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1.  Introduction

Chaos in electrical circuits has drawn strong attention during the last decade [Chua, 1987;

Chua & Hasler, 1993]. This topic is of evident theoretical interest since circuits provide

very simple vehicles for the experimental observation of chaotic phenomena (instead of

only through computer simulation). Chaos is also of practical engineering interest. For

instance, the inherent unpredictability of deterministic chaos has been used to design

improved white and colored noise generators [McGonigal & Elmasry,1987; Rodríguez-

Vázquezet al., 1991; Murch & Bates, 1990; Delgado-Restitutoet al., 1992], as well as for

the generation of secure random number time-series [Bernstein & Lieberman, 1990;

Rodríguez-Vázquezet al., 1991]. The random-like appearance of chaos has also proven
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useful to improve the noise performance of switched-capacitorΣ∆ modulators, making

these circuits operate in chaotic regimes [Schreier, 1991; Hein, 1993]. Chaotic circuits also

exhibit potential applications in nonlinear signal processing and neural computation. On

one hand, the possibility of two or more chaotic systems oscillating in a coherent, synchro-

nized way can be exploited for signal encryption and secure communications [Carroll &

Pecora, 1991; Oppenheimet al., 1992; Kocarevet al., 1992]. On the other, the fact that

chaos has been identified to be behind the sensory information processing performed by

natural nervous systems [Matsumotoet al., 1987; Freeman, 1992], motivates looking for

artificial neural network paradigms based upon chaotic neurons, in an attempt to better

emulate living beings [Aiharaet al., 1990, Nozawa, 1992].

In today’s electronic systems, economic reasons dictate the convenience of having all

component parts integrated on common silicon substrates, instead of breadboarded using

off-the-shelf components. In this scenario, and before the potentials of chaotic circuits can

be exploited into future marketable instrumentation, communication, or computing systems,

it must be demonstrated that chaos can be generated in a controllable and robust form using

monolithic circuits, preferably instandard VLSI technologies.

Up to date, only few of the previously reported chaotic circuits have been realized as

monolithic†1 integrated circuits. In 1987 [Rodríguez-Vázquezet al., 1987], the authors

started a research line in this direction which has resulted in a number of CMOS chips.

Some of them are described byfinite-difference equations (FDE’s), while others are

described byordinary differential equations (ODE’s). In 1991 a programmable integrated

noise source was presented based on the Bernoulli shift [Rodríguez-Vázquezet al., 1991]. It

usesswitched-capacitor techniques, the same as in the flicker noise generator presented in

1992 [Delgado-Restitutoet al., 1992]. In 1993, an integrated circuit for white noise genera-

tion was presented [Delgado-Restitutoet al., 1993] which uses nonlinearswitched-current

techniques [Rodríguez-Vázquez & Delgado-Restituto, 1994]. Although all these ICs are

simple and robust, their sampled-data nature restricts the maximum frequency attainable. In

1993 an integrated chaotic generator was presented which overcomes this problem through

the use of continuous-time circuitry to realize ODE’s [Rodríguez-Vázquez & Delgado-Res-

tituto, 1993]. Other working†2 ICs intended to be used as parts (together with off-chip com-

ponents) of chaotic electronic systems are found in [Cruz & Chua, 1993], [Delgado-

Restituto & Rodríguez-Vázquez, 1994] and [Horio & Suyama, 1995]. However, they are

basically intended to be used as modules of larger breadboarded chaotic circuits.

1. By monolithic we mean all the needed components are fabricated on the same silicon substrate.
2. Chips demonstrated only through simulation results are not included.



4 Bifurcations and Synchronization using an Integrated Programmable Chaotic Circuit

The chip presented here is an updated version of that in [Rodríguez-Vázquez & Del-

gado-Restituto, 1993]. The original one was basically aimed to prove the possibility to build

an ODE-based chaotic generator in a fully monolithic manner. Although this goal was

achieved, the circuit suffered from the problems of such demonstration IC units: rather

tricky controllability and difficult to use by others except the designers. The new chip over-

comes these problems. It is easy to use and control, and its robustness has been significantly

enhanced through system-level and circuit-level optimization. It has been fabricated in a

2.4µm double-poly double-metal CMOS technology, and occupies 5mm2 with a power con-

sumption of 1.8mW for a 5V voltage supply. A remarkable feature of the new prototype is

its versatility for the observation of bifurcation and synchronization phenomena by just con-

trolling a few external bias currents.

The outline of the paper is as follows. Section 2 introduces the state equations of the

oscillator, details the output pins description of the chip as well as their electrical character-

istics, and identifies which terminals serve as programming variables of the dynamic behav-

ior. Sections 3 and 4 are tailored to illustrate the performance of the prototype through

experimental measurements of bifurcation and synchronization phenomena, respectively.

Finally, Sec. 5 gives a theoretical basis for the functional description introduced in Sec. 2

and presents the internal block diagram of the chaotic oscillator, ignoring as much as possi-

ble microelectronic-related details.

2.  Chip Terminals and Interconnections

Fig.1(a) shows the pin connections and internal structure of the integrated chaotic generator

and Fig.1(b) shows the experimental setup. The chip architecture comprises acore chaotic

oscillator and some auxiliary circuitry (three voltagebuffers and a time constantreference

unit) to increase the versatility of the prototype. The chip has 16 external pins.

The most important block in the architecture of Fig.1 is the core chaotic oscillator. It

implements a third order autonomous continuous-time system, which includes an odd-sym-

metric, three-regionpiecewise-linear (PWL) nonlinearity,

(8)

where  (see Fig.2) is given by,

(9)

τ
td

dx1 h x1( ) αx2+= τ
td

dx2 α x1 x3–( ) γ x2–= τ
td

dx3 βx2=

h( )

h x1( ) m1x1

m0 m1–

2
------------------- x1 Bp+ x1 Bp––{ }+=
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The behavior is determined by seven parameters. Four of them, , are

externally programmable. The other three, , have fixed values.

The programmable parameters are controlled through the low impedance inputs

, ,  and . They have DC levels around−0.5V, and the controlling

τ m0 m1 andBp, ,
α β andγ,
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Fig. 1.  (a) Chip architecture; (b) Experimental setup showing oscilloscope, chip with
four tuning resistors, and the battery pack.
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variables are the currents entering the terminals. Because of the low-impedance feature,

each current can be generated using a simple resistance (see inset of Fig.1).  sets the

time constant  of the chaotic oscillator ( ) which thus can vary approxi-

mately between  and .  and  set respectively the central  and

outer  slopes of the nonlinearity. Achievable ranges are between 0 and 5 for , and

between -1 and -3 for . Finally, , together with , controls the breakpoints

of the nonlinearity ( ). Table I shows the electrical characteristics of

Fig. 2.  Nonlinearity of the chaotic oscillator.

h(x1)

x1Bp

−Bp

m1

m0

m1

Characteristic Symbol Min Typ Max Unit

Positive Power Supply Voltage 2.0 3.0 5.0 Vdc

Negative Power Supply Voltage -2.0 -3.0 -5.0 Vdc

Tuning Parameter,

( )
1.0 1.5 5.0 µA

Bifurcation Parameter,

( )
0.0 1.5 10.5 µA

Bifurcation Parameter,

( )
1.0 2.5 4.5 µA

Amplitude Parameter,

( )
0.2 0.3 0.7 µA

Table I:  Electrical characteristics (typical conditions are for reproducing the Chua’s
double-scroll attractor).
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I cont4
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the control pins at room temperature, as well as the range of biasing conditions of the chip,

assuming that power supply is symmetrical with respect to ground ( ).

Fig.3 shows the variation of the realized nonlinear characteristic for different parame-

ter configurations. They have been obtained by varying quasi-statically from rail to rail the

voltage at pin  of Fig.1, while fixing the output pins  and  to ground. Fig.3(a) illus-

trates the effect of changing the biasing current , while keeping the rest of control

variables constant ( ,  and ). Note that as

the  value is increased by the effect of lowering , the nonlinear characteristics suf-

fers from a breakpoint displacement towards the power rails, which may preclude the exist-

ence of chaotic regime. This problem can be overridden by forcing a proper reduction on

the current . Fig.3(b) illustrates the effect of varying  while keeping the rest of

control inputs fixed (  and the biasing currents  and  as before).

Finally, Fig.3(c) and (d) show the variation of the nonlinear characteristic for different

slopes  and  of the central and outer pieces, respectively. As previously stated, they

can be externally controlled through biasing currents  and  applied to pins

VDD VSS–=

Fig. 3.  Variation of the PWL characteristics of the nonlinearity with: (a) ; (b)
; (c) the central slope,  (control variable ); and (d) the outer

slopes,  (control variable ).
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 and , respectively.

Output pins ,  and  are high impedance nodes which correspond to the state

variables of the core chaotic oscillator. Since these state variables are voltages, and because

of the high-impedance feature (about 1.5MΩ under usual operation conditions), significant

loading errors may appear when measuring at these output terminals. These loading prob-

lems are alleviated by using the low-impedance buffered output pins ,  and

 (their output impedances are below 200Ω under usual operation conditions).

A time-constant reference unit has been also included (see Fig.1) to guarantee proper

parameter matching among synchronizing chips. For synchronization to occur, it is neces-

sary not only to have good relative parameter matching inside each chip (guaranteed by our

adopted design strategies), but also good relative matching among the same parameter at

different chip instances. This is difficult to achieve without tuning because of uncontrolla-

ble random fluctuations, as well as variations with temperature and aging. Due to this,

designers have to face a scenario where parameters have around 20% errors --  intolerable

to guarantee the asymptotic synchronization of the oscillators.

Fig.4 shows the block diagram of the automatic tuning circuitry. The on-chip refer-

ence unit simply consists of an integrator matched with those in the core chaotic oscillator.

The time constant of this integrator (master system) is tuned to an accurately defined exter-

nal reference frequency. If all the integrators included on-chip are simultaneously tuned, the
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time constant of the oscillator (slave system) is related to the reference frequency as well.

The accuracy of the tuning mechanism is determined by the matching of on-chip compo-

nent values (absolute errors of about 1-2% can be obtained). Note that tuning is based on

amplitude detection. Pins  and  in Fig.1 represent respectively the input and output

nodes of the integrator. A voltage-mode crystal oscillator is applied to  and the changes

in the output amplitude (measured at pin ) with the frequency of the reference signal,

are detected and used to tune the system. The control signal  generated by the system

in closed loop is converted to a current and then applied to pin  so that the time con-

stant of the circuit becomes locked to that of the external crystal oscillator. Proper operation

of the proposed tuning mechanism relies on the integrator be offset-free. Otherwise, the out-

put amplitude will change linearly with time regardless of the signal provided by the crystal

oscillator. To avoid this situation, an offset correction terminal (pin  in Fig.1) is added to

the scheme, so that any deviation can be externally compensated.

3.  Experimental Bifurcations

Next, we present a picture book of bifurcation sequences, chaotic attractors and peri-

odic windows which has been measured on the silicon prototype by changing the bias cur-

rents  and . The other programmable parameters were set to

and . The book comprises Fig.5 through Fig.21. Among them, the first

seven figures illustrate corresponding instances of a typical period-doubling route to chaos

which have been obtained by only varying the biasing current  while fixing

.

For each value of  and  (indicated in the associated figure captions) along

the picture book we show the phase portraits of the attractor, the power spectrum of the

voltage at pin , and the time waveforms of the three state variables. In both the Lissajous

figures and time waveforms, the representation scale for the  state variable is set to

. Corresponding oscilloscope scales for the  and  variables are

 and , respectively. The waveform temporal basis is

for Figs.5-8, and  for Figs.9-21. Finally, for the horizontal scale of the spec-

trum, the left side of the display is nearly DC, with , while the vertical scale is

.

The experimental results obtained from the prototype are in full accordance with mea-

surements previously reported from discrete component realizations [Chuaet al., 1993].
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Fig. 5.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.0 µA= I cont3 2.35µA=

Projectionx1 - x2 Projectionx1 - x3 Projectionx2 - x3

Period-1 Limit Cycle
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Spectrumx1
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Fig. 6.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.04µA= I cont3 2.35µA=

Period-2 Limit Cycle

Projectionx1 - x2 Projectionx1 - x3 Projectionx2 - x3

Waveformx1 Waveformx2 Waveformx3

Spectrumx1
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Fig. 7.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.065µA= I cont3 2.35µA=

Period-4 Limit Cycle
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Spectrumx1
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Fig. 8.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.07µA= I cont3 2.35µA=

Birth of the Rossler-like Chaotic Attractor

Projectionx1 - x2 Projectionx1 - x3 Projectionx2 - x3

Waveformx1 Waveformx2 Waveformx3

Spectrumx1
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Fig. 9.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.12µA= I cont3 2.35µA=

Rossler-like Chaotic Attractor
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Spectrumx1
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Fig. 10.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.135µA= I cont3 2.35µA=

Birth of the Double Scroll Chaotic Attractor

Projectionx1 - x2 Projectionx1 - x3 Projectionx2 - x3

Waveformx1 Waveformx2 Waveformx3

Spectrumx1
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Fig. 11.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.15µA= I cont3 2.35µA=

Double Scroll Chaotic Attractor
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Fig. 12.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.24µA= I cont3 2.47µA=

3-3 Periodic Window
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Spectrumx1
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Fig. 13.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.47µA= I cont3 2.56µA=

Double Scroll Chaotic Attractor
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Spectrumx1
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Fig. 14.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.62µA= I cont3 2.56µA=

4-4 Periodic Window
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Spectrumx1
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Fig. 15.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.60µA= I cont3 2.58µA=

Double Scroll Chaotic Attractor
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Fig. 16.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.65µA= I cont3 2.61µA=

5-5 Periodic Window
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Fig. 17.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.70µA= I cont3 2.61µA=

Double Scroll Chaotic Attractor
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Fig. 18.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.72µA= I cont3 2.63µA=

6-6 Periodic Window

Projectionx1 - x2 Projectionx1 - x3 Projectionx2 - x3
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Spectrumx1
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Fig. 19.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.79µA= I cont3 2.66µA=

Double Scroll Chaotic Attractor
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Waveformx1 Waveformx2 Waveformx3

Spectrumx1
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Fig. 20.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.81µA= I cont3 2.66µA=

7-7 Periodic Window

Projectionx1 - x2 Projectionx1 - x3 Projectionx2 - x3

Waveformx1 Waveformx2 Waveformx3

Spectrumx1
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Fig. 21.  Experimental Lissajous figures, state waveforms, and power spectrum of the
 variable for , .x1 I cont2 1.85µA= I cont3 2.66µA=

Double Scroll Chaotic Attractor

Projectionx1 - x2 Projectionx1 - x3 Projectionx2 - x3

Waveformx1 Waveformx2 Waveformx3

Spectrumx1
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4.  Experimental Chaotic Synchronization

Several experiments have been carried out to demonstrate the feasibility of chaotic

synchronization between two of the manufactured IC prototypes. They have been grouped

according to the interaction mechanism employed intomutual coupling, drive-response and

inverse system experiments. An in-depth revision of these synchronization schemes can be

found in [Hasler, 1994].

4.1 Mutual Coupling Scheme

Fig.22(a) shows the experimental setup used for the -linear coupling between two

of the manufactured chips. It is built by simply inserting a linear resistor  between the

terminals of the prototypes†3. Adjustable parameters in both chips were set to

, ,  and .

Fig.22(b) displays the correlation index between signals , for differ-

ent values of the coupling resistance . This plot has been obtained by keeping track of

the signals at 10,240 instants during an arbitrary time interval of length 20ms. A similar plot

for signals  is shown in Fig.22(c). It is interesting to note that synchroniza-

tion of signals  tends to deteriorate at lower resistance values than signals

. Also observe that both correlation indexes maintain above 0.95 for

approximately , thus confirming synchronization in spite of the chaotic behav-

ior exhibited by the oscillators. This is illustrated in Fig.23(a)-(b) which show that the

 and  phase plots follow nearly perfect straight lines, even

if circuits evolve in a typical double scroll attractor. In order to test the robustness of the

synchronization against parameter mismatch, we introduced a 10% error on the central

slopes of the nonlinearity of the chips, while keeping unaltered the rest of parameters. In

this situation, synchronization by -linear coupling was also possible, but for a stronger

interaction between the oscillators (lower values of the coupling resistance ). Namely, it

was found that synchronization with a correlation index larger than 0.95 in the variables

and  is only possible for .

A similar setup was built by inserting a linear resistor  between the  terminals of

the oscillators, thus leading to an -coupled system. Fig.24(a)-(b) show the correlation

3. In the sequel, we adopt the following nomenclature to distinguish the output terminals of the chips:
Output variables from unbuffered terminals are denoted as . For buffered terminals, output signals
are denoted as . In both cases, the first subindex, , indicates the chip ( ), and the sec-
ond subindex, , the state variable of the oscillator ( ).
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indexes of signals  and , respectively, for different values

of the coupling resistance . Observe that synchronization performance of this scheme

worsens with respect to the -linear coupling system. In fact, the correlation index of sig-

nals  is always below 0.75 even if the resistance is replaced by a short

(maximum interaction strength). As an illustration, Fig.24(c)-(d) show the

and  phase plots for . Note that the system exhibits sporadic
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Fig. 22.  (a) Experimental setup for an -linear coupling synchronization scheme;
(b)-(c) Correlation indexes between  and ,
respectively.
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losses of synchronization as indicated by the “wings” at both sides of the

bisectrix.

An -coupled system was also probed in the laboratory, but synchronization was not

possible in this case.

4.2 Drive-Response Scheme

Fig.25 considers a drive-response scheme as originally proposed in [Carroll & Pecora,

1991]. Fig.25(b)-(c) show the phase plots obtained from the -drive experimental setup

depicted in Fig.25(a). Adjustable parameters were set as in the previous section. As can be

seen from the  and  phase plot, nearly ideal synchroniza-

tion (correlation indexes above 0.99 in the  and  variables) is obtained in spite of the

chaotic behavior exhibited by the circuits.

With regard to the -drive scheme, it was found that synchronization depends on the

dynamic behavior of the oscillators. Namely, it was found that synchronization worsens as

the biasing current  increases, i. e., as the circuits evolve through the period-doubling

sequence. As an example, Fig.26(a)-(b) show the phase plots obtained from the -drive

experimental setup for . Correlation indexes are 0.83 for the  signals

and 0.95 for the  signals.

Synchronization was not possible for a -drive configuration as predicted by theory

[Madan, 1993].
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Fig. 24.  Measurements from an -linear coupling synchronization scheme. (a)-(b)
Correlation indexes between  and , respectively.
(c)-(d) Synchronization performance for .
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Fig. 25.  (a) Master-Slave simplified experimental setup; (b)-(c) Measured
performance.
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4.3 Inverse System Scheme

Fig.27(a) shows the experimental setup used to demonstrate synchronization by the

inverse system approach between two of the manufactured chips. A voltage signal  is

linearly converted to a current and injected in the  terminal of the first chip. The voltage

 generated by this prototype is then transmitted to a receiving system which

consists of a current detector, a voltage amplifier and a chaotic oscillator matched with that

of the transmitter. In the receiver, the signal  drives the current detector which is a

device with one input- and two output-ports. One of the output terminals acts as a voltage

buffer from the input port, and it is connected to the  terminal of the second chaotic

oscillator prototype. The other terminal provides a voltage proportional to the current flow-

ing through the first output port, and it is connected to a programmable voltage amplifier.

This amplifier, in turn, controls the amplitude of the voltage generated by the current detec-

tor and obtains the recovered signal . In practice, the current detector and the voltage

amplifier can be funded in a single block formed by an opamp and an instrumentation

amplifier.

Fig.27(b) illustrates the performance of the setup. The picture on the left shows the

input signal  (a sine wave of 10kHz and ) and the recovered signal . As

can be seen a nearly perfect synchronization is achieved. On the other hand, the picture on

Fig. 26.  Synchronization performance of the -drive system.x2
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the right of Fig.27(b) shows the waveform of the chaotic modulated transmitted signal,

which clearly keeps no resemblance with the injected tone.

Fig.28 shows the power spectra of the signals in Fig.27(b)-(c). Note that the signal to

noise ratio of the recovered signal (Fig.28(c)) is greater than +55dB with less than -0.2dB

loss of the input signal power (Fig.28(a))†4. Also note that the spectrum of the transmitted

4. For input frequencies around 15kHz, the signal-to-noise ratio rises up to +60dB.
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Fig. 27.  (a) Simplified experimental setup for the inverse system approach; (b)
Measured performance.
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signal does not present a peak at the input frequency, thus confirming that  is com-

pletely hidden on the chaotic waveform . At lower tone frequencies, masking property

still holds, but the signal-to-noise ratio of the recovered signal notably worsens. In fact, for

input frequencies below 1kHz, it has been found that the signal-to-noise ratio drops down to

+40dB, while retaining similar losses at the receiver.

The performance of the inverse system setup in Fig.27(a) has been also statistically

characterized in time domain by comparing the input signal  with the recovered signal

. We have assumed that  consists of a single tone and have varied its amplitude and

frequency. By keeping track of the recovered signal , we can identify which are the bet-

ter conditions for signal transmission. Fig.29 shows the offset, variance and maximal devia-

tion of the recovered signal with respect to the input signal. Special mention deserves the

evolution of the variance with the tone amplitude, shown in Fig.29(b). Observe that for low

tone amplitudes (below 350mV), the variance maintains small (less than ) for input

frequencies between 1 and 25kHz. As the amplitude raises from this value, the variance

abruptly increases, specially at the bounds of the input frequency range. This means that for

amplitudes larger than about 350mV, synchronization is lost. We have identified two main

causes for desynchronization:

• The receiver is unable to keep track of the transmitted signal.

• The transmitter becomes locked at a stable limit cycle regardless of .

The first cause fundamentally appears at high input frequencies, while the second occurs for

low input frequencies. For amplitudes lower than 350mV, the system may exhibit sporadic

losses of synchronization as indicated by the maximal deviation between the input and

recovered signals, shown in Fig.29(c). However, after a short transient, synchronization is

again restored.

s t( )

Φ t( )

Fig. 28.  Power spectra of the (a) input signal; (b) transmitted signal; and (c)
recovered signal.
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We have also experimentally evaluated the correlation index between the input and

Fig. 29.  Time-domain performance of the chaotic modulation synchronization scheme
using two integrated prototypes.
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the recovered signals. This is illustrated in Fig.30. Observe that, for tone amplitudes above

150mV, correlation index is always larger than 0.9 regardless of the input frequency. Tak-

ing this into account as well as the previous results on the variance, we conclude that the

amplitude of the input signal must be comprised between 150mV and 350mV, for input fre-

quencies between 1 and 25kHz, in order to guarantee synchronization.

Taking into account the range of frequencies used for  and the noise-like appear-

ance of the transmitted signal , the synchronization scheme in Fig.27(a) could be

readily exploited for audio signal encryption. To evaluate the security of the transmission,

we have measured the correlation index between the input and the transmitted signal,

assuming again that  consists of a single tone. The results are shown in Fig.31. Note that

the index is close to zero for every input frequency, excepting at 1kHz. In this last case,

since the transmitter evolves into a stable limit cycle for input amplitudes above 350mV,

the correlation index tends to increase.

5.  Chip Function and Block Diagram

This section contains the functional description and circuit realization of the core chaotic

oscillator. For those readers with scarce knowledge of integrated circuit design, some fun-

damental concepts will be given at the front-end of this description.

Fig.32 illustrates a systematic procedure for the monolithic realization of arbitrary

Fig. 30.  Correlation index between the input and the recovered signals.
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nonlinear dynamical systems. This procedure strongly relies upon properhierarchical prob-

lem decomposition as shown in Fig.32, which particularizes for the well-known double-

scroll attractor. The first step in the methodology is to identify the set of equations describ-

ing the dynamics. This corresponds to thebehavioral level at the top of the hierarchy. The

obtained description maps down to theblock level, which defines a network synthesis archi-

tecture for the problem. At the block level, the different operators, orfunctional building

blocks, required for physical realization, as well as their interconnection, are clearly identi-

fied. Each of these blocks must be subsequently mapped down to a collection of intercon-

nected circuit elements, thus defining acircuit level. Two different sublevels can be

identified; one containing only idealized elements (for instance VCCS’s), and another

where these idealized elements are realized using available circuit primitives of the technol-

ogy. Fig.32 illustrates both sublevels. Observe that the circuit level infers choosing the

physical nature of the variables which support information flow (usually voltages, currents

or both). Bottom level in the VLSI design hierarchy define thelayout phase, where circuit

primitives are codified into geometrical objects required for processing and fabrication.

In this paper, we will be mainly interested in the two first steps of the hierarchy, i.e.,

in the behavioral and block level design aspects of the chaotic oscillator. Technical details

at the circuit and layout levels will be published elsewhere.

Fig. 31.  Correlation index between the input and the transmitted signals.
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Fig. 32.  Synthesis route towards monolithic nonlinear circuits.
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5.1 Behavioral Level Description

The mathematical model of the designed chaotic oscillator is acanonical system (which

will be defined below) of the family of continuous, odd-symmetric, three-region piecewise-

linear (PWL) vector fields in . Members of this family, denoted hereafter by , are

generally represented by the following third order continuous-time nonlinear state equation

[Chuaet al., 1986],

(10)

which can be mapped onto the analog computer concept shown in Fig.33. In the above

equation,  represents the time-integration constant;  is the

state-space vector;  is a real invertible square matrix defining the linear part of

the system;  and  are real 3-dimensional vectors; and the nonlinear

map  is a real-valued continuous PWL function given by

(11)

where  is a real scale factor, with no influence on the qualitative dynamic behavior of the

system. The function  thus defined, divides  into an inner region  containing the

origin, and two outer regions  and , in such a way that, . Accord-

ing to Eq. (11), the two parallel boundary planes separating  from the outer regions

and , are given respectively by,
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(12)

It is worth noting that the qualitative behavior of any member of the family  is solely

determined by the three eigenvalues  associated to the inner region of the

vector field , and the three eigenvalues  associated to the outer regions

[Chuaet al., 1986].

By canonical systems of  we mean those vector fields in  such that, with only 7

nonzero parameters, are able to synthesize almost every prescribed set of eigenvalue pat-

terns, and hence, to reproduce almost every possible qualitative dynamics in†5 [Chua &

Lin, 1990; Chua, 1993]. A well-known example of canonical system in  is theChua´s

oscillator which is endowed with a rich repertoire of nonlinear dynamical phenomena,

including all kinds of bifurcations and routes to chaos (period-doubling, intermittency and

torus breakdown). Actually the number of strange attractors which can be generated with

Chua´s oscillator form a zoo with more than 30 different exemplars (see [Chuaet al., 1993]

for a nice collection of color plates corresponding to all these attractors).

From an integrated design perspective, canonical systems deserves special attention:

Since system parameters must be mapped into physical devices, those models with a mini-

mum number of nonzero parameters will be a priori the most advantageous in terms of sys-

tem complexity and area consumption.

In our design, we have taken advantage of the topological conjugacy property of

canonical systems in , not to reproduce as much as possible dynamic behaviors, but to

identify which of these systems is the best suited for the monolithic implementation of a

particular chaotic attractor. Accordingly, the behavioral level description of our prototype

have been obtained after applying the following algorithm:

• Calculate the eigenvalues associated with the system candidate in  whose attrac-

tor is to be reproduced by canonical systems, up to topological conjugacy.

• Identify the parameter values which must take every canonical system in  so that

corresponding eigenvalues coincide with those obtained in the previous step.

• Select that canonical system of those previously identified which satisfies as close as

possible a set of optimization criteria derived from microelectronic experience.

5. Properly speaking, canonical systems are said to betopologically conjugate to the class
, where  is a set of zero measure.
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Let us examine each step of the algorithm.

The first step begins with the selection of the particular chaotic attractor to be synthe-

sized. Among the wide number of candidates offered by the family , we have considered

the so-calleddouble-scroll attractor, shown in Fig.34, which arises from the well-known

Chua´s circuit[Chua, 1992]. The reasons behind this election is threefold. First, and most

important, because there are several experimental evidences using discrete components that

the model allows the observation of chaos synchronization phenomena. Second, because

there is an extense theoretical background concerning its dynamic behavior [Madan, 1993],

what supposes an invaluable help during the synthesis root towards an integrated prototype.

Finally, because it is one of the simplest models proposed so far for the generation of cha-

otic signals, and a priori, will result in a easier silicon implementation.

It is worth noting that the double-scroll attractor has been previously synthesized by

microelectronic circuits (in fully monolithic form in [Rodríguez-Vázquez & Delgado-Resti-

tuto, 1993] and in partial monolithic form in [Cruz & Chua, 1993]). A common feature of

both chips is that their behavioral level description were derived directly from Chua´s cir-

cuit, and hence, no attempt of performance optimization from an IC design viewpoint was

done.

L3

Fig. 34.  The Chua’s double-scroll chaotic attractor.
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The double scroll attractor is not an isolated chaotic phenomenon but it can be visual-

ized for different eigenvalues patterns in . To fit the requirements of the first step in our

algorithm, we will adopt the following set of eigenvalues,

(13)

for the inner region, and

(14)

for the outer regions, as it is customarily defined in many references (see for instance,

[Madan, 1993]).

Now we are in position to deal with the second step of the algorithm. Since the num-

ber of canonical systems in  is extremely huge [Chuaet al., 1993], calculation of the

parameters associated with Eqs. (13)-(14) for each one of these systems would result in a

rather time-consuming task even with computer aid. Thus we are enforced to reduce the

scope of our design space, or in other words, to impose some values among the 15 parame-

ters defining the family . To this end, we have made the following assumptions:

(15)

and

(16)

Equation (15) only fixes the orientation of the boundary planes in the state space (see Eq.

(12)) and, consequently, it does not impose any constraint on the number of canonical sys-

tems. On the contrary, Eq. (16) reduces the number of canonical numbers to a tractable

quantity, yet sufficient to make a representative comparison basis. Equation (16) presents

also the added benefit of limiting the influence of the nonlinearity  to only one differen-

tial equation of the system (10). Since implementation of nonlinear transfer elements

require in general more circuitry than linear ones, the restriction results advantageous in

terms of system complexity and area consumption.

The last step of the algorithm refers to the selection of the canonical system best

suited for monolithic implementation. We have adopted the following selection criteria in

order of relevance:

L3
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• Asymptotic synchronization. We must select those configurations which guarantee

asymptotic synchronization of two chaotic systems when they interact in a proper

way. This point only can be verified after realistic behavioral simulations including

montecarlo analysis and assuming nonideal transmission channels.

• Low sensitivity to parameter variations. We must select those canonical systems

which minimize the influence of parameter deviations on the dynamic performance.

At the circuit level, this means that the chaotic behavior must be robust enough

against the statistical deviations of technological properties.

• Parameters must have integer ratios. This criterium arises because most analog cir-

cuit techniques are based on the matching properties of similar components. In gen-

eral, matching is largely favored if circuit elements are built by replicating a given

unitary component. Since system parameters are mapped into electronic devices, it

is clear that by keeping integer relationships among parameters, the final circuit

realization will gain in accuracy. Also, at the layout level, application of this crite-

rium leads to very modular, high integration density implementations.

• Low spread of parameter values. This rule derives directly from the above. If the

quotient between the magnitude of the largest and smallest nonzero parameters were

very high, the number of unitary elements required to implement the chaotic oscilla-

tor would increase, consequently increasing area and power consumption.

After applying the last two steps of the algorithm to the eigenvalue pattern defined in Eqs.

(13)-(14), we have obtained the following state equation for the double-scroll attractor

(17)

where  is given by,

(18)

and the parameter values are defined as,

(19)

Equations (17)-(18) are equivalent to the representation Eq. (10) with matricesA, B andD

defined as
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(20)

where it is worth noting that parameters  and  have the same magnitude but opposite

signs. As will be shown, this fact may lead to further simplifications at the circuit-level.

Fig.35 shows a representation of the eigenvalues  calculated from the lin-

earized system associated to Eq. (17), i. e., that system with  defined as

instead of Eq. (18), as a function of the equivalent slope . Since the nonlinearity Eq. (18)

is piecewise-linear, the set of eigenvalues  and  corresponding to

the inner and outer regions of the Chua´s model, will be given by the values of

at the intersections of the plots in Fig.35 with the lines  and , respectively.

The dynamical model defined by Eqs. (17)-(18) clearly meets all the assumed optimi-

zation targets: all the parameters have integer values, and their spread is very low (the max-

imum ratio among parameters is four). Additionally, the resulted configuration is found to

exhibit the best possible performance regarding sensitivities against parameter deviations,

and also satisfy the asymptotic synchronization condition. Thus, we can conclude that the

system formed by Eqs. (17)-(18) is a good candidate for integration purposes.
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5.2 Block Level Description

The state-variable approach has been adopted for the block level design of the chaotic sys-

tem defined by Eqs. (17)-(18). This approach is similar to that followed in classicalanalog

computation (see Fig.33) and reduces implementation of PWL dynamic systems to the real-

ization of a number of mathematical operations:integration, summation, signal scalingand

rectification. However, compared to circuit strategies in classical analog computers where

operators are built around operational amplifiers, our approach will be based in transcon-

ductors where both voltage and current play a significant role, thus yielding much more

compact realizations.

Fig.36(a) shows the block diagram of the core chaotic oscillator obtained state-vari-

able principles. In this diagram, state variables are translated into capacitor voltages, linear

transconductors are assumed to perform as ideal voltage controlled current sources (see

Fig.36(b)), and the PWL function is determined by the nonlinear transfer characteristics of

the transconductor at the upper right corner of the diagram, whose output current is propor-

tional to , where function  is defined in Eq. (18) (see Fig.36(c)). Taking into

account the input-output relationships of all transconductors, Eq. (17) can be easily derived.

Special mention deserves the different alternatives exploited for the realization of sys-

tem parameters in Eqs. (17)-(18). Taking advantage from the fact that parameters

 are integer numbers, they have been implemented by first defining aunitary

transconductance block with gain , and then connecting in parallel as many of such

units as indicated in Eq. (19) (their combined contribution is obtained by KCL at the com-

mon output node). With this arrangement we are tacitly renouncing to use parameters

 as external controllable variables of the oscillator, since their absolute values are

completely defined once the unit transconductance  has been set. For this reason,

 can be regarded asfixed parameters. On the contrary, the global time constant of

the system, , which, for the block diagram in Fig.36(a) is easily shown to be

(21)

can be externally controlled by adjusting the value of . This, in turn, can be done by

conveniently setting the commontuning variable  of the transconductors in Fig.36(a)

(tuning terminals and their interconnection to a common node have been suppressed for the

sake of clarity in the schematic). Parameter  has no influence on the qualitative dynamic

behavior of the oscillator, but only modifies its frequency response. In the chip architecture

of Fig.1, tuning variable  is provided by the biasing current  applied to pin .
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The rest of parameters of the oscillator, , are associated to the nonlin-
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Fig. 36.  (a)Gm − C block diagram of the core chaotic oscillator; (b) Ideal model for
the linear transconductors; (c) Ideal model for the PWL blocks.
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ear transconductor of Fig.36(a). In the same way as the tuning variable, all of them have

been made externally programmable through appropriate current-mode circuit techniques

(details will be provided elsewhere). Parameter , which defines the breakpoints of the

PWL characteristic, controls the size of the chaotic attractor in the state space but it has no

influence on the qualitative dynamic behavior. Hence, it can be considered as anamplitude

parameter. It is controlled by the biasing current  applied to pin  in Fig.1. On

the other hand, parameters  which define the central and outer slopes of the

PWL function, respectively, have a large influence on the qualitative time evolution of the

oscillator. In fact,  (controlled by biasing currents  and , respec-

tively) can be regarded asbifurcation parameters, because their continuous variation over

well defined ranges allows observation of the different dynamic states around the double-

scroll attractor (nominal point of our oscillator at the behavioral design space).
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FIGURE CAPTIONS

Fig. 1.  (a) Chip architecture; (b) Experimental setup showing oscilloscope, chip with

four tuning resistors, and the battery pack.

Fig. 2.  Nonlinearity of the chaotic oscillator.

Fig. 3.  Variation of the PWL characteristics of the nonlinearity with: (a) ; (b)

; (c) the central slope,  (control variable ); and (d) the outer slopes,  (con-

trol variable ).

Fig. 4.  Automatic Tuning Mechanism.

Fig. 5.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 6.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 7.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 8.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 9.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 10.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 11.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 12.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 13.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 14.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 15.  Experimental Lissajous figures, state waveforms, and power spectrum of the
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 variable for , .

Fig. 16.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 17.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 18. Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 19.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 20.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 21.  Experimental Lissajous figures, state waveforms, and power spectrum of the

 variable for , .

Fig. 22.  (a) Experimental setup for an -linear coupling synchronization scheme;

(b)-(c) Correlation indexes between  and , respectively.

Fig. 23.  Synchronization performance of the -linear coupling system for

.

Fig. 24.  Measurements from an -linear coupling synchronization scheme. (a)-(b)

Correlation indexes between  and , respectively. (c)-(d)

Synchronization performance for .

Fig. 25.  (a) Master-Slave simplified experimental setup; (b)-(c) Measured perfor-

mance.

Fig. 26.  Synchronization performance of the -drive system.

Fig. 27.  (a) Simplified experimental setup for the inverse system approach; (b) Mea-

sured performance.

Fig. 28.  Power spectra of the (a) input signal; (b) transmitted signal; and (c) recov-

ered signal.

Fig. 29.  Time-domain performance of the chaotic modulation synchronization

scheme using two integrated prototypes.

Fig. 30.  Correlation index between the input and the recovered signals.
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Fig. 31.  Correlation index between the input and the transmitted signals.

Fig. 32.  Synthesis route towards monolithic nonlinear circuits.

Fig. 33.  Block diagram for the members of the family .

Fig. 34.  The Chua’s double-scroll chaotic attractor.

Fig. 35.  Evolution of the linearized system eigenvalues with parameter .

Fig. 36.  (a)Gm − C block diagram of the core chaotic oscillator; (b) Ideal model for

the linear transconductors; (c) Ideal model for the PWL blocks.
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