The PWAL form was described in Xilinx ISE Generator and imple-
mented in a Xilinx Spartan 3 FPGA (xc3s200-5ftp256) [CV13].

3.3 Hardware verification

The ASIC-in-the-loop design flow was presented in [CV20].

In the case of the FPGA implementation, the design flow was presented
in [CV12].

3.4 Conclusions

A hardware design flow for ASIC realizations of PWA functions has
been presented. It was used to implement the three architectures presented
in Chapter 2. Two ASICs were fabricated in a CMOS nanometer technology
and tested following the proposed design flow. The open and closed-
loop verification developed was applied for both ASICs when they were
configured as PWA controllers.

A hardware design flow for FPGAs has been also presented. This flow
includes a HIL verification and a closed-loop verification flow for PWA
controllers.

25

Chapter 4

PWA solutions in hardware for
Model Predictive Control

This Chapter summarizes how the design flow of the hardware solu-
tions presented in this research work has been integrated into a complete
automatic CAD enviroment to design model predictive controllers. This is
illustrated with several application examples.

4.1 The Moby-dic Toolbox

There are several tools that design controllers as well as several meth-
ods that embed the resultant controller into hardware, as shown in Fig.
4.1(a). However, to the best of our knowledge, only Moby-dic Toolbox [88]
is able to provide automated and integrated design flows from the mathe-
matical model of the process to the synthesis of the electronic circuits, as
shown in Fig. 4.1(b).

The Moby-dic Toolbox for Matlab provides an automatic tool chain for
the circuit design of embedded control systems, as illustrated in Fig. 4.2.
Given a linear discrete-time model of the physical process as well as the
constraints on states and input variables, the optimal MPC controller is
generated by the Multiparametric Toolbox [89] or the Hybrid Toolbox [90]
included in the Moby-dic Toolbox.

From the optimal MPC controller, the PWAG form is directly extracted
taking into account the specifications of the digital realization. In the
case of the PWAR and PWAS forms, the approximation of each case is

26 Chapter 4. PWA solutions in hardware for Model Predictive Control

Mathematical

model

Circuit of a

controller

Control algorithm

Physical system

Control

specifications

Circuit

specifications

(a)

Mathematical

model

Circuit of a

controller

Physical system

Control

specifications

Circuit

specifications

(b)

FIGURE 4.1: Design flows for circuits implementing con-
trollers: (a) Traditional (b) Moby-dic proposal.

performed. Circuit implementations (with automatic generation of VHDL
code) in Xilinx FPGAs are provided for PWAG, PWAR and PWAS forms.

Since PWAR and PWAS forms approximate the optimal control law, the
stability of the resultant controller is affected. Hence, a posteriori stability
analysis and evaluation of the domain of attraction [92] should be carried
out. To aid in this issue, the Toolbox offers methods for the simulation of
the closed-loop system, using Xilinx System Generator for the controller
and a Simulink block for the plant (system to be controlled).

4.2 Methodology to configure and program PWA ASICs
with the Moby-dic Toolbox

A new functionality was included in the Moby-dic Toolbox in order to
configure and program the designed ASICs [CV19].

This new functionality added to the Moby-dic Toolbox is shown in gray
in Fig. 4.2.

4.3. Methodology to extract PWAL form from Moby-dic Toolbox 27

Linear system constraints

Stability test Synthesize

Vhdl files

Generate

Simulink model

Suboptimal

analysis

Generate ASIC

files

Verilog files

options optionsplant

error Closed loop system

Generate MPC

PWAG

options

PWAR approximation

PWAR

optionsPWAS approximation

PWAS

options

FIGURE 4.2: Scheme of the Moby-dic Toolbox. The func-
tionalities added with our research are depicted in gray.

4.3 Methodology to extract PWAL form from Moby-
dic Toolbox

In addition, as Moby-dic Toolbox extracts PWAG, PWAS and PWAR
forms, a design flow for the PWAL form was developed [CV12]. This
methodology also extracts the Verilog files to configure and program the
PWAL form in the PWAX ASIC, as commented in the previous section.

4.4 Application examples

Several application examples of PWA functions for MPC were studied
with the hardware solutions designed. Double integrator [CV5], [CV15],
[CV13], [CV4], [CV3], [CV20], [CV12] and MIMO [CV3] systems are two
typical testbench examples in the control domain. The adaptive cruise con-
trol [CV4] and the buck-boost DC-DC converter [CV4] are two application
examples from the industrial field.

28 Chapter 4. PWA solutions in hardware for Model Predictive Control

4.5 Conclusions

The hardware realizations of PWA functions presented in the previous
chapters have been applied for Model Predictive Control (MPC) were ex-
posed. A new functionality to program and configure PWA controllers in
ASICs was added to a Matlab Toolbox called Moby-dic so that these ASICs
can be easily applied for MPC problem described at mathematical level. A
methodology to extract the PWAL form from Moby-dic Toolbox was de-
scribed. Finally, several application examples were presented to illustrate
the hardware performance of the implementation of PWA controllers.

The latency achieved by the proposed ASIC solutions surpasses the
requirements of many embedded control systems and opens the way to
control more challenging problems which require not only high-speed but
also low-power and small-size controllers.

29

Chapter 5

PWA solutions in hardware for
virtual sensors

As commented in previous chapters, PWAG and PWAL forms are able
to implement generic PWA functions and, hence, they are able to imple-
ment optimal model predictive controllers that are expressed in explicit
form. However, for applications like virtual sensing, where explicit PWA
forms are not available, but the information provided by numerical input
and output data, PWAS and PWAR forms are easier to design, particularly
PWAR forms, which are simpler than PWAS forms.

Virtual sensors estimate the value of variables which are difficult or
costly to measure physically by modeling the relation between them and
others that can be measured easily. This chapter describes how to im-
plement in hardware a virtual sensor by using a black-box identification
algorithm which assumes that the virtually measured output, y, is set as
a PWAR function of the input variables, x = {x1, . . . , xn}. Xfuzzy envi-
ronment was used to carry out the proposed algorithm. An application
example in the automotive domain illustrates the use of the PWAX ASIC
acting as PWAR virtual sensor.

5.1 Identification algorithm for PWAR virtual sensors

A PWAR function can be adjusted conveniently to approximate the
relation between input variables and sensing variable to estimate. An
algorithm has been developed to find the partition and affine functions of
the PWAR form that minimize the mean square error (MSE) between the

30 Chapter 5. PWA solutions in hardware for virtual sensors

PWAR function output (variable to sense, y) and the empirical or simulated
output data, yµ. This algorithm has been presented in [CV2]. The algorithm
takes into account the constraints imposed by the architecture for multiple
PWA forms presented in Chapter 2 and integrated in the PWAX ASIC
presented in Chapter 3, which are the following:

• Maximum number of input variables: n.

• Maximum number of hyper-rectangles: P = 2p.

• Maximum number of intervals per input: Q = 2q, being Lk = 2pk the
number of intervals per input, so that, q ≥ pk ∀k.

The algorithm determines the most adequate hyper-rectangular par-
tition of the input domain , L = {p1, . . . , pn}, and the value of the affine
functions, F = {f1, . . . , fP }.

First, the partition is established, and then an off-line optimization
algorithm extracts the F parameters using a set of simulated or empirical
values of the output and its corresponding input data. All input data
should belong to the domain D. At least, a given percentage, C, of the
hyper-rectangles in a partition should be covered by the data in order
to proceed with optimization. Otherwise, such high resolution is not re-
quired and the partition is not considered. The result of the approximation
algorithm for a given partition, L, is not only the value of the F parameters
but also the MSE between the simulated or empirical output data and the
output of the PWAR function (the MSE taking into account training and
testing data). Then, the MSE of the partitions that can be implemented in
the ASIC are compared, and the partition with the lowest MSE (with the
MSE that allows the best trade-off taking into account training and testing
data) is selected.

The algorithm steps are detailed in the pseudo-code of Algorithm 1.
Its inputs are a set, B, of output data, yµ, with µ = 1, ..,M , corresponding
to the input data {x1µ, .., xnµ}; the value of p that fixes the maximum
number of hyper-rectangles; the value q that fixes the maximum number
of intervals per input; and the minimum percentage,C, of hyper-rectangles
that should be covered by input data. Data set B is divided into two subsets,
one used as training file and the other as test (validation) file.

The partitions with high resolution, that is, which verify that p =∑m
k=1 pk, are firstly explored with the function TryPartition (line 1.17) be-

cause they have higher capability of providing a lower approximation

5.1. Identification algorithm for PWAR virtual sensors 31

Algorithm 1 Pseudo-code of PWAR virtual sensor algorithm.

Require: B = [x11, · · · , xm1, y1, · · · , x1M , · · · , xmM , yM] , p, q, C
p1 = q; p2 = · · · = pm = 0;
part = ¬SUCCESS; Pool = []; Emax = 1;
while p1 ≥ 0 do

p2 = p−
∑m

j=1 & j 6=2 pj ;
5: if p2 > q then

p2 = q;
end if
while p2 ≥ 0 do

. . .
10: while pm−1 ≥ 0 do

pm = p−
∑m

j=1 & j 6=m pj ;
if pm > q then

pm = q;
end if

15: while pm ≥ 0 & part = ¬SUCCESS do
A = {p1, · · · , pm};
part=TryPartition(A, B, C);
if part==SUCCESS then

Pool = [Pool || A];
20: end if

pm = pm − 1;
end while
pm = 0; pm−1 = pm−1 − 1;

end while
25: . . .

p3 = 0; p2 = p2 − 1;
end while
p2 = 0; p1 = p1 − 1;

end while
30: for i ∈ Pool do

[RMSE, F]=Optimization(i, B);
if RMSE < Emax then

Emax = RMSE;
L = i;

35: end if
end for
return L,F

32 Chapter 5. PWA solutions in hardware for virtual sensors

error (and they can be implemented in the ASIC as well as partitions with
lower resolution). The function TryPartition(A, B, C) evaluates if the parti-
tion, A, meets or not the condition to be included in the partition list, Pool.
The condition is that the data set, B, should belong to no less than C in
percentage of the hyper-rectangles of the partition, A. Otherwise, such
high resolution model has too many undefined affine functions. Finally,
the partition list is explored (with the function Optimization) to determine
the partition that provides the lowest approximation error. The function
Optimization(i,B) (line 1.31) applies Levenberg-Marquardt algorithm to find
the parameters F that achieve the minimum MSE (and, hence, the Root
Mean Square Error, RMSE) for each partition candidate, i, considering the
data set B [91]. Since the partition candidate (hyper-rectangle) is fixed, this
optimization finds the best linear (affine) regression for the data. The F
parameters of hyper-rectangles not covered by data are fixed as the arith-
metic mean of the F in the neighbourhood. Once the algorithm finishes, if
all the coefficients, fij , associated with the input xj (i = 1, . . . , P), are zero,
that input can be removed, thus resulting x = {x1, . . . , xm}with m ≤ n.

The proposed sensor can be configured to provide several PWAR func-
tions depending on the application. Therefore, it can be used to sense
different variables. The configuration data are the number of input vari-
ables, and the number of intervals in which each dimension is divided
that is, the hyper-rectangular partition is configurable. The sensor is also
configurable in the affine functions of each hyper-rectangle by changing
the value of the parameters associated with each hyper-rectangle. The
input variables can be a same variable measured at several sampling
times as well as the output measured at previous instants, for example,
x = {α[k] α[k − 1] β[k] y[k − 1]}.

5.2 Methodology using Xfuzzy environment

Moby-dic Toolbox is able to provide virtual sensors in the PWAS form,
however as far as we know no other function extracts virtual sensors in
the PWAR form. One of the results of this Dissertation has been to develop
a methodology using Xfuzzy environment to extract the PWAR form from
an input/output dataset. This section is pending of be published.

5.3. Application example 33

FIGURE 5.1: Vehicle yaw rate estimation by a PWAR vir-
tual sensor.

5.3 Application example

As illustrative example, a problem from the automotive domain, the
estimation of vehicle yaw rate, was selected to be solved. In literature, this
problem was firstly addressed with a silicon micromachining (MEMS)-
based sensor in [92]. Since MEMS-based sensors have inaccuracy problems
including severe DC-offset, an additional module based on fuzzy logic
was proposed in [93]. Lately, neural-network-based direct virtual sensors
implemented in software were proposed in [68].

A PWAR-based model was found by using Algorithm 1 taking into
account the features of the PWAR form in the PWAX ASIC. The set of input-
output data needed to apply the algorithm (training and test subsets) was
obtained from simulations of the vehicle modelled by the differential equa-
tions described in [68], discretized with a zero-order-hold approach with
a sampling time of 10 ms, and including noise in the simulated outputs
(lateral acceleration and yaw rate) as in [68]. The input variables are the
longitudinal vehicle speed, vx(t), the steering angle, αs(t), and the lateral
acceleration, ay(t). After applying PWAR virtual sensor algorithm, Algo-
rithm 1, (with C = 80%), the best partition found divided the longitudinal
speed, the steering angle, and the lateral acceleration into 4, 16 and 2
intervals, respectively. Figure 5.1 shows the yaw rate provided by the

34 Chapter 5. PWA solutions in hardware for virtual sensors

0 5 10 15 20 25 30 35 40 45 50
10

15

20

25

lo
ng

itu
di

na
l

sp
ee

d
(m

/s
)

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

st
ee

rin
g

an
gl

e
(r

ad
)

0 5 10 15 20 25 30 35 40 45 50
-20

0

20

la
te

ra
l

ac
ce

le
ra

tio
n

(m
/s

2)

0 5 10 15 20 25 30 35 40 45 50

-1

0

1

t(s)

ya
w

 r
at

e
(r

ad
/s

)

FIGURE 5.2: HIL simulation of the PWAR virtual sensor.

PWAR-based model for a fixed value of the longitudinal speed, obtained
with the tool xfplot of Xfuzzy enviroment.

Therefore, the sensor estimates the yaw rate as Ψ̇ = fi0 + fi1 · vx +
fi2 · αs + fi3 · ay if (vx, αs, ay) ∈ Pi, with i = 1, . . . , 128. The RMSE values
of the PWAR-based sensor and the direct virtual sensor based on neural
networks, DVS1 in [68], using simulated data, are shown in Table 5.1. The
RMSE is lower for the designed PWAR virtual sensor.

TABLE 5.1: Error comparison between virtual sensors.

Direct Virtual Sensor in [68] PWAR Virtual Sensor

Training Data Testing Data Training Data Testing Data

RMSE 3.9% 6.5% 0.25% 1.08%

A HIL simulation was carried out in ModelSim. The evolution of the
longitudinal vehicle speed, the steering angle, and the lateral acceleration

5.4. Conclusions 35

scaled to their real values, are shown at the upper part of Figure 5.2. The
yaw rate estimated by the sensor (also scaled to the real value) is shown
in blue at the bottom of Figure 5.2. The yaw rate obtained by the model
is shown in red. Noise can be observed in the lateral acceleration and the
yaw rate of the model that makes it more realistic. To achieve a response
time lower than the 10 ms sampling time, the sensor should work at more
than 2.1 KHz, which is quite affordable for the hardware designs presented
in this Dissertation.

5.4 Conclusions

The use of PWAR functions for virtual sensors has been described. An
identification algorithm for virtual sensors based on the PWAR form has
been proposed. This methodology uses the Xfuzzy environment. The
methodology has been validated with the configuration and programming
of the PWAX ASIC presented in Chapter 3 to perform as a PWAR virtual
sensor in an application example of the automotive domain where small
and low-power sensors are required.

37

Chapter 6

Cryptographic modules for
PWA solutions in hardware

The inclusion of cryptographic primitives in a controller or a virtual
sensor allows ensuring the integrity, authenticity, and confidentiality of
the control law or the virtual measurement. Several options have been
evaluated to address this goal.

In order to detect possible manipulations of the control law or the vir-
tual measurement, a first approach includes a module to solve the problem
of data integrity and authenticity based on Message Authentication Codes
(MACs). The second approach to increase the level of security is the use
of authenticated ciphers to ensure not only the integrity of the provided
control law or the virtual measurement but also to encrypt it at the same
time. Two authenticated encryption algorithms, which are third-round
candidates of the CAESAR competition, have been considered. Their fea-
tures are briefly summarized in the following, the content of the following
subsections are described in [CV1].

38 Chapter 6. Cryptographic modules for PWA solutions in hardware

6.1 Description of candidate modules

6.1.1 Hash-based Message Authentication Code (HMAC) based
on the PHOTON hash function

6.1.2 AEGIS Authenticated Cipher

6.1.3 ASCON Authenticated Cipher

6.2 Comparative analysis of the cryptographic mod-
ules

The three alternatives implemented in a 90-nm CMOS technology are
compared and described in [CV1].

6.3 Conclusions

Three alternatives of cryptographic modules has been analyzed. Two of
them implement authenticated ciphers (AEGIS and ASCON), that are very
suitable to ensure authenticity and confidentiality. The third option based
on the standard HMAC uses the lightweight hash function PHOTON
20/80/16, which ensures authenticity but not confidentiality. Considering
a 90-nm CMOS technology, ASCON-128 is the smallest module and AEGIS-
128 allows the fastest response.

39

Chapter 7

ASIC design of a trusted PWA
virtual sensor

In this Chapter an architecture of a trusted virtual sensor using AEGIS
is presented [CV2]. The implementations results of the trusted virtual
sensor in a 90-nm technology are exposed.

7.1 Functional and architectural description

A virtual sensor provides one output variable that is virtually measured.
The inclusion of cryptographic primitives allows ensuring the integrity,
authenticity, and confidentiality of the virtual measurement achieving
a trusted virtual sensor. The AEGIS algorithm was implemented in a
virtual sensor integrated circuit. The output provided by the sensor is the
encrypted value (C) that is attached to an authentication code that ensures
the integrity, and authenticity of the sensor data:

sensorout_AEGIS = nonce ‖ C ‖ tag (7.1)

The proposed sensor estimates the virtual measurement (y) from a
PWA-based model. Both PWAR and PWAS forms are able to approxi-
mate any function and extract any black-box model. The PWAS form has
been widely explored for virtual sensors [8, 23]. However, the PWAR
form is selected herein since its implementation is simpler than PWAS
implementation as was commented in Chapter 5.

40 Chapter 7. ASIC design of a trusted PWA virtual sensor

The integrity of the virtual sensor itself is ensured if the key employed
by the cryptographic module is not stored but recovered whenever needed
by using PUFs. The trusted sensor is able to recover the cryptographic
key shared with the receiver of the sensing data, while any impostor is
unable due to the uniqueness provided by the start-up values of the SRAM
in the sensor, which is exploited as a PUF. Non-sensitive Helper Data,
H , are stored to recover the key with a Helper Data Algorithm (HDA)
based on an Error Correcting Code (ECC) [86]. Helper Data do not reveal
anything about the cryptographic key because the start-up values of SRAM
cells obfuscate it. Similarly, Helper Data do not reveal anything about the
intrinsic nature of the sensor because the cryptographic key obfuscates it.
A repetition ECC was selected in the design of the sensor.

The sensor designed has two main behavioral modes. The configura-
tion mode is carried out whenever the sensor is powered up. It recovers
the key, generates a seed for a nonce, and establishes the PWAR relation
between the input data and the data to estimate. The trusted sensing mode
is set once the configuration mode is finished. It generates a PWAR virtual
measurement, authenticates it, and encrypts it.

The building blocks of the CMOS sensor designed are exposed in the
following. It is composed of three main units: the PWAR, the crypto-
graphic, and the control units. Figure 7.1 illustrates the block diagram of
the sensor architecture, including the main signals and buses that intercon-
nect the blocks. Note that the SRAM is shared by two units, thus saving
resources since it is not used simultaneously by both units.

7.1.1 PWAR Unit

The architecture of the PWAR Unit corresponds to the architecture
exposes previously in Section 2.3 for multiple inputs and one output.
The partition and affine functions of the PWAR function are adjusted
conveniently to provide a black-box model that approximates the relation
between input variables and sensing variable to estimate as described in
Chapter 5. Therefore, the virtually measured output, y, is a PWA function
of the inputs x = {x1, .., xn}.

The sensor can be configured for different PWAR functions. Therefore,
it can be used to sense different variables. The configuration data are
the number of inputs and the number of intervals in which each input

7.1. Functional and architectural description 41

SRAM

PWAR data

HDA

AEGIS

key

seed

start-up valuesRND mask

ID mask

Helper Data

ID mask

RND mask

F

Helper Data

Nonce

counter

Adress

Generator

Arithmetic

block

NVM address
Cy SRAM address xSRAM address y

C tag

fi

x

Cryptographic Unit

PWAR Unit

Control Unit

nonce

nonce

NVM

fin fi0fi1...

tag

FIGURE 7.1: Architectural scheme of the proposed CMOS
sensor.

is divided, that is, the hyper-rectangular partition is configurable. The
sensor is also configurable in the affine functions by changing the value
of the parameters fi = {fi0, fi1, .., fin} associated to each hyper-rectangle,
Pi. Prior to use the sensor, the sensor manufacturers or their authorized
distribution channels program in a non-volatile memory (NVM) these
configuration data and parameters.

In the configuration mode, the PWAR parameters are read from the
NVM and stored in the SRAM. Each word of the SRAM contains a pa-
rameter, fi, associated to an hyper-rectangle, Pi, of the input domain. The
SRAM depth is the number of hyper-rectangles. In the trusted sensing
mode, the PWAR unit receives the input data. The address generator block
determines the address of the SRAM where the parameters are stored. For
that purpose, it concatenates the pk most significant bits (MSBs) of each
input xk. The MSBs determine which of the 2pk intervals the input be-
longs to, and, hence, determine the hyper-rectangle. Then, the arithmetic
block computes in parallel the operation in (1.4) for the input, x, and the
parameters, fi.

42 Chapter 7. ASIC design of a trusted PWA virtual sensor

7.1.2 Cryptographic Unit

The SRAM employed in the PWAR Unit is also employed in the Crypto-
graphic Unit as a PUF. As discussed in [87], there are SRAM cells whose in-
trinsic conditions dominate over the external conditions. Hence, although
the external condition change (such as temperature or power supply volt-
age), their start-up values are mostly the same. They will be named as
ID cells. There are also SRAM cells whose external conditions dominate
over the intrinsic conditions so that they are able to extract the noise of the
external conditions as a source of entropy. They will be named as RND
cells.

The NVM stores which cells of the SRAM are ID cells (an ‘ID_mask’ is in
charge of such information) and which ones are RND_cells (an ‘RND_mask’
stores such information). These masks have to be stored in the NVM by the
sensor manufacturers or their authorized distribution channels prior to use
the sensor. These manufacturers or distributors follow a simple procedure
to classify the SRAM cells: the SRAM is powered-up and down several
times under different operating conditions. Each time, the start-up values
are compared with the values at the previous time. If the start-up value
never changes, the cell is classified as ID (it has not shown bit flipping). If
the start-up value changes, the cell is classified as RND. The ID cells are
used to recover the key while the RND cells are used to generate a seed for
the nonces.

A Helper Data Algorithm (HDA) is used in order to recover the key.
The key is not stored in the NVM, and therefore, the attacks to obtain the
key are forced to be done with the sensor powered. Instead of the key,
Helper Data, H , are stored in the NVM prior to use the sensor. Helper
Data do not reveal information about the cryptographic key, so that the
NVM does not require any special security feature. The way to generate
the Helper Data is as follows. Each bit of the cryptographic key key =
[k1, .., ka] is repeated r times, so that keyr = [k11, .., k1r, .., ka1, .., kar]. A
response, R, is obtained by concatenating a · r values resulting from the
start-up values of a ·r SRAM ID cells. Helper Data are obtained by XORing
keyr and R, H = keyr ⊕R.

In the configuration mode, the key is recovered using the ID_mask
and the Helper Data, H , as follows. The start-up values are extracted. An
ID is generated with the start-up values of those cells that the ID_mask
indicates as ID cells. A response, R′ (slightly different to R, since even

7.1. Functional and architectural description 43

OFF-

ON
CONF3 IDLECONF2CONF1 TS1 TS2 TS3 TS4 TS5 TS6

FIGURE 7.2: State diagram of the Control Unit.

ID cells may provide some bit flipping) is obtained by taking a · r val-
ues of ID cells. Helper Data are XORed with R′: key′ = H ⊕ R′ =
keyr⊕R⊕R′. key is recovered by using the decoder of the error correcting
code: key = ECC(key′).

Besides, the seed of the nonces is generated with the start-up values
of those cells indicated by the RND_mask as RND cells. Although the
ID_mask, RND_mask and the Helper Data, H are stored in the NVM,
this fact does not compromise security since the key cannot be recovered
without the SRAM start-up values. During the configuration mode, they
are loaded from the NVM into the lower part of the SRAM. The upper
part of the SRAM is used in the Cryptographic Unit to extract the start-up
values.

The nonce counter is initialized with the seed during the configuration
mode. During the trusted sensing mode, it increases the count to generate
a new nonce.

The core of the Cryptographic Unit is the AEGIS module described in
the previous Chapter.

7.1.3 Control Unit

The Control Unit copes with the two possible behavioural modes. It
is implemented as a finite state machine (FSM). Figure 7.2 illustrates the
states and the main operations. When the FSM is set in one state, only the
required blocks are enabled, thus saving power consumption. Two parts
are differentiated, the left part corresponding to the configuration mode
(gray states) and the right part corresponding to the trusted sensing mode
(white states). Whenever the sensor is powered up, the configuration mode
starts.

The main operations in the configuration mode are as follows. The
mask_ID, mask_RND, and Helper Data are read from the NVM (CONF1).

44 Chapter 7. ASIC design of a trusted PWA virtual sensor

The ID and the seed are generated (CONF2). The key is recovered, the
nonce is initialized with the seed, configuration data of the PWAR are read
from the NVM, and the PWAR Unit is configured (CONF3). Additionally,
during the configuration mode, the AEGIS module reads the key.

Once the configuration mode is finished, the FSM is set to state IDLE,
where it remains until the sensor receives an input data to generate a new
trusted PWAR virtual measurement.

In the trusted sensing mode, the main operations are the following.
Input data (x) are read and a new nonce is generated (TS1). The Address
Generator block generates the address and the AEGIS block processes
the nonce (TS2). The SRAM provides the parameters stored in the ad-
dress previously generated (TS3). The PWAR Unit generates the virtual
measurement (TS4). The AEGIS block processes the virtual measurement
and provides the encrypted virtual measurement, C (TS5), and finally
the AEGIS block generates the authentication tag (TS6). Once the trusted
virtual sensor output is provided, the FSM goes to the state IDLE and waits
for a new input data.

If the sensor is powered down and then it is powered up, the FSM
starts from the state OFF-ON and all the configuration states are carried
out again. Consequently, a correct performance is ensured after (expected
or unexpected) suspension of power supply since the sensor is always
configured before entering the trusted sensing mode.

7.2 Features of the trusted virtual sensor

The main features of the proposed trusted virtual sensor are the follow-
ing:

• PWAR unit. The maximum number of input variables, n, is 4. The
bits of the input variables {x1, . . . , x4} and the parameters that define
affine functions are 12. The bits of the output variable, y, are 26. The
maximum number of hyper-rectangles, P = 2p, is 4, 096 (p = 12),
and the maximum number of intervals per input, Lk = 2pk , is 128
(pk = 7). Hence, the SRAM has 4, 096× 60 bits.

• Cryptographic Unit. Second row of the Table ?? shows the size of the
key and the nonce used by AEGIS module. A binary repetition code

7.3. Implementation results 45

155

clock cycles

Read RND_mask

360

clock cycles

Read ID_mask

360

clock cycles

Read start-up values

310

clock cycles

Read Helper Data

4320

clock cycles

Generate ID

1860

clock cycles

Generate seed

1
clock

cycle

Initialize the Nonce Counter

5
clock

cycles

Recover the key

4
clock

cycles
Process the key with the AEGIS block

20483

clock cycles

Read configuration and parameter PWAR data

155

clock cycles

Read RND_mask

360

clock cycles

Read ID_mask

360

clock cycles

Read start-up values

310

clock cycles

Read Helper Data

4320

clock cycles

Generate ID

1860

clock cycles

Generate seed

1
clock

cycle

Initialize the Nonce Counter

5
clock

cycles

Recover the key

4
clock

cycles
Process the key with the AEGIS block

20483

clock cycles

Read configuration and parameter PWAR data

7

clock cycles

Generate PWAR virtual measure

10

clock cycles

Process the nonce with AEGIS block

1
clock

cycle

Generate the ciphertext

1
clock

cycle

Update the nonce

9

clock cycles

Generate the authentication tag

FIGURE 7.3: Timing of configuration mode.

with codeword length r = 29 is employed to recover the key in the
HDA block.

• NVM. This memory has an output bus with 12 bits. The size of the
Helper Data depends on the key size and the length of the error
correcting code. A length of 29 was proven enough to cope with
the maximum bit flipping measured experimentally in the SRAM
employed. The sizes of the masks were proven enough according to
the average ID and RND cells found experimentally in the SRAM
employed. The bits required by the PWAR Unit are 245,796.

The sizes of the parameters stored in this memory for the c are shown
in Table 7.1.

TABLE 7.1: Information in the NVM used by the AEGIS
module.

RND_mask (bits) ID_mask (bits) Helper Data (bits)

Cryptographic Unit 1860 4320 3720

7.3 Implementation results

The trusted virtual sensor exposed in the previous section was im-
plemented in TSMC 90 nm using the design flow explained in Chapter
3.

Figure 7.3 shows how parallelization is carried during the configuration
mode. The total number of clock cycles is 155+360+310+ 20, 483=21, 308
clock cycles.

Figure 7.4 shows the timing of the trusted sensing mode. Again the
operations have been parallelized to accelerate the trusted virtual sensing

46 Chapter 7. ASIC design of a trusted PWA virtual sensor

155

clock cycles

Read RND_mask

360

clock cycles

Read ID_mask

360

clock cycles

Read start-up values

310

clock cycles

Read Helper Data

4320

clock cycles

Generate ID

1860

clock cycles

Generate seed

1
clock

cycle

Initialize the Nonce Counter

5
clock

cycles

Recover the key

4
clock

cycles
Process the key with the AEGIS block

20483

clock cycles

Read configuration and parameter PWAR data

155

clock cycles

Read RND_mask

360

clock cycles

Read ID_mask

360

clock cycles

Read start-up values

310

clock cycles

Read Helper Data

4320

clock cycles

Generate ID

1860

clock cycles

Generate seed

1
clock

cycle

Initialize the Nonce Counter

5
clock

cycles

Recover the key

4
clock

cycles
Process the key with the AEGIS block

20483

clock cycles

Read configuration and parameter PWAR data

7

clock cycles

Generate PWAR virtual measure

10

clock cycles

Process the nonce with AEGIS block

1
clock

cycle

Generate the ciphertext

1
clock

cycle

Update the nonce

9

clock cycles

Generate the authentication tag

FIGURE 7.4: Timing of trusted sensing mode.

mode as much as possible. The output is provided in 1+10+1+9=21 clock
cycles.

Table 7.2 shows the power consumption during trusted sensing mode
and the area of the main blocks provided by Design Vision tool from
Synopsys.

TABLE 7.2: Area and power consumption during trusted
sensing mode.

Area (mm2) Power (mW) @50MHz

HDA block 0.0028 0.13

Nonce Counter 0.0041 0.15

AEGIS 0.14 0.77

Arithmetic block 0.015 0.24

Address Generator block 0.0007 0.15

SRAM 0.67 4.49

Control Unit 0.025 1.19

The trusted virtual sensor occupies 0.86 mm2 and consumes 7.12 mW
at 50 MHz in normal operation mode (trusted sensing mode). The area
occupied by the Cryptographic Unit is 17.1% and its power consumption
is 14.8% (considering that the SRAM and the Control are needed by virtual
sensing and, hence, re-used by Cryptographic Unit).

Figure 7.5 shows the layout of the trusted virtual sensor extracted with
the SoC Encounter tool from Cadence. The largest gray rectangular area in
the upper part of the layout is the SRAM.

7.4. Conclusions 47

FIGURE 7.5: Layout of the trusted virtual sensor using
AEGIS.

7.4 Conclusions

The VLSI design of trusted virtual sensors is very suitable for indus-
trial applications where security is becoming increasingly important since
it offers privacy, authenticity and integrity of the virtually sensed mea-
surement and the circuit itself. The implementation of the design into a
90-nm CMOS technology occupies 0.86 mm2 and consumes 7.12 mW when
trusted sensing at 50 MHz. Working at maximum frequency, the trusted
virtual sensor allows sampling times lower than 0.25 µs. The inclusion
of security to the virtual sensor needs 17.1% of active area and 14.8% of
power consumption.

49

Chapter 8

Conclusions

The main conclusion of this Ph.D. Dissertation is that the hardware
proposed to generate PWA functions is easy to configure and program
and allows including embedded controllers and sensors into challenging
applications requiring very small size, low power consumption, rapid
response, short time-to-market, and security in the data provided by the
hardware as well as integrity of the hardware itself.

• The hardware architecture proposed to generate generic PWA func-
tions (PWAG) allows the on-line programming of the binary search
tree to explore, so that the same circuit can be used to generate dif-
ferent PWAG functions. The parameters that fix the edges of the
polyhedral input partition and those that fix the output affine func-
tions are downloaded into SRAMs previous to the normal operation
mode when the PWA output corresponding to the input is computed.
Hence, the circuit can be reprogrammed without being unplugged
to perform different functionalities.

• Since continuous PWA functions with completely irregular polyhe-
dral partitions can also be represented by using a scheme based on
the lattice theory, a novel digital architecture has been proposed to
implement the simplest lattice representation of a given PWA func-
tion (PWAL). The proposed architecture is advantageous compared
to the PWAG architecture whenever the PWA functions have a large
number of polytopes and complex binary search trees, because these
functions usually apply the same affine function to many polytopes
that can be clustered into super regions. The proposed PWAL ar-
chitecture combines properly the affine functions according to the
information stored in a binary matrix, without taking into account the

50 Chapter 8. Conclusions

edges of the polytopes explicitly. Hence, it requires lower memory
resources than PWAG architecture to implement many continuous
PWA functions.

• The hardware architecture proposed to generate multiple PWA func-
tions allows implementing very versatile circuits which can be config-
ured and programmed to provide a PWAL, PWAS or PWAR function
depending on the application. For applications where the generic
description of a PWA function is available, as the case of model
predictive control (MPC), the PWAL form can be generated by the
circuit. For applications like virtual sensors, where the nonlinear
relation between inputs and outputs can be approximated by a PWA
function, the simplicial (PWAS) and hyper-rectangular (PWAR) PWA
functions are more suitable because they can be obtained from nu-
merical data after applying supervised learning algorithms. Hence,
the same circuit can be used in many different scenarios. The pro-
posed architecture reuses as much as possible the building blocks
and it only enables the blocks required by the PWA form to generate,
thus obtaining area efficient and low-power circuits.

• The ASIC-in-the-loop methodology developed in this Ph.D. has al-
lowed the rapid verification of the manufactured prototypes working
in open-loop as well as in closed-loop configurations. The two ASICs
manufactured in TSMC 90-nm technology (named as PWAG and
PWAX ASICs) were successfully tested in this way.

• The functionality added to Moby-dic Toolbox, which allows gener-
ation of the Verilog files needed to configure and verify the PWA
ASICs in open-loop configuration, starting from the mathematical
description of the problem to solve, increases the ease-of-use and
development of the proposed designs in embedded control appli-
cations, which are relevant features demanded by the IC electronic
market.

• The methodology developed to extract the PWAL form from Moby-
dic Toolbox allows exploiting the advantages of this PWA form in
hardware, which had not been used before this Ph.D. by hardware
designers.

• The two ASICs manufactured, which were configured and pro-
grammed to solve several MPC cases of study, provided lower re-
sponse times and much lower power consumption than the FPGA

Chapter 8. Conclusions 51

solutions reported in the literature for the same problems. The versa-
tility of the PWAX ASIC was exploited because, depending on the
case of study, one form was proven to provide better performance
than the others.

• The methodology based on Xfuzzy, which allows extracting the
parameters needed to configure the PWAX ASIC to approximate the
non-linear input-output behavior given by numerical information,
increases the ease-of-use and development of the proposed design in
virtual sensing applications, and, hence, also increases the versatility
of the proposed PWAX ASIC.

• The PWAX ASIC, configured and programmed to act as a virtual sen-
sor in an application example of the automotive domain, provided
lower RMSE than a direct virtual sensor based on neural networks
reported in the literature for the same problem.

• The authenticated ciphers AEGIS and ASCON are very suitable
modules to ensure authenticity and confidentiality of the data pro-
vided by the proposed PWA hardware. Considering a 90-nm CMOS
technology, ASCON-128 is very competitive in terms of area and
AEGIS-128 in terms of speed.

• According to the implementation results of a trusted virtual sensor
into a 90-nm CMOS technology, the inclusion of security needs 17.1%
of active area and 14.8% of power consumption. Such cost can be
affordable for many applications where security (privacy, authen-
ticity, integrity, and anti-counterfeiting) is becoming increasingly
important.

53

Appendix A

Brief CV

M. C. Martínez-Rodríguez ID received the B.Sc. degree in computer
engineering, the B.Sc. (Hons.) degree in electronic engineering, and the
M.Sc. degree in microelectronics from the University of Seville, Seville,
Spain, in 2007, 2010, and 2012, respectively. She has been with the Instituto
de Microelectrónica de Sevilla IMSE-CNM, CSIC, Universidad de Sevilla,
since 2010. She has been funded by an FPI grant from the Spanish Gov-
ernment. Her main research interest is the development of efficient digital
circuits to implement piece-wise affine functions, microelectronic design
of crypto-biometric systems, and trusted virtual sensors and controllers.

A.1 Journal Papers

CV1 M. C. Martínez-Rodríguez, P. Brox, and I. Baturone. ‘‘A Comparative
Analysis of VLSI Trusted Virtual Sensors’’. Submitted to Special
Issue: Selected Papers from NORCHIP-2017 of Elsevier’s Micropro-
cessors and Microsystems, 2018.

CV2 M. C. Martínez-Rodríguez, M.A. Prada, P. Brox, and I. Baturone.
‘‘VLSI Design of Trusted Virtual Sensor’’. Sensors 2018, 18(2), 347.

CV3 P. Brox, M. C. Martínez-Rodríguez, E. Tena-Sánchez, I. Baturone,
and A. J. Acosta. “Application specific integrated circuit solution
for multi-input multi-output piecewise-affine functions’’. Int. J. Circ.
Theor. Appl., 44: 4–20, (2016).

CV4 M. C. Martínez-Rodríguez, P. Brox and I. Baturone, ‘‘Digital VLSI
Implementation of Piecewise-Affine Controllers Based on Lattice

https://orcid.org/0000-0003-3025-5736

54 Appendix A. Brief CV

Approach’’, in IEEE Transactions on Control Systems Technology,
vol. 23, no. 3, pp. 842-854, (May 2015).

CV5 P. Brox, J. Castro-Ramirez, M. C. Martínez-Rodríguez, E. Tena, C.J.
Jimeńez, I. Baturone, and A.J. Acosta. ‘‘A programmable and con-
figurable ASIC to generate piecewise-affine functions defined over
general partitions’’. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 60.12 (Dec. 2013), pp. 3182–3194.

A.2 Conference Papers

CV6 M.C. Martínez-Rodríguez, M.A. Prada-Delgado, P. Brox, and I. Batur-
one. ‘‘CMOS Digital Design of a Trusted Virtual Sensor’’. IEEE
Nordic Circuits and Systems Conference (NORCAS), October 2017,
Linköping (Sweden).

CV7 M.C. Martínez-Rodríguez, R. Arjona, P. Brox and I. Baturone, ‘‘Dedicated
hardware IP module for fingerprint recognition’’, International Sym-
posium on Consumer Electronics (ISCE), June 2015, Madrid (Spain).

CV8 M.C. Martínez-Rodríguez, P. Brox, E. Tena, A. J. Acosta and I. Batur-
one, ‘‘Programmable ASICs for model predictive control’’, IEEE
International Conference on Industrial Technology (ICIT), pp. 1593-
1598, March 2015, Seville (Spain).

CV9 M. C. Martínez-Rodríguez, R. Arjona, P. Brox and I. Baturone, ‘‘Dedicated
hardware IP module for extracting singular points from fingerprints’’,
21st IEEE International Conference on Electronics, Circuits and Sys-
tems (ICECS), pp. 534-537, December 2014, Marseille (France).

CV10 M.C. Martínez-Rodríguez, P. Brox, J. Castro-Ramirez, E. Tena, A. J.
Acosta, I. Baturone, ‘‘ASIC-in-the-loop methodology for verification
of piecewise affine controllers’’, 19th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), December 2012, Seville
(Spain).

CV11 S. Eiroa, J. Castro, M. C. Martínez-Rodríguez, E. Tena, P. Brox, I.
Baturone, ‘‘Reducing bit flipping problems in SRAM physical unclon-
able functions’’, 19th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), December 2012, Seville (Spain).

A.3. Other Merits 55

CV12 M.C. Martínez-Rodríguez, I. Baturone, P. Brox, ‘‘Design methodol-
ogy for FPGA implementation of lattice piecewise-affine functions’’,
International Conference on Field-Programmable Technology (FPT),
December 2011, pp.1-4, New-Delhi (India).

CV13 M.C. Martínez-Rodríguez, I. Baturone, P. Brox, ‘‘Circuit implemen-
tation of piecewise-affine functions based on lattice representation’’,
20th European Conference on Circuit Theory and Design (ECCTD),
pp.644-647, August 2011, Linköping (Sweden).

CV14 I. Baturone, M.C. Martínez-Rodríguez, P. Brox, A. Gersnoviez, S.
Sánchez-Solano, ‘‘Digital implementation of hierarchical piecewise-
affine controller’’, IEEE International Symposium on Industrial Elec-
tronics (ISIE), pp.1497-1502, June 2011, Gdansk (Poland).

A.3 Other Merits

CV15 I. Baturone, P. Brox, M.C. Martínez-Rodríguez, A. J. Acosta, Patente
‘‘Método para acelerar la generación de funciones multivariables
afines a tramos con computación on-line del árbol de búsqueda
y dispositivo para implementación del método’’, Universidad de
Sevilla (62%), CSIC (38%). Patent P201400091 in the Spanish territory
on 05/02/2014.

CV16 A.J. Acosta, I. Baturone, J. Castro, C.J. Jiménez, P. Brox, M.C. Martínez-
Rodríguez, Patente ‘‘Método para generar funciones multivariables
afines a tramos con computación on-line del árbol de búsqueda
y dispositivo para implementación del método’’, Universidad de
Sevilla (62%), CSIC (38%). Patent P201200608 in the Spanish terri-
tory on 18/05/2012. International extension PCT/ES2013/000134 on
04/06/2013. Licensed by ‘‘Canaan Research & Investment S.L.’’ on
01/11/2014. Current state: US Patent 14/405,552 on 04/12/2014 and
EU Patent 13801227.3 on 18/12/2014.

CV17 Pre-doctoral stay at ‘‘Computer Security and Industrial Cryptogra-
phy group (COSIC)’’ of the KU Leuven, Belgium. 1 September 2015 -
3 December 2015. Leuven. Belgium.

CV18 Summer school on real-world crypto and privacy. 31 May - 5 June
2015. Sîbenik. Croatia.

56 Appendix A. Brief CV

CV19 A. Oliveri, T. Poggi, B.A.G. Genuit, D. Barcelli, C. Alberto, F. Co-
maschi, M. Rubagotti, M.C. Martínez-Rodríguez, P. Brox, ‘‘Developers
of Moby-dic toolbox for Matlab’’.

CV20 P. Brox, J. Castro, M. C. Martínez-Rodríguez, E.Tena, C. J. Jiménez,
I. Baturone, and A. J. Acosta. ‘‘ASIC solution for piece-wise-affine
forms’’, Europractice Activity Report 2012.

A.4 Projects

ID-EO Diseño de hardware cripto-biométrico para cifrado y autenticación
de vídeo (TEC2014-57971-R); PI: Piedad Brox-Jiménez and Iluminada
Baturone-Castillo; Supported by Proyecto I+D+i Retos Investigación
- Ministerio de Economía, Industria y Competitividad; 2015 - 2018.

CB-DOC Gestión documental con autenticación segura mediante técnicas
cripto-biométricas vía hardware (IPT-2012-0695-390000); PI: Ilumi-
nada Baturone-Castillo; Supported by Proyecto INNPACTO - Minis-
terio de Economía y Competitividad; 2012 - 2015.

SEIs Diseño hardware para sistemas empotrados en entornos inteligentes
(TEC2011-24319); PI: Santiago Sánchez-Solano; Supported by Minis-
terio de Ciencia e Innovación; 2012 - 2014.

CRIPTO-BIO Diseño microelectrónico para autenticación cripto-biométrica
(P08-TIC-03674); PI: Iluminada Baturone-Castillo; Supported by
Proyecto de Excelencia Junta de Andalucía; 2009 - 2013.

MOBY-DIC Model-based synthesis of digital electronic circuits for em-
bedded control (EC-IST-VIIPM No.-248858); PI: Antonio J. Acosta-
Jiménez; Supported by the 7th Framework Programme for Research
and Technological Development (7PM), European Commission; 2009
– 2012.

DIMISION Diseño microelectrónico de sistemas de visión para redes de
sensores inteligentes (TEC2008-04920); PI: Santiago Sánchez-Solano;
Supported by Ministerio de Ciencia e Innovación; 2009 - 2011.

57

Bibliography

[1] L. O. Chua and S.M. Kang. “Section-wise piecewise-linear functions:
Canonical representation, properties, and applications”. In: Proceed-
ings of the IEEE 65.6 (June 1977), pp. 915–929.

[2] D. M. W. Leenaerts and W. M. G. van Bokhoven. Piecewise linear
Modelling and Analysis. Boston: Kluwer Academic Publisher, 1998.

[3] P. Julian, M. Jordan, and A. Desages. “Canonical piecewise-linear
approximation of smooth functions”. In: IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications 45.5 (May 1998),
pp. 567–571.

[4] P. Julian, A. Desages, and O. Agamennoni. “High-level canonical
piecewise linear representation using a simplicial partition”. In: IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions 46.4 (Apr. 1999), pp. 463–480.

[5] M. Storace and O. De Feo. “Piecewise-linear approximation of nonlin-
ear dynamical systems”. In: IEEE Transactions on Circuits and Systems
I: Regular Papers 51.4 (Apr. 2004), pp. 830–842.

[6] E. Sontag. “Nonlinear regulation: The piecewise linear approach”. In:
IEEE Transactions on Automatic Control 26.2 (Apr. 1981), pp. 346–358.

[7] A. Bemporad, F. Borelli, and M. Morari. “Model predictive control
based on linear programming: the explicit solution”. In: IEEE Trans.
on Automatic Control 47.12 (2002), pp. 1974 – 1985.

[8] T. Poggi, M. Rubagotti, A. Bemporad, and M. Storace. “High-speed
piecewise affine virtual sensors”. In: IEEE Trans. on Industrial Elec-
tronics 59.2 (2012), pp. 1228 – 1237.

[9] T. A. Johansen, W. Jackson, R. Schreiber, and P. Tondel. “Hardware
Synthesis of Explicit Model Predictive Controllers”. In: IEEE Transac-
tions on Control Systems Technology 15.1 (Jan. 2007), pp. 191–197.

[10] P. D. Vouzis, L. G. Bleris, M. G. Arnold, and M. V. Kothare. “A
System-on-a-Chip Implementation for Embedded Real-Time Model
Predictive Control”. In: IEEE Transactions on Control Systems Technol-
ogy 17.5 (Sept. 2009), pp. 1006–1017.

58 BIBLIOGRAPHY

[11] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace. “Ultra-fast sta-
bilizing model predictive control via canonical piecewise affine ap-
proximations”. In: IEEE Transaction on Automatic Control 56.12 (Dec.
2011), pp. 2883–2897.

[12] A. G. Wills, G. Knagge, and B. Ninness. “Fast Linear Model Predic-
tive Control Via Custom Integrated Circuit Architecture”. In: IEEE
Transactions on Control Systems Technology 20.1 (Jan. 2012), pp. 59–71.

[13] A. Oliveri, G.J.L. Naus, M. Storace, and W. P. M.H. Heemels. “Low-
complexity approximations of PWA functions: A case study on Adap-
tive Cruise Control”. In: 20th European Conference on Circuit Theory
and Design (ECCTD). Aug. 2011, pp. 669 – 672.

[14] M. Mönnigmann and M. Kastsian. “Fast explicit model predictive
control with multiway trees”. In: 18th IFAC world congress 2011 :
Milan, Italy. Vol. 2. Sept. 2011, pp. 1356 – 1361.

[15] F. Bayat, T. A. Johansen, and A. A. Jalali. “Using hash tables to
manage the time-storage complexity in a point location problem:
Application to explicit model predictive control”. In: Automatica 47.3
(2011), pp. 571 –577.

[16] R. Rovatti, C. Fantuzzi, and S. Simani. “High-speed DSP-based im-
plementation of piecewise-affine and piecewise-quadratic fuzzy sys-
tems”. In: Signal Processing 80.6 (2000), pp. 951 –963.

[17] I. Baturone, F. J. Moreno-Velo, V. Blanco, and J. Ferruz. “Design of
Embedded DSP-Based Fuzzy Controllers for Autonomous Mobile
Robots”. In: IEEE Transactions on Industrial Electronics 55.2 (Feb. 2008),
pp. 928–936.

[18] I. Baturone, S. Sánchez-Solano, A. A. Gersnoviez, and M. Brox. “An
automated design flow from linguistic models to piecewise poly-
nomial digital circuits”. In: Proceedings of 2010 IEEE International
Symposium on Circuits and Systems. May 2010, pp. 3317–3320.

[19] P. Echevarria, M. V. Martínez, J. Echanobe, I. del Campo, and J.M.
Tarela. “Digital Hardware Implementation of High Dimensional
Fuzzy Systems”. In: Applications of Fuzzy Sets Theory: 7th International
Workshop on Fuzzy Logic and Applications, WILF 2007, Camogli, Italy,
July 7-10, 2007. Proceedings. Ed. by Francesco Masulli, Sushmita Mitra,
and Gabriella Pasi. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 245–252.

[20] S. Sánchez-Solano, A. Cabrera, I. Baturone, F. J. Moreno-Velo, and
M. Brox. “FPGA implementation of embedded Fuzzy Controllers for

BIBLIOGRAPHY 59

Robotic Applications”. In: IEEE Trans. on Industrial Electronics 54.4
(2007), pp. 1937 – 1945.

[21] R. Rovatti, M. Borgatti, and R. Guerrieri. “A geometric approach to
maximum-speed n-dimensional continuous linear interpolation in
rectangular grids”. In: IEEE Trans. on Computers 47.8 (1998), pp. 894 –
899.

[22] M. Rubagotti, T. Poggi, A. Oliveri, et al. “Low-complexity piecewise-
affine virtual sensors: theory and design”. In: International Journal of
Control 87.3 (2014), pp. 622–632.

[23] A. Oliveri, L. Cassottana, A. Laudani, et al. “Two FPGA-Oriented
High Speed Irradiance Virtual Sensors for Photovoltaic Plants”. In:
IEEE Transactions on Industrial Informatics PP.99 (Sept. 2015), pp. 1–1.

[24] M. Storace, F. Bizzarri, and M. Parodi. “Cellular non-linear networks
for minimization of functionals. Part 1: Theoretical aspects”. In: Inter-
national Journal of Circuit Theory and Applications 29.2 (2001), pp. 151–
167.

[25] R. E. Groff, D. E. Koditschek, and P. P. Khargonekar. “Piecewise
linear homeomorphisms: the scalar case”. In: Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and Perspectives for the New
Millennium. Vol. 3. 2000, pp. 259–264.

[26] L. O. Chua and A. Deng. “Canonical piecewise-linear analysis: Gen-
eralized breakpoint hopping algorithm”. In: International Journal of
Circuit Theory and Applications 14.1 (1986), pp. 35–52.

[27] D. M. W. Leenaerts. “Further extensions to Chua’s explicit piecewise
linear function descriptions”. In: International Journal of Circuit Theory
and Applications 24.6 (1996), pp. 621–633.

[28] M. Storace and M. Parodi. “Towards analog implementations of
PWL two-dimensional non-linear functions”. In: International Journal
of Circuit Theory and Applications 33.2 (2005), pp. 147–160.

[29] T. Kettner, C. Heite, and K. Schumacher. “Analog CMOS realization
of fuzzy logic membership functions”. In: IEEE Journal of Solid-State
Circuits 28.7 (July 1993), pp. 857–861.

[30] M. Delgado-Restituto, A. Rodríguez-Vázquez, and F. Vidal. “Non-
linear synthesis using ICs”. In: Wiley Encyclopedia of Electrical and
Electronics Engineering 14 (1999). Ed. by Webster J. G, pp. 472–502.

[31] A. Rodriguez-Vazquez, R. Navas, M. Delgado-Restituto, and F. Vidal-
Verdu. “A modular programmable CMOS analog fuzzy controller

60 BIBLIOGRAPHY

chip”. In: IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing 46.3 (Mar. 1999), pp. 251–265.

[32] M. Parodi, M. Storace, and P. Julián. “Synthesis of multiport resistors
with piecewise-linear characteristics: a mixed-signal architecture”.
In: International Journal of Circuit Theory and Applications 33.4 (2005),
pp. 307–319.

[33] I. Baturone, S. Sanchez-Solano, A. Barriga, and J. L. Huertas. “Im-
plementation of CMOS fuzzy controllers as mixed-signal integrated
circuits”. In: IEEE Transactions on Fuzzy Systems 5.1 (Feb. 1997), pp. 1–
19.

[34] A. Oliveri, T. Poggi, and M. Storace. “Circuit implementation of
piecewise-affine functions based on a binary search tree”. In: IEEE
European Conf. on Circuit Theory and Design. 2009, pp. 145 – 148.

[35] A. Oliveri, C. Gianoglio, E. Ragusa, and M. Storace. “Low-complexity
digital architecture for solving the point location problem in explicit
Model Predictive Control”. In: Journal of the Franklin Institute 352.6
(2015), pp. 2249 –2258.

[36] F. Comashi, B. A. G. Genuit, A. Oliveri, W. P. M. H. Heemels, and
M. Storace. “FPGA implementations of piecewise affine functions
based on multi-resolution hyperrectangular partitions”. In: IEEE
Transactionis on Circuits and Systems I 59.12 (Dec. 2012), pp. 2920–
2933.

[37] M. Storace and T. Poggi. “Digital architectures realizing piecewise-
linear multi-variate functions: two FPGA implementations”. In: Int.
Journal of Circuit Theory and Applications 39.1 (2009), pp. 1 – 15.

[38] A. Gersnoviez, M. Brox, and I. Baturone. “High-Speed and Low-Cost
Implementation of Explicit Model Predictive Controllers”. In: IEEE
Transactions on Control Systems Technology PP.99 (2017), pp. 1–16.

[39] M. Di Federico, T. Poggi, P. Julián, and M. Storace. “Integrated circuit
implementation of multi-dimensional piecewise-linear functions”.
In: Digital Signal Processing 20.6 (2010), pp. 1723 –1732.

[40] J.A. Rodríguez, O. D. Lifschitz, V. M. Jiménez-Fernández, P. Julián,
and O. E. Agamennoni. “Application-Specific Processor for Piece-
wise Linear Functions Computation”. In: IEEE Trans. on Circuits and
Systems I: Regular Papers 58.5 (2011), pp. 971–981.

[41] V. Spinu, A. Oliveri, M. Lazar, and M. Storace. “FPGA implemen-
tation of optimal and approximate model predictive control for a
buck-boost DC-DC converter”. In: IEEE International Conference on
Control Applications (CCA), 2012. Oct. 2012, pp. 1417–1423.

BIBLIOGRAPHY 61

[42] G.J.L. Naus, J. Ploeg, M.J.G. Van de Molengraft, W.P.M.H. Heemels,
and M. Steinbuch. “Design and implementation of parameterized
adaptive cruise control: An explicit model predictive control ap-
proach”. In: Control Engineering Practice 18.8 (2010), pp. 882 –892.

[43] C.K. Chui, B. P. Nguyen, Y. Ho, et al. “Embedded Real-Time Model
Predictive Control for Glucose Regulation”. In: World Congress on
Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing,
China. Ed. by Mian Long. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 1437–1440.

[44] A. Malinowski and H. Yu. “Comparison of Embedded System De-
sign for Industrial Applications”. In: IEEE Transactions on Industrial
Informatics 7.2 (May 2011), pp. 244–254.

[45] I. Baturone, A. Barriga, S. Sánchez-Solano, C. J. Jiménez-Fernández,
and D. R. López. Microelectronic Design of Fuzzy Logic-based Systems.
Boca Raton, FL, USA: CRC Press, Inc., 2000.

[46] P. Tøndel, T.A. Johansen, and A. Bemporad. “Evaluation of piecewise
affine control via binary search tree”. In: Automatica 39.5 (2003),
pp. 945 –950.

[47] J.M. Tarela and M.V. Martínez. “Region configurations for realizabil-
ity of lattice Piecewise-Linear models”. In: Mathematical and Computer
Modelling 30.11 (1999), pp. 17 –27.

[48] C. Wen, X. Ma, and B. E. Ydstie. “Analytical expression of explicit
MPC solution via lattice piecewise-affine function”. In: Automatica
45.4 (2009), pp. 910 –917.

[49] M. Storace, L. Repetto, and M. Parodi. “A method for the approxi-
mate synthesis of cellular non-linear networks—Part 1: Circuit defi-
nition”. In: International Journal of Circuit Theory and Applications 31.3
(2003), pp. 277–297.

[50] L. Repetto, M. Storace, and M. Parodi. “A method for the approxi-
mate synthesis of cellular non-linear networks—Part 2: Circuit re-
duction”. In: International Journal of Circuit Theory and Applications
31.3 (2003), pp. 299–313.

[51] B. A. G. Genuit, L. Lu, and W. P. M. H. Heemels. “Approximation
of explicit model predictive control using regular piecewise affine
functions: an input-tostate stability approach”. In: IET Control Theory
Applications 6.8 (May 2012), pp. 1015–1028.

[52] A. N. Fuchs, C. N. Jones, and M. Morari. “Optimized decision trees
for point location in polytopic data sets - application to explicit

62 BIBLIOGRAPHY

MPC”. In: Proceedings of the 2010 American Control Conference. June
2010, pp. 5507–5512.

[53] F. Bayat. “Comments on “Analytical expression of explicit MPC
solution via lattice piecewise-affine function” [Automatica 45 (2009)
910–917]”. In: Automatica 48.11 (2012), pp. 2993 –2994.

[54] C. Wen, X. Ma, and B. E. Ydstie. “Reply to “Comments on ‘Analytical
expression of explicit MPC solution via lattice piecewise-affine func-
tion’ [Automatica 45 (2009) 910–917]””. In: Automatica 48.11 (2012),
pp. 2995 –2996.

[55] J.M. Tarela, J.M. Perez, and V. Aleixandre. “Minimization of lattice
polynomials on piecewise linear functions (Part I)”. In: Mathematics
and Computers in Simulation 17.2 (1975), pp. 79 –85.

[56] J.M. Tarela, L.A. Bailon, and E. Sanz. “Minimization of lattice poly-
nomials on piecewise linear functions (Part II)”. In: Mathematics and
Computers in Simulation 17.2 (1975), pp. 121 –127.

[57] M. Chien and E. Kuh. “Solving nonlinear resistive networks us-
ing piecewise-linear analysis and simplicial subdivision”. In: IEEE
Transactions on Circuits and Systems 24.6 (June 1977), pp. 305–317.

[58] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. “Linear matrix
inequalities in control theory”. In: Studies in Applied Mathematics,
SIAM 15 (1994).

[59] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. “The LMI con-
trol toolbox”. In: IEEE Conf. on Decision and Control. 1994, pp. 2038 –
2041.

[60] M. Lazar and W.P.M.H. Heemels. “Predictive control of hybrid sys-
tems: Input-to-state stability results for sub-optimal solutions”. In:
Automatica 45.1 (2009), pp. 180 – 185.

[61] A. Alessio and A. Bemporad. “A Survey on Explicit Model Predic-
tive Control”. In: Nonlinear Model Predictive Control. Vol. 384. Lecture
Notes in Control and Information Sciences. Springer Berlin Heidel-
berg, 2009, pp. 345 – 369.

[62] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. “The
explicit linear quadratic regulator for constrained systems”. In: Auto-
matica 38 (2002), pp. 3 – 20.

[63] H. Li, D. Yu, and J. E. Braun. “A review of virtual sensing technology
and application in building systems”. In: HVAC&R Research 17.5
(2011), pp. 619–645.

BIBLIOGRAPHY 63

[64] G. Heredia and A. Ollero. “Virtual Sensor for Failure Detection,
Identification and Recovery in the Transition Phase of a Morphing
Aircraft”. In: Sensors 10.3 (2010), pp. 2188–2201.

[65] J. A. Sánchez, F. Rodríguez, J. L. Guzmán, and M. R. Arahal. “Virtual
Sensors for Designing Irrigation Controllers in Greenhouses”. In:
Sensors 12.11 (2012), pp. 15244–15266.

[66] A. Bustillo, M. Correa, and A. Reñones. “A Virtual Sensor for Online
Fault Detection of Multitooth-Tools”. In: Sensors 11.3 (2011), pp. 2773–
2795.

[67] J. Stephant, A. Charara, and D. Meizel. “Virtual sensor: application
to vehicle sideslip angle and transversal forces”. In: IEEE Transactions
on Industrial Electronics 51.2 (Apr. 2004), pp. 278–289.

[68] C. Novara, F. Ruiz, and M. Milanese. “Direct Identification of Opti-
mal SM-LPV Filters and Application to Vehicle Yaw Rate Estimation”.
In: IEEE Transactions on Control Systems Technology 19.1 (Jan. 2011),
pp. 5–17.

[69] B. Zhang, H. Du, J. Lam, N. Zhang, and W. Li. “A Novel Observer
Design for Simultaneous Estimation of Vehicle Steering Angle and
Sideslip Angle”. In: IEEE Transactions on Industrial Electronics 63.7
(July 2016), pp. 4357–4366.

[70] M. Pinelis. “Automotive sensors and electronics: trends and devel-
opments in 2013”. In: Automotive Sensors and Electronics Expo,Detroit,
Michigan. 2013.

[71] T. Xu, J. B. Wendt, and M. Potkonjak. “Security of IoT systems: De-
sign challenges and opportunities”. In: 2014 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). Nov. 2014, pp. 417–
423.

[72] R. Santamarta. “Go Nuclear: Breaking radiation monitoring devices”.
In: BlackHat USA 2017, Las Vegas. July 2017.

[73] C. Paar and J. Pelzl. Understanding Cryptography: A Textbook for Stu-
dents and Practitioners. Springer Berlin Heidelberg, 2009.

[74] J. Turner. The Keyed-Hash Message Authentication Code (HMAC). Fed-
eral Information Processing Standards Publication, 2008.

[75] A. Bogdanov, M. Knežević, G. Leander, et al. “SPONGENT: A Lightweight
Hash Function”. In: Cryptographic Hardware and Embedded Systems –
CHES 2011. Ed. by Bart Preneel and Tsuyoshi Takagi. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011, pp. 312–325.

64 BIBLIOGRAPHY

[76] J. P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. “Quark:
A Lightweight Hash”. In: Journal of Cryptology 26.2 (Apr. 2013),
pp. 313–339.

[77] J. Guo, T. Peyrin, and A. Poschmann. “The PHOTON family of
lightweight hash functions”. In: Advances in Cryptology-CRYPTO
2011. Vol. 6841. Lecture Notes in Computer Science (LNCS), 2011,
pp. 229–239.

[78] S. Eiroa and I. Baturone. “FPGA implementation and DPA resistance
analysis of a lightweight HMAC construction based on PHOTON
hash family”. In: 23rd International Conference on Field programmable
Logic and Applications. Sept. 2013, pp. 1–4.

[79] S. Meguerdichian and M. Potkonjak. “Security primitives and proto-
cols for ultra low power sensor systems”. In: 2011 IEEE SENSORS
Proceedings. Oct. 2011, pp. 1225–1227.

[80] O. Pfeiffer. Implementing Scalable CAN Security with CANcrypt: Au-
thentication and Encryption for CANopen, J1939 and other Controller
Area Network or CAN FD Protocols. Embedded Systems Academy Inc.,
2017.

[81] Cryptographic Competitions. URL: https://competitions.cr.
yp.to/caesar.html.

[82] H. Wu and B. Preneel. “AEGIS: A Fast Authenticated Encryption
Algorithm”. In: Selected Areas in Cryptography – SAC 2013: 20th Inter-
national Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised
Selected Papers. Ed. by Tanja Lange, Kristin Lauter, and Petr Lisoněk.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 185–201.

[83] ASCON: A Family of Authenticated Encryption Algorithms.
[84] H. Gross, E. Wenger, C. Dobraunig, and C. Ehrenhöfer. “ASCON

hardware implementations and side-channel evaluation”. In: Micro-
processors and Microsystems 52 (2017), pp. 470 –479.

[85] D. Samyde, S. Skorobogatov, R. Anderson, and J. J. Quisquater. “On
a new way to read data from memory”. In: First International IEEE
Security in Storage Workshop, 2002. Proceedings. Dec. 2002, pp. 65–69.

[86] J. Guajardo, S. S. Kumar, G. Schrijen, and P. Tuyls. “FPGA Intrinsic
PUFs and Their Use for IP Protection”. In: Cryptographic Hardware
and Embedded Systems - CHES 2007. Ed. by Pascal Paillier and Ingrid
Verbauwhede. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 63–80.

[87] I. Baturone, M. A. Prada-Delgado, and S. Eiroa. “Improved genera-
tion of identifiers, secret keys, and random numbers From SRAMs”.

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html

BIBLIOGRAPHY 65

In: IEEE Transactions on Information Forensics and Security 10.12 (Dec.
2015), pp. 2653–2668.

[88] A. Oliveri, D. Barcelli, A. Bemporad, et al. “MOBY-DIC: A MATLAB
Toolbox for Circuit-Oriented Design of Explicit MPC”. In: IFAC Pro-
ceedings Volumes 45.17 (2012). 4th IFAC Conference on Nonlinear
Model Predictive Control, pp. 218 –225.

[89] M. Herceg, M. Kvasnica, C.N. Jones, and M. Morari. “Multi-Parametric
Toolbox 3.0”. In: Proc. of the European Control Conference. http://
control.ee.ethz.ch/~mpt. Zürich, Switzerland, July 2013,
pp. 502–510.

[90] A. Bemporad. Hybrid Toolbox - User’s Guide. http://cse.lab.
imtlucca.it/~bemporad/hybrid/toolbox. 2004.

[91] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, May
2000. 456 pp.

[92] M. Lutz, W. Golderer, J. Gerstenmeier, et al. “A precision yaw rate
sensor in silicon micromachining”. In: International Conference on
Solid State Sensors and Actuators, 1997. TRANSDUCERS ’97 Chicago.
Vol. 2. June 1997, pp. 847–850.

[93] D. Kim, Y. Park, and H. Lee. “Sensor offset compensation for a vehi-
cle yaw rate sensor using fuzzy logic”. In: International Conference on
Control, Automation and Systems, 2007. ICCAS ’07. Oct. 2007, pp. 362–
366.

http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox

	Acknowledgements
	Preface
	Introduction
	Piecewise affine (PWA) functions
	Generic PWA form based on binary search tree (PWAG)
	Generic PWA form based on lattice (PWAL)
	Simplicial PWA functions (PWAS)
	Hyperrectangular PWA functions (PWAR)

	PWA forms for Model Predictive Control (MPC)
	PWA forms for virtual sensors
	Trusted controllers and sensors
	Conclusions

	Hardware architectures to implement PWA functions
	Architecture for PWAG form
	Architecture for PWAL form
	Architecture for multiple PWA forms
	Comparison between architectures
	Conclusions

	Hardware design flow to implement PWA functions
	Hardware design flow for ASICs
	Manufactured ASICs

	Hardware design flow for FPGAs
	Hardware verification
	Conclusions

	PWA solutions in hardware for Model Predictive Control
	The Moby-dic Toolbox
	Methodology to configure and program PWA ASICs with the Moby-dic Toolbox
	Methodology to extract PWAL form from Moby-dic Toolbox
	Application examples
	Conclusions

	PWA solutions in hardware for virtual sensors
	Identification algorithm for PWAR virtual sensors
	Methodology using Xfuzzy environment
	Application example
	Conclusions

	Cryptographic modules for PWA solutions in hardware
	Description of candidate modules
	Hash-based Message Authentication Code (HMAC) based on the PHOTON hash function
	AEGIS Authenticated Cipher
	ASCON Authenticated Cipher

	Comparative analysis of the cryptographic modules
	Conclusions

	ASIC design of a trusted PWA virtual sensor
	Functional and architectural description
	PWAR Unit
	Cryptographic Unit
	Control Unit

	Features of the trusted virtual sensor
	Implementation results
	Conclusions

	Conclusions
	Brief CV
	Journal Papers
	Conference Papers
	Other Merits
	Projects

	Bibliography

