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Abstract
This paper presents a modification to the original ART 1 algorithm [Carpenter, 1987a] that is

conceptually similar, can be implemented in hardware with less sophisticated building blocks, and
maintains the computational capabilities of the originally proposed algorithm. This modified ART 1
algorithm (which we will call here ART 1) is the result of hardware motivated simplifications
investigated during the design of an actual ART 1 chip [Serrano, 1994, 1996]. The purpose of this paper
is simply to justify theoretically that the modified algorithm preserves the computational properties of the

original one and to study the difference in behavior between the two approaches.

I. Introduction

In 1987 Carpenter and Grossberg published the ART 1 algorithm in a brilliant and well-founded paper
[Carpenter, 1987a], the first of a seriesAafaptive Resonancel heory (ART) architectures. ART 1 is an
architecture capable of learning (in an unsupervised way) recognition codes in response to arbitrary orderings of
arbitrarily many and complex binary input patterns. The ART 2 [Carpenter, 1987b] and Fuzzy-ART [Carpenter,
1991a] architectures do the same but for analog input patterns. ART 3 [Carpenter, 1990] introduces a search
process for ART architectures that can robustly cope with sequences of asynchronous analog input patterns in
real time. ARTMAP [Carpenter, 1991b] and Fuzzy-ARTMAP [Carpenter, 1992] can be taught to learn (in a
supervised way) predetermined categories of binary and analog input patterns, respectively. This paper focuses

only on the ART 1 architecture. This architecture has a collection of interesting computational properties:

» Self-ScalingThe self-scaling property discovers critical features in a context-sensitive way. For example, if
two binary input patterns hawé bits set to ‘1’, and all except fon of them are at the same location, these
two different input patterns can be classified into the same categofyliis sufficiently small, or as two

different categories /M is not so small.

» Vigilance or Variable Coarsenesghere is a vigilance paramet&r<{p<1 ) that adjusts the coarseness of
the categories that will be formed. If the vigilance parameter is set close to ‘1’, more attention will be
dedicated to distinguishing very similar input patterns and classifying and learning them as belonging to
different categories. However, if the vigilance parameter is close to ‘0’, there must be a significant difference

between two input patterns for the system to separate them into two different categories.
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» Subset and Superset Direct Acceagppose the system has learned two different categories such that one is
represented by a binary pixel image that is a subset of the image representing the other. The first is a subset
of the second, which is a superset of the first. Under these circumstances, the system can classify a new input
pattern as belonging to either the subset or the superset category, depending on global similarity criteria. No

restrictions on input orthogonality or linear predictability are needed.

» Stable Category Learningp response to an arbitrary list of binary input patterns, all interconnection weights
subject to learning approach limits after a finite number of learning trials. Learning is guaranteed to stabilize,

and it does so for a small number of training patterns presentations.

» Biasing the Network to form New Categori®¢hen a new pattern arrives, a competition starts between
stored patterns to capture it. One of the competing categoriesempigor uncommitteccategory. There
exists a parameter that can bias the tendency oihttmmmittectategory to initially capture a new pattern,

before thevigilance parameteplays any role.

In the original ART 1 paper [Carpenter, 1987a], the architecture is mathematically described as sets of Short
Term Memory (STM) and Long Term Memory (LTM) time domain nonlinear differential equations. The STM
differential equations describe the evolution of and interactions between processing units or neurons of the
system, while the LTM differential equations describe how the interconnection weights change in time as a
function of the state of the system. The time constants associated with the LTM differential equations are much
slower than those associated with the STM differential equations. A valid assumption, also presented by
Carpenter and Grossberg [Carpenter, 1987a], is to make the STM differential equations settle instantaneously to
their corresponding steady state and consider only the dynamics of the LTM differential equations. In this case,
the STM differential equations must be substituted by nonlinear algebraic equations that describe the
corresponding steady state of the system. Furthermore, Carpenter and Grossberg also introduced the fast
learning mode of the ART 1 architecture, in which the LTM differential equations are also substituted by their
corresponding steady-state nonlinear algebraic equations. Thus, the ART 1 architecture, originally modelled as
a dynamically evolving collection of neurons and synapses governed by time-domain differential equations, can
be behaviorally modelled as the sequential application of nonlinear algebraic equations: an input pattern is given,
the corresponding STM steady state is computed through the STM algebraic equations, and the system weights

are updated using the corresponding LTM algebraic equations.

At this point three different levels of ART 1 implementations (in either software or hardware) can be
distinguished:
Type-1 Full Model ImplementationBoth STM and LTM time-domain differential equations are realized.

This implementation is the most expensive and requires a large amount of computational power.

Type-2 STM Steady-State Implementatio®nly the LTM time-domain differential equations are

implemented. The STM behavior is governed by nonlinear algebraic equations. This
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implementation requires less resources than the previous one. However, proper sequencing of STM

events must be assured, which is architecturally implicit iType-limplementation.

Type-3 Fast Learning Implementatioithis implementation is computationally the least expensive. In this

case, STM and LTM events must be algorithmically sequenced.

Regarding hardware implementations of the ART 1 architecture, several attempts have been reported in the
literature. Ho et al. proposed a circuit technique foy@e-limplementation [Ho, 1994]; Tsay and Newcomb
proposed a CMOS circuit technique that would realize a payti-2implementation [Tsay, 1991]; Wunsch et

al. [Wunsch, 1993] have built an optical-badege-3implementation; elsewhere [Serrano, 1994, 1996] we
present a CMOS VLSIype-3circuit.

This paper presents a modification to the original ART 1 algorithm [Carpenter, 1987a] (which we will call
from now on ART 1}, as referring to “ART 1 - modified”) that is conceptually similar, can be implemented in
hardware with less sophisticated building blocks, and maintains the same computational capabilities as the
originally proposed algorithm. This modification was motivated Dype-3hardware implementation and was
investigated during the design process of an actual ARJp#&-3chip [Serrano, 1994, 1996]. However, such
modifications can be extendediype-2andType-limplementation versions as well, as shown at the end of this
paper.

The paper is organized as follows: Section Il develops the ARardhitecture starting from the original
ART 1Type-3or Fast Learning description and driven by hardware implementation considerations. Section Il|
shows that all computational properties present in the original ART 1 architecture are preserved in the modified
version. Section IV studies the differences in behavior between the two descriptions and provides simulation

results, and Section V indicates how to extend the ARType-3description talype-2and Type-1models.

[I. From the Original ART 1 Algorithm to the Modified One

Let us start by describing thgpe-3model of the original ART 1 architecture. The ART 1 topology is shown
in Fig. 1 and consists of two layers: laygris the input layer and h&é nodes (one for each binary “pixel” of
the input pattern), and layEp is the category layer and hidshodes. Let us call the nodes in laferx; , and
the nodes in layd¥, Y- In the original ART 1 paper specific notations were used to distinguish bétiereal
state, outputandnode namdor F; andF, nodes. In this paper, since we are concerned exclusivelyiyp#i3
descriptions, we will use a single notation to refer to eititemal state, outpugndnode namef F; nodes k; )
andF; nodesy; ). Each node in thglayer represents a “cluster” or “category”. In this layer, only one node will
become active after presentation of an input patterigl , 1, ..., I,,) Fjteyer category that will become
active is that which most closely represents the input pdttéfrmo preexisting category is satisfactory for a
given input pattern, a new category will be formed. Bachodex; is connected to af, nodesy; through

bottom-up connections of Weid’riqu“, so that the input received by edghnodey; is given by

November 23, 1995 12:57 pm



A Modified ART 1 Algorithm. Page: 4

M
_ bu
T, = ZZ”. I . (1)
i=1
LayerF, acts as a Winner-Take-All netwdrko that all nodeg remain inactive, except that which receives the
largest bottom-up inpu,

y; =1 if T,= ma>i{Tj}, 2

y, = 0 otherwise.

Once arfF, winning node arises, a top-down pattern is activated through the top-down ﬁ/qiij'htsat us call

this top-down patteriX = (X, X,, ..., X,,) . The resulting vectois given by the equation,
td
X = IiZZjiyj . (3)
]

Since only ongj; is active, let us call this winnirfg, nodey;, so thay;=0 if j #J andy;=1. In this case we can

State

X =1z or  X=1nz¥, (4)

where thdE %zsdl thdZ ZSO:VE This top-down template will be compared with the original input pdttern
according to a predeterminedgilance criterion, tuned by aigilance parameterO<p <1, so that two

alternatives may occur:
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Fig. 1: Simplified block diagram of the architecture of alype-3 ART 1 system

_ L

L-1+M

2. In principle, layeF, is not restricted to act as a Winner-Take-All network. Contrast enhancement is another possible
choice [Carpenter, 1987a].

3. IntheFast Learning (Type-3nodel top-down weighmﬁtd may take only the values ‘0’ or ‘1’

1. Bottom-up weighu_r,jb“ may take any real value in the interval{pwherek = ,and.>1 [Carpenter, 1987a].
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a)lf p|l| < ‘I nz tjd‘ , the active categotyjis accepted, and the system weights will be updated to incorporate
this new knowledgde

b)If p|l| > ‘I nz ﬂ , the active categoiyis not valid for the given value of thiggilance parametep. In this
casey; will be deactivated (reset) making = 0 , so that anotherode will become active through the

Winner-Take-All action of th&,, layer.

Learning takes place when an actiyenode is accepted by the vigilance criterion. The weights will be updated

according to the following algebraic equations,

b L L td
z) (new) = - X, = - .25, (0ld)
L-1+[2f¢old) n 1| " L-1+[2(old) n 1| 5)
td td
z; (new = X = 1,z;;(old)
or, using vector notation,
td
LI nz, (old)
b
ZJu(nevv) = : o
L-1+|1 nzY (old)| ©6)
2% (new =1 nz} (old)

whereL > 1 is a constant parameter. Note that only the weights of the connections incident to theFwinning
nodey; are updated. Therefore, the operation ofTyyee-3(or Fast Learning implementation of the ART 1

architecture is described by the algorithm depicted in Fig. 2(a).

From a hardware implementation point of view, one of the first issues that comes into consideration is that
there are two templates of weights to be built. The set of bottom-up V\a?]i'g‘htsach of which must store a real
value belonging to the interval [, and the set of top-down Weigrz;éd, each of which stores either the value
‘0’ or ‘1". The physical implementation of the bottom-up template memory presents the first hardware difficulty
because the weights need either an analog or a digital memory with sufficient bits per weight so that the digital
discretization does not affect the system performance. However, it can be seen from egs. (6) that the bottom-up
set {zijb“} and the top-down selzl{td} contain the same information: each of these sets can be fully computed by
knowing the other set. The bottom-up sqp{’} is a normalized version of the top-down srqﬁ}. Therefore,
from a hardware implementation point of view, it would be desirable to implement physically only a binary
valued set (one bit per weight) and introduce the normalization of the bottom-up weights during the computation
of {T;}. This way, the two setszﬁb”} and {zjitd} can be substituted by a single binary valued gt find eq.

(1) modified to take into account the normalization effect of the original bottom-up wRights,

4. The notatiorg] represents the cardinality of vectpr.e.,|al = Z|ai| .
|

5. This type of modification is employed in the Fuzzy-ART model [Carpenter, 1991a], which operates with analog patterns,
instead of binary ones. Making Fuzzy-ART to work with binary patterns results in ART 1 behavior, but using only one set
of weights, similar to the system described in this paper.
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M
LS 2.1
Linz| _ izlzIJ | 7)
—
L-1+ Z z
i=1

N = L-1+[z]

Considering this minor “implementation” modification, the algorithm of Fig. 2(a) would be transformed into that
depicted in Fig. 2(b). The system level performance of the algorithms described by Fig. 2(a) and (b) is identical.
There is no difference in the behavior between the two diagrams, and the one in Fig. 2(b) offers more attractive
features from a hardware (as well as software) implementation point of view. For the remainder of this paper we
will consider the original ART Type-3architecture as described by the algorithm of Fig. 2(b).

However, in Fig. 2(b), an extra division operatid,= (LI n zj|) /(L-1+ |zj|) , needs to be performed
for each node in th&, layer. This is an expensive hardware operation and would probably constitute a
performance bottleneck in the overall system for both analog and digital circuit implementations. If possible, it

would be very desirable to avoid this division operation. The main idea of this paper is precisely to substitute this

Initialize weights: Initialize weights: Initialize weights:
td bu L _ _
G =1 % =TT 5 =1 5 =1
Read input pattermn: Read input patterm: Read input pattern:
= (10 ) = (10 ) = (10,0
Mo Ll nz T = Lall nzj| ~Lglz| + Ly
Tj = Z Zij |i Tj = L—1+|Zj|
2 WinnerTake-All:
y; =1 if szma)j{Tj}
WinnerTake-All: WinnerTake-All: y =0 if j#J
y; = 1if Ty=max{T} y; = 1if Ty=max{T} !
y; = 0if j#J y, =0 if j#J
YES
YES YES
NO
NO NO Update weights:
L—z,(new) =1 nz,(old
Update weights: Update weights: s(new s(0ld)
] =1 Id
LD y 0 z;(new nz;(old) (C)
bu g nz; (old) g
zy (new) = td (b)
. L-1+[1 n 2} (old)
thd(nev\b =1 nthd(oId)
(a)

Fig. 2: Type-3 implementation algorithms of the ART 1 architecture: (a) original ART 1, (b)
ART 1 with a single binary valued weights template, (c) and VLSI-friendly ART },
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i i i

Fig. 3: IIIIS%)tration of simplification proceég)of the division operation: (a) gcr)lginal division
operation, (b) piece-wise linear approximation, (c) linear approximation

division operation by another, less expensive one, and, although this results in a system with a slightly different

behavior, we will show that it preserves all the computational properties of the original ART 1 algorithm.

Fig. 3(a) shows the curves that represent the division operation of eq. (7). A first simplification could be to
substitute these curves by a piece-wise linear approximation as shown in Fig. 3(b). Such an approximation still
presents some hardware difficulties and could also limit the performance of the overall system. A more drastic
simplification would be to substitute the original operation by the operation represented by the set of curves of

Fig. 3(c). Mathematically, the division operation has been substituted by a subtraction dheration
Tp = Lall nzj| =Lgfz| + Ly (8)
wherelL, andLg are positive parameters that play the role of the origigahdL—1) parameter. As we will see

in the next Section, the conditikry, >L;  must be imposed for proper system opérgtei. is a constant

parameter needéto ensure that; =0 for all possible valueglof zj| :?qu

Replacing a division operation with a subtraction one is a very important hardware simplification with
significant performance improvement potential. Fig. 2(c) shows theTfipat3ART 1, algorithm, the object
of this paper. In the next sections, we will try to show that the price paid for this drastic simplification, although
it yields a system with slightly different input-output behavior, is insignificant since all the computational

properties of the original ART 1 architecture are preserved.

It is worth mentioning here that substituting a division operation by a subtraction one means a significant

performance boost from a hardware implementation point of view. Implementing physically division operators

6. During the writing of this paper, simildf; functions (also calledistancesr choice functionshave been proposed by

other authors for Fuzzy-ART. Since ART 1 can be considered a particular case of Fuzzy-ART when the input patterns are
binary, Fuzzy-ARTchoice functiongan also be used for ART 1. In the Appendix we show how thesealtbee
functionsalso yield to ART 1 architectures that preserve as well all the original computational properties. However, the
choice functiorpurpose of this paper is computationally less expensive and is easier to implement in hardware.

7. In reality, parameter,, has been introduced for hardware reasons [Serrano, 1994, 1996]. In a softwgre ART 1

implementation parametef,  can be ignored.
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in hardware constraints significantly the whole system design and imposes limitations on the overall system

performance.

In the case of digital hardware, a division circuit can be built using either sequential techniques or large size
higher speed special purpose circuits [Cavanagh, 1985]. Sequential techniques use simpler hardware but are
slower, while a dedicated circuit is very large compared to the former and requires much more power
consumption. As an example, and for a sequential type division circuit, in order to realize the following division

T = L|l nzj| ©)

PoL=1+gl
g addition/substractions operation would be needed, whisréhe number of bits needed for the result of the
division. If, for example, there afél = 1000 nodes in thelayer, numerator and denominator in eq. (9)
should be represented by 10-bit words. If, for a given ihput , we want to differentiate between tWT)hterms

ande2 whose respective templa@ls aBd differ in one bif theyer (WTA) would need to resolve

~ L|I nzj1| L|I nzj2|
|AT1112 min L-1+ |Zj1| _L_1+ |Zj2| min (10)
The worst case occurs whim| = [ nz;| =M [z,] = [ nz,| =M=-1 . Inthis case
AT, =‘ L(L-1) , (11)
Wmin = TTT4 M) (L=2 + M)

A reasonable minimum value fbris 1.01. Therefore, i1 = 1000 the|mTj1jz|min= 10 . Onthe other hand,

it is easy to see th?l\leijax is close to but less than one. Consequently, fd’g each  adynamic range of

|Tj|max 8
— =10 (12)
|Tj|min

is needed. Such dynamic range requirgs2¥ bit representation. Thus, for each division operation we need to
realize 27 10-bit addition/subtractions. Furthermore, the WTA inRhdayer would need to choose the
maximum amongN 27-bit words. On the other hand, if the AR, dlgorithm is used, instead of tiex 24

11-bit addition/subtractions, we need only to realkz&l-bit subtractions, and the WTA has to choose the

maximum amondN 11-bit words.

In the case of analog hardware, there are ways to implement the division operation with compact dedicated
circuits [Bult, 1987], [Sanchez-Sinencio, 1989], [Gilbert, 1990], [Sheingold, 1976], but they usually suffer from
low signal-to-noise ratios, limited signal range, noticeable distortion, or require bipolar devices which are
available for more expensive VLSI technologies. In any case, the performance of the overall ART system would
be limited by the lower performance of the division operators. If the divison operators are eliminated the
performance of the system would be limited by other operators which, for the same VLSI technology, render
considerable better performance figures. Furthermore, in the case of analog current mode signal processing

[Serrano, 1996], the addition and subtraction of currents does not need any physical components. Consequently,
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by eliminating the need of signal division, the circuitry is dramatically simplified and its performance drastically

improved.

[1l. On the Computational Equivalence of the Original and the Modified Models
Throughout the original ART 1 paper [Carpenter, 1987a], Carpenter and Grossberg provide rigorous

demonstrations of the computational properties of the ART 1 architecture. Some of these properties are
concerned witiType-landType-2operations of the architecture, but most refer taipe-3model operation.
From a functional point of view, i.e., when looking at the ART 1 system as a black box regardless of the details
of its internal operations, the system level computational properties of ART 1 are fully contained in its
Fast-Learning or Type-3 model. The theorems and demonstrations given by Carpenter and Grossbern
[Carpenter, 1987a] relating Type-landType-2models of the system only ensure propgre-3behavior. The
purpose of this Section is to demonstrate that the modifigel3model developed during the previous Section
preserves all th@ype-3computational properties of the original ART 1 architecture. The only functional
difference between ART 1 and ART,lis the way the term3; are computed before competing in the
Winner-Take-All block. Therefore, the original properties and demonstrations that are not affected by the terms
T; will be automatically preserved. Such properties are, for examplgeth8calingoroperty and th¥ariable
Coarsenesproperty tuned by théigilance ParameteBut there are other properties which are directly affected
by the way the termg are computedSubset and Superset Direct Access, Stable Category Learning, Biasing the
Network to form New Categorieand the properties consequent of the theorems in the original ART 1 paper
[Carpenter, 1987a]. In the remainder of this Section we will show that these properties remain in the ART 1

architecture.
Let us define a few concepts before demonstrating that the original computational properties are preserved.

a) Direct Accessan input patteri is said to hav®irect Accesso a learned categoyy if this category is
the first one selected by the Winner-Take-Adllayer and is accepted by thigilance subsystenso

that no reset occurs.

b) Subset Templatean input patternl is said to be aSubset Templatof a learned category
z = (zlj, Zy), ...zMj) if | Dzj. Formally,
zij=ODIi=0 On=1,..M,

=10z =1  0Oi=1..M, (13)

there are some values of i such that . =0 and z. = 1.

c) Superset Templatean input pattern is said to be &uperset Templatef a learned category; if

szI.
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d) Mixed Templatezj andl are said to be mixed templates if neitlhelfn‘zj njdE I are satisfied, and

I;tzj.

e) Uncommitted nodeanF, nodey; is said to be uncommitted if all its weiglafs(i = 1, ...M) preserve

their initial value @ij = 1), i.e., nodg has not yet been selected to represent any learned category.

A. Direct Access to Subset and Superset Patterns

Suppose that a learning process has produced a set of categories-jnlaper. Each category; is
characterized by the set of weights that connect gpde the F, layer to all nodes in the, layer, i.e.,

z = (zlj, Zyjs woen zMj) . Suppose that two of these categoryﬂs, ytnd , are suot}lﬂﬁaztj2 y2 ( isasubset

J1
template ofzj2 ). Now consider two input pattetf$ andl ® such that,

| (D

= zj1= (lel' zzjl, ...zMjl) , a4
I (2

7, = (24, Zj, - 2)
TheDirect Access to Subset and Supepseperty assures that inplﬁﬁ) will haveDirect Acces$o categoryyj1
and that input‘® will have Direct Accesso categoryy; .

Proof:

If patternl ) is given as the input pattern we will have

Ll O -Lgh @1y,

—
1

M
L=y 1Pz, - Le|7j| + Ly
=1 (15)

T,

M
1 1 2

LaS 172 —Lafz | + Ly = LI PI-Lh @]+,

i=1

Since|l (1)| < || (2)| , it follows that (remembég>0) le > sz . If patternl @ s presented at the input layer of

the network, it would be,

M
LA Z Ii(Z) Zijl_ LB|Zj1| * LM

1 1
T, = = L Pl -Lgh @y,
| :/Il (16)
= &) _ (2 (2)
sz - LAZ Ii Zijz_LB|ij|+LM - LA|I |_LB|I |+LM
i=1
In order to guarantee thi}2 > le , the condition
La>Lg 17)

must be satisfied.
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B. Direct Access by perfectly learned patterns (Theorem 1 of original ART 1):

This theorem, when adapted tdyge-3implementation, would state the following:

An input pattern had direct access to a node which has perfectly

learned .l
Proof:

In the case of the ART,lalgorithm, in order prove that has direct accesgto  we need to show that: (i)
y; is the first, node to be chosen, (§), is accepted by the vigilance criterion, ang,(ii)  remains active as

learning occur®

To prove property (i), we must establish that, at the start of eachTtJriarl'j fot ll Birce ,

we need to prove

Ty = Lalll-Lglll > Lyl nz|-Lglz| = T, . (18)
Suppose first tha}tj| >|l| .Sindg = |I mzj| is always true, then eq. (18) is satisfied,
Ty = Llll=Lglll 2Lyl nz| —Lglll > Lyl nz)[-Lglz| = T;. (19)
Suppose tha||zj| <|I| . Then, singgz |, it follows thae | nzj| . Finally, si||zﬂe>_ II'n zj| is always
true, it follows that,
Ty = LAlll =Ll > Lyl nz|=Lgll nzj| 2 Lal nzj|-Lglz| = T, . (20)

Property (i) is directly satiesfied because,

nz| =Ilzpll , OpO[0,1] . (21)

Finally, property (iii) also holds, because after ngge is selected as the winning category, its weight template
Z; will remain unchanged (becausg(new) = | n Z (old) =1 = Z (old) ), and consequently the inputs to

theF, IayerTj will remain unchanged.
C. Stable Choices in STM (Theorem 2 of original ART 1):

Whenever an input pattelns presented for the first time to the ART 1 system, a sdfjo¥4lues is formed
that compete in the Winner-Take-Al}, layer. The winner may be reset by thgilance subsystenand a new
winner appears that may also be reset, and so on until a final winner is accepted. During this search process, the
T; values that led to earlier winners are set to zero. Let u§chié values of; at the beginning of the search
process, i.e., before any of them is set to zero by the vigilance subsystem. Theorem 2 of the original ART 1

architecture states:

8. Inthe original ART 1 paper it also shown that read out of the top-down template does not deactiyate node  asthe winning
node. This is because there the proof was developedypealimplementation where activation of Bgnode results
in a change oTj terms through the influence of the top-down connections.
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Suppose that an fgde isyghosen for STM storage instead of another

node Y, because OJ>OJ.Then read-out of the top-down template preserves

the inequality TJanﬂIj thus confirms the choice of by the bottomyyp

filter.
This theorem has only sense fofyae-limplementation, because there, as a node iR leyer activates,the
initial values oij (immediately after presenting an input pattern ) may be altered through the top-down
“feed-back connections. In alype-3 description (see Fig. 2) the initial terrﬁ% remain unchanged,

independently of what happens in thelayer. Therefore, this theorem is implicitely satisfied.
D. Initial Filter Values determine Search Order (Theorem 3 of original ART 1):

Theorem 3 of the original ART 1 architecture states that (page 92 of [Carpenter, 1987a]):

The Order Function ( Oj1>sz>Oj)3 xletermines the order of search no

matter how many times F, is reset during a trial.
The proof is the same for the ART 1 and the ART(Hoth Type-3 implementatior% If le is reset by the
vigilance subsystenthe values oijZ, Tj3, ... will not change. Therefore, the new order sequence is
sz > Oj3 > ... and the original second largest vamg will be selected as the winTﬁEr. If is now set to zero,

sz is the next winner, and so on.

This Theorem, although trivial in Bype-3implementation, has more importance imy@e-ldescription

where the process of selecting and shutting down a winner alters all iglJaspenter, 1987a].

E. Learning on a Single Trial (Theorem 4 of original ART 1):

This theorem (page 93 of [Carpenter, 1987a]) states the following, assuypg-&implementation is
being considered:

Suppose that an \Finning node is acgepted by the vigilance subsystem.

Then the LTM traces cmange in such a way that increases dnd all other

Tj remain constant, thereby confirming the choice of y;. In addition, the
set | nz;remains constant during learning, so that learning does not

trigger reset of by thyg vigilance subsystem.
Proof:

In this case, if/; is the winning category accepted by wgilance subsystenfrom eq. (8) we obtain

T, = LA|I sz|—LB|zJ| +Ly . (22)

9. However, note that the resulting orderipg i, j3, ...} may differ for the original and the modified architecture.

10. A more sophisticated demonstration for this theorem is provided in the original ART 1 paper [Carpenter, 1987a]. This is
because the demonstration is performed ypee-1description of ART 1.
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The update rule is

z,(new) = I nz,(old) , (23)

and the new ; value is given by,

T,(new = LA|I an(neV\b|—LB|zJ(neV\b|+L,\,I =
= Ll n1 nz;(old)| —Lg|l nzy(old)|+Ly = Lyl nz(old)|—Lg|l nz;(old)|+Ly=  (24)
2Ll nz;(old)| - Lg|z; (old)| + Ly, = T;(old) .

Therefore, learning confirms the choiceygfand by eq. (23) the seth z;  remains constant.
F. Stable Category Learning (Theorem 5 of original ART 1):

Suppose an arbitrary list (finite or infinite) of binary input patterns is presented to an,/Afstém. Each
template ser; = (zlj, Zy;» ...zMj) is updated every time categpiyselected by the Winner-Take-Ad} layer
and accepted by the vigilance subsystem. Some times temptaéy be changed, and others it may remain
unchanged. Let us call the tingsuffers a changpf) < tz(j) <... <tr(jj) . Since the vector (or tempiatef)a
committed node had components (of which, at the mask-1 are set to ‘1’), and by eq. (23) each component

can only change from ‘1’ to ‘0’ but not from ‘0’ to ‘1, it follows that templaite:an, at the most, sufféf-1

changes,
<M-1. (25)
Since template; will remain unchanged after timéj) , it is concluded that the complete LTM memaory will
J
suffer no change after time
t = max{t"} (26)
learn )i r; '

If there is a finite number of nodes in fglayert,q, has a finite value, and thus learning is completed after a
finite number of time steps.

This is true for both the ART 1 and the ARJ, drchitectures. Therefore, the following theorem (page 95 of
[Carpenter, 1987a]) is valid for the two algorithms:

In response to an arbitrary list of binary input patterns, all LTM traces

z; (t) approach limits after a finite number of learning trials. Each

template set z]emains constant except for at most times M-1
til) <t2(2) <.. <tr(jj) at which it progressively loses elements, leading to the
Subset Recoding Property: Z (tl(j)) Oz (téj)) 0.0z (tr(j)) . (27)
]
The LTM traces Z; (Buch that i O zjcleﬁ}ease to zero. The LTM traces
z; (t) such that i 0 zj(tr(blr)emain always at ‘1’. The LTM traces such that
. . J
id Z; (tr(:)) but 0 Z; (tr(:) Ptay at ‘1’ for times but \tvﬁltéll?ange to and
+1 .
stay at ‘0’ for times . téjz 1
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G. Direct Access after Learning Stabilizes (Theorem 6 of original ART 1):

AssumingF, has a finite number of nodes, the present theorem (page 98 of [Carpenter, 1987a]) states the

following:

After recognition learning has stabilized in response to an arbitrary list
of binary input patterns, each input pattern  either has direct access to
the node wvhich possesses the largest subset template with respectto I

or | cannot be coded by any node of - In the Rafter case, contains no F,

uncommitted nodes.
Proof:

Since learning has already stabilizexan be coded only by a noglevhose templatg is a subset template with
respect td. Otherwise, oncg becomes active, the sgtwould contract tgnl , thereby contradicting the
hypothesis that learning has already stabilized. Thusadtivates any node other than one with a subset
template, that node must be reset byviggance subsysterfror the remainder of the proof, jgtbe the firsf,

node activated bly. We need to show thatzf is a subset template, then it is the subset template with the largest
O3, and if it is not a subset template, then all subset templates activated on that trial will be reset by the vigilance

subsystem:
|I nzj| = |zj|<p|I| : (28)
If y; andy; are nodes with subset templates with respecttten
O = LA|zj| —LB|zj| +Ly <Oy = LyJz) —Lg|zj +Ly - (29)

Since (L,—Lp) |zj| is an increasing function |<z[| ,

131 <[z (30)
and,
Inz)| |z Inz) |z
R = I =U<R = LR 31
e TR T B T (5D
Therefore, ify; is reset R, < p ), all other nodes with subset templates will be néjsetq ).

Now suppose thay;, the first activated node, does not have a subset template with resgect to
(|l nz4 <|zy|), but another nodg with a subset template is activated in the course of search. We need to show

that|| N zj| = |zj| <plll, so thay; is reset. We know that,

O, = (Ly-Lp) |zj| +Ly <Oy = Lyl nzj —Lg|zj +Ly < (La—Lp) |z +Ly . (32)
which implies thaqzj| <|z,| . Sincyg, cannot be chosen, it must be reset byvig#ance subsystemvhich

means thafl nz | <pll| . Therefore,

Lalz| —Lg|z| <La|l nzy| = Lg|zy| <Laplll =Lg|z| <Lapll[—Lg|z| (33)
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which implies that
I nz| = |z|<plll. (34)
H. Search Order (Theorem 7 of original ART 1):

The conditions expressed in the original Theorem 7 must be changed to adapt this theorem to the ART 1

architecture. The modified theorem states the following:

Suppose

L

A M

L, M-1" (35)
and that input pattern  satisfids

NsM-1. (36)
Then F, nodes are searched in the following order, if they are searched at
all.
Subset templates with respect to are sedrched first, in order of

decreasing size. If the largest subset template is reset, then all subset

templates are reset. If all subset templates have been reset and if no

other learned templates exist, then the first uncommitted node to be

activated will code . If alllsubset templates are searched and if there

exist learned superset templates but no mixed templates, then the node with

the smallest superset template will be activated next and will code . If I
all subset templates are searched and if both superset templates and z4

mixed templates exjst, then will beyﬁearched before if and only if vy,

|z <]z and %ZE—J ::—i. (37)
If all subset templates are searched and if there exist mixed templates but
no superset templates, then a node with ayrnixed template will be
searched before an uncommitted node if andynly if
Lall Nz ~Lg|g| + Ly >T,(1,t=0) . (38)

whereT, (I,t=0) = LAZ 1z, (0) —LBz z,(0) +L,,. The proof has several parts:
a) First we show that a nogg with a subset templaté 6 z; = z; ) is searched before anyy}cmieh a
non-subset template. In this case,
O = Ll nz|-Lifzl+Ly = nz|B, LAl Oy (39)
i A| j| B| j| M_| j|DA B|Iﬂzj|D M -

Now, note that
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Tnz) M-1 (40)
becaus&!
3 7 M=1_ M
! = Ll = > 41
Tnz]| ~ -1 ~M—2 M-1 “h)
J min | min
From egs. (35), (39) and (41), it follows that
L
O=A M 0O
OJ<|I mzj|LBD:3_m_D+ LM<LM' (42)
On the other hand,
o, = (LA—LB)|zJ|+LM>LM : (43)
Therefore,
0,>0, . (44)
b) Subset templates are searched in order of decreasing size:
Suppose two subset templates of; andz; such thafz,| > |zj| . Then
0, = (La—Lg) [z *Ly> (La—Lg) 5| +Ly = O; . (45)

Therefore nodegy; will be searched before ndee . By eq. (45), if the largest subset template is reset,

all other subset templates are reset as well.

c) Subset templateg, are searched before an uncommitted'jnode

L
O = Ll —LgM+ Ly <L, (M=1) ~LgM + L, = LB%L_/;(M_D —ME+L,, <

(46)

oM 0
<leyr—1(M-1) -Mpg+Ly = Ly< (La=Lg) |z +Ly = Oy .

Therefore, if all subset templates are searched and if no other learned template exists, an uncommitted

node will be activated and code the input pattern.

11. We assume thgtis not an uncommitted nodpj(< M ).
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d) If all subset templates have been searched and there are learned superset templates but no mixed
templates, the node with the smallest superset tempjate  will be activated (and not an uncommitted

nodeyj ) and codk

o, = LA|||—LB|zv.,|+L,\,|>LA|I|—LBM+L,\,I =0 . 47)
If there is more than one superset template, the one with the srﬂmj'est will be activated. Since
|I n zJ| = |l| = p|l], there is no reset, amdvill be coded.

e) If all subset templates have been searched, and there exist a superset fgmplate  and a mixed template

Y thenOj >0, ifand only if eq. (37) holds:

0,-0, = Ly(|l nz)=Il) + Lg (|25 -[2)) - (48)

e.l) Ifeq. (37) holds:

|:|LB |||—|| ﬂZj|D
0 -0, = Lym=2——1—d(z|-|z|) >0 . (49)
i ADL_A |ZJ|_|ZJ_| O | J| |J|
e2) If0;>0;:
Assume first thajz,| —|zj| <0 .Then, by eqg. (49), it has to be
Lg [l nz;|
T e (50)
Lo |2 -7
Since L,>Lz>0 it had to bél[—|l nz;/ <0 , which is false. Therefore, it must be that
|zJ| —|zj| >0, and
Lg [l -]l nz;| (51)

—_—_—
Lo 2] =7
f) If all subset templates are searched, and if there are mixed templates but no superset templates, then a
node y, with a mixed templateO = L |l nz|-Lg|z|+Ly ) will be searched before an
uncommitted nodg; @, = L,[l|-LgM +L,, )ifand only if eq. (38) holds:

0;-0; = Ly(Jl nzj[—IIl) —~Lg(|z|-M) >0 =

~ B (52)
= Lpl nzj| —Lgfz| + Ly > LAl -LgM + Ly, = T,(1,t=0) .

This completes the proof of the modified Theorem 7 for the AR&rthitecture.
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I. Biasing the Network towards Uncommitted Nodes:

In the original ART 1 architecture, choosing large increases the network’s tendency to choose
uncommitted nodes in response to unfamiliar input patterimsthe ART 1, architecture, the same effect is

observed when choosing,/L;  large. This can be understood through the following reasoning.

When an input patterinis presented, an uncommitted node is chosen before a codey{ node if

LA|I n zj|—LB|zj| <Ll -LgM . (53)
This inequality is equivalent to
Lo M-z
_—> 54
L, =T nz] (>4)

Asthe ratioL ,/L; increases itis more likely that eq. (54) be satisfied, and hence uncommitted nodes are chosen

before coded nodes, regardless ofvilgdance parametevaluep.
J. Remarks:

Even though this Section has shown that the computational properties of the original ART 1 system are
preserved in the ART]system, the response of both systems to an arbitrary list of training patterns will not be

exactly the same. The main underlying reason for this difference is that the initial ordering
0,>0, >0, >... (55)

is not always exactly the same for both architectures. The next Section will study the differences between the two

ART 1 systems.

IV. On the Functional Differences between Original and Modified Model

As stated previously, the difference in behavior between the ART 1 and ARWodels is caused by the
different orderings of the terms of eq. (55). Assuming that both models, at a certain time, have identical weight

templates Qj }, and the same input pattérn is given, eq. (55) has the following two formulations:

tnz;| _|tnz ] [Ing]

Original ART 1: T 1 |zj1| > T |zj2| > T |zj3| > ...

(56)
. ) La La
Modified ART 1: :3|I N Z|1| —|z|1| > L—B|I N z|2| —|z|2| > ...

wherej, might be different thaly . The ordering resulting for the original ART 1 description is modulated by
parameterL >1 . For example, if is very large compared tqzﬁll terms, then the ordering depends

exclusively on the values qu N zj| ,
|I nzjl|>|l mzj2|>|l nzj3|>... (57)

If L is very close to 1, then the ordering depends on the ratios,
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|I nzj1|>|l mzjz|>|l nzj3|>m (58)
)

Likewise, for the ART 1, description, the ordering is modulated by a single parareterL ,/L;>1  aislf

Z,

extremely large, the situation in eq. (57) results. Howeven feery close to 1, the ordering depends on the

differences,
oz)=[a)> [ nz|-[a)>|l 07 -[a)> (59

Obviously, the behavior of the two ART 1 descriptions will be identical for large values of a. &twvever,
moderate values @fanda are desired in practical ART 1 applications. On the other hand, it can be expected that
the behavior will also tend to be similar for very high valugs @fp is very close to 1, each training pattern will

form an independent category. However, different training patterns will cluster into a shared category for smaller
values ofp. Therefore, a very similar behavior between ART 1 and ARWill be expected for high values of

p, while more differences in behavior might be apparent for smaller valpes of

In order to compare the two algorithms’ behavior, we have performed exhaustive simulations using
randomly generated training patterns Set&s an illustration of a typical case where the two algorithms produce
different learned templates, Fig. 4 shows the evolution of the memory templates, for both the ART 1 and the ART
1,,,algorithms, using a randomly generated training set of 10 patterns with 25 pixels each. Weight templates for
original ART 1 are nameq , While for ART,,xhey are nameq' . The vigilance parameter was gett00.4
for the original ART 1L = 5 , and for the ARTla = 2. In Fig. 4, boxed category templates are those that
met the vigilance criterion and had the maximilim value. If the box is drawn with a continuous line, the
correpondingzj template suffered modifications due to learning. If the box is drawn with dashed line, learning
did not alter the correspondirzg template. Both algorithms stabilized their weights in 2 training trials. Looking
at the learned templates we can see that input patterns 4 and 5 clustered in the same category for both algorithm:
(z, for original ART 1 andz'; for ART 4 ). This also ocurred for patterns 6 an&g (  and ) and for patterns
3,9and 104, and; ). However, patterns 1, 2, and 7 did not cluster in the same way in the two cases. In the
original ART 1 algorithm patterns 1 and 7 clustered into categpry , while pattern 2 remained independent in
categoryz, . In the ART lalgorithm patterns 1 and 2 clustered together into categjpry , while pattern 7

remained independent in categaty

To measure a distance between the two tempt.]ates Zjand , let us use the Hamming distance between two

binary patterna = (a,, a,, ...a,,) and= (b;, b, ...b,) ,

M
dab) = Y fy(a,b) (60)

i=1

12. For all simulations in this paper, randomly generated training patterns sets were obtained with a 50% probability for a
pixel to be either ‘1’ or ‘0'.
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where

DO if a =Db ,

fy(a,b) = E (61)
1 if a#b,

We can use this metric to define the distance between two sets of p@tﬁf}rjﬁ:sl { Z'j}ijﬁg 1 as that which
minimizes

Q

z d(z,z) . (62)

i=1
For this purpose, the optimal ordering of indexgs |, ...IQ) must be found. In the case of Fig. 4 (where

Q = 5), the distanc® between the two learned patterns sets is given by,

D =d(z,Z,) +d(z,7;) +d(z3,7Z,) +d(z,,Z;) +d(z52Z5) = 7. (63)
In general, we can define the distance between two patteris setéa;} J.Q: N B =anh;} jQ: 1 as,
) Q
D(A,B) = min Zd(awbr) . (64)
{|1, lp g e i

In the case of Fig. 4, both algorithms produced the same number of learned categories. This does not always
occur. For the case where a different number of categories results, we measured the distance between the twc
learned sets by adding as many uncommgedodes to the set with less categories as necessary to equal the
number of categories. An uncommitted category has all its pixels set to ‘1. Thus, having a different number of

committed nodes drastically increases the resulting distance, and is consequently a strong penalty.

We have repeated the simulation of Fig. 4 many times for different sets of randomly generated training
patterns and sweeping the valuepdf, anda. For each combination @f L, anda values, we repeated the
simulation 100 times for different training patterns sets, and computed the average number of learned categories,
learning trials, and distance between learned categories, as well as their corresponding standard deviations. Fig.
5 and Fig. 6 present the results of these simulations. Fig. 5(a) shows how the average number of learned
categories changes with(from 1.01 to 40) for different values pf for the original ART 1. Ap decreases,
parameter. has more control on the average number of learned categories. Fig. 5(b) shows the standard
deviation for the number of learned categories of Fig. 5(a). As the number of learned categories approaches the
number of training patterns (10 in this case), standard deviation decreases. This happens for largd_values of
(independently ob) and for large values @f (independently df). Fig. 5(c) and Fig. 5(d) show the same as Fig.

5(a) and Fig. 5(b) respectively, for the ARJ, dlgorithm. As we can see, parametgswept from 1.01 to 5.0)
of ART 1, has more tuning power than parameétef the original ART 1. On the other hand, ARJ, dresents

a slightly higher standard deviation than the original ART 1. Nevertheless, the qualitative behavior of both
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<Distance>

Fig. 7: Optimal parameters fit between ART 1 and ART },
algorithms is similar. Fig. 5(e) and Fig. 5(f) show the average number of learning trials and their corresponding

deviations, needed by the original ART 1 algorithm to stabilize its learned weights. Fig. 5(g) and Fig. 5(h) show
the same for the ARTlalgorithm. As we can see, the ART, algorithm needs a slightly higher average
number of learning trials to stabilize. Also, the standard deviation observed for theaRjolithm is slightly

higher. Finally, Fig. 6 shows the resulting average distances (as defined by eq. (64)) between learned categories
of the ART 1 and the ART,Jalgorithms. Fop changing from 0.0 to 0.7 in steps of 0.1, each sub-figure in Fig.

6 depicts the resulting average distance for different valulesvbile sweepingt between 1.01 and 5.0 .

It seems natural to expect that, for a given valyzarid a given value of the original ART 1 paraméter
there is an optimal value for the AR, parameten that will minimize the difference in behavior between the
two algorithms. To find this relation betwekeranda for eachp, we computed (for a givemandL) the value
of a that minimizes the average distance between the learned patterns sets generated by the two algorithms. The
results of these computations are shown in Fig. Fig. 7(a) shows a family of curves (one for each value of
p), that shows the optimal valueahs a function of. Fig. 7(b) shows the resulting minimum average distance
between learned sets for the same family of curves. As shown in Fig. 7(a), the optimum fit between parameters

o andL is very slightly dependent on the valuepof

As can be concluded from Fig. 5, Fig. 6, Fig. 7, and the discussion in this Section, the behavior of the two
algorithms is qualitatively the same although some slight quantitative differences can be observed. ART 1
parameten has a wider tuning range than original ART 1 paramnleté@n the other hand, ART,Ineeds a
slightly higher number of learning trials than the original ART 1. Also, there is an optimal adjustment between
parameterst andL that minimizes the difference in behavior between the two algorithms, and this adjustment

appears approximately independenp.of

13. Note that high values pfandL were omitted in this analysis, since in these cases the behavior of the two algorithms
tends to be similar, regardless of the fit between parantededo.
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V. Extending the ART 1,, Model to Type-2 and Type-1 Descriptions

The great advantage of the ARF, algorithm is its ability to produce a very simplgpe-3hardware
implementation, requiring only a binary valued memory template and only addition, subtraction and comparison
operations, as well as a Winner-Take-All competition. Altholighe-2andType-1descriptions can be found
that lead to th@ype-3behavior of the ART } algorithm described in this paper, these descriptions do not
possess the hardware-attractive features dfythe-3implementation. Nevertheless, brigfpe-2and aType-1

descriptions for this ART lalgorithm are presented in this Section.
A. A Type-ART 1, Implementation

The change in weights must be smoothTyge-2description. Every time an input pattéris presented and
anF, category node is selected for LTM storage, only a partial change in LTM traces is allowed. In this case, it

is obvious that we can no longer use a binary valued weight template.

As seen in Section Il, Fig. 2(c) shows the flow diagramlgpa-3mplementation of the ARTJalgorithm.
Extending this diagram to&ype-2description is straightforward. The only box that needs to be changed is that
corresponding to the update of weights. Instead of using the algebraic fayfnew) = | nz,(old) we
have to use a time domain differential equation that would lead to the same steady state. The following set of

differential equations fulfills this requirement,

Initialize weights:

zjizl

Read input pattern:
P = (10, 0y,

v

Tj = LA|I ”Zj|‘LB|Zj|+LM

WinnerTake-All:
y; =1 if TJ:ma>j{Tj}
y, = 0if j#3

NO

Update weights:
Apply LTM differential equations

during a time intervat
Fig. 8: ART 1,,, algorithm Type-2 implementation
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zij = Kyj [—zij +h(x)] , (65)

whereK is a positive constan (1)  a sigmoidal function, apnd  an STM variable given by,

X = IiZyjzij = liz; . (66)
]

If T, is the time required for the LTM egs. (65) to settle to their steady state, the update of weights (i.e., the
simulation of egs. (65)) would be allowed only for a time intervall for each input pafteesentation.
As 1 approachesl , application of eqgs. (65) or the update weights equation of Fig. 2(c) would become
equivalent. Fig. 8 shows the flow diagram corresponding toType-2 implementation of the ART ]

algorithm.
B. A Type-JART 1, Implementation

For aType-limplementation, an appropriate set of STM equations must be found that leads to the flow
diagram of Fig. 8 when the STM time constants are very small compared to the LTM ones. The following time

domain STM differential equations would serve our purpose,

F: ex = —x + (1-Ax)J — (B, +C;x) J
(67)
Fy: £X = —x + (1—A2xj)Jj+— (B, +CyX) J;
where,
+
J = |i+DlZf(xj)zij ,
]
=51 .
Jz (68)
.
g =9(x) +T;
J=59(x)
KZ|
Parametere A, B, C, A, B, C, ,ard;, are positive and constant. Funétiens g (and are

sigmoidal. Note thayj = f(xj) . Functionig(:)  will be responsible for the resulting Winner-Take-All action
of theF, layer. These STM equations are identical to those of the original ART 1 algorithm [Carpenter, 1987a],
except that we use one weight template instead of two. However, the main difference lies in the way the terms

T, are computed. In this ca3e will be given by the following equation,

T, = DZ[LAZh(xi)zij—LBZziﬁLM} : (69)

whereD,, is constant and positive. Using egs. (67)-(69) together with arRe$# Systemill assure that if
the STM time constants are very small compared to the LTM oneBypee2description of Fig. 8 results. The

Reset Systewwan be identical to that used in the original ART 1 system: each active ipputl( ) sends an
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excitatory signal of siz® to an orienting subsystes EachF; nodex, which exceeds zero generates an
inhibitory signal of siz&) and sends it tA. The orienting subsystefgenerates a nonspecific reset wave,to

whenever

XI_, - P
=P~ q-

wherel is the input pattern ank| is the numbeFphodes such that >0 . The nonspecific reset wave shuts

(70)

off activeFF, nodes until the input pattefrshuts off.

VI. Conclusions

This paper has presented, analyzed, and studied a modification to the original ART 1 algorithm. Such
modification has drastic consequences from a hardware implementation point of view, in the sense that it
extraordinarily simplifies the hardware requirements and components of the overall system and provides a very
important increased performance potential. Although the modification produces some changes in the original
behavior of the system, we have shown that all the computational properties of the original ART 1 algorithm are
preserved. We have also performed exhaustive simulations to highlight the differences in behavior introduced by
the modified system. Finally, we have sketched how to extend conceptually such a modified systerfdsta non-

Learningdescription although this would lead to the loss of important hardware advantages.

We have used this ART,,lmodel to implement a high performance, analog current mode, real-time
clustering chip in a standard low cost inb CMOS process [Serrano, 1994, 1996]. Although we have used a
specific circuit design technique (analog current mode), the ART 1 model described in this paper can be used
with other circuit techniques. The only functions needed are binary storage, sums and/or subtractions,
comparisons, and a Winner-Take-All action. The advantages of the ARWodel can be exploited using any
hardware technique. We hope that the modifications introduced in this paper can be used by other neural

hardware engineers regardless of the circuit design technique they choose to use.
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Appendix
During the writing of this paper other alternatives to the computation of the T(?rms of eq. (7) have been
proposed [Carpenter, 1994] for a Fuzzy-ART architecture. Since ART 1 reduces to a particular case of
Fuzzy-ART when the input pattetris binary valued, any valid way of computiiﬁp in Fuzzy-ART should, in
principle, be valid for ART 1 as well. The differe‘ﬁjt functions (also calléstancesor ‘choice function$
proposed in [Carpenter, 1994] when particularized for ART 1 result in the following formulations:
Function 1: L nzj|—|zj|+s(|zj|—|l Dzj|), 1)
Function 2: L nzj|—|zj|+s(|zj|—lll).
Note that these functions are also based on the subtraction operation, as ip,ART dre computationally
more expensive since eithgrC] zj| b  has to be computed as welthdhee functiorthat we have used

in this paper would be equivalent to the following,
T =tz -|z|+ez] = [l nz| - (1-¢)[z] , (72)

and parameten = L,/Lg>1 would have been equivalent to

1
o (73)

If all the original ART 1 properties are to be preserved, we know nowathat has to be greater than one. This

implies,

a>1 < 1>>0. (74)
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With respect to thehoice functiongn eq. (71), Function 2 is mathematically equivalent to eq. (72), because
the only difference between the two is the tewfi| . Since the input is common to all of the category nodes and
does not change during a single presentation, this term effectively acts as a uniform negative bias on all of the
category nodes, regardless of the pattern coded in their templates. Eq. (72), therefore, is more efficient because

the input size computation is unnecessary.

Function 1 of eq. (71) is another vatidoice functionbut is also computationally more expensive than eq.
(72). It can be shown that the original ART 1 computational properties are preserved when this function is used
(providede >0 ). To see this, substitute the equations of Section Il whose numbers appear in the first column

of Table 1 by the equations in the second column, and note that

10z 2z, I
'z =[z]. ] (75)

10z = Il +]z,=|l nz,

are always satified (if we know thatz;  then thednd ‘<’ signs in eq. (75) can be substituted by *>" and '<’,

respectively). Table 1 only provides the demonstrations for proparti&sE, Gandl of Section Ill. Properties

C, D,andF are automatically satisfied since they do not depend on the explicit formuIa1ITpn of . With respect

to propertie$d (Search Order) it can be shown that all of them are fulfilled if egs. (35), (37), and (38) are changed

to
1 M
1= “M-1° (76)
I Dz [z

z| <|z and — L _l<g,and (77)

2l <[ -T2

I nz|—¢)l Oz - (1-¢)|z|>T,(1,t=0) (78)
respectively.
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original .
) new equation
equation
(15) T, = [z]-gf7| - (1-8)fz] = O
Ti, = [z] —&3) - (A-8)|z] = [z]-[z] <0
(16) T, = [z|-¢7)-(1-9)|z] = €(z|-|z)) <0 if €>0
T, = 5] &7 - (1-8)jz] = 0
(18),(19) T, = ll|—¢ll| = (1-¢)]I| = 0
T, = L mzj|—|zj|+s(|zj|—|l Dzj|) <0 if €¢>0
(24) Ty(new) = |l nz;(new|—¢|l Dz (new |- (1-¢)|z,(new| =
= |l nz (old)| —¢g|l O [I nz;(old)]| - (1-¢€) |l nz,(old)| =
= [l nz (old)|—¢ll| = (1~¢) [l] +]z,(old)| = || Oz, (old)|] =
2|l nz;(old)| —¢|l Oz, (old)| - (1-¢€)|z;(old)| = T,(old)
(29) O, = ez -¢elll<O; = glzj—elll = |g|<|z] (£>0)
(32) O, = gz —elll<O; = [ nz | —g|l Oz - (1-¢) |z <
<|zy|—ell[- (1-¢) |z)| = g|zy|—¢lll O |zj| <|z (e>0)
(33) O, = |z —elll - (1-¢) || <|l nz )| —¢lll = (1-€) |z <
<p|||—s|||—(1—s)|zj| O |zj|<p|I|
(53) |I nzj|—s|l Dzj|—(1—s)|zj|<|l|—M
(54) [z + M-I [z
€>
10z -7
Table 1
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