Dalton Transactions

Accepted Manuscript

5

Dalton Transactions

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x
www.rsc.org/

Synthesis, structure and reactivity of Pd and Ir complexes based on new lutidine-derived NHC/phosphine mixed pincer ligands

Práxedes Sánchez, ${ }^{a}$ Martín Hernández-Juárez, ${ }^{a}$ Eleuterio Álvarez, ${ }^{a}$ Margarita Paneque, ${ }^{a}{ }^{a}$ * Nuria Rendón ${ }^{\mathrm{a}}$ and Andrés Suárez ${ }^{\mathrm{a}, *}$

Coordination studies of new lutidine-derived hybrid NHC/phosphine ligands (CNP) to Pd and Ir have been performed. Treatment of the square-planar $[\mathrm{Pd}(\mathrm{CNP}) \mathrm{Cl}]\left(\mathrm{AgCl}_{2}\right)$ complex 2a with KHMDS produces the selective deprotonation at the $\mathrm{CH}_{2} \mathrm{P}$ arm of the pincer to yield the pyridine-dearomatised complex 3a. A series of cationic [Ir(CNP)(cod)] $]^{+}$complexes 4 has been prepared by reaction of the imidazolium salts 1 with $\operatorname{Ir}(\mathrm{acac})(\operatorname{cod})$. These derivatives exhibit in the solid state, and in solution, a distorted trigonal bipyramidal structure in which the CNP ligands adopt an unusual $\mathrm{C}_{(\text {(axial) }}-\mathrm{N}_{\text {(equatorial) }}-\mathrm{P}_{\text {(equatorial) }}$ coordination mode. Reactions of complexes 4 with CO and H_{2} yield the carbonyl species $\mathbf{5 a}(\mathbf{C l})$ and $\mathbf{6 a}(\mathbf{C l})$, and the dihydrido derivatives $\mathbf{7}$, respectively. Furthermore, upon reaction of complex $\mathbf{4 b}(\mathrm{Br})$ with base, selective deprotonation at the methylene $\mathrm{CH}_{2} \mathrm{P}$ arms is observed. The, thus formed, deprotonated Ir complex $\mathbf{8 b}$ reacts with H_{2} in a ligand-assisted process leading to the trihydrido complex $\mathbf{9 b}$, which can also be obtained by reaction of $\mathbf{7 b} \mathbf{(C l})$ with H_{2} in the presence of $\mathrm{KO}^{t} \mathrm{Bu}$. Finally, the catalytic activity of Ir-CNP complexes in the hydrogenation of ketones has been briefly assessed.

Introduction

Metal complexes based on lutidine-derived PNP pincer ligands have gained considerable attention due to their applications in organometallic chemistry and catalysis (Fig. 1a). ${ }^{1}$ In these derivatives metal-ligand cooperativity, triggered by deprotonation of the methylene arms of the ligand accompanied by dearomatisation of the pyridine ring, has led to unique reactivity in the activation of a diversity of $\mathrm{X}-\mathrm{H}(\mathrm{X}=$ H, C, O, N) bonds. While significantly less studied, analogous complexes based on CNC pincers (C stands for a N-heterocyclic carbene, NHC) have also been described (Fig. 1b). ${ }^{2-4}$ As shown with Ru-CNC complexes, ${ }^{3,4}$ these derivatives can also be deprotonated at the methylene $\mathrm{CH}_{2} \mathrm{~N}$ bridges, and participate in metal-ligand cooperation processes. Furthermore, the larger Py- CH_{2}-NHC linkage, which forms 6-membered metallacycles upon coordination, confers a greater flexibility on the ligand in comparison to 5-membered rings formed in PNP pincers. This flexibility should permit stabilizing metal complexes in a variety of coordination geometries, a relevant issue in catalysis where the intermediates in the catalytic cycle may need to adopt different structural arrangements. For example, while PNP ligands have only exhibited meridional coordination modes, facial coordination of CNC ligands in Ru complexes has been observed. ${ }^{3}$ More remarkable, as demonstrated by the

[^0]Pidko's group, is that the increased flexibility of the CNC pincer results in enhanced reactivities towards H_{2} and CO_{2} in comparison to Ru-PNP systems. ${ }^{\text {b }}$

M-P NP

Danopoulos, Braunstein et al. (2015)

M-CNC

Fig. 1 General structure of metal complexes with a) lutidinederived PNP ligands, b) lutidine-derived CNC ligands, c) deprotonated picoline-derived CNP ligands, and d) lutidinederived CNP ligands (this work).

In addition, non-symmetric pincer ligands, i.e. having two inequivalent flanking donor groups, allow for a larger electronic and steric diversity derived from the potential
tuning of two different side donors. ${ }^{5}$ With respect to lutidinederived pincer complexes, some examples of PNP ${ }^{66}$ and CNC ${ }^{4 a}$ derivatives have been reported. Unsymmetrical PNX and CNX pincer complexes have also been described, although these derivatives are usually of the type PNN^{1} and $C N N^{7}$ where hemilabile coordination of the N -donor flanking group has been proposed. In marked contrast, complexes based on CNP ligands having a pyridine central moiety and in which the two side functionalities are two significantly different strong σ donors, such as a phosphine and a NHC, have not been investigated. In fact, a limited number of hybrid tridentate ligands possessing both phosphine and NHC donors have been reported, and these have either a ligand backbone based on a 1,3-disubstituted phenyl ring, ${ }^{8 a}$ or a different arrangement of the donor moieties, where the NHC group is the central unit of the pincer ligand. ${ }^{8 b-f}$ Also, recently Danopoulos, Braunstein et al. have prepared Co and Cr complexes based on deprotonated $\mathrm{NHC} /$ phosphine mixed pincer ligands having a central picoline motif (Fig. 1c). ${ }^{9}$

Based on these precedents, we aimed to develop a new class of ligands having NHC and phosphine side donors and a lutidine central fragment (CNP, Fig. 1d). A fundamental difference of these ligands with the previous picoline-based pincer derivatives reported by Danopoulos, Braunstein et al resides in the presence of a methylene linker between the pyridine and the NHC functionalities, which could also be susceptible to deprotonation and should enhance pincer flexibility. In this contribution, we report on the synthesis of the precursors of these ligands as well as their coordination to Pd and Ir complexes. In particular, the ability of CNP ligands to adapt to different coordination geometries and participate in ligand-assisted processes has been assessed.

Scheme 1 Syntheses of CNP ligands precursors.

Results and discussion

Syntheses of imidazolium salts 1

Syntheses of imidazolium salts $\mathbf{1 a}(\mathbf{C l}), \mathbf{1 b}(\mathbf{C l})$ and $\mathbf{1 b}(\mathrm{Br})$ were effected as shown in Scheme 1. Derivative 1a(CI) was prepared by reaction of the corresponding 2-chloromethyl-6-imidazolylmethyl-pirydine with diphenyl phosphine in the presence of $\mathrm{KO}^{t} \mathrm{Bu}$. Alternatively, in the case of salts $\mathbf{1 b}(\mathbf{C l})$ and $\mathbf{1 b}(\mathrm{Br})$, higher product yields were obtained when diphenyl phosphine-borane adduct was used for the introduction of the

P-donor fragment, followed by phosphine deprotection by simple treatment with refluxing MeOH . The CNP ligands precursors were obtained with moderate to good yields (55$85 \%$) as white to brown solids.

Synthesis and deprotonation of Pd-CNP complex 2a

For an evaluation of the coordination capabilities of these new CNP ligands, we initially studied the formation of Pd derivatives. Thus, salt $\mathbf{1 a}(\mathbf{C l})$ was reacted with $\mathrm{Ag}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by addition of $\mathrm{PdCl}_{2}(\operatorname{cod})$ to yield complex 2a (Scheme 2). ${ }^{10}$ The spectroscopic data support the formation of a complex in which the CNP ligand is coordinated to the metal centre as a pincer. For example, its ${ }^{1} \mathrm{H}$ NMR spectrum shows distinctly two signals for the bridging methylenes. The $\mathrm{CH}_{2} \mathrm{P}$ protons appear at $4.32 \mathrm{ppm}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=11.3 \mathrm{~Hz}\right.$), whereas the NCH_{2} hydrogens produce a singlet at 6.05 ppm . The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum exhibits a doublet at 166.4 ppm with a large ${ }^{2} J_{\text {CP }}\left(183 \mathrm{~Hz}\right.$, carbene carbon, C^{2}, of the NHC moiety), indicating the trans disposition of the NHC and phosphine moieties.

Scheme 2 Synthesis and reactivity of Pd complex 2a.
A single crystal X-ray diffraction study of 2a confirmed the proposed structure (Fig. 2). Thus, complex $\mathbf{2 a}$ in the solid state is comprised of a Pd atom in an square-planar coordination geometry, with the carbene and phosphine fragments of the pincer disposed trans to each other ($\mathrm{C}^{2}(\mathrm{NHC})-\mathrm{Pd}-\mathrm{P}=168.65^{\circ}$), and the chloride ligand trans to the pyridine ($\mathrm{N}(\mathrm{Py})-\mathrm{Pd}-\mathrm{Cl}=$ 175.03°). The NHC-Pd-Py chelate ring has a boat conformation as determined by the torsion angle $\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{C}(1)$ of 32.4°, whereas the 5 -membered ring involving the phosphine donor has an envelope conformation with a $\mathrm{C}(18)-\mathrm{N}(3)-\mathrm{Pd}(1)-$ $P(1)$ torsion angle of 28.4°.

Since it can be expected that CNP ligands can be deprotonated in either the $\mathrm{CH}_{2} \mathrm{P}$ or $\mathrm{CH}_{2}-\mathrm{NHC}$ arms, the acid/base responsiveness of $\mathbf{2 a}$ was tested by adding KHMDS to a suspension of the complex in THF. ${ }^{11}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting product 3a, a significant up-field shift for the signals of the pyridine protons ($5.55-6.46 \mathrm{ppm}$) in accord with the dearomatisation of this moiety is observed. Meanwhile, the =CHP fragment produces a singlet signal at 3.41 ppm (integrating to 1 H) in the ${ }^{1} \mathrm{H}$ NMR spectrum and a doublet at $63.3 \mathrm{ppm}\left({ }^{1} J_{\mathrm{CP}}=66 \mathrm{~Hz}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR experiment, evidencing the selective deprotonation of the CNP ligand at the $\mathrm{CH}_{2} \mathrm{P}$ arm.

Fig. 2 ORTEP drawing at 30\% ellipsoid probability of the cationic component of complex 2a. Hydrogen atoms and solvent molecules have been omitted for clarity. Selected bond lengths [Å] and angles [${ }^{\circ}$]: $\operatorname{Pd}(1)-\mathrm{C}(1)$ 2.038(6), $\mathrm{Pd}(1)-\mathrm{N}(3)$ 2.071(4), $\mathrm{Pd}(1)-\mathrm{P}(1) 2.2623(15), \mathrm{Pd}(1)-\mathrm{Cl}(1)$ 2.2758(14), $\mathrm{C}(1)-$ $\mathrm{Pd}(1)-\mathrm{P}(1) 168.65(16), \mathrm{N}(3)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ 175.03(14), $\mathrm{P}(1)-\mathrm{Pd}(1)-$ $\mathrm{Cl}(1) \quad 93.97(5), \quad \mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{N}(3) \quad 81.34(14), \quad \mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$ 95.93(16), C(1)-Pd(1)-N(3) 88.6(2).

Synthesis and structural features of Ir-CNP complexes

Reaction of imidazolium salts 1 with $\operatorname{Ir}(\mathrm{acac})(\operatorname{cod})$ provided cationic olefin complexes 4 , isolated as yellow to orange solids in moderate to good yields (30-80\%) (Scheme 3). These derivatives are stable in the solid state to the atmospheric agents, and have been fully characterised by NMR. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}(\mathrm{Br})$, the $\mathrm{CH}_{2} \mathrm{P}$ protons are diastereotopic and appear as doublet of doublets at $\delta 3.36$ $\left({ }^{2} J_{\mathrm{HP}}=2.1 \mathrm{~Hz}\right)$ and $4.17 \mathrm{ppm}\left({ }^{2} J_{\mathrm{HH}}=15.5 \mathrm{~Hz}\right.$ and $\left.{ }^{2} J_{\mathrm{HP}}=11.6 \mathrm{~Hz}\right)$. Similarly, protons for the $\mathrm{CH}_{2} \mathrm{~N}$ bridge produce two doublets at $\delta 5.65$ and $6.91\left({ }^{2} J_{\mathrm{HH}}=14.1 \mathrm{~Hz}\right)$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a doublet at 164.8 ppm for the C^{2} NHC carbon with a very small ${ }^{2} J_{\text {CP }}$ coupling constant of 8 Hz . These data suggest a cis coordination of the phosphine and NHC donors, also confirmed in the solid state by a single crystal X-ray diffraction study of $\mathbf{4 b}\left(\mathbf{B A r}_{\mathrm{F}}\right)$ (Fig. 3), obtained by anion exchange in complex $\mathbf{4 b}(\mathrm{Br})$ with $\mathrm{NaBAr}_{\mathrm{F}}$.

The structure of complex $\mathbf{4 b}\left(\mathbf{B A r}_{F}\right)$ is best described as adopting a distorted trigonal bipyramidal geometry despite the acute $\mathrm{P}-\mathrm{Ir}-\mathrm{N}(\mathrm{Py})$ bond angle of $75.98(8)^{\circ}$. The CNP ligand exhibits a facial coordination, with the NHC donor in the apical position (P-Ir-C(NHC) angle of $95.61(10)^{\circ}$). In addition, the sixmembered chelate ring involving the NHC and pyridine donors adopts a boat-like conformation as defined by the dihedral angle $C(13)-N(3)-\operatorname{Ir}(1)-C(1)$ of -50.6°, while the chelate ring containing the phosphine fragment exhibits an envelope conformation with a $\mathrm{C}(17)-\mathrm{N}(3)-\operatorname{Ir}(1)-\mathrm{P}(1)$ angle of 29.5°. This facial coordination mode is unprecedented in M-PNP complexes and may be ascribed to the larger flexibility of the six-membered Py-M-NHC chelate ring, as previously observed in Ru-CNC complexes. ${ }^{3}$ In addition, the $\mathrm{C}_{\text {(axial) }}-\mathrm{N}_{\text {(equatorial) }}{ }^{-}$ $P_{\text {(equatorial) }}$ coordination mode of the pincer differs significantly from previously reported pentacoordinated d^{8} pincer complexes, ${ }^{12}$ for which an eq-ax-eq distribution is usually
observed. ${ }^{13}$ Finally, as observed with other pentacoordinated diolefin Ir complexes, ${ }^{13}$ the distance from the Ir atom to the centroid of the $\mathrm{C}=\mathrm{C}$ bonds is slightly longer for the alkene coordinated trans to the NHC than for the olefin placed in the meridional position ($\Delta \mathrm{d}($ Ir-centroid $\mathrm{C}=\mathrm{C})=0.14 \AA$).

Fig. 3 ORTEP drawing at 30% ellipsoid probability of the cationic component of complex $\mathbf{4 b}\left(\mathbf{B A r}_{\mathrm{F}}\right)$. Hydrogen atoms and solvent molecules have been omitted for clarity. Selected bond lengths [Å] and angles [${ }^{\circ}$]: $\operatorname{Ir}(1)-\mathrm{C}(1)$ 2.029(4), $\operatorname{Ir}(1)-\mathrm{N}(3)$ 2.253(3), $\operatorname{Ir}(1)-\mathrm{P}(1)$ 2.3412(9), $\operatorname{Ir}(1)-\mathrm{C}(31)$ 2.263(4), $\operatorname{Ir}(1)-\mathrm{C}(32)$ $2.217(4), \operatorname{Ir}(1)-C(35) 2.140(3), \operatorname{Ir}(1)-C(36) 2.101(4), C(1)-\operatorname{Ir}(1)-$ $P(1) \quad 95.61(10), \quad N(3)-\operatorname{lr}(1)-P(1) \quad 75.98(8), \quad N(3)-\operatorname{lr}(1)-C(1)$ 81.07(13).

As exemplified with complex $\mathbf{4 a}(\mathbf{C l})$, a dynamic behaviour in solution for complexes 4 has been evidenced by NMR. VT- ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4 a}(\mathrm{Cl})$ registered in the temperature range between 50 and $-80^{\circ} \mathrm{C}$ show sharp signals for the resonances attributable to the CNP ligand. In contrast, broad signals at 2.98 and 3.49 ppm , integrating for two protons each, are observed for the olefinic protons at $25{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \mathrm{COSY}$ and ${ }^{1} \mathrm{H}$ ${ }^{1} \mathrm{H}$ NOESY experiments indicate that each signal is produced by protons of different olefinic moieties; i.e. $\mathrm{H}^{\mathrm{b} 1}, \mathrm{H}^{\mathrm{b} 2}$ and $\mathrm{H}^{\mathrm{a} 1}, \mathrm{H}^{\mathrm{a} 2}$ produce signals at 2.98 and 3.49 ppm , respectively (Fig. 4a). In addition, these signals broaden upon lowering the temperature and eventually split at temperatures below -25 ${ }^{\circ} \mathrm{C}$ into two sets of two signals each, appearing at $\delta 2.23\left(\mathrm{H}^{\mathrm{b} 2}\right)$ and $3.39\left(\mathrm{H}^{\mathrm{b} 1}\right)$, and $2.86\left(\mathrm{H}^{\mathrm{a} 2}\right)$ and $3.90\left(\mathrm{H}^{\mathrm{a} 1}\right)$, respectively. An approximate value of $\Delta G^{\ddagger}=10.9 \mathrm{kcal} \mathrm{mol}^{-1}$ at the coalescence temperature (244 K) can be estimated for the fluxional process. This dynamic behaviour can be ascribed to alkene site exchange allowed by the decoordination of the $\mathrm{C}=\mathrm{C}$ fragment trans to the NHC moiety to produce the distorted tetrahedral intermediate \mathbf{A}, followed by re-coordination of the free olefin moiety to the opposite side without a net change of the fac coordination mode of the CNP ligand (Fig. 4a).

In addition, the ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-exchange spectroscopy (EXSY) experiment of $\mathbf{4 a}(\mathbf{C l})$ registered at $50{ }^{\circ} \mathrm{C}$ demonstrates the existence of additional dynamic processes with higher energy barriers. Thus, intense exchange cross-peaks between the signals for the olefinic protons appearing at 2.98 and 3.49 ppm are observed, which can be explained by the formal rotation of
the diolefin ligand allowed by the decoordination of one of the Ir-alkene bonds (Fig. 4a). Furthermore, the observation of strong correlation peaks between the resonances of the $o-, m-$ and p - protons of one of the PPh groups with the aromatic protons of the other phenyl group, as well as between the signals of the methylene protons in each of the $\mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{CH}_{2} \mathrm{~N}$ arms, indicates that the CNP pincer in complexes 4 also undergoes structural changes, which could be assigned to a slow interconversion between the two enantiomeric forms of
the complex. Previously, mirror-image isomer exchange involving a pseudo-Berry rotation has been observed for pentacoordinated pincer Ir complexes containing diolefin ligands. ${ }^{13 c}$ However, this process should not be possible in complexes 4 due to the $\mathrm{C}_{\text {(axial) }} \mathrm{N}_{\text {(equatorial) }}-\mathrm{P}_{\text {(equatorial) }}$ coordination mode of the pincer. Since, as discussed above, olefin decoordination seems facile, the observed fluxional process could likely involve the intermediacy of the square-planar structure B (Fig. 4b).

Scheme 3 Synthesis and reactivity of Ir-CNP complexes 4.

b)

Fig. 4 Proposed dynamic processes in solution operating in the cationic part of complexes 4 (positive charges have been supressed for clarity; $\mathrm{PR}_{2}=\mathrm{PPh}_{2}, \mathrm{Ar}=$ mesityl or $\left.3,5-x y l y l\right)$.

To evaluate the donating properties of the CNP ligands, we prepared the carbonyl derivative $\mathbf{5 a}(\mathbf{C l})$ by bubbling CO through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex $\mathbf{4 a}(\mathbf{C l})$ (Scheme 3). Signals of the bridging $\mathrm{CH}_{2} \mathrm{P}$ and $\mathrm{CH}_{2} \mathrm{~N}$ protons in the ${ }^{1} \mathrm{H} N M R$ spectrum support a planar coordination of the CNP pincer. Thus, the $\mathrm{CH}_{2} \mathrm{P}$ protons produce a doublet signal at 4.18 ppm (${ }^{2} J_{\mathrm{HP}}=10.0 \mathrm{~Hz}$) while the $\mathrm{CH}_{2} \mathrm{~N}$ hydrogens appear as a singlet at 6.11 ppm . In the IR spectrum, the carbonyl ligand absorbs at $1985 \mathrm{~cm}^{-1}$, which is a higher frequency than that corresponding to the (${ }^{t}$ Bu-PNP)-Ir analogue (1964 cm^{-1}), ${ }^{14}$ suggesting a lower electron density at the metal centre in the Ir-CNP system. The CO ligand is detected in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum by the appearance of a doublet signal at 177.2 ppm (${ }^{2} J_{C P}=10 \mathrm{~Hz}$), while the $\mathrm{C}^{2} \mathrm{NHC}$ carbon appears at 178.1 ppm $\left(^{2} J_{C P}=99 \mathrm{~Hz}\right)$.

Interestingly, complex $\mathbf{5 a (C l})$ reversibly coordinates a new CO molecule yielding complex $\mathbf{6 a (C l})$, as inferred from the absorption bands corresponding to the CO ligands, which appear in the IR spectrum at 1946 and $2021 \mathrm{~cm}^{-1} .{ }^{15}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}(\mathbf{C l})$, the presence of a singlet signal at $6.09 \mathrm{ppm}(2 \mathrm{H})$ for the $\mathrm{CH}_{2} \mathrm{~N}$ arm and a doublet at 4.29 ppm $\left(2 \mathrm{H},{ }^{2} J_{\mathrm{HP}}=10.9 \mathrm{~Hz}\right)$ attributable to the $\mathrm{CH}_{2} \mathrm{P}$ moiety suggests the existence of a symmetry plane containing the CNP-Ir coordination plane and points out to a meridional coordination of the pincer ligand, ${ }^{13 b}$ at variance with the coordination geometry in the also pentacoordinated compounds 4.

As determined by VT- ${ }^{1} \mathrm{H}$ NMR spectroscopy (see SI), carbonyl complexes $\mathbf{5 a (C l})$ and $\mathbf{6 a (C l})$ exhibit a dynamic behaviour in solution, which equilibrates the two otherwise diastereotopic hydrogens of both methylene bridges. In square-planar Pd ${ }^{16}$ and octahedral Ru complexes incorporating CNC ligands, ${ }^{3 b}$ similar dynamic processes have been ascribed to a slow interconversion between the two twisted conformations adopted by both $\mathrm{C}^{2}(\mathrm{NHC})-\mathrm{N}(\mathrm{Py})-\mathrm{M}$ chelate rings of the pincer ligand. Similarly, the observed fluxionality in derivatives $\mathbf{5 a}(\mathbf{C l})$ and $\mathbf{6 a}(\mathbf{C l})$ can be attributed to the fast atropoisomerism between the two limiting enantiomeric forms shown in Fig. 5.

$\left.[\mathrm{Ir}]=\operatorname{lr}(\mathrm{CO}), \mathbf{5 a}(\mathrm{Cl}) ; \operatorname{lr}(\mathrm{CO})_{2}, \mathbf{6 a (C I}\right)$

Fig. 5 Interconversion between the limiting conformations of $\mathbf{5 a}(\mathrm{Cl})$ and $\mathbf{6 a (C l})$.

Complexes $\mathbf{4 a}(\mathbf{C l})$ and $\mathbf{4 b}(\mathbf{C l})$ react with H_{2} producing the dihydrido derivatives 7 and cyclooctene (Scheme 3). At room temperature, the ${ }^{1} \mathrm{H}$ NMR spectrum of complex $7 \mathrm{a}(\mathrm{Cl})$ shows two doublets of doublets at $-20.19\left({ }^{2} J_{\mathrm{HP}}=13.8 \mathrm{~Hz}{ }^{2} \mathrm{~J}_{\mathrm{HH}}=7.0\right.$
$\mathrm{Hz})$ and $-23.30 \mathrm{ppm}\left({ }^{2} J_{\mathrm{HP}}=18.9 \mathrm{~Hz}\right)$ due to the hydrido ligands placed trans to the pyridine and trans to the chloride, respectively. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the C^{2} NHC appears at 172.9 ppm as a doublet signal $\left({ }^{2} J_{\mathrm{CP}}=119 \mathrm{~Hz}\right)$. Exposure of a sample of $7 \mathrm{a}(\mathrm{Cl})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to deuterium gas (2 bar) or addition of $\mathrm{CD}_{3} \mathrm{OD}$ causes fast H / D exchange of the hydrido ligands.

Furthermore, the structural features of complex 7a(CI) have been studied in the solid state by single crystal X-ray diffraction (Fig. 6). This derivative has an octahedral geometry with the two hydrido ligands occupying mutually cis positions and the CNP ligand adopting a meridional coordination, as defined by the $C(1)-\operatorname{Ir}(1)-P(1)$ angle value of $166.5(3)^{\circ}$. The chelate ring incorporating the NHC fragment has a boat-like conformation as shown by the $\mathrm{C}(14)-\mathrm{N}(3)-\operatorname{lr}(1)-\mathrm{C}(1)$ torsion angle of $-26.5(9)^{\circ}$, whereas an envelope conformation for the $N(P y)-I r-P$ ring is observed with a $C(18)-N(3)-\operatorname{Ir}(1)-P(1)$ dihedral angle of $-14.9(8)^{\circ}$.

Fig. 6 ORTEP drawing at 30\% ellipsoid probability of complex 7a(Cl). Hydrogen atoms, except hydrido ligands, and solvent molecules have been omitted for clarity. Selected bond lengths [\AA] and angles $\left[{ }^{\circ}\right]: \operatorname{Ir}(1)-C(1) 2.037(10), \operatorname{Ir}(1)-N(3) 2.192(9), \operatorname{Ir}(1)-$ $\mathrm{P}(1)$ 2.262(3), $\operatorname{Ir}(1)-\mathrm{H}(1) \operatorname{Ir}$ 1.600, $\operatorname{Ir}(1)-\mathrm{H}(2) \operatorname{Ir}$ 1.599, $\operatorname{Ir}(1)-\mathrm{Cl}(1)$ $2.509(3), \mathrm{C}(1)-\operatorname{Ir}(1)-\mathrm{P}(1) 166.5(3), \mathrm{N}(3)-\operatorname{Ir}(1)-\mathrm{H}(1) \operatorname{Ir} 173.9, \mathrm{P}(1)-$ $\operatorname{Ir}(1)-\mathrm{H}(1) \operatorname{Ir} 92.7, \mathrm{P}(1)-\operatorname{Ir}(1)-\mathrm{N}(3) 82.2(3), \mathrm{C}(1)-\operatorname{Ir}(1)-\mathrm{H}(1) \operatorname{Ir} 95.4$, $C(1)-\operatorname{Ir}(1)-N(3) 89.0(4)$.

Deprotonation and ligand-assisted $\mathbf{H}_{\mathbf{2}}$ activation

We have also explored the deprotonation of the Ir-CNP complexes 4 . ${ }^{17}$ Treatment of $\mathbf{4 b}(\mathrm{Br})$ with $\mathrm{KO}^{t} \mathrm{Bu}$ produces the selective deprotonation of the $\mathrm{CH}_{2} \mathrm{P}$ arm (Scheme 4). The resulting complex $\mathbf{8 b}$ is characterised in the ${ }^{1} \mathrm{H}$ NMR spectrum by the presence of significantly high-field shifted signals for the pyridine protons (5.6-6.4 ppm), evidencing the dearomatisation of the pyridine ring. The =CHP proton appears as a singlet at 3.86 ppm , while the $\mathrm{CH}_{2}-\mathrm{NHC}$ hydrogens generate two doublets at 4.93 and $5.29 \mathrm{ppm}\left({ }^{2} J_{\mathrm{HH}}=13.6 \mathrm{~Hz}\right)$. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the resonance caused by the C^{2} NHC carbon appears as an overlapped doublet at 170.6 ppm . Although the J_{CP} value cannot be unambiguously calculated, a
value of 2 to 20 Hz is estimated, suggesting a cis coordination of the phosphine and NHC fragments. This coordination mode is further supported by the existence of strong NOE contacts between the protons of the xylyl and PPh_{2} groups.

Deprotonated complex $\mathbf{8 b}$ reacts with H_{2} at $0^{\circ} \mathrm{C}$ to produce the trihydrido derivative $\mathbf{9 b}$ in a ligand-assisted process leading to the re-aromatisation of the pyridine fragment. Complex $\mathbf{9 b}$ is only stable under an atmosphere of H_{2} and can be also obtained by reaction of $\mathbf{7 b}(\mathbf{C l})$ with $K^{t}{ }^{t} \mathrm{Bu}$ followed by exposure to H_{2}. The trihydrido complex $\mathbf{9 b}$ shows in the ${ }^{1} \mathrm{H}$ NMR spectrum a doublet of doublets at $-9.98 \mathrm{ppm}\left(2 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=\right.$ $18.2 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=4.8 \mathrm{~Hz}$) due to the apical hydrido ligands and a doublet of triplets at $-19.64 \mathrm{ppm}\left(1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=14.4 \mathrm{~Hz}\right)$ produced by the hydride trans to the pyridine N. The C^{2} of the NHC fragment appears in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum as a doublet at 176.9 ppm with a large ${ }^{2} J_{\mathrm{CP}}(121 \mathrm{~Hz})$, in agreement with a trans disposition of the NHC and phosphine donors of the CNP ligand.

Scheme 4 Selective deprotonation of complex $\mathbf{4 b}(\mathrm{Br})$, and formation of complex $\mathbf{9 b}$.

Hydrogenation of ketones catalysed by Ir-CNP complexes

In order to assess the catalytic potential of these Ir-CNP complexes, their performance in the hydrogenation of ketones was studied (Table 1). ${ }^{18}$ In the presence of $\mathrm{KO}^{t} \mathrm{Bu}$, complex $\mathbf{4 a}(\mathbf{C l})$ smoothly catalysed the hydrogenation of acetophenone under 4 bar of H_{2} at $30^{\circ} \mathrm{C}$ in 2-methyltetrahydrofuran, using a S/C/B ratio of 100/1/15 (entry 1). By using the same pressure, catalyst loading could be decreased to a S/C ratio of 250 after heating to $60^{\circ} \mathrm{C}$ (entry 2). Also, at this temperature, a lower H_{2} pressure (1 bar) could be employed (entry 3). Under the latter conditions, complex $\mathbf{4 b}(\mathbf{C l})$ was found to be slightly less active, whereas a significantly lower catalytic activity was obtained with the carbonyl derivative $\mathbf{5 a (C l})$ (entries 4 and 5). Finally, the hydrogenation of a series of ketones was performed with complex $\mathbf{4 a}(\mathbf{C l})$. High conversions were obtained in the case of acetophenone derivatives substituted with p-methoxi, p chloro and o-bromo substituents (entries 6-8). Alternatively, the presence of fluoro substituents seems somewhat detrimental since 2-fluoroacetophenone was reduced with a slightly lower yield (entry 9). Also, the hydrogenation of a
cyclic ketone, α-tetralone, proceeded with a high conversion (entry 10).

Conclusions

In summary, Pd and Ir complexes based on novel lutidinederived CNP pincer ligands have been synthesised. The flexibility of the chelating $\mathrm{Py}-\mathrm{CH}_{2}-\mathrm{NHC}$ fragment of the ligands allows for both facial and meridional coordination modes in five- and six-coordinated Ir-CNP complexes. Furthermore, selective deprotonation of the $\mathrm{CH}_{2} \mathrm{P}$ arm in Ir-CNP complexes promotes ligand-assisted $\mathrm{H}-\mathrm{H}$ activation, leading to active species in ketone hydrogenation. Further studies involving the application of metal complexes based on CNP ligands in X-H (X $=\mathrm{H}, \mathrm{C}$, heteroatom) bond activation and as catalysts in the (de)hydrogenation of polar substrates are currently in progress in our laboratory.

Table 1 Hydrogenation of ketones catalysed by Ir-CNP complexes ${ }^{a}$

Entry	Ketone	Ir-CNP	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Conv. (\%)
$1{ }^{\text {b }}$		4a(Cl)	30	95
$2^{\text {b,c }}$			60	93
3	Acetophenone		60	>99
4		4b(Cl)	60	98
5		5a(Cl)	60	43
6	4'-Methoxiacetophenone	4a(Cl)	80	96
7	4'-Chloroacetophenone			>99
8	2'-Bromoacetophenone			99
9	2'-Fluoroacetophenone			82
10	α-Tetralone			89

${ }^{a}$ Reaction conditions, unless otherwise noted: 1 bar of H_{2}, 2methyltetrahydrofuran, $\mathrm{S} / \mathrm{C} / \mathrm{B}=100 / 1 / 15$, base: $\mathrm{KO}^{t} \mathrm{Bu}, 16 \mathrm{~h}$. $[\mathrm{S}]=0.13 \mathrm{M}$. Conversion was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{b} 4$ bar of $\mathrm{H}_{2} \cdot{ }^{c} \mathrm{~S} / \mathrm{C} / \mathrm{B}=250 / 1 / 15$.

Experimental

General procedures

All reactions and manipulations were performed under nitrogen or argon, either in a Braun Labmaster 100 glovebox or using standard Schlenk-type techniques. All solvents were distilled under nitrogen with the following desiccants: sodium-benzophenone-ketyl for diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) and tetrahydrofuran (THF); sodium for hexane, pentane and toluene; CaH_{2} for dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$; and NaOMe for methanol (MeOH). 1-(3,5-dimethylphenyl)-1H-imidazole and 1-(2,4,6-trimethylphenyl)-1Himidazole were prepared as previously described. ${ }^{19} \operatorname{Ir}(\mathrm{acac})(\operatorname{cod})^{20}$ and $\mathrm{NaBAr}_{\mathrm{F}}{ }^{21}$ were synthesized according to literature procedures. All other reagents were purchased from commercial suppliers and
used as received. NMR spectra were obtained on Bruker DPX-300, DRX-400, AVANCEIII/ASCEND 400R or DRX-500 spectrometers. ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR shifts were referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, while ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ shifts were referenced to the residual signals of deuterated solvents. All data are reported in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$. All NMR measurements were carried out at $25^{\circ} \mathrm{C}$, unless otherwise stated. NMR signal assignations were confirmed by 2 D NMR spectroscopy $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.$ COSY, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HSQC}$ and ${ }^{1} \mathrm{H}$ ${ }^{13} \mathrm{C}$ HMBC). HRMS data were obtained on a JEOL JMS-SX 102A mass spectrometer at the Instrumental Services of Universidad de Sevilla (CITIUS). ESI-MS experiments were carried out in a Bruker 6000 apparatus by the Mass Spectrometry Service of the Instituto de Investigaciones Químicas. Elemental analyses were run by the Analytical Service of the Instituto de Investigaciones Químicas in a Leco TrueSpec CHN elemental analyzer. IR spectra were acquired on a Bruker Tensor 27 instrument.

Synthesis of imidazolium salts 1

Imidazolium salts 1 were synthesised in two steps from the corresponding 2,6-bis(halomethyl)pyridines and imidazoles as shown below.

[2-(Diphenylphosphinyl)methyl-6-(3-mesitylimidazolium-1yl)methyl]pyridine chloride, 1a(Cl)

A solution of 2,6-bis(chloromethyl)pyridine ($4.00 \mathrm{~g}, 22.7 \mathrm{mmol}$) and 1-mesityl- 1 H -imidazole ($2.12 \mathrm{~g}, 11.4 \mathrm{mmol}$) in toluene (80 mL) was refluxed for 7 days. The precipitate was filtered, washed with cold THF ($2 \times 20 \mathrm{~mL}$) and pentane ($3 \times 20 \mathrm{~mL}$), and dried under vacuum to yield [2-chloromethyl-6-(3-mesitylimidazolium-1yl)methyl]pyridine chloride as a brown solid ($2.91 \mathrm{~g}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Imid$), 8.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Imid), $8.06\left(\mathrm{~d},{ }^{3} \mathrm{JHH}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.84\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $7.48\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Imid$), 6.99(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Mes), $6.24(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.0$ (C_{q} arom), 151.9 (C_{q} arom), 141.5 (C_{q} arom), 140.8 (CH arom), 138.9 (CH arom), 134.3 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 130.8 (C_{q} arom), 130.0 (2 CH arom), 125.1 (CH arom), 124.1 (CH arom), $124.0\left(\mathrm{CH}\right.$ arom), 122.8 (CH arom), $52.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 45.1$ $\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 21.2\left(\mathrm{CH}_{3}\right), 17.7\left(2 \mathrm{CH}_{3}\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z} 326.1411$ $\left[(M-\mathrm{Cl})^{+}\right]$(exact mass calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{3}$: 326.1424).

In subsequent step, to a solution of $\mathrm{PPh}_{2} \mathrm{H}(1.08 \mathrm{~g}, 5.80 \mathrm{mmol})$ in THF (10 mL) was added a solution of $\mathrm{KO}^{{ }^{t} \mathrm{Bu}}(0.650 \mathrm{~g}, 5.80 \mathrm{mmol})$ in THF (10 mL). The resulting mixture was stirred for 5 min , and added to a solution of [2-chloromethyl-6-(3-mesitylimidazolium-1$\mathrm{yl})$ methyl]pyridine chloride ($2.00 \mathrm{~g}, 5.52 \mathrm{mmol}$) in $\mathrm{MeCN}(40 \mathrm{~mL})$. The suspension was stirred overnight, and $\mathrm{MeOH}(15 \mathrm{~mL}$) was added to quench the reaction. Solvent was evaporated, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The solid obtained after removal of the solvent was washed with diethyl ether (3×20 mL) and pentane ($3 \times 20 \mathrm{~mL}$). Imidazolium salt 1a(Cl) was isolated as a light brown solid ($2.40 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.30$ (s, $1 \mathrm{H}, \mathrm{H}$ arom Imid), $7.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom $\operatorname{Imid}), 7.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}$ arom Py), $7.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py),
$7.36(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}$ arom PPh), $7.28(\mathrm{~m}, 6 \mathrm{H}, 6 \mathrm{H}$ arom PPh$), 7.12(\mathrm{~s}, 1 \mathrm{H}$, H arom Imid), $7.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.01(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Mes), $5.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $\left.2.01\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-11.7 .{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 158.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom), $152.7\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), 141.4 (C_{q} arom), 138.7 (d, $\mathrm{J}_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{CH}$ arom), 138.5 (d, $J_{\mathrm{CP}}=$ $15 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 137.9 (CH arom), 134.7 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 133.0 (d, J_{CP} $=19 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 131.2 (C_{q} arom), 129.9 (2 CH arom), 129.0 (2 CH arom), 128.7 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=7 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), $124.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=5 \mathrm{~Hz}, \mathrm{CH}\right.$ arom), 123.9 (CH arom), 122.7 (CH arom), 121.3 (d, $\mathrm{J}_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), $53.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 38.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=17 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 21.1\left(\mathrm{CH}_{3}\right), 17.7(2$ CH_{3}). HRMS (ESI): $m / z 476.2243\left[(\mathrm{M}-\mathrm{Cl})^{+}\right]$(exact mass calculated for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{P}: 476.2256$).

[2-(Diphenylphosphinyl)methyl-6-(3-(3,5-xylyl)imidazolium-1yl)methyl]pyridine chloride, $\mathbf{1 b}(\mathrm{Cl})$

A solution of 2,6-bis(chloromethyl)pyridine ($3.96 \mathrm{~g}, 22.5 \mathrm{mmol}$) and 1-xylyl-1 H-imidazole ($1.93 \mathrm{~g}, 11.2 \mathrm{mmol}$) in THF (20 mL) was heated to $45^{\circ} \mathrm{C}$ for 7 days. The solution was reduced to half the initial volume by solvent evaporation, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to precipitate the product. The solid was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$ (2 $\times 10 \mathrm{~mL}$) and pentane ($3 \times 5 \mathrm{~mL}$) and dried under vacuum. [2-Chloromethyl-6-(3-(3,5-xyly)imidazolium-1-yl)methyl]pyridine chloride was isolated as a white solid ($2.21 \mathrm{~g}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Imid$), 8.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H arom Py), $8.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Imid$), 7.89\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py$), 7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$ arom $\mathrm{Py}+\mathrm{H}$ arom Imid$), 7.23$ (s, $2 \mathrm{H}, 2 \mathrm{H}$ arom Xyl), $7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Xyl$), 6.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 2.36\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 156.1$ (C_{q} arom), 151.7 (C_{q} arom), 140.9 (CH arom), 140.5 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 136.4 (CH arom), 134.3 (CH arom), 132.1 (CH arom), 125.2 (CH arom), 124.1 (C_{q} arom), 123.8 (CH arom), 120.31 (CH arom), $119.58\left(2 \mathrm{CH}\right.$ arom), $52.7\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $45.4\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$, $21.4\left(2 \mathrm{CH}_{3}\right)$. HRMS (ESI): $m / z 312.1256\left[(M-\mathrm{Cl})^{+}\right]$(exact mass calculated for $\left.\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{3}: 312.1268\right)$.

In a subsequent step, to a solution of $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{BH}_{3}\right) \mathrm{H}(0.288 \mathrm{~g}, 1.44$ $\mathrm{mmol})$ in THF (10 mL) was added a solution of $\mathrm{KO}^{t} \mathrm{Bu}(0.161 \mathrm{~g}, 1.44$ $\mathrm{mmol})$ in THF (5 mL). The mixture was stirred for 10 min , and added to a suspension of [2-chloromethyl-6-(3-(3,5-xylyl)imidazolium-1$\mathrm{yl})$ methyl]pyridine chloride ($0.500 \mathrm{~g}, 1.44 \mathrm{mmol}$) in $\mathrm{MeCN}(10 \mathrm{~mL})$. The resulting suspension was stirred overnight, and $\mathrm{MeOH}(10 \mathrm{~mL})$ was added to quench the reaction. The solvent was evaporated under vacuum, and the solid was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Solvent removal followed by washings with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ yields a light orange solid which should correspond to the borane adduct of $\mathbf{1 b}(\mathrm{Cl})$. This solid was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$, and the solution was transferred to a Fisher-Porter vessel and heated to $75^{\circ} \mathrm{C}$ for 24 h. Volatiles were removed under vacuum, and $\mathrm{MeOH}(10 \mathrm{~mL}$) was newly added and the previous procedure repeated. The resulting solid was washed with toluene $(2 \times 5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ to give an off-white solid ($0.444 \mathrm{~g}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ 11.28 (s, $1 \mathrm{H}, \mathrm{H}$ arom Imid), $7.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.64\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}}=7.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Imid$), 7.44(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}$ arom), $7.36(\mathrm{~m}, 7 \mathrm{H}, 7 \mathrm{H}$
arom), $7.29(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Xyl$), 7.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Xyl$), 7.12$ (d, ${ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $5.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right)$, $\left.2.45\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}\right): \delta-11.8 .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 159.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom), $152.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), 141.0 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 138.5 (d, $\mathrm{J}_{\mathrm{CP}}=15 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 138.0 (CH arom), 136.6 (CH arom), 134.9 (C_{q} arom), 133.0 (d, J $\mathrm{J}_{\mathrm{CP}}=19 \mathrm{~Hz}, 4$ CH arom), 131.9 (CH arom), 129.1 (2 CH arom), 128.7 (d, $\mathrm{J}_{\mathrm{CP}}=7 \mathrm{~Hz}$, 4 CH arom), 124.2 (d, $\mathrm{J}_{\mathrm{CP}}=5 \mathrm{~Hz}, \mathrm{CH}$ arom), 123.7 (CH arom), 121.8 (CH arom), 120.2 (CH arom), 119.7 (2 CH arom), $54.0\left(\mathrm{CH}_{2} \mathrm{~N}\right.$), 38.3 (d, $J_{C P}=16 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $21.3\left(2 \mathrm{CH}_{3}\right.$). HRMS (ESI): $\mathrm{m} / \mathrm{z} 462.2082$ $\left[(M-\mathrm{Cl})^{+}\right]$(exact mass calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{P}: 462.2094$).

[2-(Diphenylphosphinyl)methyl-6-(3-(3,5-xylyl)imidazolium-1y ()methyl]pyridine bromide, $\mathbf{1 b}(\mathrm{Br})$

A solution of 1-(3,5-xylyl)-1H-imidazole ($1.00 \mathrm{~g}, 5.81 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ was added to a solution of 2,6-bis(bromomethyl)pyridine $(3.08 \mathrm{~g}, 11.6 \mathrm{mmol})$ in THF (20 mL). The solution was stirred for 7 days at room temperature. The resulting precipitate was filtered, washed with cold THF ($2 \times 10 \mathrm{~mL}$) and hexane ($2 \times 10 \mathrm{~mL}$), and dried to give [2-bromomethyl-6-(3-(3,5-xylyl)imidazolium-1yl)methyl]pyridine bromide as a light brown solid ($2.00 \mathrm{~g}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Imid), $7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Imid), $7.80\left(\mathrm{~d},{ }^{3}\right)_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $7.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom 1 mid), $7.72\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.34(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Xyl), $7.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Xyl), $5.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 2.36$ $\left.\left(\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) \cdot{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 157.4\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), 152.9 (C_{q} arom), 141.0 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 138.9 (CH arom), 136.1 (CH arom), 134.7 (C_{q} arom), 132.0 (CH arom), 124.0 (CH arom), 123.9 (CH arom), 123.6 (CH arom), 120.7 (CH arom), 119.7 (2 CH arom), $53.9\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $34.0\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, $21.2\left(2 \mathrm{CH}_{3}\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z} 356.0751$ $\left[(M-\mathrm{Br})^{+}\right]$(exact mass calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrN}_{3}$: 356.0757).

In a subsequent step, to a solution of $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{BH}_{3}\right) \mathrm{H}(0.483 \mathrm{~g}, 2.42$ $\mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added a solution of $\mathrm{KO}^{t} \mathrm{Bu}(0.271 \mathrm{~g}, 2.42$ $\mathrm{mmol})$ in THF (10 mL). The resulting mixture was stirred for 10 min , and added to a solution of [2-bromomethyl-6-(3-(3,5-xylyl)imidazolium-1-yl)methyllpyridine bromide ($1.01 \mathrm{~g}, 2.39 \mathrm{mmol}$) in $\mathrm{MeCN}(20 \mathrm{~mL})$. The suspension was stirred overnight, and MeOH $(15 \mathrm{~mL})$ was added to quench the reaction. The solvent was evaporated under vacuum, and the resulting solid was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Solvent removal followed by washings with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ yields a light orange solid which should correspond to the borane adduct of $\mathbf{1 b}(\mathbf{B r})$. This solid was dissolved in MeOH $(10 \mathrm{~mL})$, and the solution was transferred to a Fisher-Porter vessel and heated to $75{ }^{\circ} \mathrm{C}$ for 24 h . Volatiles were removed under vacuum, and MeOH was newly added and the previous procedure was repeated. The resulting solid was washed with toluene (10 mL) and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ to give an off-white solid ($0.693 \mathrm{~g}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 10.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Imid), $7.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $7.61\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Imid), 7.56 $(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}$ arom $\mathrm{Py}+\mathrm{H}$ arom Imid$), 7.38(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}$ arom PPh$), 7.32$ (s, $2 \mathrm{H}, 2 \mathrm{H}$ arom Xyl), $7.29(\mathrm{~m}, 6 \mathrm{H}, 6 \mathrm{H}$ arom PPh), $7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Xyl), $7.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $5.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.37\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202 \mathrm{MHz}$,
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\left.\delta-11.7 .{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 159.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=8\right.$ $\mathrm{Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 152.3 (C_{q} arom), 141.0 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 138.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=15$ $\mathrm{Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 137.9 (CH arom), 135.9 (CH arom), 134.8 (C_{q} arom), 132.9 (d, $\mathrm{J}_{\mathrm{CP}}=19 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 131.9 (CH arom), 129.1 (2 CH arom), 128.7 (d, $J_{C P}=7 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 124.2 (d, $J_{\mathrm{CP}}=5 \mathrm{~Hz}, \mathrm{CH}$ arom), 123.9 (CH arom), 121.6 (CH arom), 120.3 (CH arom), 119.7 (2 CH arom), $54.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 38.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=16 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $21.3\left(2 \mathrm{CH}_{3}\right)$. HRMS (ESI): $m / z 462.2089\left[(M-B r)^{+}\right]$(exact mass calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{P}: 462.2099$).

Synthesis of Pd-CNP complexes 2a and 3a

Complex 2a. A solution of $\mathbf{1 a}(\mathbf{C l})(0.100 \mathrm{~g}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7 \mathrm{~mL})$ was added $\mathrm{Ag}_{2} \mathrm{O}(0.049 \mathrm{~g}, 0.21 \mathrm{mmol})$. The suspension was stirred for 24 h , and filtered. To the resulting solution was added $\mathrm{PdCl}_{2}(\mathrm{cod})(0.057 \mathrm{~g}, 0.20 \mathrm{mmol})$. After stirring for 4 h , solvent was removed under vacuum, and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times$ 5 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$, and crystallized from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene solvent mixture. Pale yellow solid ($0.096 \mathrm{~g}, 60 \%$). Anal. calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{AgCl}_{3} \mathrm{~N}_{3} \mathrm{PPd}$: $\mathrm{C} 46.8 ; \mathrm{H} 3.8 ; \mathrm{N} 5.3$; found: C 47.2; H 3.7; N 4.8. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom NHC$), 8.05\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $7.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.73\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=12.1 \mathrm{~Hz},{ }^{3}{ }_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{H}\right.$ arom PPh$), 7.58\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh$), 7.50\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}\right.$ arom $\left.\mathrm{PPh}_{2}\right), 7.03(\mathrm{~s}$, $2 \mathrm{H}, 2 \mathrm{H}$ arom Mes), 6.95 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}$ arom NHC), 6.05 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $4.32\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=11.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17(\mathrm{~s}, 6 \mathrm{H}, 2$ CH_{3}). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\left.\delta 34.8 .{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\} \mathrm{NMR} \mathrm{(126}$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 166.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=183 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{NHC}\right), 161.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=7 \mathrm{~Hz}\right.$, C_{q} arom), 155.1 (C_{q} arom), 142.1 (CH arom), 139.6 (C_{q} arom), 135.8 (C_{q} arom), 135.5 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 133.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=11 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 132.7 (2 CH arom), 129.7 (d, $J_{\mathrm{CP}}=12 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 129.0 (2 CH arom), 126.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=46 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 126.4 (CH arom), 125.4 (d, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, \mathrm{CH}$ arom), $124.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5 \mathrm{~Hz}, \mathrm{CH}\right.$ arom), $123.4\left(\mathrm{~d}, J_{\mathrm{CP}}=5\right.$ Hz, CH arom), $55.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 41.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=28 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 21.3\left(\mathrm{CH}_{3}\right)$, $18.6\left(2 \mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}_{\mathrm{CH}} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{m} / \mathrm{z}(\%): 616(100)\left[\left(\mathrm{M}-\mathrm{AgCl}_{2}\right)^{+}\right]$.

Complex 3a. To a suspension of $\mathbf{2 a}(0.025 \mathrm{~g}, 0.04 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added KHMDS ($0.007 \mathrm{~g}, 0.04 \mathrm{mmol})$. The mixture was stirred for 30 min , and solvent was evaporated under reduced pressure. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ and extracted with THF ($2 \times 2 \mathrm{~mL}$). Solvent removal under vacuum provides complex 3 a as an orange solid ($0.020 \mathrm{~g}, 85 \%$). An analytical pure sample of 3 a could not be obtained due to significant decomposition of the complex during purification.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta 7.71\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}\right.$ arom $\left.\mathrm{PPh}_{2}\right), 7.44(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}$ arom NHC), $7.22\left(\mathrm{~m}, 6 \mathrm{H}, 6 \mathrm{H}\right.$ arom $\left.\mathrm{PPh}_{2}\right), 6.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom $\mathrm{NHC}), 6.87\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}\right.$ arom Mes), 6.46 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.4$ $\left.\mathrm{Hz},{ }^{5}{ }_{\mathrm{HPP}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 6.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 5.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right), 4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right), 2.30(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.08\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right): \delta 25.3$.
${ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta 175.1$ (d, $\left.\mathrm{J}_{\mathrm{CP}}=166 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{NHC}\right)$, 174.8 (d, $J_{C P}=26 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 150.0 (C_{q} arom), 138.7 (C_{q} arom), 137.9 (C_{q} arom), 137.4 (d, $\mathrm{J}_{\mathrm{CP}}=8 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 136.2 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 133.3 (d, $J_{C P}=11 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), $132.7\left(\mathrm{C}^{\mathrm{c}}\right), 129.6$ (2 CH arom), 129.0 (2 CH arom), 128.2 (d, $\mathrm{J}_{\mathrm{CP}}=11 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 123.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=5$ Hz, CH arom), 121.2 (d, $\mathrm{J}_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{CH}$ arom), $117.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=21 \mathrm{~Hz}\right.$, $\left.C^{b}\right), 102.9\left(C^{d}\right), 63.3\left(d, J_{C P}=66 \mathrm{~Hz}, C^{a}\right), 56.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 21.2\left(\mathrm{CH}_{3}\right), 18.6$ (2 CH_{3}).

Synthesis of Ir-CNP complexes 4-9

Complex $4 \mathrm{a}(\mathrm{Cl})$. A solution of $\mathbf{1 a}(\mathrm{Cl})(0.769 \mathrm{~g}, 1.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added to a solution of $\operatorname{Ir}(\mathrm{acac})(\mathrm{cod})(0.600 \mathrm{~g}, 1.50$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The resulting solution was stirred overnight. Solvent was evaporated, and the solid was recrystallized from cold THF. The obtained solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and pentane ($2 \times 10 \mathrm{~mL}$). Yellow solid ($0.682 \mathrm{~g}, 56 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom NHC$), 8.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.88\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), 7.79 $\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=8.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}\right.$ arom PPh), $7.62(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}$ arom), $7.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.12\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{NCHH}), 7.08\left(\mathrm{t},{ }^{3}{ }_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom $), 6.89(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}$ arom), $6.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom), $6.65(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{H}$ arom NHC$), 5.87$ (dd, ${ }^{3} J_{\mathrm{HP}}=8.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh), $5.56\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=14.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{NCHH}), 3.97\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=14.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCHH}\right), 3.45$ $(\mathrm{m}, 3 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}+\mathrm{PCHH}), 2.93(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}), 2.31(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.05 (br, $4 \mathrm{H}, 4 \mathrm{CHH} \mathrm{COD}$), $1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.71(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{CHH}$ COD), 1.28 (br, $2 \mathrm{H}, 2 \mathrm{CHH} \mathrm{COD}$), $0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162$ $\left.\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 16.9 .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 164.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}\right.$ $=8 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{NHC}), 160.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom), $158.5\left(\mathrm{~d}, J_{\mathrm{CP}}=6 \mathrm{~Hz}\right.$, C_{q} arom), 139.5 (CH arom $+\mathrm{C}_{\mathrm{q}}$ arom), 137.7 (C_{q} arom), 136.8 (d, J_{CP} $=18 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 135.9 (C_{q} arom), 135.3 (C_{q} arom), 134.0 (CH arom), 133.8 (CH arom), 131.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), 130.3 (d, J_{CP} $=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 130.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), 130.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=39$ $\mathrm{Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 129.3 (d, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 129.2 (d, $J_{\mathrm{CP}}=8 \mathrm{~Hz}, 2$ CH arom), 128.8 (d, $J_{C P}=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 125.0 (d, $J_{\mathrm{CP}}=5 \mathrm{~Hz}, \mathrm{CH}$ arom), 124.7 (CH arom), 124.3 (CH arom), 123.6 (d, $J_{C P}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), 63.5 (br, $4 \mathrm{CH}=\mathrm{COD}$), $59.5\left(\mathrm{NCH}_{2}\right), 44.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=29 \mathrm{~Hz}, \mathrm{PCH}_{2}\right)$, 37.7 (d, $J_{\mathrm{CP}}=6 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{COD}$), 28.8 (br, $2 \mathrm{CH}_{2} \mathrm{COD}$), $21.0\left(\mathrm{CH}_{3}\right), 18.0$ $\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): m / z(\%): 776$ (100) $\left[(M-\mathrm{Cl})^{+}\right]$ (fragmentation of ion m / z 776: 666 (100) $\left.\left[\left(M-H C l-\mathrm{C}_{8} \mathrm{H}_{12}\right)^{+}\right]\right)$. HRMS (ESI): $m / z 776.2740\left[(M-C I)^{+}\right]$(exact mass calculated for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{IrP}$: 776.2746).

Complex $4 \mathrm{~b}(\mathrm{Cl})$. To a solution of $\operatorname{Ir}(\mathrm{acac})(\mathrm{cod})(0.269 \mathrm{~g}, 0.67$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathbf{1 b}(\mathbf{C l})(0.335 \mathrm{~g}, 0.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, and the reaction mixture was stirred for 4 h . After solvent evaporation, the solid was extracted with $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. The solvent was removed in vacuo, and the resulting solid was washed with toluene ($3 \times 3 \mathrm{~mL}$) and $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and dried. Orangeyellow solid ($0.412 \mathrm{~g}, 77 \%$). Anal. calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{Cllr} \mathrm{N}_{3} \mathrm{P} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C 53.1, H 4.8, N 4.8; found: C 53.4, H 5.0, N $4.75 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom NHC$), 8.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $7.90\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), 7.83 (ddd, ${ }^{3} J_{\mathrm{HP}}=10.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh), $7.63\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}\right.$ arom PPh), $7.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$
arom Py), $7.20\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right), 7.05\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right.$, ${ }^{5} \mathrm{~J}_{\mathrm{HP}}=1.2,1 \mathrm{H}, \mathrm{H}$ arom PPh $), 6.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom NHC), $6.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom Xyl), $6.76(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh), $6.53(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Xyl), $5.59\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right), 5.43\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right.$, ${ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh), $4.19\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.6 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=11.6\right.$, $1 \mathrm{H}, \mathrm{PCHH}), 3.46(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}), 3.35\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=\right.$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCHH}$), 2.96 (br, $2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}$), $2.32(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{CHH}$ COD), $2.12\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.94(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CHH} \mathrm{COD}), 1.39(\mathrm{~m}, 2 \mathrm{H}, 2$ CHH COD). $\left.{ }^{31} \mathrm{P}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 19.9 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 164.5$ ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{NHC}$), 160.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=4.0$ $\mathrm{Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 159.0 (d, $\mathrm{J}_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 139.5 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 139.2 (C_{q} arom), 138.4 (CH arom), 135.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=25 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 134.4 (d , $J_{\mathrm{CP}}=13 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 131.8 (d, $J_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), 129.6 (CH arom), 129.4 ($\mathrm{m}, 3 \mathrm{CH}$ arom), 129.2 (d, $\mathrm{J}_{\mathrm{CP}}=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 129.0 (d, $J_{\mathrm{CP}}=8 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 128.5 (d, $J_{\mathrm{CP}}=47 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 124.6 (d, $J_{C P}=4 \mathrm{~Hz}, \mathrm{CH}$ arom), 124.1 (CH arom), 123.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=2 \mathrm{~Hz}$, CH arom), 122.1 (2 CH arom), 121.8 (CH arom), 66.1 (br, $4 \mathrm{CH}=$ COD), $59.1\left(\mathrm{NCH}_{2}\right), 44.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=27 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 38.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=6 \mathrm{~Hz}, 2\right.$ $\left.\mathrm{CH}_{2} \mathrm{COD}\right), 28.3\left(2 \mathrm{CH}_{2} \mathrm{COD}\right)$, $21.3\left(2 \mathrm{CH}_{3}\right)$.

Complex $\mathbf{4 b}(\mathrm{Br})$. A solution of $\operatorname{Ir}(\mathrm{acac})(\mathrm{cod})(0.368 \mathrm{~g}, 0.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $\mathbf{1 b}(\mathbf{B r})(0.500 \mathrm{~g}, 0.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was stirred overnight. Solvent was evaporated, and the residue was extracted with $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. The solution was brought to dryness, and the resulting solid was washed with toluene (7 mL) and $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ and dried. Pale orange solid ($0.238 \mathrm{~g}, 31 \%$). Anal. calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{40}$ Brirn $\mathrm{N}_{3} \mathrm{P}: \mathrm{C} 54.2, \mathrm{H} 4.8, \mathrm{~N}$ 5.00; found: C 54.4, $\mathrm{H} 5.05, \mathrm{~N} 4.7$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.28$ ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $8.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom NHC), $7.92\left(\mathrm{dd}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.83(\mathrm{dd}$, ${ }^{3} J_{\mathrm{HP}}=8.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh$), 7.64(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}$ arom PPh), $7.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.09\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H arom PPh), $6.91\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right), 6.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=1.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}$ arom NHC$), 6.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Xyl), $6.79\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6\right.$ $\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh), $6.53(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Xyl), 5.65 (d, $\left.{ }^{2} J_{\mathrm{HH}}=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right), 5.45\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz},{ }^{3}{ }_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 2 \mathrm{H}$ arom PPh), 4.17 (dd, ${ }^{2} J_{\mathrm{HH}}=15.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PCHH}), 3.49(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}), 3.36\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.7 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=2.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PCHH}$), 2.98 (br, $2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}$), 2.35 (br, $4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{COD}$), 2.14 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}$), 1.92 (br, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COD}$), 1.42 ($\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COD}$). $\left.{ }^{31} \mathrm{P}^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 20.0 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 164.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{NHC}\right), 160.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom), 158.8 ($d, J_{C P}=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 139.6 (CH arom), 139.2 (C_{q} arom), 138.5 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 135.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=25 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 134.5 (d , $J_{\mathrm{CP}}=13 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 131.9 (CH arom), 129.8 (CH arom), 129.7 (CH arom), 129.5 (d, $J_{\mathrm{CP}}=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 129.3 (d, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, 2$ CH arom), 129.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=8 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 128.6 (d, $\mathrm{J}_{\mathrm{CP}}=43 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 124.7 (d, $J_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{CH}$ arom), 123.8 (CH arom), 123.4 (CH arom), 122.3 (2 CH arom), 122.2 (CH arom), 66.0 (br, $4 \mathrm{CH}=\mathrm{COD}$), $59.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 44.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=28 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 38.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=6 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right.$ COD), $28.4\left(2 \mathrm{CH}_{2} \mathrm{COD}\right), 21.4\left(2 \mathrm{CH}_{3}\right)$. MS (ESI, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{m} / \mathrm{z}(\%): 762$ (100) $\left[(\mathrm{M}-\mathrm{Br})^{+}\right]$(fragmentation of ion m / z 762: 654 (100) $[(\mathrm{M}-\mathrm{Br}-$ $\left.\mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right]$).

Complex $\mathbf{4 b}\left(\mathrm{BAr}_{\mathrm{F}}\right)$. A solution of $\mathbf{4 b}(\mathrm{Br})(0.100 \mathrm{~g}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to a solution of $\operatorname{NaBAr}_{\mathrm{F}}(0.105 \mathrm{~g}, 0.12$
mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL). The resulting suspension was stirred for 4 h . The precipitate was filtered off, and the solvent was removed under vacuum to yield the complex as an orange solid ($0.164 \mathrm{~g}, 85 \%$). Crystals of complex $\mathbf{4 b}\left(\mathbf{B A r}_{\mathbf{F}}\right)$ suitable for X-ray diffraction analysis were grown by layering pentane over a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Anal. calcd (\%) for $\mathrm{C}_{70} \mathrm{H}_{52} \mathrm{BF}_{24} \mathrm{IrN}_{3} \mathrm{P}$: C 51.7, H 3.2, N 2.6; found: C 51.6, H 3.25, N 2.5. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.86\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $7.81\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}\right.$ arom PPh), $7.76\left(\mathrm{~s}, 8 \mathrm{H}, 8 \mathrm{H}\right.$ arom $\mathrm{BAr}_{\mathrm{F}}$), $7.66(\mathrm{~m}, 4 \mathrm{H}, 3 \mathrm{H}$ arom $\mathrm{PPh}+$ H arom Py), $7.58\left(\mathrm{~s}, 4 \mathrm{H}, 4 \mathrm{H}\right.$ arom $\left.\mathrm{BAr}_{\mathrm{F}}\right), 7.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom NHC$), 7.11\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}$ arom PPh), 6.95 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom NHC), 6.93 $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Xyl), $6.82\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{H}}=8.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HP}}=1.9\right.$ $\mathrm{Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh), 6.49 ($\mathrm{s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Xyl), 5.86 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHH}), 5.48\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}\right.$ arom PPh), $5.44\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right), 4.16\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}\right.$ $=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCHH}$), 3.55 (br, $2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}$), 3.39 (dd, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.6$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{PH}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCHH}\right), 3.02(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}), 2.39(\mathrm{~m}, 4 \mathrm{H}, 4$ CHH COD), 2.16 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}$), 1.95 (m, 2H, 2 CHH COD), 1.49 (m, $2 \mathrm{H}, 2 \mathrm{CHH}$ COD). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 20.3 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 166.1$ (d, J $\mathrm{J}_{\mathrm{CP}}=8 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{NHC}$), 162.2 (q , $J_{C B}=50 \mathrm{~Hz}, 4 \mathrm{BC}_{\mathrm{q}}$ arom $\mathrm{BAr}_{\mathrm{F}}$), $161.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom), 157.5 (d, $J_{C P}=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 139.7 (CH arom), 139.0 (d, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 139.0 ($2 \mathrm{C}_{\mathrm{q}}$ arom), $135.3\left(\mathrm{~m}, 8 \mathrm{CH}\right.$ arom $\left.\mathrm{BAr}_{\mathrm{F}}\right), 135.1$ (overlapped, C_{q} arom), 134.5 (d, $J_{\mathrm{CP}}=14 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 132.2 (d, $J_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), 130.5 (CH arom), 130.1 (d, $J_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), 129.7 (d, $J_{C P}=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 129.5 (d, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 129.3 ($d, J_{C P}=8 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 129.3 (q, $J_{C F}=32 \mathrm{~Hz}, 8 \mathrm{C}_{\mathrm{q}}$ arom $\mathrm{BAr}_{\mathrm{F}}$), 128.2 (d, $J_{\mathrm{CP}}=38 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 125.3 (d, J $\mathrm{J}_{\mathrm{CP}}=5 \mathrm{~Hz}, \mathrm{CH}$ arom), 124.8 ($q, J_{\text {CF }}=272 \mathrm{~Hz}, 8 \mathrm{CF}_{3}$), 123.4 (CH arom), $122.6(2 \mathrm{CH}$ arom), 122.2 (CH arom), 122.0 (CH arom), 117.9 ($\mathrm{m}, 4 \mathrm{CH}$ arom $\mathrm{BAr}_{\mathrm{F}}$), 66.2 (br, $\left.4 \mathrm{CH}=\mathrm{COD}\right), 60.7\left(\mathrm{NCH}_{2}\right), 44.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=28 \mathrm{~Hz}, \mathrm{PCH}_{2}\right)$, 38.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=6 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{COD}$), $28.6\left(2 \mathrm{CH}_{2} \mathrm{COD}\right)$, $21.4\left(2 \mathrm{CH}_{3}\right) . \mathrm{MS}$ (ESI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\mathrm{m} / \mathrm{z}(\%)$: 762 (100) [($\left.\left.M-\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right)^{+}\right]$(fragmentation of ion $m / z 762$: 654 (100) $\left.\left[\left(M-\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}-\mathrm{C}_{8} \mathrm{H}_{12}\right)^{+}\right]\right)$.

Complex $5 \mathbf{5 a}(\mathbf{C l})$. A solution of $\mathbf{4 a}(\mathbf{C l})(0.080 \mathrm{~g}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was bubbled with CO for 5 min , and the solvent was evaporated. The resulting solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and pentane ($2 \times 10 \mathrm{~mL}$), and crystallized from THF. Orange solid ($0.048 \mathrm{~g}, 70 \%$). Anal. calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{ClIrN}_{3} \mathrm{OP}: \mathrm{C} 52.6, \mathrm{H} 4.1, \mathrm{~N}$ 5.75; found: C 52.2, H 4.6, N 5.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1985 \mathrm{~cm}^{-1}\left(v_{\mathrm{co}}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom NHC$), 8.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), 7.97 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), 7.77 (d, ${ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), 7.61 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HP}}=$ $11.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=0.6 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{H}$ arom PPh), $7.46(\mathrm{~m}, 6 \mathrm{H}$, 6 H arom PPh), $7.02(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}$ arom Mes +H arom NHC), 6.11 (s , $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $4.18\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12$ (s, 6H, $2 \mathrm{CH}_{3}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 45.7 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 178.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=99 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{NHC}\right), 177.2\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $10 \mathrm{~Hz}, \mathrm{CO}$), 164.7 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 156.5 (C_{q} arom), 141.4 (CH arom), 140.1 (C_{q} arom), 136.3 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 135.7 (C_{q} arom), 133.2 (d, $J_{\mathrm{CP}}=12 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 131.9 (d, $J_{\mathrm{CP}}=2 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 130.3 (d, $J_{\mathrm{CP}}=53 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 129.4 (d, $J_{\mathrm{CP}}=11 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 129.2 (2 CH arom), 125.4 (CH arom), 124.4 (d, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, \mathrm{CH}$ arom), 123.6
(d, $J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{CH}$ arom), $122.0\left(\mathrm{~d}, J_{\mathrm{CP}}=3 \mathrm{~Hz}, \mathrm{CH}\right.$ arom), $54.6\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $42.7\left(\mathrm{~d}, J_{\mathrm{CP}}=31 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 21.2\left(\mathrm{CH}_{3}\right), 18.5\left(2 \mathrm{CH}_{3}\right)$.

Complex $\mathbf{6 a}(\mathbf{C l})$. In a J. Young valved NMR tube, a solution of $\mathbf{5 a}(\mathbf{C l})(0.011 \mathrm{~g}, 0.01 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was pressurised with 1 bar of CO. The solution was analyzed by NMR spectroscopy. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1946,2021 \mathrm{~cm}^{-1}\left(v_{\mathrm{CO}}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.57$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom NHC$), 8.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), 7.98 (dd, ${ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), 7.74 (d, ${ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $7.47(\mathrm{~m}, 10 \mathrm{H}, 10 \mathrm{H}$ arom PPh), 7.01 (d, ${ }^{3} J_{\mathrm{HH}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom NHC), $6.98(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Mes), 6.09 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $4.29\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=10.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right.$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03$ (s, 6H, $2 \mathrm{CH}_{3}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 26.8 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 177.4(\mathrm{CO}), 161.5\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), 161.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=94$ $\mathrm{Hz}, \mathrm{C}-2 \mathrm{NHC}$), 155.1 (C_{q} arom), 140.5 (CH arom), 140.2 (C_{q} arom), 136.1 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 135.7 (C_{q} arom), 132.5 (d, $J_{\mathrm{CP}}=12 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 131.1 (2 CH arom), 129.5 (d, $J_{\mathrm{CP}}=11 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 129.4 (d, $J_{\mathrm{CP}}=55 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 129.4 (2 CH arom), 125.2 (CH arom), $124.4\left(\mathrm{CH}\right.$ arom), 124.0 (d, $J_{\mathrm{CP}}=9 \mathrm{~Hz}, \mathrm{CH}$ arom), 122.8 (CH arom), $56.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 44.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=37 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 21.2\left(\mathrm{CH}_{3}\right), 18.1\left(2 \mathrm{CH}_{3}\right)$.

Complex $\mathbf{7 a}(\mathbf{C l})$. In a Fisher-Porter vessel, a solution of $\mathbf{4 a}(\mathbf{C l})$ ($0.120 \mathrm{~g}, 0.15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was pressurised with 2 bar of H_{2} and stirred overnight. The system was depressurised, solvent was evaporated and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and pentane ($2 \times 10 \mathrm{~mL}$). Yellow solid ($0.083 \mathrm{~g}, 80 \%$). Crystals of complex $\mathbf{7 a}(\mathbf{C l})$ suitable for X -ray diffraction analysis were grown by layering hexane over a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Anal. calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{ClIrN}_{3} \mathrm{P}: \mathrm{C} 52.8, \mathrm{H} 4.6, \mathrm{~N} 5.9$; found: C 52.9, H 4.7, N 5.4. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.79\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.73\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=10.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}\right.$ arom PPh$)$, $7.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), 7.40 (m, 6H, 6 H arom), 7.33 (m, 4H, 4 H arom), 7.09 (s, 1H, H arom NHC), 7.02 (s, 1H, H arom Mes), 6.97 (s, $1 \mathrm{H}, \mathrm{H}$ arom Mes), $6.70\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right)$, $4.96\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right), 4.41\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=16.3 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=\right.$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCHH}), 3.38\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=16.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, PCHH), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right),-20.19$ (dd, ${ }^{2} J_{\mathrm{HP}}=13.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, IrH trans to Py), $-23.30\left(\mathrm{dd},{ }^{2} J_{\mathrm{HP}}\right.$ $=18.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, IrH cis to Py). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 26.8 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 172.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=119\right.$ $\mathrm{Hz}, \mathrm{C}-2 \mathrm{NHC}$), 164.8 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 156.1 (C_{q} arom), 138.6 (C_{q} arom), 138.2 (C_{q} arom), 136.9 (C_{q} arom), 136.5 (CH arom), 135.7 (d, $J_{C P}=50 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 135.4 (C C_{q} arom), 134.7 (d, $J_{\mathrm{CP}}=13 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 132.4 (d, $J_{C P}=11 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 130.5 (d, $J_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), 129.5 (CH arom), 129.2 (CH arom), 128.6 (CH arom), 128.3 (d, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 128.0 ($\mathrm{d}, J_{\mathrm{CP}}=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 122.7 (CH arom), 122.3 (d, J $J_{C P}=9 \mathrm{~Hz}, \mathrm{CH}$ arom), 121.2 (d, $J_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{CH}$ arom), $120.4\left(\mathrm{~d}, J_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{CH}\right.$ arom), $56.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 47.1\left(\mathrm{~d}, J_{\mathrm{CP}}=33\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 21.3\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$. Signals for one quaternary aromatic carbon could not be identified.

Complex $\mathbf{7 b}(\mathbf{C l})$. In a Fisher-Porter vessel, a solution of $\mathbf{4 b}(\mathbf{C l})$ ($0.100 \mathrm{~g}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was pressurised with 5 bar of H_{2} and heated to $50^{\circ} \mathrm{C}$. After 16 h , the system was cooled to room temperature and depressurised. The solvent was evaporated and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$ and pentane (3×3 mL). Pale yellow solid ($0.073 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ
$7.85\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}\right.$ arom PPh), $7.74\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H arom Py), $7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Py), $7.47(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}$ arom), 7.36 (m, $4 \mathrm{H}, 4 \mathrm{H}$ arom), 7.29 ($\mathrm{m}, 3 \mathrm{H}, 3 \mathrm{H}$ arom), $7.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom NHC$), 7.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$ arom), $7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ arom), $6.53\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right), 4.96\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, NCHH), $4.49\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=16.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHP}\right), 3.54$ (dd, $\left.{ }^{2} J_{\mathrm{HH}}=16.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{P}\right), 2.44\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right),-19.73$ (dd, ${ }^{2} J_{H P}=16.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{IrH}$ trans to Py), -23.24 (dd, ${ }^{2} J_{\mathrm{HP}}$ $=18.8 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{IrH}$ cis to Py). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 27.7 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 172.4$ (d, $\mathrm{J}_{\mathrm{CP}}=122$ $\mathrm{Hz}, \mathrm{C}-2 \mathrm{NHC}$), 164.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 155.8 (C_{q} arom), 141.9 (C_{q} arom), 138.5 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 136.8 (2 CH arom), 136.3 (d, $\mathrm{J}_{\mathrm{CP}}=52$ $\mathrm{Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 134.6 (d, $J_{\mathrm{CP}}=12 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 134.2 (d, $J_{\mathrm{CP}}=38 \mathrm{~Hz}$, C_{q} arom), 132.9 (d, $J_{C P}=11 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 130.7 (d, $J_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{CH}$ arom), 129.8 (d, $J_{C P}=1 \mathrm{~Hz}, \mathrm{CH}$ arom), 128.6 (d, $J_{\mathrm{CP}}=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 128.2 (d, $J_{C P}=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 125.7 (2 CH arom), 122.7 (CH arom), 122.6 (d, $J_{\mathrm{CP}}=9.0 \mathrm{~Hz}, \mathrm{CH}$ arom), 121.5 (d, $J_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{CH}$ arom), 121.4 ($d, J_{C P}=5 \mathrm{~Hz}, \mathrm{CH}$ arom), $57.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 46.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=32\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $21.6\left(2 \mathrm{CH}_{3}\right)$. HRMS (ESI): $m / z 656.1794$ [($\left.M-\mathrm{Cl}\right)^{+}$] (exact mass calculated for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3}$ IrP: 656.1801).

Complex 8b. In a J. Young valved NMR tube, a suspension of $\mathbf{4 b}(\mathrm{Br})(0.030 \mathrm{~g}, 0.036 \mathrm{mmol})$ in $\mathrm{THF}-d_{8}(0.7 \mathrm{~mL})$ was treated with $\mathrm{KO}^{t} \mathrm{Bu}(0.004 \mathrm{~g}, 0.039 \mathrm{mmol})$ forming a dark red solution. The solution was kept to $0{ }^{\circ} \mathrm{C}$ to avoid thermal decomposition of the product. Satisfactory elemental analysis could not be obtained due to the low thermal stability of the product.

${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- $\mathrm{d}_{8}, 273 \mathrm{~K}$): $\delta 7.98$ (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=$ $7.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh$), 7.50\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom NHC), $7.45(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}$ arom PPh$), 7.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}\right.$ arom NHC), $7.00(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom Xyl$), 6.92\left(\mathrm{td},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{5} J_{\mathrm{HP}}=\right.$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom PPh), $6.81\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HP}}=\right.$ $1.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh$), 6.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}\right.$ arom Xyl), $6.65\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{H}$ arom PPh), $6.39\left(\mathrm{ddd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz},{ }^{5} J_{\mathrm{HP}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 5.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right)$, $5.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right), 5.29\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right)$, $4.93\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHH}\right), 3.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right), 3.09(\mathrm{br}, 2 \mathrm{H}, 2$ $\mathrm{CH}=\mathrm{COD}$), 2.62 (br, $2 \mathrm{H}, 2 \mathrm{CH}=\mathrm{COD}$), $2.16\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.04(\mathrm{br}$, $4 \mathrm{H}, 4 \mathrm{CHH} \mathrm{COD}$), 1.89 (br, 2H, 2 CHH COD), 1.66 (br, 2H, 2 CHH COD). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, THF- $d_{8}, 273 \mathrm{~K}$): $\delta 17.7 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 273 \mathrm{~K}$): $\delta 170.6$ ($\mathrm{m}, \mathrm{C}-2 \mathrm{NHC}+\mathrm{C}_{\mathrm{q}}$ arom), 153.6 (d, $J_{C P}=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 148.8 (d, $J_{\mathrm{CP}}=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 140.8 (C_{q} arom), 138.5 (2 C C_{q} arom), 136.8 (d, $J_{\mathrm{CP}}=53 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom), 134.0 (d, $J_{\mathrm{CP}}=10$ $\mathrm{Hz}, 2 \mathrm{CH}$ arom), $131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2 \mathrm{~Hz}, \mathrm{C}^{\mathrm{C}}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=11 \mathrm{~Hz}, 2 \mathrm{CH}\right.$ arom), 129.2 (m, 2 CH arom), 128.4 (d, $J_{\mathrm{CP}}=8 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 128.3 ($\mathrm{d}, J_{\mathrm{CP}}=8 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 127.1 (CH arom), 122.6 (2 CH arom), $122.0\left(\mathrm{CH}\right.$ arom), 121.9 (CH arom), $114.2\left(\mathrm{~d}, J_{\mathrm{CP}}=14 \mathrm{~Hz}, \mathrm{C}^{\mathrm{b}}\right.$), 100.3 $\left(C^{d}\right), 76.5\left(d, J_{C P}=59 \mathrm{~Hz}, C^{\mathrm{a}}\right), 61.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.3\left(\mathrm{brd}, J_{\mathrm{CP}}=3 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right.$ COD), 30.7 (br, $2 \mathrm{CH}_{2} \mathrm{COD}$), $21.5\left(2 \mathrm{CH}_{3}\right)$. Signals for the four olefinic carbons could not be identified probably due to significant line
broadening. Cis coordination of the phosphine and NHC fragments of the CNP ligand is proposed on the basis of the following NOE contacts:

Complex 9b. In a J. Young valved NMR tube, a suspension of $\mathbf{4 b}(\mathrm{Br})(0.030 \mathrm{~g}, 0.036 \mathrm{mmol})$ in THF- $d_{8}(0.7 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{KO}^{t} \mathrm{Bu}(0.004 \mathrm{~g}, 0.039 \mathrm{mmol})$. The NMR tube was charged with 5 bar of H_{2} and kept to $0{ }^{\circ} \mathrm{C}$ to avoid thermal decomposition of the product. The resulting solution was analysed by NMR spectroscopy.

In a J. Young valved NMR tube, a suspension cooled to $-20^{\circ} \mathrm{C}$ of $\mathbf{7 b}(\mathrm{Cl})(0.012 \mathrm{~g}, 0.017 \mathrm{mmol})$ in THF- $d_{8}(0.7 \mathrm{~mL})$ was treated with $K^{\prime}{ }^{t} \mathrm{Bu}(0.002 \mathrm{~g}, 0.018 \mathrm{mmol})$. Immediately, the NMR tube was charged with 5 bar of H_{2} and kept to $0{ }^{\circ} \mathrm{C}$ to avoid thermal decomposition of the product. After 1 h , the resulting solution was analysed by NMR spectroscopy.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 7.78\left(\mathrm{dd},{ }^{3} J_{\mathrm{HP}}=8.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right.$, $4 \mathrm{H}, 4 \mathrm{H}$ arom PPh), $7.82\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}\right.$ arom), $7.50\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right.$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom Py), $7.35(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}$ arom), $7.24(\mathrm{~m}, 6 \mathrm{H}, 6$ H arom), 7.11 (m, 1H, H arom), 7.07 (s, 1H, H arom NHC), 6.94 (s, $1 \mathrm{H}, \mathrm{H}$ arom NHC), $5.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.98\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PH}}=10.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{PCH}_{2}\right), 2.38\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right),-9.98\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=18.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, IrH cis to Py), $-19.64\left(\mathrm{dt},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=14.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{IrH}\right.$ trans to Py). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 30.9 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , THF- d_{8}): $\delta 176.9\left(\mathrm{~d}, J_{\mathrm{CP}}=121 \mathrm{~Hz}, \mathrm{C}-2 \mathrm{NHC}\right), 164.7\left(\mathrm{~d}, J_{\mathrm{CP}}=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom), 155.9 (C_{q} arom), 143.0 (C_{q} arom), 139.1 (d, $J_{\mathrm{CP}}=42 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}$ arom), 137.2 ($2 \mathrm{C}_{\mathrm{q}}$ arom), 134.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=13 \mathrm{~Hz}, 4 \mathrm{CH}$ arom), 134.1 (CH arom), 129.4 (2 CH arom), 128.2 (CH arom), 127.8 (d, $J_{\mathrm{CP}}=10$ $\mathrm{Hz}, 4 \mathrm{CH}$ arom), 125.5 (2 CH arom), 121.3 (CH arom), 121.1 (d, J $\mathrm{J}_{\mathrm{CP}}=$ $9 \mathrm{~Hz}, \mathrm{CH}$ arom), 120.5 (CH arom), 120.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=4 \mathrm{~Hz}, \mathrm{CH}$ arom), $59.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=34 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 21.2\left(2 \mathrm{CH}_{3}\right)$.

Representative procedure for ketone hydrogenation

In a glovebox, a Fischer-Porter vessel was charged with a solution of complex $4 \mathrm{a}(\mathrm{Cl})(2.0 \mathrm{mg}, 2.5 \mu \mathrm{~mol}), \mathrm{KO}^{t} \mathrm{Bu}(2.7 \mathrm{mg}, 37$ $\mu \mathrm{mol})$ and acetophenone ($30 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) in 2methyltetrahydrofuran (2.0 mL). The reactor was purged three times with H_{2}, and finally pressurized to 1 bar and heated to $60^{\circ} \mathrm{C}$. After 16 h , the reactor was slowly cooled down to room temperature, the reaction solution was evaporated, and conversion was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using mesitylene as internal standard.

Acknowledgements

Financial support (FEDER contribution) from the Spanish MINECO (CTQ2013-45011-P, CTQ2016-80814-R and CTQ2014-

51912-REDC) is gratefully acknowledged. M.H.J. thanks SECITIDF for a postdoctoral fellowship.

Notes and references

1 a) J. I. van der Vlugt and J. N. H. Reek, Angew. Chem. Int. Ed., 2009, 48, 8832-8846; b) J. R. Khusnutdinova and D. Milstein, Angew. Chem. Int. Ed., 2015, 54, 12236-12273; c) D. Milstein, Phil. Trans. R. Soc. A, 2015, 373, 20140189.
2 a) R. E. Andrew and A. B. Chaplin, Inorg. Chem., 2015, 54, 312-322; b) R. E. Andrew, L. González-Sebastián and A. B. Chaplin, Dalton Trans., 2016, 45, 1299-1305.
3 a) M. Hernández-Juárez, M. Vaquero, E. Álvarez, V. Salazar and A. Suárez, Dalton Trans., 2013, 42, 351-354; b) M. Hernández-Juárez, J. López-Serrano, P. Lara, J. P. MoralesCerón, M. Vaquero, E. Álvarez, V. Salazar and A. Suárez, Chem. Eur. J., 2015, 21, 7540-7555.
4 a) G. A. Filonenko, E. Cosimi, L. Lefort, M. P. Conley, C. Copéret, M. Lutz, E. J. M. Hensen and E. A. Pidko, ACS Catal., 2014, 4, 2667-2671; b) G. A. Filonenko, D. Smykowski, B. M. Szyja, G. Li, J. Szczygiel, E. J. M. Hensen and E. A. Pidko, ACS Catal., 2015, 5, 1145-1154.
5 a) M. Asay and D. Morales-Morales, Dalton Trans., 2015, 44, 17432-17447; b) B. G. Anderson and J. L. Spencer, Chem. Eur. J., 2014, 20, 6421-6432; c) A. J. Nawara-Hultzsch, J. D. Hackenberg, B. Punji, C. Supplee, T. J. Emge, B. C. Bailey, R. R. Schrock, M. Brookhart and A. S. Goldman, ACS Catal., 2013, 3, 2505-2514.
6 a) E. Kinoshita, K. Arashiba, S. Kuriyama, Y. Miyake, R. Shimazaki, H. Nakanishi and Y. Nishibayashi, Organometallics, 2012, 31, 8437-8443; b) Y.-H. Chang, Y. Nakajima, H. Tanaka, K. Yoshizawa and F. Ozawa, J. Am. Chem. Soc., 2013, 135, 11791-11794; c) Y. Nakajima, Y. Okamoto, Y.-H. Chang and F. Ozawa, Organometallics, 2013, 32, 2918-2925.
7 a) Y. Sun, C. Koehler, R. Tan, V. T. Annibale and D. Song, Chem. Commun., 2011, 47, 8349-8351; b) C. del Pozo, M. Iglesias and F. Sánchez, Organometallics, 2011, 30, 21802188; c) E. Fogler, E. Balaraman, Y. Ben-David, G. Leitus, L. J. W. Shimon and D. Milstein, Organometallics, 2011, 30, 3826-3833.
8 a) X. Liu and P. Braunstein, Inorg. Chem., 2013, 52, 73677379 b) F. E. Hahn, M. C. Jahnke and T. Pape, Organometallics, 2006, 25, 5927-5936; c) T. Steinke, B. K. Shaw, H. Jong, B. O. Patrick and M. D. Fryzuk, Organometallics, 2009, 28, 2830-2836; d) L. Chiu and H. M. Lee, Organometallics, 2005, 24, 1692-1702; e) A. Plikhta, A. Pöthig, E. Herdtweck and B. Rieger, Inorg. Chem., 2015, 54, 9517-9528; f) M. Bouché, M. Mordan, B. M. Kariuki, S. J. Coles, J. Christensen and P. D. Newman, Dalton Trans., 2016, 45, 13347-13360, and references therein.
9 a) T. Simler, A. A. Danopoulos and P. Braunstein, Chem. Commun., 2015, 51, 10699-10702; b) T. Simler, P. Braunstein and A. A. Danopoulos, Chem. Commun., 2016, 52, 2717 2720.

10 N. Selander and K. J. Szabó, Chem. Rev., 2011, 111, 20482076
11 a) J. I. van der Vlugt, M. A. Siegler, M. Janssen, D. Vogt and A. L. Spek, Organometallics, 2009, 28, 7025-7032; b) M. Feller, E. Ben-Ari, M. A. Iron, Y. Diskin-Posner, G. Leitus, L. J. W. Shimon, L. Konstantinovski and D. Milstein, Inorg. Chem., 2010, 49, 1615-1625; c) W. D. Bailey, W. Kaminsky, R. A. Kemp and K. I. Goldberg, Organometallics, 2014, 33, 25032509.

12 G. A. Silantyev, O. A. Filippov, S. Musa, D. Gelman, N. V. Belkova, K. Weisz, L. M. Epstein and E. S. Shubina, Organometallics, 2014, 33, 5964-5973.
13 a) D. M. Roddick and D. Zargarian, Inorg. Chim. Acta, 2014, 422, 251-264; b) J. J. Adams, N. Arulsamy and D. M. Roddick, Organometallics, 2011, 30, 697-711; c) G. Mancano, M. J. Page, M. Bhadbhade and B. A. Messerle, Inorg. Chem. 2014, 53, 10159-10170; d) P. D. Newman, K. J. Cavell, A. J. Hallett and B. M. Kariuki, Dalton Trans., 2011, 40, 8807-8813; e) B. M. Kariuki, J. A. Platts and P. D. Newman, Dalton Trans., 2014, 43, 2971-2978; f) M. Iglesias, A. Iturmendi, P. J. Sanz Miguel, V. Polo, J. J. Pérez-Torrente and L. A. Oro, Chem. Commun., 2015, 51, 12431-12434.
14 a) S. M. Kloek, D. M. Heinekey and K. I. Goldberg, Organometallics, 2006, 25, 3007-3011; b) E. Ben-Ari, R. Cohen, M. Gandelman, L. J. W. Shimon, J. M. L. Martin and D. Milstein, Organometallics, 2006, 25, 3190-3210.
15 a) L. Vaska, Science, 1966, 152, 769-771; b) A. V. Polukeev and O. F. Wendt, Organometallics, 2015, 34, 4262-4271; c) refs. 13b and 13 f .
16 a) S. Gründemann, M. Albrecht, J. A. Loch, J. W. Faller and R. H. Crabtree, Organometallics, 2001, 20, 5485-5488; b) J. R. Miecznikowski, S. Gründemann, M. Albrecht, C. Mégret, E. Clot, J. W. Faller, O. Eisenstein and R. H. Crabtree, Dalton Trans., 2003, 831-838.
17 a) E. Ben-Ari, G. Leitus, L. J. W. Shimon and D. Milstein, J. Am. Chem. Soc., 2006, 128, 15390-15391; b) R. Tanaka, M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2009, 131, 14168-14169; c) R. Tanaka, M. Yamashita, L. W. Chung, K. Morokuma and K. Nozaki, Organometallics, 2011, 30, 67426750; d) L. Schwartsburd, M. A. Iron, L. Konstantinovski, Y. Diskin-Posner, G. Leitus, L. J. W. Shimon and D. Milstein, Organometallics, 2010, 29, 3817-3827; e) M. Feller, E. BenAri, Y. Diskin-Posner, R. Carmieli, L. Weiner and D. Milstein, J. Am. Chem. Soc., 2015, 137, 4634-4637.
18 For selected examples of ketone hydrogenation catalysed by Ir complexes with proton-responsive ligands: a) L . Dahlenburg and R. Götz, Eur. J. Inorg. Chem., 2004, 888-905; b) X. Chen, W. Jia, R. Guo, T. W. Graham, M. A. Gullons and K. Abdur-Rashid, Dalton Trans., 2009, 1407-1410; c) C. S. Letko, Z. M. Heiden and T. B. Rauchfuss, Eur. J. Inorg. Chem., 2009, 4927-4930; d) J. E. D. Martins and M. Wills, Tetrahedron, 2009, 65, 5782-5786; e) J-H. Xie, X-Y. Liu, J-B. Xie, L-X. Wang and Q-L. Zhou, Angew. Chem. Int. Ed., 2011, 50, 7329-7332; f) W. W. N. O, A. J. Lough and R. H. Morris, Organometallics, 2012, 31, 2152-2165.
19 M. C. Perry, X. Cui, M. T. Powell, D-R. Hou, J. H. Reibenspies and K. Burgess, J. Am. Chem. Soc., 2003, 125, 113-123.
20 M. Rueping, R. M. Koenigs, R. Borrmann, J. Zoller, T. E. Weirich and J. Mayer, Chem. Mater., 2011, 23, 2008-2010.
21 N. A. Yakelis and R. G. Bergman, Organometallics, 2005, 24, 3579-3581.

[^0]: a. Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla, Avda Américo Vespucio 49, 41092, Sevilla, (Spain). E-mail: paneque@iiq.csic.es; andres.suarez@iiq.csic.es
 \dagger Electronic Supplementary Information (ESI) available: VT- ${ }^{1} \mathrm{H}$ NMR spectra, ${ }^{1} \mathrm{H}$ and
 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of selected derivatives and X-ray crystallography data. See DOI: 10.1039/x0xx00000x

