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An ART1 Microchip and Its Use
In Multi-ART1 Systems

Teresa Serrano-Gotarredona and Beenamares-Barranco

Abstract—Recently, a real-time clustering microchip neural en- F. (WTA)
gine based on the ART1 architecture has been reported. Such chip 2 RESET
is able to cluster 100-b patterns into up to 18 categories at a speed
of 1.8 us per pattern. However, that chip rendered an extremely @ @ @ O O @
high silicon area consumption of 1 cm, and consequently an T.
extremely low yield of 6%. Redundant circuit techniques can be J

introduced to improve yield performance at the cost of further

increasing chip size. In this paper we present an improved ART1
chip prototype based on a different approach to implement the
most area consuming circuit elements of the first prototype:
an array of several thousand current sources which have to
match within a precision of around 1%. Such achievement was
possible after a careful transistor mismatch characterization of

0.4
the fabrication process (ES2-1.0um CMOS). A new prototype
chip has been fabricated which can cluster 50-b input patterns @ @ @ O O @
A
1 I I

into up to ten categories. The chip has 15 times less area, shows a

yield performance of 98%, and presents the same precision and

speed than the previous prototype. Due to its higher robustness 1 2
multichip systems are easily assembled. As a demonstration we (@)
show results of a two-chip ART1 system, and of an ARTMAP
system made of two ART1 chips and an extra interfacing chip.

comparator

Initialize weights:

Index Terms—Adaptive resonance theory, analog circuits, ana- 4 i =1 '
log conputers, analog integrated circuits, analog processing cir- .
cuits, analog systems, ART neural networks, circuits, clustering Read input pattern:
methods, CMOS integrated circuits, CMOS memory integrated 1= A g dp)
circuits, integrated circuit design, large-scale integration, learning ¥
systems, neural-network hardware, nonlinear circuits, real-time (T] = LAllmzj‘ —LB1zj| +LA4‘
systems. 3

Winner-Take-All:

y; = 1 i-f ?"J:maxj{Tj}
I. INTRODUCTION =0 if j£J

INCE the invention of the ART1 architecture in 1987

2] many high-level neural processing systems have been
developed [3] which are based on the ART1 or more evolved
but similar architectures [4]-[8]. These high-level neural sys-
tems have internal complex structures, but many times they

are based on a small number of ART-like building blocks. Update weights:
When these high-level neural systems have to be used in z;(new) = Inz;(old)
real-world applications, portable equipments, robots, industrial

control applications, etc., it is not always possible to rely (b)

on software .pr_OQramS running On. eXper.]SIVe workstations. Ijﬁ@ 1. (a) ART1 architecture diagram. (b) Algorithmic operation description
such cases it is mandatory to build a piece of hardware that/LSI-friendly fast-learning ARTL system.

realizes physically the neural processing system. The avail-

ability of ART-like modular chips would significantly boost : : .
the proliferation of ART-based neural hardware systems. Dﬂ%t:ijlztb?end low-cost ART-like chip modules would be readily
to the inherent internal hierarchy of ART-based neural syster%\é '

their hardware realization would be significantly simplified i[)a'iggoﬁggvsvgrrgep?g?gg?:sry[g}l or[lic\)/]v aﬁ ?sozztt%r?t?l”?e?;:[y

that a fully functional reasonable size real-time clustering
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Fig. 2. (a) Circuit diagram of current-mode ART1 chip. (b) Detail of synafise (c) Detail of controlled current sourd€;.

original computational properties [11], but has a more VLSkeduction. After careful MOS transistor electrical parameter
friendly algorithmic structure. The reported ART1 chip wasiismatch characterization of the technological process to
able to cluster binary input patterns of up to 100 pixels intbe used, we were able to identify the maximum chip area
up to 18 different categories. The chip was able to classify & which the parameter variations would remain within the
input pattern and learn its relevant characteristics by updatingcessary limits to preserve the required system operation
its internal knowledge, all in less than 1/8. The chip precision. We concluded that for the ES2-14n CMOS
internal circuit architecture also allowed modular expansigitocess, for transistors of si2¢ = L = 10 um spread over

of the clustering system. Assembling ai x M array of 3 die area of the order of 2.% 2.5 mm, and for current
these chips would result in ART1 systems able to clust@yels around 10uA, the standard deviation of transistor
N> 100 pixel input patterns into up 8/ 18 categories. cyrrent mismatch is of the order of(I) ~ 1%. Taking this
Unjortunately, the resylting area consumption (and_cost.) of theo account we were able to design and fabricate an ART1
chip was extremely high (1 cfj and consequently its yield chip capable of clustering 50-b input patterns into up to ten
performance was extremely low (6%). Nevertheless, due lg.cqqries with a yield performance of 98%, and whose area
the_ fauIF—toIerant nature of the algc_mthm, _most of the faul% 15 times less than that of the first prototype. The chip
chips still were able to perform satisfactorily [1]. showed a very robust behavior which enabled us to implement

Astra|ghtforwar_d so_lutpn to the_y|e|d problem IS to InCIUde?ome multichip ART1 systems. As an illustration we will
extra redundant circuitry in the chip together with some self-

; ) . . h Its of a two-chip ART1 syst f a three-chi
testing subsystems that would identify and disconnect fau oW resutis of a two-chip system and of a three-chip

; . . : . . TMAP system.
lIs. This method i intensively in large-area high-__ . . .
subcells s method is used intensively arge-area nig This paper is structured as follows. In the next section the

density commercial DRAM chips. However, this redundancy- A . . .

based yield enhancement technique increases silicon a)r(éla?r:'f”?ndly dARTl alr?orlthm employehd '3 rewev;/edsas .We"m
requires more processing circuitry and increases design effdpt e cireuit esign that maps it into har ware. In ection
and cost [13]. In this paper a new ART1 chip is presentdte Show why the first prototype has a very high area consump-

which solves the yield problem using a different approach: arlign: how we performed a careful technology current mismatch
characterization, and how we modified the circuit to drastically

Lpercentage of fault-free chips over total number of fabricated chips. reduce its area, while maintaining system precision and speed
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Fig. 4. Simplified diagram of mismatch characterization chip and experi- 4¢¢5
mental setup.

performance. In Section IV we will provide measured experi- e
mental results of the new ART1 chip and of a two-chip ART1
system. Section V describes how to assemble an ARTMAP (b)

system and provides measured experimental results as wel. 5. Measured current for an array of MOS transistors with the dame
- . . and V), s voltages (for a nominal current of 10A), spread over a die area
Fma”y’ we conclude in Section VI. of 2.5 x 2.5 mm. (a) Array of NMOS transistors and (b) array of PMOS

transistors.
Il. VLSI-FRIENDLY ART1 ALGORITHM

AND CIRCUIT IMPLEMENTATION was described by sets of nonlinear differential equations. It
An ART1 system is a self-organizing neural associativgas also mentioned that the operation of the system could
memory capable of generating in an unsupervised way stabf described by an algorithmic flow diagram which basically
recognition codes in response to a series of arbitrarily marlgscribes the steady state of the differential equations. This
arbitrarily ordered, and arbitrarily complex binary input patalgorithmic description was named as fast-Learningmode
terns. As shown in Fig. 1(a) the ART1 architecture consist operation. Fig. 1(b) shows a modified version of the original
of two layers. The bottom layeF; has N nodes each of fast-LearningART1 operation which has a higher potential
which receives theth binary pixelI; of the external input for VLSI circuit implementations. It has been shown that this

patternI = (I;, ---, In). The top layerF, has M nodes, algorithm preserves all the original computational properties
each of which represents a learned category or cluster affan ART1 system [11]. The operations to be performed are
input patternsy;(; = 1,---, M). Each F; layer node: the following.

connects to allFy layer nodes through binary weights; 1) Reset all binary weights;; = 1.

which can be either “0” or “1.” Eacht, layer categoryj 2) Read a binary input vectdr= ({y,---, In).

is characterized by the set of weights = (z1;, -, zn;) 3) Compute a set of analogHtoice functionsor distances
that connects to it. Every time an input pattdris presented N N

to the input layerF; an internal search process starts which, L o B

when finished, results in activating a sindle layer category. Ty =La ; Lizij = Lo ; #ij L @)

This category is the one that best represents the input pattern . )

according to the value of a vigilance parametewhich can or in vector notatiof

be tuned vylthm the mterva_ll [0,1]. For small values many T; = Lo[INz,| — Lp|z;| + Lus. )
patterns will be clustered into the same category, while for

high p values only very similar patterns will be considered 2Given a vectora = (a1,--, ax), the notation|a| represents itss

to belong to the same category. In the Orig_inal ART1 papggim la] = 2;”21 la;|, and the intersection operator between two vectors
by Carpenter and Grossberg [2] the operation of the systesresents the component-wise logical AND operation.
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Fig. 6. Measured currents of theg array for the new ART1 chip prototype.

4) Select the maximum among aflZ;}. If T is this of the WTA is
maximum then the/th F; node is set tay; = 1 while

N N
all others are set tg;.; = 0. Hence, layerF, acts as Tj =L, Zzijli — Ly Zzii + Ly
a winner-take-all (WTA). oy oy
5) Check the vigilance criterion: ip[I| > [I N z;| the =LAlINz;| — Lp|z,| + Las. (5)

criterion is not satisfied. In such case, for¢g = 0

and return to Step 4). Otherwise, the criterion is satisfied Note that current », is provided by current mirror CMM to
and the weightz; must be updated to incorporate theall N; nodes. Similarly, the total input current to each mirror
characteristics of patterhinto category. CMBj is

N
2Ji (new) =1Lizz (Old) (3) L Z Ziin _ LA|I N Zj|. (6)
=1

or in vector notation
Fig. 2(c) shows the circuitry for each cefl;. This cell

@) drains a currentf 4 I; from nodeN"”. The total input current
for the p-gain mirror is thusL 4 |I|. This current, amplified by

. . . . factorp, is replicated by mirror CMC and compared against
The way this algorithm can be implemented in a parallglaCh current s[I N z;| at each CG current comparator. If

analog current-mode processing circuit is depicted in Fig. 2(5)
It consists of a 10x 50 array of synapses,;, a 1 x 50 pLA|T| > LAlINz| 7)
array of controlled current sourc&s, two 1 x 10 arrays of

unity-gain current mirrors CMA CMBj, a 1 x 10 array of comparator C¢ deactivates the WTA input currerf;, by
current comparators GCa ten-input WTA circuit, two unity- making the WTA control input; = 1. This way, currentl’;
gain current mirrors CMM and CMC, and an adjustable-gaiill not compete in the WTA. Consequently, only the currents
(0< p < 1) current mirror. Registerg?; and the NOR gate 7 that meet the vigilance criterion (7) will compete. The
are optional. The circuit diagram of a synagsse is shown in  maximum among thesg; currents, let us call it’;, will make
Fig. 2(b). It contains three current sources, a latch, and a sefjgf= 0 while the rest becomg,z; = 1. Once a single winner
NMOS and PMOS transistors acting as switches. The stateyofis active theLEARN signal can be activated making

the latchz;; is set to “1” by activating the RESET signal prior
to circuit operation, or is set to “0” during circuit operation zyi(new) = Lizzi(old). (8)

if LEARN = 0,1; =0, andy; = 0 simultaneously. The  Ap yncommitted £, node y; is one that has not yet
synapse generates two currents, one of vdlue;;; which  peen selected as a winner. Such nodes have their initial
is drained from nod_eN]" in Fig. 2(a), and another of Vallueweight valuesz; = -+ = zy; = 1. Consequently, their
Lazijli — Lpz; drained from nodeV;. NodesN; and NV; — corresponding row of synapses will generate the same current
are shared by all synapses in the same row. Consequently, the

total input current to mirror CMA and injected to input; T |uncommitted = La|I| — LpN. 9)

zy(new) =1INz;(old).
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Fig. 8. Training sequence for a two-chip ART1 system with= 0.5 and
o = 2,

g-stages cascade is given by

O—%otal :O—%+O—§++O—3 (10)

The last stage is the most numerous and will occupy most
of the area. Pure random mismatch is inversely proportional to
o BEEEERRER transistor area and current level [12]. If we want to kegp;q;

around 1%, each stagemust have smaller errors. In our first
Fig. 7. Training sequence for a one-chip ART1 system witk= 0.3 and ART1 prototype chip [1] most of the die area was spent by the
a = 1.1. gth stage of common centroid low-mismatch multiple-outputs
current mirrors. The resulting ART1 chip had a die area of

The function of the shift registeR; is to enable only one 1 cn? while having a 100-nodé} layer and an 18-nodé’
uncommitted cell to compete for the winner. Every time al@yer.
uncommitted cell wins, the shift register content is shifted one The yield performance of a microchip has the following
position and the next uncommittel, node is enabled for approximate dependence on die af&a
WTA competition. The NOR gate signals that @} nodes yield(%) = 1006709 (11)
are already committed.
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where, for this technology the estimated average defect density
[ll. YIELD AND AREA OPTIMIZATION BY is pp ~ 3.2 cmt. For & = 1 cn? vyield results to be
PROCESSMISMATCH CHARACTERIZATION around 69¢ Although most of the faulty chips rendered

From a system precision point of view it is importan??‘tiSfaCtory clu_sterin_g behavior [1] we decided to increase
to make all L, and Ly current sources to match withinYi€ld by reducing die area. In order to keep the system
the required precision. When we designed our first ARTAT€ciSion around 1% without using a large-area-consuming
prototype [1] we had no information concerning the |Ongee-llke mirror structure a caref.ul long distance mismatch
distance matching behavior of large arrays of current sourdd¥racterization of the technological process to be used was
for the technology we were using. Therefore, we decided to U3eceSSary. _ _ _

a mirror tree-like structure to generate all current sources from?> SPecial purpose chip was designed in the ES27ind

two external L4 and Ly current references. This approactMOS technology to estimate the matching behavior of large
is shown in Fig. 3. Each multiple-output current mirror hagqnmstor arrays, for different tranIS|stor sizes. The chip con-
at the most ten outputs. Each current mirror was laid offinS @ matrix of cells, each of which has several NMOS and
using common centroid techniques, thus minimizing gradierﬁMQS transstors of several sizes, plus a_tran5|stor se_lectlon
induced mismatch at the expense of increasing die areaCifcuitry- Fig. 4 shows schematically the chip together with an

each current mirror of stagé introduces a mismatch error€Xperimental set-up to measure all transistors. In the chip all
characterized by a standard deviatigg, the total error of @  3The chip pad ring area is not included in the yield computation.
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Fig. 9. ARTMAP architecture.

NMOS and PMOS transistors have their sources connected to

pin DN, all PMOS transistors have their drains connected
to pin DP, all transistors have their gates short-circuited—

TABLE |

pin S, all NMOS transistors have their drains connected 1o CURRENT MISMATCH COMPONENTS FORTRANSISTOR ARRAYS WITH 10 pA
' NOMINAL CURRENT, 10pm x 10 gzm TRANSISTOR SIZE, AND

2.5 x 2.5 mm De AREA FOR THEES2-1.0pem CMOS RROCESS

1189

to their sources, except for one pair of NMOS and PMOS

transistors. This pair has their gates connected to the exterfid

pin G. A digital bus and internal decoding circuitry select':;

one pair among all. By connecting a curve tracing instrumes

(in our case, the HP4145) to pits G, and DN the selected —3

NMOS transistor can be accessed and characterized, while By

using pinsS, G, and DP the selected PMOS transistor can 6

be measured. This technique has been used to characterize_fhe,

mismatch behavior of several technological processes [14]. i

For transistors of size 1Am x 10 pm spread over a chip
area of 2.5 mmx 2.5 mm, biased by the same gate-to-source
Vas and drain-to-sourcé’ps voltages so that their nominal
current was around 1pA, we measured the current spreads
depicted in Fig. 5. Fig. 5(a) shows, as a function of transistor

NMOS PMOS
a(ar) (%) s (%) | r o |opu) (B)|ocary (%)| au(%) | |opU,) (%)
057 130 [2652| 067 0.58 153 [ 2278 067
0.62 198 [ 1.874| 083 0.47 074 [3830] 051
047 309 [0921] 079 048 082 [3519] o051
0.52 090 [3456| 056 0.40 218 [1.100] 0.63
0.54 165 [1959 | 0.64 0.46 060 |4.666| 049
0.58 301 |1160] 088 0.45 218 [1236] 072
0.65 1.96 [ 199 [ 0382 0.44 083 [3.171} 050
0.73 215 {20271 090 041 128 1926 050
60(AIL,). Let us now define
. 6o (AIL) (14)
INE

position, the current measured for each transistor of an NMQS the ratio between noise component and gradient component
array. Fig. 5(b) shows the same for a PMOS array. As can Bgntributions. Table | shows these ratios measured for NMOS
seen, the surfaces present a long distance gradient compoR@atPMOS transistors of size 20 x 10 zm, driving nominal

and a short distance noise component. Let us call the measwgfents of 10 pA and for different chips. Also shown in
currents surfacé, (z, y). For this surface we can compute theraple | are the standard deviations of the noise component
best fit planelf(z, y) = Az + By + C. Then, for each point ;(Af,), the maximum deviation of the gradient component

(z, y) we can define
AIo(xv y) = Io(xv y) - Ig(.’L’, y)

By computing the standard deviation A, (x, y), c(AL,),
we are extracting the noise component of surfdger, y).
The gradient component is defined by plaffz, y). The
maximum deviation due to the gradient component is giv%
by

(12)

AP = max {IZ(x, y)} — min {IL(z, )} (13)

AI?, and the total standard deviation of transistor currents
or(l,), computed as

O’T(Io) = \/ I_g d I_OQ.

The current mirror tree-like structure of Fig. 3 was intended
to suppress the gradient component of a 2 chip. The noise
mponent can only be reduced by increasing transistor area
[12]. Table I reveals that for die areas of 2.5 mm2.5 mm,
transistor sizes of 1@&m x 10 zm, and nominal currents of

(15)

10 1A, the contribution of noise component is equal or higher
On the other hand, for the noise component, 98% of tlilean the gradient component, while the standard deviation of
points remain within thet30 (A1) interval. Consequently, let current mismatcler(1,) is kept below 1%. Consequently, for
us define the maximum deviation due to the noise componehése dimensions we can avoid the use of high area consuming
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Initialize weights:

b
a — —_— -—
2 =1 |, Zlk_l s wjk—l

Initialize: P,

Read input pattern:

a=(a,, "’aN.,) s bE(bl,...bNb)
ART]? A ART1P
g b~ b b bl 4 b
T¢ = Lala nag| - L|z¢| + LY, Th = Lh|b ~ 2| - Lg|eb| + LY,
Winner-Take-All: Winner-Take-All:
y§ = 1if T§=max {T}Ha yb = 1 if Th = max {T}}
yE=0if j#J yb = 0if k2K

plal > |a " zﬂ

Update weights:

z§ (new) = anzj(old)

z (new) = bzt (0ld)

w, (new) = y”mwj(old)

Fig. 10. Flow diagram of ARTMAP training mode operation.

circuit structures (like common centroid mirrors arranged inaion experimental results are described as well as results for
tree-like fashion) to eliminate the gradient component, amystems assembled with several ART1 chips.

directly implement a single current mirror with all the outputs

needed. This is the approach we used in the present ART1 |V. EXPERIMENTAL RESULTS OFART1 SYSTEMS

chip prototype. This chip has a die area of 2.5 n¥m2.2 All ten fabricated chip samples were fully operational and
mm, and contains an array of 5010 synapses, each synapsgyr none of them we were able to detect any fault in its
with two L 4 and oneL current sources. The current sourcegypcircuits. All system components could be isolated and
transistors are of size 10m x 10 ym and drive a nominal jndependently characterized. The circuit performances of the
current of 10pA. Fig. 6 shows the measured currents of thgifferent subcircuits were similar to those of the first prototype
Lp array. Table Il shows the measured values of the mismatgl), and consequently their characteristics will not be repeated
components of thd. .4 and L current sources arrays for allin this paper. Here we will only provide some illustrative
fabricated chips. Note that the total current mismatch standaiamples on system level behavior.
deviation is less than 1% for all chips. Although the chip is analog in nature, its inputs and outputs
Due to the much smaller chip area its fabrication cost &re digital. Therefore, it is possible to test its system level
much less and its yield performance is significantly highebehavior using a digital test equipment (in our case, the
98% by applying (11). In the next sections single chip opeHP82000). This equipment applies digital input vectds (
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TABLE |l Read input pattern:
MEASURED MISMATCH COMPONENTS FOR —_— =
THE FABRICATED ART1 CHIP PROTOTYPES a = (aj,a, ...ay)
L, current sources Ly current sources v
chip | o(ar)y (%) | (%) r oyt (%) | o) (%) | ar(%) r|opu,) (%) T8 = Ls |a N zz_zl _Lglqu +Lg,
T | 063 | 130 |2694] 071 062 | 062 |6076] 062 ! / /
2 0.51 0.68 5.311 0.62 0.59 0.22 | 16.497 0.60
3 0.68 191 |2128| 081 0.56 332 | 1015 | o089 Winner-Take-All:
4 0.59 028 [12607] 0.61 0.63 090 | 419 | 064 y¢=1if T¢= maxj{Tj“}
5 0.64 127 3.204 0.69 0.65 1.83 2.118 0.76 y4 =0 if jEJ
6 0.65 1.29 3.028 0.71 0.64 1.49 2.565 0.73 J
7 0.66 0.41 9.535 0.68 0.60 1.58 2255 0.67
8 0.64 0.92 4.174 0.67 0.62 1.48 2.524 0.71
9 0.79 220 2,157 0.91 0.63 0.37 | 10.080 0.63
10 0.74 043 |10.368 0.75 0.57 2.16 1.573 0.73
reads digital output vectors), and reads the internal weights
(z:;) at each processing step. Three external reference currents
need to be supplied to the chif.4, Lg, and L,;. Current b

Lys [see Fig. 2(a)] is needed to assure that all curréjts

reaching the WTA are positive. The ART1 system behavior I'L_§g. 11.

controlled by two externally adjustable parameteranda. p

is the gain of a current mirror and is adjusted through a digital

word applied externally [1], whilex = L4 /Lp is controlled ARTMAP system is a supervised learning neural network

by appropriately setting currentss and L g. that learns the correspondence between two simultaneous
To test the system behavior it was trained with a set of tépput patternsa and b. Two modes of operation can be

7 x 7 = 49-b input patterns. Each pattern represents each @stinguished:

the ten digits from “0” to “9.” The last input pixel was always <« Training Mode, during which pairs of input patterns

set to zero and it is not shown in the figures. The classification (a, b) are provided, and the ARTMAP system learns their

of the set of input patterns was repeated for different values correspondence.

of the vigilance parameter and several values of parametes Prediction Mode, during which only patternsa are

a = La/Lp. provided to the first ART1 subsystem, and ARTMAP
Fig. 7 shows the training sequence fot 0.3 anda = 1.1. predicts the corresponding ART tluster.

The first column represents the input pattern applied to therig. 10 illustrates the algorithmic description of ARTMAP
system. The remaining ten columns correspond to the weigBiseration in training mode [7]. After reading two input vectors
z; stored in each category when the input pattern has begmand b each ART1 module selects af, winning node
classified and learned. The boxed category is the Winnir(lg; for ART1® and % for ART1%) that meet their vigilance
category after the WTA competition. In this case, learningiteria. The inter-ART module, which is simply avf, x M,
self-stabilizes after two input pattern presentations. That is, Btay of binary weightsw,;, initially set to “1,” learns the

modification of the winning category or the stored weightsorrespondence between the ARTinning categoryy% and
take place in subsequent presentations of the input pattgig ART? one % by making
sequence. As shown in Fig. 7, the system has clustered all

Flow diagram of the prediction ARTMAP operation.

ten input patterns into four categories. Wy = {1 if k=K (16)
A two-chip ART1 system was assembled. In this case, the 0 otherwise

input patterns had0 x 10 = 100 binary pixels. Fig. 8 depicts , i

a training sequence performed on this system. The systgfn In vector notation

classifies the ten input patterns into eight categories after a b

single presentation of the input pattern set. The sequence of w(new) =y" N wy(old). 17

Fig. 8 was obtained for a vigilance parametempof 0.5, and . " b
a = 2(Ly = 10uA L = 5 uA). However, if ARTY categoryy$ and ARTZ? categoryy’,

become simultaneously active and the Inter-ART weight
has already been set to “0,” this means that ARTategory
V. ASSEMBLING AN ARTMAP y; has already been assigned to a different ARTategory.
SYSTEM USING ART1 CHIP MODULES In this case ART1 vigilance parametep, is increased until
An ARTMAP system [7] consists of two ART1 subsystemg deactivates and a different ARTLategory is selected.
connected through anter-ARTmodule, as depicted in Fig. 9. During the prediction mode of operation subsystem ART1
Leta = |a, -+, an,| be anN,-dimensional input vector does not receive any inputs. Only subsystem ART#-
to the first ART1 subsystem ARTlandb = |b;, -, by,| ceives external input patterns and selects a winning category
an N,-dimensional one for the second ART4ubsystem. An y4%. ART1® outputs, which are the outputs of the complete



1192 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

@

c c ¢ — yb
LMy | “2.M, Mo M)y Iu,
€2
€11 €1
Ta oa
Y Y2

(b) (©
Fig. 12. (a) ARTMAP hardware assembly. (b) Diagram of Inter-ART chip. (c) Detail of Inter-ART chip cell.

ARTMAP system, are activated by the Inter-ART module not shown in Fig. 12(c), are also included to read out the
M, weight values. During training mode the value of weightx
b = Z Wiyl = wak g, k=1, M, (18) s used to control a digital co.un'ter that mcrements thg value
of p.. If wyi the counter will increase its value until the
) ) ) ) ART1® winning category changes and;; becomes “1.” At
or equivalently in matrix notation this moment the counter stops and its content represents the
v’ = Wy® (19) appropriate value fop,. _
The system level operation of the ARTMAP hardware
whereW is the weight matrix of the Inter-ART module. system has also been tested using the HP82000 digital test
According to the way the Inter-ART weights;;, are set, equipment. Fig. 13 shows a system training sequence. The
for each ARTZ active category only one ARTXategory will first column, namedh, represents the input patterns applied
be chosen, but an ARTIcategory can be activated by morao the ARTE chip. The column nameB represents the input
than one ART? cluster? Fig. 11 shows the algorithmic flow patterns applied to the AR'T'lchip_ The columns namez{‘;
diagram of the ARTMAP prediction mode operation. andz?, represent the stored weights in the ARTdnd ARTZ
An ARTMAP hardware system can be assembled using tWgodules after the classification and learning of each input
ART1 chips and an extra chip for the Inter-ART modulépattern pair. The boxed categories are the ones that remain
as is shown in Fig. 12(a). The Inter-ART chip, shown iRctive after the search process has finished, and these are the
Fig. 12(b), is simply an array of cells;; whose simplified o1y ones that are updated with learning. Below each ART1
schematic is depicted in F|g 12(c). Each cell Pa,t,s_a latch \yinning category the final value of the vigilance parameter
which is set initially to “1" and changes to “0" il/j = ' heeded in the search process to choose this category
1,y£ = 0, and theLEARN ignal is high. Extra transistors,q indicated fo was increased in steps akp, = 1/32).
4This is true unless the input pattesnactivates an uncommitted ARF1 The last column shows the stored weights in the inter-ART
£ node (patterra is not recognized as belonging to any ARTgategory). module which represent the learned correspondence between
In this casew;, = 1Vk, and all ART? F, nodes would be activated, me ARTY and ART? categories (indey is coded vertically

implying that the applied input pattern is not recognized as belonging to a o . -
of the learned categories. from top to bottom, while indeX% is coded horizontally from

=1
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Fig. 13. Complete training sequence of the ARTMAP system gt/

= 0 andp, = 0.75.
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Fig. 14. Recognition sequence performed on the ARTMAP system trained in Fig. 13. Applied input patterns are noisy versions of the training set.



1194 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

left to right). The vigilance parametes, was initially set [8] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.

to “0” and the current ratio parameters weke® (: ab = Rosen, “Fuzzy ARTMAP: A neural-network architecture for incremental

a,b ab . supervised learning of analog multidimensional magg&EE Trans.
2,L%" = 10pA and Ly" = 5pA). For the ARTE system it Neural Networksyol. 3, pp. 698-712, Sept. 1992.
was p, = 0.75. For this vigilance parameter, the ART&hip  [9] S. W. Tay and R. W. Newcomb, “VLSI implementation of ART1
forms a distinct category for each input pattern memories,”|[EEE Trans. Neural Networksjol. 2, pp. 214-221, Mar.

. . ’ 1991.

Fig. 14 shows the results of a prediction sequence. NQ] T. P. Caudell, “A hybrid optoelectronic ART1 neural process@pl.

instead of showing all stored? and z; templates, only the Opt., vol. 31, no. 29, pp. 6220-6229, Oct. 1992.

- : [11] T. Serrano-Gotarredona and B. Linares-Barranco, “A modified ART1
categories of the chosefi; nodes are given. The top row algorithm more suitable for VLS| implementationgyeural Networks,

shows the sequence of applied input patterns. The second row vol. 9, no. 6, pp. 1025-1043, 1996. '
shows the ART% categories chosen by the chip after eac2l M.J. M. PelmgéA' C.J. DU"EE??“;'}% /; P. GC-_We!bEFT,;Z/'aICh'ng
search process. The third row shows the AREategories E;%%e_ri'izoo oot fgggf'smrsl - Solia-State Circuits(ol. 24, pp.
that the corresponding ART1categories have learned to[13] N.R. Strader and J. C. Harden, “Architectural yield optimizatidzdfer

predict through the Inter-ART weights. Note that the applied —>¢ate L;‘;egg?“cl’?g- E. Swartzlander, Jr., Ed. - Boston, MA: Kluwer,

input patterns are corrupted versions of the ones used durifig 1. serrano-Gotarredona and B. Linares-Barranco, “Systematic CMOS
learning. transistor mismatch characterization,” Rroc. 1996 IEEE Int. Symp.
Circuits Syst. (ISCAS'96Atlanta, GA, 1996, vol. 4, pp. 113-116.

VI. CONCLUSIONS

An improved-yield ART1 chip has been designed, fabri-
cated, and tested. Original prototype yield was 6% for ¢
ART1 chip with 100F; nodes, 18F; nodes, and a die area
of 1 cn¥. Present prototype yield is 98% with a die area 1
times less, 5@ nodes, and ted» nodes, while maintaining
the same speed and precision. Yield improvement was p
sible after a careful large CMOS transistor arrays mismat
characterization. This enabled us to identify the maximu 4

hip area for which gradient-induced mismatch is of the sar she was enrolled in the M.S. program from the
chip g g . oo Department of Electrical and Computer Engineering
order or less than pure random mismatch, while maintainingthe Johns Hopkins University, Baltimore, MD, where she is sponsored by
the targeted operation precision. Using this information eml'ju'bfight Fer']'QV‘t'ShiP-t elud o circuit desian of 4 roni

. . . . er researcn interests Incluae analog Circuit design ot linear ana nonilinear

opUmum dl(—:: area ART1 Promtype \_/vas_ de§|gned for Whlcglrcuits, VLSI implementations of neural computing and sensory systems, and
no gradient-induced compensation circuitry is necessary, thus! electrical parameter characterization.
a"owing a much more Compact design, and Consequentlépl'. Serrano-Gotarredona was corecipient of the 1995-1996 |E&EIST

ith signifi Vi d vield £ A hi ACTIONS ON VLS| SysTeEms Best Paper Award for the paper “A Real-Time
with significantly improve yield performance. two-chibcjystering Microchip Neural Engine.”
ART1 system and a three-chip ARTMAP system have been
assembled and measured experimental results on their system-
level behavior are provided.
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