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AER Image Filtering Architecture
for Vision-Processing Systems

Teresa Serrano-Gotarredona, Andreas G. Andreou, and Bernabé Linares-Barranco

Abstract—A VLSI architecture is proposed for the realization
of real-time two-dimensional (2-D) image filtering in an address-
event-representation (AER) vision system. The architecture is
capable of implementing any convolutional kernelF (x; y) as
long as it is decomposable intox-axis and y-axis components,
i.e., F (x; y) = H(x)V (y), for some rotated coordinate system
fx; yg and if this product can be approximated safely by a signed
minimum operation. The proposed architecture is intended to
be used in a complete vision system, known as the boundary
contour system and feature contour system (BCS-FCS) vision
model, proposed by Grossberg and collaborators. The present pa-
per proposes the architecture, provides a circuit implementation
using MOS transistors operated in weak inversion, and shows
behavioral simulation results at the system level operation and
some electrical simulations.

Index Terms—Analog integrated circuits, communication sys-
tems, convolution circuits, Gabor filters, image analysis, image
segmentation, neural networks, nonlinear circuits, subthreshold
circuits.

I. INTRODUCTION

H UMAN beings have the capability of recognizing ob-
jects, figures, and shapes, even if they appear embedded

within noise, are partially occluded, or look distorted. To
achieve this, the human vision-processing system is structured
into a number of massively interconnected neural layers with
feedforward and feedback connections among them. Neurons
communicate by means of electrical streams of pulses. Each
neuron broadcasts its output to a large number of other
neurons, which can be inside the same layer or at different
layers. The way this is done is through physical connections
calledsynapses[1]. One big problem encountered by engineers
when it comes to implement bio-inspired (vision) processing
systems is to overcome the massive interconnections. An
interesting way of trying to solve this is by developing models
and algorithms that require a small local interconnectivity
among neighboring neurons. Cellular neural networks (CNN’s)
are one way of doing this [2]–[4]. However, in this paper we
will focus on another approach, whose popularity has grown
recently, which is known as address even representation (AER)
[5]–[8]. Fig. 1 shows a schematic figure, outlining the essence
behind AER. Suppose we have an emitter chip containing
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Fig. 1. AER interchip communication scheme.

a large number of neurons or cells whose
activity changes in time with a relatively slow time constant.
For example, if chip one is a retina chip and each neuron’s
activity represents the illumination sensed by a pixel, the time
constant with which this activity changes can be equivalent to
the frame rate (i.e., 25–30 changes/s or a time constant of about
30–40 ms)1. The purpose of an AER-based communication
scheme is to be able to reproduce the time evolution of each
neuron’s activity inside a second, or receiver, chip, using a
fast digital bus with a small number of pins. In the emitter
chip, the activity of each pixel has to be transformed into a
pulse-stream signal such that pulse width is minimum and the
spacing between pulses is reasonably high, to time multiplex
the activity of a relatively large number of neurons. Every
time a neuron produces a pulse, its address or code should be
written on the bus. For the case where more than one pulse
is produced simultaneously by several neurons, a classical
arbitration tree can be introduced [5]–[7], or one based in
winner-takes-all (WTA) row-wise competitions [9], or simply
by making no neuron accessing the bus [10]. Whatever method
is used, the result will be the presence of a sequence of
addresses or codes on the digital bus that one or more receiver
chips can read. Each receiver chip must contain a decoding
circuitry so that a pulse reaches the neuron (or neurons) which
ought to be connected to the emitter chip neuron specified
by the address read on the bus. If each neuron integrates
the sequence of pulses properly, the original activity of the
neurons in the emitter chip will be reproduced. Note that in
AER, those neurons that are more active access the bus more
frequently. This property allows to optimize the use of the
bus, since neurons with low activity will not consume much
communication bandwidth. Mathematically, if is the
intensity (or activity) of pixel at coordinate of the emitter
chip, this pixel will generate a stream of pulses so

1In this paper we consider real time a processing that is performed at a
frame rate (30–40 ms) or faster.
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that when integrated at the receiver chip, the original activity
is recovered

(1)

Here, the operator denotes integration of a sequence of
pulses. Usually in AER, this operator is a lossy integration
and the asynchronous sequence of pulses is such that
its pulse density represents the pixel intensity. The interfacing
bus activity is the time-multiplexed sequence of pulses of all
active emitter chip pixels .

This is the simplest AER-based communication scheme
among chips. However, AER allows us to easily add more
complicated processing. For example, input images can be
translated or rotated by remapping the addresses while they
travel from one chip to the next. By properly programming
an EEPROM as a look-up table, any address remapping can
be implemented by simply inserting the EEPROM between the
two chips. Furthermore, many EEPROM’s can be connected in
parallel, each performing, for example, a rotation at a specific
angle and each delivering the remapped addresses to a set
of specialized processing chips. It is also possible to include
synaptic weighting by having the EEPROM store the weight
value, dumping it on a data bus, have the receiver chip read
both the address and the data bus, and perform a weighted
integration in the destination(s) neuron(s). It is also possible
to implement projective fields, i.e., for every address that
appears on the bus, a small digital system could generate a
sequence of addresses around it and send it to the receiver chip.
This would be a time-multiplexed projection-field generation.
In the architecture proposed in this paper, we implement a
synaptically weighted projection field for each address read
on the bus, not in a time-multiplexed manner, but in parallel.
This can be done by either having a hard-wired kernel in the
filtering chip [11], or by implementing a programmable one,
as proposed in this paper.

II. THE PROGRAMMABLE FILTER

The programmable filter described in this paper is intended
to be used in a vision model system, known as the boundary
contour system (BCS) and feature contour system (FCS) [12].
Such a vision model consists of an image-sensing layer,
followed by a set of illumination normalization layers (this
is also known as a retina [7], [8]). The output, which is a
contrast image, is applied to a set of orientation-specific edge-
extraction Gabor-like filters. Their outputs are then fed to a
set of convolutional processing layers, organized in four stages
connected in feedback, intended to extract long-range contours
of the input image while removing noise. The convolutional
kernels used in most of these layers are decomposable
into - and -axis components , for
some rotated coordinate system . Using AER allows us
to implement a filtering chip only for the coordinate system

for which is decomposable. To do the filtering
for another coordinate system , rotated with respect to

, an arbitrary angle , we can use the same chip, but
provide addresses which have been rotated previously (by

simply inserting an appropriately programmed EEPROM in
the interfacing bus).

In the filtering chip, the convolutional kernel is implemented
as follows. Every time a pulse for address is received,
pulses are sent to all pixels in its vicinity. In this way, the lossy
integrator at pixel of the receiver chip will integrate the
sequence of pulses

(2)

which are all pulses coming in from its vicinity, weighted by
the convolutional kernel . The weighting is performed
by modulating the width of each incoming pulse. Thus, every
time a pulse is received for pixel , a pulse of width

is sent to pixel in its vicinity
. The resulting

lossy integral processing of these stream of pulses is the output
image

(3)

Pulse-width modulation is done as follows. When a pulse for
coordinate is received, all columns in the vicinity
of column receive a pulse of width and all
rows in the vicinity of rows receive a pulse of width

. The values of and are stored in a small
on-chip RAM. The integrator at coordinate receives
a pulse of width equal to the minimum of and

. Consequently, the convolutional kernel the system
implemented is an approximation to ,
which is

(4)

the signed minimum of the vertical and horizontal components.
Certainly, replacing a product operation by a signed min-

imum introduces an error. However, in most bio-inspired
vision-processing models, the task performed by a processing
layer is mainly of qualitative importance rather than quanti-
tative. Therefore, choosing a certain mathematical kernel or
another to perform a given task (such as edge or orientation
extraction) should not be too critical for the global operation
of a realistic bio-inspired vision model. Nevertheless, whether
or not a product can be substituted by a signed minimum
should be evaluated for each particular application. In any
case, to give a quantitative feeling of the error introduced,
Table I shows the resulting normalized square error2 (NSE)
when changing the product by the signed minimum for some
typical image processing- and -decomposable kernels.

2Figure of merit used by Shi [14] to compare different kernels, defined here

as NSE=
kF (x;y)�F (x;y)k dx dy

kF (x;y)k dx dy
.
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Fig. 2. Floorplan of Complete 2-D filtering system.

III. CIRCUIT DESCRIPTION

This section provides a circuit that implements the previ-
ously described functionality. The address bus provides the
coordinates of the neuron (or pixel) around which
the convolutional kernel should be applied. Pulses will be
applied to all rows with a y coordinate in the interval

and all columns with an x-coordinate in the interval
where is the width considered for

the kernel. Pulses will be modulated in width, according to
function for the rows and function for the
columns. At each pixel there is an AND gate, which provides
a pulse of width equal to the minimum of and .
This pulse will generate a fixed-magnitude current pulse of
the same width, which will be integrated on a capacitor.
Each pixel contains two integrators. One of them, the positive
integrator, integrates the pulses of width
when , while the other, the negative
integrator, integrates the pulses when
. The values of and are

stored digitally on chip in a small RAM.
Fig. 2 shows the block diagram of the system. It consists

of two input decoders that decode the address of the arriving
pulse, a element required for the AER communication pro-
tocol [5]–[8], an array of integrator cells , two sets
of programmable monostables
and whose pulse widths are

controlled by the bits stored in two RAM’s, RAM
and RAM (which store the digital words

and , respectively),
two arrays of and selecting cells

and , respectively, two output decoders to
select the cells to be scanned, and a scanning circuitry Scan
to read out an analog output current. Note that in the
present prototype of Fig. 2, the system does not generate an
AER output. This can be solved by either adding the necessary
circuitry to each pixel [5]–[7], which will decrease cell density
of the resulting chip, or by adding a postprocessing chip
that scans, sequentially, all cells in the array of Fig. 2 and
generates an AER output. Once the filter has an AER output,
an arbitrary number of filtering stages can be cascaded.

The operation of the system in Fig. 2 is as follows. In
RAM and RAM digital words of bits are stored

( and .
The first bit (or ) indicates the sign of the function

(or ). The following bits indicate the absolute
value (or ). These bits linearly control the
length of the pulse triggered by monostables (or ).
The monostables achieve this by charging with a constant
current a programmable capacitor controlled by thebits in

or . Hspice simulations showed a linear relationship
between digital code word and pulse width. The pulses
generated by the monostables are sent through lines(or
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(a) (b)

Fig. 3. Schematic of (a) the neighborhood-selection cell and (b) one half of the core-cell diode-capacitor integrator.

) and are triggered whenever an external pulse arrives to
the system. When an external pulse arrives, the input decoders
activate lines and , corresponding to the address of the
arriving pulse. The selection cells controlled by (cells

in Fig. 2, ) connect the pulse in
line to line if the sign bit is one. If the sign bit

is zero, line is connected to the negative line .
In this way, pulses (or ) are sent through lines
or ( or ), depending on the sign of the
weight stored in (or ).

Each neuron has two integrators. The positive integrator
accumulates charge when pulses are simultaneously arriving
through horizontal and vertical lines of the same sign. That
is, it integrates a pulse when lines and (or lines

and ) are simultaneously high or, equivalently, it
performs the operation . Hence,
the positive integrator in cell computes along time the
following sum:

(5)

where is the (lossy) integral over time of the
number of pulses the address bus receives for pixel
and is the fixed magnitude of the current pulses be-
ing integrated. Similarly, the negative integrator accumulates
charge when pulses arriving through horizontal and vertical
lines of opposite sign and (or and )
are simultaneously high, that is, it performs the operation

. Consequently, the difference
between the outputs of the positive and negative integrators
is given by

(6)

which is the filter operation we want to implement.

Fig. 3(a) depicts the schematic of the selection cell
(or ) used to select the neighborhood of cells where the
monostable pulses have to be sent. It consists of two NAND
gates controlling the PMOS switches and and
two NMOS pull-down transistors and . Each
selection cell has two control signals (the decoder
output and the sign bit from RAM ), one input
signal (the monostable output ), and two outputs (
and ). When a pulse arrives with address , it
activates the decoders output and , respectively. The
decoder output controls all the selection cells with

. When is high, if the sign bit is one,
the selection cell connects the monostable output line

to the positive line . If the sign bit is zero,
line is connected to the negative line . The same is
valid for the -coordinate selection cells.

Each synaptic cell, has two integrators: the positive
and the negative. Fig. 3(b) shows the circuit diagram for
the positive integrator. The negative is identical, except for
labeling. The integrator is based on the capacitor–diode inte-
grator concept for subthreshold MOS operation [7]. As will be
seen next, this integrator has some interesting properties with
respect to a conventional linear RC-integrator.

• The steady-state current is proportional to pulse stream
frequency.

• The steady-state current is proportional to pulse width
• The steady-state current ripple is independent of the

current level.

In Fig. 3(b), the two AND and the NOR gates provide a pulse
of width equal to the minimum of the pulse width coming in
horizontally and vertically. This pulse turns ON current source

, providing a current pulse of amplitude (controlled by
bias voltage ). Since transistors and are biased in
subthreshold, the integrator input and output currentsand

are related by [7]

(7)
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(a) (b)

Fig. 4. Hspice simulation of (a) integrator cell transient and (b) dc characteristics of scan-out cell.

where is thermal
voltage and is a characteristic subthreshold dimensionless
technology parameter, whose value may range from 0.60 to
0.98 [14]. When a train of pulses of width and frequency

is applied to this integrator, the steady-state
output current is [7]

(8)

with a ripple of

(9)

where . Equation (9) shows that the relative
resolution in the integrator output is constant, independent of
the signal level. According to (8), each integrator outputs a
current which is proportional to the frequency and width

of the input pulses. If the AER input-image pixel intensity
is linearly encoded with the frequency of the arriving pulses
and the convolutional kernel is encoded as the pulses width,
the output current of the positive integrators would be the input
image, filtered with the filter positive terms. Equivalently, the
negative integrator output current would be the input image,
filtered with the negative terms of the filter. Hence, the result
of subtracting the output current of the negative integrator from
the output current of the positive one is the filter output.

Fig. 4(a) shows an Hspice transient simulation for one of the
integrator cells in Fig. 3(b). Transistor sizes are m
and m, the integrating capacitor is pF,
pulse amplitude is nA, pulse width is
ns, frequency of pulse stream is KHz,
V, and voltage was set to 4.67 V (which yields a current
gain from transistor to of around 2000). Similar
simulations were performed by sweeping the frequency of the
input pulse stream and the width of the pulses . The
results are shown in Fig. 5. Fig. 5(a) shows the steady-state
current level as a function of frequency, while maintaining

ns. Fig. 5(b) shows the steady-state current level as
a function of pulse width, while maintaining the frequency
constant at 4 KHz.

Sometimes in 2-D image-filtering processing a rectification
operation has to be performed. This is the case, for instance,
when doing orientation extraction with Gabor-like kernel
filters. The output of the filter is rectified for each pixel [12].
Because of this, the chip scan-out circuitry, which brings
out of the chip the state of a cell, has been designed to
be able to add a rectification operation. The random-access
scanning circuitry can read the rectified output current of any
cell selected by the random scan bus of Fig. 2. The output
decoder (see Fig. 2) selects a columnthrough line .
When a column is not selected, the output currentsand

of all cells in that column flow to a line of constant
voltage [see Fig. 3(b)]. If column is selected, currents

and of all cells in these columns flow to lines
and , respectively, of the scan-out cell Scan, shown in
Fig. 6. Each scan-out cell Scanreceives two input currents

and provides an output current . Current
is mirrored through a PMOS current mirror and subtracted

from current . The PMOS current mirror has an active input
[15], clamped to a voltage . This maintains a constant
voltage at output nodes of cells when they are
selected, thus speeding up the read out of currents. Current

enters the current comparator composed of transistors
and OPAMP [16], whose input node (and output

of all selected cells) is clamped to voltage .
If current is positive, transistor will sink this
current. Transistor shares its gate with and its source is
connected to a voltage reference of value , thus, transistor

mirrors the current passing through

if
otherwise.

(10)

The precision of this current reflection depends on how tightly
the source of is clamped to voltage . To achieve a
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(a) (b)

Fig. 5. Hspice simulation results of core-cell integrator. (a) Steady-State current versus frequency of input pulse stream forTh = 10 ns. (b) Steady-State
current versusTh for 1=T = 4 KHz.

Fig. 6. Schematic of a cell to scan out the absolute value of the difference of two currents.

good precision a high gain opamp is needed, although this
would slow down the process. Thus, a compromise between
speed and precision must be taken. If current is
positive, transistor sources this current, which is mirrored
by transistor because its source is clamped to by
the current comparator composed of transistors and
OPAMP . Therefore, the current through and is

if
otherwise.

(11)

This current is again reflected by the PMOS transistor pair
. At the output node, the currents through transistors

and are added together to get the rectified current
. Since transistors operate in weak

inversion, increasing the source voltage of transistorsand
, with respect to , will make the current mirrors
and to have a gain higher than one (actually,

the gain will be exponentially controlled by this voltage
difference). This allows us to have a current gain such that

the output current is of the order of hundreds ofA or even
some mili-A, making it possible to drive this current directly
off-chip at high speeds. Fig. 4(b) shows an Hspice simulation
of the dc characteristic of a scan cell. In this simulation, current

was set to 80 nA and current was swept from 0 nA
to 160 nA. Two traces are shown in Fig. 4(b). The dotted
line shows the current flowing through transistor

. The solid line corresponds to current flowing
through transistor .

IV. TIMING CONSIDERATIONS

The time response of the programmable 2-D image filter
chip is dominated by the settling time of the integrators in cells

when they are fed by pulse streams. For the simulation
of Fig. 4(a), for example, the settling time is about 1 ms.
However, a general analysis would be as follows. For the
diode–capacitor integrator, fed with a stream of pulses of width

and frequency , it is easy to find that the current through
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(a) (b)

Fig. 7. System-Level behavioral simulations of a 128� 128 array. (a) Input image. (b) Output Image of pseudo-gabor filter extracting vertical edges.

the diode before two consecutive pulses are related by [17]

(12)

Calling , and the second term
of the right-hand side in (12), this equation can be rewritten as

(13)

which converges to , as anticipated by (8).
Consequently, (13) can be rewritten as

(14)

The number of pulses required to reach the steady
state with a relative error is given by the solution of3

, which yields
or, equivalently,

(15)

The maximum pulse stream frequency is
limited by the communication throughput we would like to
achieve. For example, consider the case of having a 128
128-pixel contrast output retina [7], [8] (i.e., the output image
is already normalized with respect to contrast). Suppose also
that, for a real-world image, the average contrast level is as if
10% of the pixels were maximum and the rest minimum. In
this case, we would need to allocate, on the average, 128128

0.1 pulses of width in a time equal to .
A reasonable value for that would assure a good range for
the pulse-width modulation described in Section IV could be

ns. This would yield s or
KHz. Consequently, maximum pixel activity should be coded
with KHz.

3The negative sign is used whenx(0) < x(1) and the positive when
x(0) > x(1).

TABLE I
NORMALIZED SQUARE ERROR

V. SYSTEM LEVEL OPERATION BEHAVIORAL SIMULATIONS

Up until this point, electrical (Hspice) simulations of some
of the circuit components have been presented. However, to
validate the functionality of the proposed architecture, some
system level (behavioral) simulations are mandatory. In this
section we provide such simulations, using MATLAB on the
architecture of Fig. 2 for a system of 128 128 cells. The
input image fed to the system is shown in Fig. 7(a), and the
programmed convolutional kernel was a displaced Gaussian
(see Table I). Using MATLAB, the AER stream of addresses
that this image could generate was computed. The stream of
pulses flowing through the bus is characterized by a sequence

where is
the address present on the bus at time. This stream of
addresses was then used to control the mathematical model
of the architecture of Fig. 2. Each one of the 128128
cells is characterized by the state of two integrators: the
positive integrator and the negative one . The state of the
integrators is controlled by the following differential equations
[see (7)]

(16)
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whose solutions were computed analytically. These solutions
were used to update the state of the integrators in the following
manner. For each address present on the bus,
all cells in the range

were accessed. For each accessed cell, the pulse width
was computed, using the approximation of (4) and

the simulation results for the monostable. Depending on the
resulting sign, either the positive or the negative integrator was
updated. After an integrator has been updated, the present time
was stored for it so that the next time it needs to be updated,
the simulator can compute properly its discharge amount. For
each cell , its output is given by . Using this
method until all integrators have reached their steady state
within 1% tolerance, results in the system output depicted in
Fig. 7(b). In this case, addresses were not prerotated, so that
the system is extracting vertical edges. As can be seen, pixels
around vertical edges result in a very high output value, while
as the edge angle around a pixel deviates from vertical, its
output value smoothly decreases until zero.

VI. CONCLUSION AND FUTURE WORK

An architecture that implements a programmable 2-D im-
age filter has been presented. The architecture allows us to
implement any 2-D filter , decomposable into -axis
and -axis components such that the
product can be approximated by a signed minimum. Positive
and negative values of and can be programmed.
The architecture requires an AER input. This allows us to
rotate the 2-D convolution kernel to any angle.

A VLSI circuit implementation that realizes the proposed
architecture is provided. Circuit simulation results of critical
components were given. System-level behavioral simulations
of a 128 128 array have been included, which validate the
proposed approach. Cell size is 67.2m 72.6 m if no AER
output is available and 75 m 90.6 m if AER output
is included, for a 1.2-m double-poly double-metal CMOS
process. This would allow, for a 1-cmdie, to implement a
2-D filter with approximately 128 128 pixels for no AER
output, and 120 100 pixels if AER output is provided. Future
work includes the fabrication of a test prototype, testing it with
a retina chip with AER output, and assembling a cascade of
convolutional processing layers to implement a vision-model
system.
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