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Abstract 

 

Agricultural technology can be an excellent antidote to resource scarcity. Its growth has 

led to the extensive study of spatial and temporal in-field variability. The challenge of 

accurate management has been addressed in recent years through the use of accurate 

high-cost measurement instruments by researchers. However, low rates of technological 

adoption by farmers motivate the development of alternative technologies based on 

affordable sensors, in order to improve the sustainability of agricultural biosystems. 

This doctoral thesis has as main objective the development and evaluation of systems 

based on affordable sensors, in order to address two of the main aspects affecting the 

producers: the need of an accurate plant water status characterization to perform a 

proper irrigation management and the precise weed control.  

To address the first objective, two data acquisition methodologies based on aerial 

platforms have been developed, seeking to compare the use of infrared thermometry 

and thermal imaging to determine the water status of two most relevant row-crops in the 

region, sugar beet and super high-density olive orchards. From the data obtained, the 

use of an airborne low-cost infrared sensor to determine the canopy temperature has 

been validated. Also the reliability of sugar beet canopy temperature as an indicator its 

of water status has been confirmed. The empirical development of the Crop Water Stress 

Index (CWSI) has also been carried out from aerial thermal imaging combined with 

infrared temperature sensors and ground measurements of factors such as water 

potential or stomatal conductance, validating its usefulness as an indicator of water 

status in super high-density olive orchards.  

To contribute to the development of precise weed control systems, a system for detecting 

tomato plants and measuring the space between them has been developed, aiming to 

perform intra-row treatments in a localized and precise way. To this end, low cost optical 

sensors have been used and compared with a commercial LiDAR laser scanner. Correct 

detection results close to 95% show that the implementation of these sensors can lead 

to promising advances in the automation of weed control. 

The micro-level field data collected from the evaluated affordable sensors can help 

farmers to target operations precisely before plant stress sets in or weeds infestation 

occurs, paving the path to increase the adoption of Precision Agriculture techniques. 
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Research contribution 

 

 

This thesis by compendium of articles includes three works in which the author has 

been involved. All three papers have been able to satisfactorily fulfil their initial 

hypotheses and have been published in scientific journals. 

Because they are articles in collaboration with other co-authors, the contributions of the 

PhD candidate in each one of them are summarized below. 
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precision agriculture: a case study on sugar beet 
 
Contributions of the PhD candidate: 

• Analysis of the problem and bibliographical study of the state of the art. 
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sensors. 
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Publication 2. Assessing a crop water stress index derived from aerial thermal 
imaging and infrared thermometry in super-high-density olive orchards. 
 

Contributions of the PhD candidate: 

• Analysis of the problem and set-up of the thermal camera and infrared sensors. 

• Conducting field experiments (flights) and contribution to image analysis. 

• Review of the article. 

 
Publication 3. Optical Sensing to Determine Tomato Plant Spacing for Precise 
Agrochemical Application: Two Scenarios 
 

Contributions of the PhD candidate: 

• Analysis of the problem and bibliographical study of the state of the art. 

• Development of laboratory platform, sensing system and field platform. 

• Design and conduction of field experiments. 

• Development of image analysis algorithm and data analysis. 

• Preparation, drafting and review of the article. 
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national and international congresses have been derived: 
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hierba”. XV Congreso de la Sociedad Española de Malherbología, Octubre 

2015, Sevilla, España. 
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I. Introduction 

 

1.1 Background 

Agriculture has undergone yield-enhancing shifts in the past, including mechanisation 

before the second world war and the introduction of new crop varieties and agricultural 

chemicals in the 1950s and 1960s (Grassini et al.,2013). Currently, achieving the 

transformation to digital and sustainable agriculture is a major challenge that will need to 

be overcome without jeopardising the capacity of the agriculture sectors to meet the 

world’s food needs (FAO, 2016). In the coming decades, population increases will be 

concentrated in regions with the highest prevalence of undernourishment and high 

vulnerability to the impacts of climate change, while global food demand in 2050 is 

projected to increase by at least 60 per cent above today’s levels (FAO, 2016). 

Therefore, food production must be increased and enhanced by adopting different 

methods such as expanding arable areas where possible or intensifying yields and 

cropping intensity. Whatever the alternative, its necessary to achieve this goal with the 

least disturbance to environmental parameters while meeting food safety requirements 

and with the highest efficiency possible with regard to the use of natural and human 

resources. 

This context of food insecurity, similar to that proposed in Malthusian predictions, has 

been largely restrained by the advent of the so-called the “new green revolution”. This 

new paradigm seeks an information-guided plant production, relying on precision 

agriculture (PA) techniques that allow the study of fields at a much finer resolution. 

Farmers have always known that crop in certain areas of their fields grow and produce 

differently than others (Mulla, 2017), but until the arrival of these site-specific handling 

techniques, farmers lacked the technology to enhance their ability to make spatially-

precise management decisions. Accurate crop management helps farmers tailor inputs 

such as agrochemicals, water or energy based on diverse information sources. 

Advances in data collection, mechatronics, yield monitoring, remote and proximal 

sensing, and controlled agricultural traffic using improved GPS-guided farm machinery 

or variable rate application directly affect the quantity and quality of the crop, the 

efficiency of the operations and their environmental impact (Zude-Sasse et al., 2016). 

The economic benefits of these site-specific management techniques are well 

documented (Heege, 2015; Smith et al., 2013; Zhang et al., 2012; Whipker et al., 2009) 
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and can lead to dramatically reduced environmental impacts while increasing 

profitability; however, a low adoption rate is still reported by experts and researchers 

(Lambert et al., 2015; Ellis et al., 2010; Tey et al., 2012). Among other factors, such as 

a lack of information and education on ICT or the access to bank credit (Aubert et al., 

2012), wider adoption is also limited because of the high costs associated with the 

technology and because the development of new technology is designed for large-scale 

production, in which within-field variations are great enough to justify the cost of the 

technological equipment (Cassman, 1999).  

The adoption of PA by small-scale producers can be accomplished progressively by 

focusing on incorporating technologies that are less expensive, adapted to the conditions 

of their fields or machinery, easy to use and with standardised components and 

programming languages. This adoption through cost reduction is essential if 

smallholders in high-potential areas are to intensify their production and contribute to 

economic growth. It is also essential in semi-arid or remote areas to manage and 

augment the natural resource base to promote development (Poulton et al., 2010). 

Under this scenario, it is in horticultural or industrial crops (with higher added value) in 

which efforts must be made to incorporate more affordable systems, which allow data 

collection, field monitoring or variable applications to achieve the same yields but at a 

lower cost.  

Horticultural crops are typically grown in row patterns, forming a semi-structured 

environment in which there are different canopy structures for different growth stages 

(Yao et al., 2009). This configuration allows greater individual plant control than arable 

crops at initial stages and the automation of certain tasks such as inter-row weeding, 

automatic plant scouting or autonomous navigation between crop lines. 

Although drip or sprinkler irrigation systems are commonly used in the aforementioned 

row crops and intelligent weed control systems are already commercially viable (e.g. 

Weedseeker®) the heavy reliance of data for precision management still remains a 

barrier. Data is becoming ever more valuable, as agricultural business development and 

food policy decisions are being made based upon data (Ferris et al., 2016).  

Traditional data collection through sampling or hand measurements in these 

environments can be a daunting task, which contributes to the fact that manual labour is 

an important cost component (Bechar et al., 2016). One of the important requirements 

of agricultural automation systems is that sensors must obtain accurate data in a robust 

and field-deployable manner. Thus, automated sensor-data gathering fulfils the need to 
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measure a biosystem’s behaviour and allows the possibility of correction if 

measurements are not compliant with the proposed objectives. 

Methods for this data collection can be roughly divided into proximal measurements 

taken from ground-based platforms or vehicles and remote measurements taken from 

airborne sensors on unmanned aerial vehicles (UAVs), planes or satellites (Slaughter, 

2014). 

On the one hand, sensing devices such as conductivity, optoelectronic, image or 

distance sensors mounted on terrestrial platforms have been widely applied in precision 

agricultural studies for mapping environmental and crop factors. In recent years, several 

studies on ground-based sensing have been conducted, including studies on soil 

characterisation from texture, salinity or ground-water content using electromagnetic 

induction sensors (Doolittle et al., 2014; Quebrajo et al., 2016; Niu et al., 2015; Gumiere 

et al., 2014), as well as on-the-go soil cutting resistance sensors (Agüera et al., 2013), 

which have also been designed and tested to generate soil strength profile maps. 

Ground-sensing vehicles or platforms have been developed for phenotyping and 

diagnosing crop conditions based on reflectance data through close visible, multispectral 

or hyperspectral sensing (Andrade-Sanchez et al., 2014; Busemeyer et al., 2013; Bu et 

al., 2017; Kitchen et al., 2010; Caturegli et al., 2015). Advanced ground image 

techniques have been employed for measuring structural crop parameters such as leaf 

area index (LAI) or seasonal canopy development (Yang et al., 2017). Weed detection 

and control have also been conducted using terrestrial optoelectronic sensors (Andújar 

et al., 2011) and using crop-plant precise spatial position (Sun et al., 2010), colour, shape 

or spectral signature features to discriminate between weeds and crops (Wendel et al., 

2016; Zhang et al., 2012; Romeo et al., 2013; Peteinatos et al., 2014). Distance sensors 

such as ultrasonic and light detection and ranging (LiDAR) have been used mounted on 

terrestrial agricultural platforms not only as navigation and mapping elements but also 

for crop height and biomass measurements (Andújar et al., 2016), harvesting damage 

evaluation (Martinez-Guanter et al., 2017), characterisation of crop structures 

(Underwood et al., 2015; Escolá et al., 2015), and variable application of agrochemicals 

based on canopy dimensions (Llorens et al., 2010). 

On the other hand, aerial data collection has undergone a considerable change with the 

growth of UAVs, which have given birth to new, powerful sensor-bearing platforms for 

various agricultural applications. The ability of UAVs to fly at low altitudes carrying 

airborne sensors, allows data acquisition with both ultra-high spatial and spectral 

resolutions (Pajares, 2015), while UAVs also provide easy and fast mission design, 
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reusability, and cost-effectiveness, and open-source frameworks are specifically 

designed for UAVs (Urbahs et al., 2013).  

UAVs are a technology capable of obtaining and conveying agronomically relevant data: 

multispectral or hyperspectral airborne sensors allow tasks such as mapping vegetation 

cover (Torres-Sánchez et al., 2014), deriving vegetation index data (Agüera et al., 2015; 

Berni et al., 2009), field phenotyping and estimating nitrogen (Zaman-Allah et al., 2015), 

reconstructing 3D orchards (Nevalainen et al., 2017; Díaz-Varela et al. 2015), estimating 

topsoil moisture (Hassan-Esfahani et al., 2014) or early detection of diseases using 

chlorophyll fluorescence (Zarco-Tejada et al., 2012; West et al., 2017). As detailed in the 

subsections 1.2 and 1.3, multispectral airborne sensors have also been used in weed 

detection and mapping (Peña et al., 2013), while infrared thermal cameras have been 

employed to determine plant-water status and plant physiological conditions (Gonzalez-

Dugo et al., 2015) through sensing approaches that must be assessed with plant-truth 

data, e.g., stomatal conductance (gs) and leaf water potential measurements (c) (Gago 

et al., 2015). 

However, the use of drones in agriculture is not limited to imaging or scouting of crop 

diseases, pests, weeds or water deficits. Recently, drones have been used to perform 

tasks such as selective ultra-low-volume herbicide application (Zhang et al., 2016; Giles 

et al., 2015; Huang et al., 2009) or remotely aerial controlled seeding and reforesting 

(Wired, 2015). 

In this thesis, the use of low-cost remote sensors mounted on aerial and terrestrial 

platforms for different crop management tasks in row crops is addressed. The suitability 

of implementing this type of sensors to carry out sustainable agricultural activities on 

relevant crops in the Andalusian region was tested in comparison to commercial sensors 

of higher cost. Thus, affordable systems that will aid the advancement of automated 

weed control in tomato crops (Solanum lycopersicum L.) were developed. In addition, 

the use of infrared sensors mounted on UAVs to monitor water stress in sugar beet (Beta 

vulgaris L.) and to assess the crop water stress index in super-high-density olive groves 

(Olea europaea L.) was explored. The following subsections present in detail the 

advances that have been made in weed control and in the use of thermography as a tool 

for efficient irrigation water management. 

1.2 Advances in Automated Weed Control 

Infestations of crop weeds are a ubiquitous annual threat to productivity and must be 

minimised to ensure global food supply and food security. In today’s context, where 
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agricultural labour costs are rising, the use of a human workforce in heavy, repetitive and 

potentially health-damaging tasks such as manual weed control is bound to decline 

dramatically (Perez-Ruiz et al. 2014).  

Therefore, the emergence and advantages of synthetic herbicides over other control 

methods have made them a "technology" on which there is almost exclusive reliance for 

weed control; these compounds are highly effective but are not a completely suitable 

solution to the complex challenge that weeds present (Harker et al., 2013). Their 

overuse, intended to be addressed through the implementation of agri-environmental 

measures at the policy level, has led to a rapid onset of herbicide-resistant weeds, 

motivating researchers to propose a multifaceted approach in order to mitigate the 

evolution of herbicide resistance (Norsworthy et al, 2012), including diversification of 

weed-control techniques. 

Automatic weed control can contribute to a reduction in both hand weeding and herbicide 

use, allowing the field deployment of other implements that have lower development 

costs than new herbicide active ingredients (Kraehmer et al., 2014).  

1.2.1 Automatic weed-control systems. 

Recent advances in mechatronics regarding electronic controllers and actuators, and 

their progressive implementation in agricultural fields, have enabled the development of 

effective labour-saving technologies for automatic weed control. These automatic 

systems can be divided into two major types: those that act by physically removing the 

weed, and those that apply herbicide accurate and selectively (Fennimore et al., 2016). 

Among the physical removal systems, we can distinguish between those involving 

mechanical means or those that use methods such as thermal control, abrasion or other 

types. 

On the one hand, traditional mechanical control systems such as cultivators have proven 

their effectiveness in eliminating weeds between rows of crop. However, intra-row 

mechanical weed removal without damaging the crop remains a challenge on which 

producers and researchers are still working. From these studies regarding intra-row 

weeding, the development of advanced intelligent cultivators (ICs) has emerged: Perez-

Ruiz et al. (2012) designed a system based on two cutting blades travelling below the 

soil and between transplanted tomato plants along the row-centreline. An intra-row 

weeding roller mechanism was designed and developed by Saber et al. (2013). Other 

examples of ICs are the intra-row weeding hoe developed by Rasmussen et al. (2012), 

where rotating tines are moved within the crop row, or the rotating disks designed and 

tested by Dedousis et al. (2007).  
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At present, there are only a few commercially available ICs, such as the Robocrop InRow 

system (Garford Farm Machinery Ltd, England) that uses a variable-speed rotating, 

semicircle-shaped disc blade for hoeing, and has been tested in celery, lettuce, and 

radicchio crops in California (Fennimore et al., 2014). Other examples of commercial ICs 

are the Robovator System (F. Poulsen Engineering ApS, Denmark), which employs a 

set of electronically controlled tines and which has been tested in lettuce and broccoli 

cultivars (Lati et al. 2016), and the finger weeder system developed by Steketee and 

tested in lettuce (Hemming et al., 2011). Most of these commercial systems are actually 

being semi-experimentally used in horticultural row-grown crops, where their capabilities 

and benefits are still being tested. 

Other methods for physical weed control are in their earlier developmental stages but on 

their way to becoming commercially robust systems (Fennimore et al., 2016). The 

experimental use of on-the-go automated flamers such as the cross-flaming implement 

in the RHEA project (Frasconi et al. 2014) and the flaming implement mounted on the 

commercial IC Robovator System (F. Poulsen Engineering ApS, Denmark) are examples 

of reliable field-deployable machines that burn weeds where detected. 

Non-chemical weed control has also been tested using laser technology, where the laser 

beam must heats the growing point of the weed (apical meristem) to stop its development 

eliminating it (Blackmore, 2014). Kaierle et al. (2013) performed trials with lasers of 

different wavelengths, while other research groups have mounted weeding lasers in 

robotic systems (Shah et al., 2015) or on robotic arms (Zhenyang et al., 2013). The 

efficiency of this type of laser system depends to a large extent on the accuracy of 

locating the apical meristem and on the exposure time, which limits its use in mobile 

systems at normal working speeds (1-2 km.h-1). Effective control using these systems 

also depends on laser power and wavelength and the weed species (Fennimore et al., 

2016). 

Another approach to physical weed control involves abrasion by the projection of sand 

or residues of agricultural products on the apical meristem using a stream of high-

pressure air (Wortman, 2014; Forcella, 2013; Forcella, 2012; Forcella, 2009). Currently, 

our research group is working on the feasibility of an implement capable of performing 

this abrasive weeding automatically. 

On the other hand, automatic precision spraying is a form of chemical control that seeks 

to apply herbicides accurately and selectively. In this type of spatially selective 

applications, targeted areas may be on the scale of square centimetres, many orders of 

magnitude smaller than conventional, traditional herbicide application. Since the early 
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2000s, several researchers have developed robotic implements or platforms for 

precision spraying, obtaining acceptable results closely linked to low travel speeds 

(Young and Giles, 2014; Fennimore et al., 2016). Precise application systems such as 

the LettuceBot (BlueRiver, California) use a series of sensors to detect unwanted plants 

(see section 1.2.2) and can achieve a success rate up to 90% in detection and application 

using an intelligent nozzle control system. The steps in assembling this type of 

equipment in a conventional tractor were provided as part of the framework of the 

European project RHEA, in which an intelligent implement was designed and constructed 

that is capable of performing herbicide micro-applications in previously detected weed 

patches (Pérez-Ruiz et al., 2015). In addition, one of the systems that are experiencing 

a major boom in recent years regarding the automatic application of herbicides is that 

based on aerial platforms performing ultra-low-volume treatments on selected weed 

patches (Krishna, 2016; Zhang et al., 2016). 

1.2.2 Automatic weed-detection systems. 

Automatic weed-control systems such as those proposed in the previous subsection rely 

on an accurate detection of weeds, and the reliable discrimination between weeds and 

crop plants. Spatial distribution and plant spacing are considered key parameters for 

characterising a crop. Thus, the detection system is intended to collect information on 

target areas and make weed-control decisions. To this end, Sun et al. (2010) and Pérez-

Ruiz (2012) proposed an approach using real-time kinematic (RTK) global navigation 

satellite systems (GNSS) to identify the exact position of each transplanted tomato plant 

in a field in a way that any subsequent task (including weed control) should avoid these 

coordinates. This approach has the advantages of requiring less computing resources 

or certain lighting conditions. However, the field tests carried out have shown differences 

between RTK-GNSS-based expected seed location versus actual plant position with an 

uncertainly of approximately 3 cm for seeds and tomato plants. 

Today, the predominant technology for plant detection is computer vision, which it 

represents a robust and powerful method to discriminate between crops and weeds. 

Differentiation under field conditions becomes difficult because highly variable natural 

objects must be discriminated from a background with its own highly random 

characteristics. A variety of visual characteristics can be used for plant species 

identification such as morphology, spectral reflectance and visual texture (Slaughter et 

al., 2008). Several steps are involved in the process of a computer vision-based sensing 

system, beginning with image acquisition and subsequent image segmentation, features 

extraction (shape, colour, texture…) and final decision making (Peteinatos et al., 2014).  
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Multispectral and hyperspectral cameras on land platforms have been widely used to 

detect and locate weeds in lettuce and tomato crops (Zhang and Slaughter, 2011; Piron 

et al., 2009), even on commercial platforms such as the aforementioned IC Robovator 

System (F. Poulsen Engineering ApS, Denmark), and have achieved 90% effective 

discrimination rates.  

As noted above, the use of these multispectral and hyperspectral sensors has also 

generated increasing interest in the growth of aerial platforms for remote sensing. Weed 

detection and location from UAV images have been extensively documented (Lopez-

Granados et al., 2016; Torres-Sánchez et al., 2013) and demonstrate a greater spectral 

differentiation between crops and weeds. In addition to the use of 2D images, the price 

reduction of the 3D image sensors has motivated researchers to use them for the 

location and discrimination of weeds or crop plants (Gai et al., 2015). 

Considering the structure of weeds, in most computer vision-based systems developed 

in recent years, an approach based on the combined use of images and machine 

learning is used to extract the morphological characteristics of weeds and classify and 

discriminate them from the crop. In this application, Bayesian classifiers have been 

employed (De Rainville et al., 2014), and classification algorithms based on Random 

Forest (Haug et al., 2014) and pattern-matching algorithms have been developed 

(Priyadharsini et al., 2015). This is a promising field, and more accurate classifiers 

capable of working under field conditions will be developed in next years. 

Despite their advantages, computer vision systems still have some drawbacks: the use 

of delicate cameras in ground environments where there are external elements such as 

dust, mud, etc., may present difficulties for the acquisition of high-quality images. These 

systems also require complex hardware systems and environments with adequate 

lighting, which increases the costs of such systems. In addition, in agricultural 

environments, it is necessary to define suitable ground truth data, as machine learning 

systems have to be fed datasets that allow them to differentiate between different plant 

types. 

Other sensors used in proximal sensing for the location of the plants and their 

classification are LiDAR (Light Detection and Ranging) sensors. These devices measure 

the distance between the sensor and the target by the emission and reception of an 

infrared light pulse, also capturing the intensity of the reflected signal, allowing one to 

distinguish between different elements of vegetation and to differentiate vegetation from 

the soil. LiDAR sensors provide the morphological structure of the plant/weed, allowing 

them to be characterised (Llop et al., 2016), defining the geometrical structure of the crop 
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lines (Andújar et al., 2013) and performing tailored treatments on crops based on their 

structure (Miranda-Fuentes et al., 2016). In addition to the present work, other authors 

have explored the use of inexpensive sensors to perform scanning tasks similar to those 

of LiDAR for the purpose of using them in phenotyping systems of sugar beet varieties 

(Paulus et al., 2014). 

There are other sensors for weed detection that are not evaluated in the present work 

but have been studied in a relevant way by other authors, including fluorescence, X-ray 

or gamma sensors and ultrasonic sensors. 

Chapter 3 of this thesis explores the use of optical sensors such as inexpensive infrared 

light-beam sensors and affordable vision systems compared to the use of LiDAR sensors 

for the measurement of space between plants as a preliminary step to perform tasks 

such as intra-row physical weed removal among tomato crop plants. 

1.3 Crop Water Stress, Aerial Thermography and Smart Water 

Management. 

Climate change has caused changes in seasonal patterns and triggered periods of more 

intense drought in recent years. Therefore, there is a special interest in drought prone 

areas in improving water management through new strategies, among which regulated 

deficit irrigation (RDI) has stood out in recent years. Through the use of new technologies 

based on remote sensing, it has been proposed to study the potential of thermal imaging 

and infrared thermometry to monitor the effects of this type of management in sugar beet 

crops and super high-density olive orchards. 

Leaf or canopy temperature (TC) has been defined as an indicator of the crop water 

status (Tanner, 1963; Jackson et al., 1977). A higher leaf temperature is a plant’s 

physiological response to water stress. Plant moisture stress occurs when the demand 

for water exceeds available soil moisture. When this occurs, the stomata close to 

minimise water loss through evapotranspiration. This stomatal closure generates a 

decrease in the latent heat flux, and because the energy flow must be balanced, there is 

an increase in the sensible heat flux (increase in leaf temperature). Therefore, the 

difference between Tc and Ta (air temperature) is linearly related to evapotranspiration 

under stable conditions (Monteith, 1981) and has been frequently used to detect drought 

stress and to evaluate the response of a plant to variable irrigation regimes (García -

Tejero et al., 2011). 

In spite of this, Tc may not be completely adequate to evaluate plant-water relations 

accurately; temperature variations may be due to water stress, but they are also affected 
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by other changes such as daytime or seasonal temperature variation, meteorological 

phenomena or other morphological factors. Therefore, measured crop temperatures 

must be normalised. To this end, Idso et al. (1978) proposed the concept of stress degree 

day (SDD), which is calculated as the difference between the deck temperature and the 

measured ambient temperature at 14:00. This concept, which integrated a single 

measure per day, was modified by Jackson et al. (1981) and Idso et al. (1981), 

formulating the crop water stress index (CWSI), which has been widely accepted as a 

standard indicator, despite the need for additional climate information such as the vapour 

pressure deficit (Siegfried et al., 2017). This index provides a value between 0 (indicating 

no stress) and 1 (representing maximum stress), and there are three different 

methodologies for calculating the CWSI: the empirical method, the energy balance 

analytical method and a method that employs reference surfaces (Maes and Steppe, 

2012). 

The empirical method relates the measured air temperature Ta, canopy temperature Tc 

and vapour pressure deficit for plants (Idso et al., 1981). This method is based on the 

fact that the temperature variation value decreases linearly with the vapour pressure 

deficit. This relation results in a formulation of a minimum (lower) baseline or non-water 

stressed baseline (NWSB) for plants transpiring at a potential rate and an upper limit 

baseline for non-transpiring, completely stressed plants. (see figure 0.1).  

 

Figure 0.1: The canopy–air temperature difference (Tc -Ta) versus air vapour pressure deficit 
(VPD) for non-water stressed (∆Tpot) and maximally stressed (∆Tdry). Baseline approach of the 
crop water stress index calculation (Idso et al., 1981). Adapted from Maes and Steppe (2012). 

 

The CWSI is obtained from the equation (1) as follows;         

𝐶𝑊𝑆𝐼 =  
(𝑇𝑐 − 𝑇𝑎) −  (𝑇𝑐 − 𝑇𝐴)𝐿𝐿

(𝑇𝑐 − 𝑇𝐴)𝑈𝐿 − (𝑇𝑐 − 𝑇𝐴)𝐿𝐿
            (1) 

where 𝑇𝑐 − 𝑇𝑎 denotes the difference between air and canopy temperatures, (𝑇𝑐 − 𝑇𝐴)𝐿𝐿 

is the lower stress limit and (𝑇𝑐 − 𝑇𝐴)𝑈𝐿 is the upper stress limit described above. 
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Because of low data collection requirements and the immediacy of the calculation (Maes 

and Steppe, 2012), the empirical method has been used by many authors for scheduling 

irrigations and mapping the variability of water status in different crops. Non-water 

stressed baselines (NWSB) should be defined for this empirical index calculation. 

Empirical CWSIe has been widely studied in different crops such as potatoes (Rud et al., 

2014), citrus orchards (Gonzalez-Dugo et al., 2014), fruit trees such as nectarine or 

peaches (Bellvert et al., 2016), grapevines (Bellvert et al., 2014; Moller et al., 2007) and 

olives (Berni et al., 2009; Ben-Gal et al.,2009). CWSIe has also been used as a tool for 

irrigation scheduling in a variety of crops such as soybean (Nielsen, 1990), pistachio 

(Testi et al., 2008) and commercial palm trees (Cohen et al., 2012) or to estimate the 

yield of a corn crop (Irmak et al., 2000) and broccoli (Erdem et al., 2010). 

However, the empirical method has a disadvantage in that it is a more reliable indicator 

in crops that homogeneously cover the soil (Maes and Steppe 2012). Furthermore, as it 

depends on the atmospheric factors: under conditions of low VPD, there is practically no 

difference between the Tc-Ta of well-watered and stressed plants. The energy balance 

method, in addition to the vapour pressure deficit, takes into account net radiation 

differences and crop aerodynamics (Jackson et al., 1982). The weakness of this method 

is that the variables used are very sensitive to change, increasing the complexity of the 

measurements. Wang et al. (2005) used this method to estimate CWSIa in an extensive 

crop such as wheat, and it has also been used in cotton (Alchanatis et al., 2010; 

González-Dugo et al., 2006) and in peach trees (Wang et al., 2010). 

The third method for calculating the CWSI may also be the simplest; it is based on the 

use of wet and dry references (Jones 1999; Jones 2009; Cohen et al., 2005), which is 

particularly helpful since these references can readily be used for the derivation of 

indices that do not require detailed environmental information. The most common way 

to generate these references is to wet the leaves or canopy (Twet) and to cover the leaves 

with glycerine to prevent the leaves from transpiring (Tdry), although it has also been 

proposed by different authors to the use of wet artificial reference surfaces (WARS).  

Plant evapotranspiration (ET) is an alternative parameter used to determine crop water 

needs (Davis and Dukes, 2010), and its defined as the evaporation from the soil surface 

and the transpiration from the plant/tree. As its affected by environmental parameters 

such as air temperature, relative humidity, wind speed or solar radiation among others, 

a reference evapotranspiration ET0 must be defined. ET0 represents the theoretical ET 

of a well-watered, non-stressed lowland meadow crop as it was defined by Doorenbos 

and Pruitt (1977) and can be calculated by means of the Penman-Monteith equation 
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(FAO-PM, equation not presented here). As showed later, crop ET has been used for a 

widely number of studies to determine crop irrigation needs and scheduling irrigation. 

To map the variability of the water content and needs of the crop or better understand 

the stomatal regulation of leaf gas exchange, conventional methods such as the use of 

gas exchange chambers (Turner et al., 1984; Ahmed et al., 2009; Moriana et al., 2002) 

or the pressure chamber for measuring leaf water potential (ψL) (Scholander et al., 1965) 

involve discrete sampling and can be time consuming and limited by the number of 

samples that must be obtained to be significant. Therefore, there is a need to analyze 

the water status of the crop in a quick, remote and non-invasive way, and thus in recent 

years, the use of infrared thermometry and thermal sensors has gained popularity, also 

motivated by the reduction of the costs and the improvement in its technology (Costa et 

al., 2013).  

Infrared thermometry has proven its utility for measuring canopy and leaf temperatures, 

but like the CWSI, measures should be standardized based on the environmental and 

specific factors of each zone. Jones (1999) developed a stomatal conductance index Ig 

(see equation 2 below) specific for infrared thermometry, calculated by wet and dry 

reference, and taking into account the air temperature (Maes et al., 2011).  

𝐼𝑔 =
𝑇𝑑𝑟𝑦 − 𝑇1

𝑇1 − 𝑇𝑤𝑒𝑡
=  

𝑔𝑠

𝐺
            (2) 

Where 𝑔𝑠 is the stomatal conductance and 𝐺 is the parameter dependent on the air 

temperature. In contrast to the CWSI, higher Ig values indicate lower plant stress (Costa 

et al., 2013). 

In addition to developing water status indexes such as CWSI or Ig, infrared thermometry 

has been used for prediction of crop yields (Ajayi et al., 2004; Sepaskhah et al.,1994), 

crop canopy monitoring (Wang et al, 2010), water use estimations (e.g. for peaches, 

Glenn et al., 1989) or irrigation scheduling (Zhang et al., 2017; O’Shaughnessy et al., 

2014; Davis and Dukes, 2010). The sensors used for infrared thermometry have evolved 

from the first thermocouple devices to a variety of both hand-held and stationary infrared 

thermometers, even been mounted on centre pivots (Colaizzi et al., 2017), where having 

a narrow field-of-view is valuated to properly separate between soil and plant 

measurements in cases where crops do not completely cover the soil. This type of sensor 

is generally interfaced with a datalogger for continuous data recording, although wireless 

infrared thermometer networks have been developed in recent years, which have great 

potential in outdoor applications (O'Shaughnessy et al., 2011).  
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The other method for plant stress sensing of scope for this thesis is the use of remote 

sensing techniques based on infrared thermal imaging (thermography), which has 

undergone a great boom since the 2000s due to commercial availability of (relatively) 

inexpensive thermal cameras (Maes and Steppe, 2012). Thermal cameras capture the 

energy of electromagnetic radiation that a body emits according to Plank's law. This 

amount of energy was defined by Stefan-Boltzmann's law, according to equation 3 

below, as a function of the product of the emissivity, the Stefan-Boltzmann constant and 

the surface temperature. 

𝑊 =  𝜀 𝜎 𝑇𝑠
4         (3) 

Based on this, thermographic sensors are able to capture the region of the 

electromagnetic spectrum with infrared wavelengths of between 7 and 13 μm, and to 

obtain the crop temperatures. This type of remote sensing technologies have increased 

in several orders of magnitude the capacity to make a large and continuous spatial 

coverage in a short time, in a more economical way and allowing the obtaining of data 

in zones in which the manual temperature measurement could be complicated (Li et al. 

2009). The radiometric surface temperature obtained in the thermal images allows to 

show differences between zones under different irrigation regimes (Zarco-Tejada et al., 

2012). The use of thermal cameras for the stress quantification is particularly useful in 

the species or varieties that exhibit isohydric behaviour (Jones et al., 2009), in which the 

information provided by the pressure chamber is not significant. In this type of behaviour 

there is a strong stomatal regulation that prevents significant decreases in the water 

potential of the leaf (Fernandez et al, 2014). 

As reviewed by Khanal et al. (2017), the thermal cameras have been evaluated at both 

ground and aerial levels. Ground-based measurements has been conducted with the 

cameras being mounted on masts or cranes for the determination of CWSI in crops such 

as vine, pistachio or peaches (Rud et al., 2014; Alchanatis et al., 2006, Testi et al. 2008, 

Wang and Gartung, 2010), while airborne thermal sensors have been used on manned 

aircraft overlying different crops such as olive trees and fruit trees (Bellvert et al., 2016; 

Sepulcre-Cantó et al., 2006; González-Dugo et al., 2013) or mapping water stress being 

mounted on UAVs and flown over vineyard (Bellvert et al., 2014) as a tool for precision 

irrigation on pistachio (González-Dugo et al., 2015) or for measuring canopy temperature 

and identification of different irrigation regimes in olive orchards (Berni et al., 2009) 

among other examples. Thermal cameras have also been used successfully in other 

aspects such as the detection of diseases such as fusarium or downy mildew (Calderón 
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et al., 2014; Oerke and Steiner, 2010; Oerke et al, 2006), or field phenotyping (Tattaris 

et al., 2016). 

It is exactly due to the popularization of these unmanned aerial platforms that has caused 

the rise of the studies of thermography applied to agriculture, since they allow image 

capturing in sub-metric resolutions, with the sampling frequency needed for each case, 

allowing flight planning to be tailored to the needs of each crop and at different heights, 

and even perform static flights for aspects such as the detection of irrigation accidents. 

However, it is necessary to emphasize that thermal cameras need a previous radiometric 

calibration (Berni et al., 2009) in order to provide accurate temperature measurements, 

which generally must be realized using a laboratory black body (with emissivity 1), that 

are usually expensive. In addition, the acquisition of thermal datasets frequently implies 

its later processing to obtain orthomosaics with embedded thermal information. 

Unfortunately, processing of thermal data with current commercial mapping software 

does not always work flawlessly, since the alignment and analysis of subsequent 

radiometric information still remains a challenge, due to limited information contained by 

thermal images compared to RGB images (Maes et al., 2017). 

All of the data generated through the aforementioned remote sensors, and the 

information extracted from them, should revert to a practical utility for water 

management. Traditional irrigation systems undergo both social and political pressure to 

increase their irrigation efficiency, achieve higher water productivity and use less water 

(Pereira et al., 2012). These traditional irrigation systems have generally been aimed at 

preventing crop water stress throughout the growth cycle, and have been based mainly 

on qualitative data, previous experiences or shallow estimates, causing overirrigation in 

some areas of the field while others remain underirrigated. A new approach based on 

the use of quantitative data is necessary to be able to perform a specific water 

management. 

In areas of water scarcity or drought-prone areas, controlled deficit irrigation (CDI) has 

become one of the most common strategies for maintaining production and reducing 

water consumption. CDI strategies are based on reducing irrigation during certain 

periods of the growth cycle where the crops have a low sensitivity to water stress (Egea 

et al., 2009). Information about plant, soil, weather, water supply systems must be 

considered on this scheduling to tailor irrigation operations to specific demands.  

Smart water management must take into account the inherent variability of cropping 

systems, adapting management to different field areas to conduct a variable rate 

irrigation (VRI). VRI involves deciding when, where and how much water to apply on an 
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accurate way with techniques based on sensors that can assess soil, water and 

atmospheric parameters (Hedley et al., 2014).  

Applying the concept of management units as zones in which the soil has similar 

characteristics in terms of texture or water retention capacity (Martínez-Casanovas et 

al., 2009), individual elements (plants or trees) that are representative of these 

management units can be monitored. This monitoring should be seen as the application 

of several sensing technologies to determine soil moisture dynamics and water use 

(Adeyemi et al., 2017).  

In order to carry out on-site monitoring at field scale, sensors are installed to measure 

and characterize soil and plant properties, as well as small meteorological stations to 

record micro-climatic variables. Proximal soil sensing allows to know the moisture 

content of the bulb, based on measurements of electrical conductivity and temperature, 

while sensors can be placed at different depths to obtain various moisture profiles. 

Meanwhile, sensors can be used in the plant to monitor variables such as temperature 

using infrared thermometers, changes in trunk and sap flow using dendrometers or leaf 

turgor pressure. Climate sensors usually obtain data on relative humidity, wind speed, 

ambient temperature, etc. With the development of wireless technologies, in recent years 

there has been a boom in the development of networks of sensing devices known as 

sensor nodes or motes (Call ICT-Agri-Project VAROS, 2016; Yu et al., 2013; Shah et al., 

2012), in which data is automatically collected continuously and sent to a cloud server, 

able to process them and display them in a graphical interface. 

As reviewed by Hedley et al., (2014), modern VRI systems also can incorporate adaptive 

electronic control systems to automatically and continuously readjust the irrigation 

application system (i.e. by controlling electrovalves) and to apply the necessary dose, 

taking into account the spatial and temporal variability in the requirements and water 

intake of the crops. 

A key component of any VRI system is the Decision Support System (Adeyemi et al., 

2017), capable of managing in real time the information coming from sensors, generating 

irrigation alerts and giving recommendations. These DSS represent the core of any 

automated agricultural management based on variability, so that support decisions and 

control actions through the use of extensive databases obtained in real time. This type 

of management support system still presents some challenges, since algorithms that 

take into account the singularities of the crops and varieties of each region must be 

generated. 
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Information-to-action decision processes for field operations will be largely conditioned 

by the accuracy of the initial data taken in situ (Kitchen 2008), as well as the ability of 

the DSS to transform this data into knowledge and include it in farm management 

information systems (FMIS) (Fountas et al., 2015). In the near future, FMIS will play an 

important role in the adoption of precision technologies, in order to establish the 

interrelationships between farm machinery or irrigation systems and their surroundings, 

through proximal or remote sensing.
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II. Overall Summary of the Objectives 

 

This doctoral research focuses on the use of proximal sensors in row crops with the 

purpose of contributing to physical weed-control techniques and managing water 

resources for optimum crop development. 

The general objective of the thesis is the analysis, design, implementation and 

validation of the use of affordable sensors, mounted on aerial and terrestrial platforms, 

for i) for the study of the response to water stress in sugar beet and super-intensive olive 

orchards and ii) to accurately measure plant spacing in transplanted tomato row crops. 

To validate of these types of sensors, the systems developed and tested must meet 

following requirements; i) achieving acceptable accuracy (compared to commonly used 

higher cost sensors), ii) requiring less computing power, and iii) being generic enough to 

be adapted to work under different conditions.  

A series of specific objectives are proposed to achieve this global objective, which are: 

1. To develop an affordable, robust system for infrared temperature measurement 

based on open-source software/hardware. 

2. To determine, under the same field conditions, the effectiveness of the 

methodology by comparing sugar beet canopy temperature measurements taken 

by the developed system and those from a conventional thermal camera. 

3. To evaluate the suitability of the crop water stress index (CWSI) derived from 

aerial thermal images as an indicator of seasonal dynamics on water status in 

super-high density olive orchards. 

4. To design and evaluate a sensor platform with affordable components, for the 

accurate detection of tomato row plants and measurement of automated plant 

spacing. 

To compare, under the same conditions, the performance of the inexpensive 

optical sensors (light-beam and Kinect camera) on the platform to LiDAR sensor 

efficiency. 
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Abstract  

 

Increasing agricultural efficiency in a sustainable manner will contribute to feed a growing 

population under limited land, nutrient and water resources. Water scarcity and the 

increasing social concern for this resource are already requiring more sophisticated 

irrigation and decision-support systems. To address the heterogeneity in crop water 

status in a commercial field, precision irrigation requires accurate information about 

crops (e.g., crop water status), soil (e.g., moisture content) and weather (e.g., wind speed 

and vapor pressure deficit). Numerous studies have shown that plant canopy 

temperature can be used to derive reliable plant water stress indicators, thus making it 

a promising tool for irrigation water management. However, efficient and cost-effective 

measurement techniques are still lacking. This paper assesses the potential of infrared 

thermometry and thermal imaging for monitoring plant water stress in a commercial 

sugar beet field by comparing canopy temperature data acquired from a conventional 

thermal camera with an inexpensive infrared sensor, both mounted on a rotary-wing 

unmanned aerial vehicle (UAV). Measurements were taken at various phenological 

stages of the sugar beet growing season. Laboratory tests were performed to determine 

the key features for accurate temperature measurements and flight altitude. Experiments 

were conducted in 2014 and 2015 in experimental and commercial sugar beet fields in 

Southwestern Spain to (i) develop an affordable infrared temperature system suitable for 

mounting on a UAV to obtain thermal information, (ii) compare sugar beet canopy 

temperature measurements collected with the low-cost platform with those obtained from 

a conventional thermal camera, both mounted on a rotary-wing UAV, (iii) identify the 

factors that will limit the use of the low-cost system to derive temperature-based water 

stress indices. To accomplish these objectives, well-watered and deficit irrigated plots 

were established. Results indicated that the lightweight canopy temperature system was 

robust and reliable, although there were some constraints related to weather conditions 

and delimitation of the area covered by the infrared sensor. 
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3.1 Introduction  

Agricultural production must double by 2050 in order to meet the predicted food demands 

of the world population (Tilman et al. 2011). However, accomplishing this target will be a 

significant challenge for researchers and farmers because crop production would have 

to increase at a rate of 2.4 % per year; the average rate of increase is only 1.3 % (Ray 

et al. 2013). In the last five years, plant phenotyping techniques based on remote sensing 

have emerged and may be deployed for in situ screening with a wide range of breeding 

objectives, including yield potential, adaptation to abiotic (water stress, temperature, 

salinity) and biotic (susceptibility to pests and diseases) stresses, and even quality traits 

(Li et al. 2014). Thus, there is growing interest in adapting agricultural machinery and 

electronic sensors for field-based high-throughput phenotyping (White and Conley, 

2013). Potential applications are mainly envisaged for genetic research (e.g., in the 

detection of quantitative trait loci, QTL) and crop improvement but also include 

monitoring of the crop response to soil and management variability (i.e. precision 

agriculture) (Andrade-Sanchez et al. 2014). While the tremendous potential for using 

agricultural and environmental unmanned aerial vehicles (UAV: fixed-wing and rotary-

wing platforms capable of carrying different measurement devices) has become evident 

through multiple applications during the last few years, the challenging requirement 

profile for both UAVs and imaging sensor units has emerged as more and more farmers 

are beginning to demand service (e.g., variable-rate N application, finding faults in 

irrigation systems), and private firms that offer this service for a fee are emerging (Zhang 

and Kovacs 2012). In contrast to satellite (largely fixed with rigid coverage areas and 

observation times) or ground-based measurements, the use of a UAV allows coverage 

of specific areas and obtaining spatially distributed and geometrically high-resolution 

information on the canopy/ground temperature. Satellites compensate their rigid flight 

schedule with extremely large coverage areas, while UAVs are capable of flying at any 

time and much lower altitude, hence collecting imagery at a much higher spatial and 

temporal resolution (Hunt et al. 2010; Berni et al. 2009a). Many researchers agree that 

the main disadvantage of many UAVs is the very limited payload. However, light-weight 

sensor systems are currently being investigated (Crawford et al. 2014; Colomina and 

Molina 2014). The use of appropriate sensor platforms can support site-specific 

management strategies by providing information with a very high spatial (centimetre 

level), temporal or even radiometric resolution (Zhang and Kovacs 2012). These 

platforms are excellent tools for crop monitoring and they could significantly reduce the 
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crop scouting costs for growers (Ehmke 2013). Most importantly, early detection of plant 

diseases could prevent their spread and minimize crop losses. Xu et al. (2014) and (Li 

et al. 2014) developed and used a rotary-wing aircraft sensing system that included a 

spectral imager to automate disease detection and an analysis process for strawberries 

(Botrytis fruit rot) and citrus (citrus greening disease-Huanglongbing), respectively. 

Calderón et al. (2013) used a fixed-wing aircraft UAV to acquire hyperspectral and 

thermal imagery as an indicator of Verticillium Wilt infection and severity in olive 

orchards. Another recent and growing use of this new technology is to generate suitable 

weed maps early in the growing season, a task that has not been possible with 

conventional aerial or satellite imagery due to the lack of sufficient image spatial 

resolution (Lopez-Granados 2011; Peña et al. 2014). In addition, UAVs can work on 

demand with great flexibility at critical times according to agronomic goals, which is 

crucial for detecting small weed seedlings in the majority of crops. The UAV industry has 

identified precision agricultural applications, including weed control and resource 

management, as the single largest market opportunity through the year 2015 (Jenkins 

and Vasigh 2013).  

Today, the increasing demand for water resources and increasing environmental 

concern render plant-sensing devices valuable for irrigation decision-making, such as 

the use of thermal sensors to generate accurate crop water stress index (CWSI) 

information (Jackson et al. 1981). This index has been widely used as a crop water status 

indicator and provides the crop stress level based on canopy-air temperature differences. 

Many authors have reported morpho-physiological responses of sugar beet to water 

stress conditions (Hoffmann 2014; Romano et al. 2013; Tsialtas and Maslaris 2012), 

which is widely considered to be the major limiting factor for yield (Pidgeon et al. 2006). 

The leaf temperature of sugar beet is considered to be a relevant indicator of drought 

stress (Shaw et al. 2002). Testi et al. (2008) concluded that more repeatable and 

effective CWSI values for evaluating tree water status for irrigation purposes were 

obtained from 1200 to 1500 h (local time), when the CWSI of stressed pistachio canopies 

reached their maximum diurnal value. To evaluate spatial variations in canopy 

temperature and relate them to the plant transpiration rate and drought stress, passive 

sensors (i.e., sensors that measure the characteristic radiation of an object) that provide 

detailed and highly refined information can be used (Mahlein et al. 2012). Thermography 

techniques can be applied to proximal or remote sensing. One major advantage of 

infrared thermal imaging is its non-invasive nature (Lenthe et al. 2007), which enables 

the use of airborne sensors, as was performed in this work. Thermal imagery used for 

this objective might provide a suitable tool for model evaluation under variable 

atmospheric conditions (Ahrens et al. 2014) and have been used for several crops, such 
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as cotton, soybean, wheat, citrus and grapes (O’Shaughnessy et al. 2011; Ballester et 

al. 2013; González-Dugo et al. 2013). However, the main concern with these thermal 

imagery techniques is their cost, especially when compared to the accuracy obtained, 

and the resolution is frequently insufficient for precision applications. For example, the 

system employed by (González-Dugo et al. 2013) is advertised to have a thermal image 

resolution of approximately 1 ºC, which may not be sufficient for measurements taken at 

times when there is a small range in canopy temperature differences (e.g., mornings). 

This hurdle can be overcome by using infrared point sensors, as in this work, which can 

provide an accuracy of 0.5 ºC at more affordable prices than conventional lightweight 

thermal cameras. The cost of an aerial thermal platform based on infrared point sensors 

of the type described in this work may represent 3–5 %, or even lower, of the cost of a 

conventional lightweight thermal camera, making this technology better suited for small 

to medium-sized farms that cannot afford costly equipment. The objective of this 

research was to design and validate a LIghtweight canopy TemperAture measurement 

System (LITAS) that can be mounted on a rotary-wing UAV with a limited payload of 2 

kg maximum. The specific objectives were: 

(i) to develop an inexpensive infrared temperature system suitable for 

mounting on a UAV platform to obtain thermal information.  

(ii) to compare sugar beet canopy temperature measurements collected 

using LITAS with those obtained from a conventional thermal camera, 

both mounted on a rotary-wing UAV. 

(iii) to identify the factors that will limit the use of LITAS to derive temperature-

based water stress indices. 

3.2 Materials and methods 

Canopy temperature measurement platform  

Canopy temperature measurements were collected by means of two remote sensing 

devices. These devices consisted of an inexpensive infrared sensor (Melexis, Ypres, 

Belgium) and a thermal camera (FLIR, Oregon, USA). The thermal camera was used as 

benchmark to determine whether the proposed low-cost sensing system may provide 

sufficiently accurate estimates of canopy temperature for sugar beet irrigation 

management. The inexpensive infrared sensor used an Arduino-based data logger. The 

infrared sensor, camera and data logger were mounted on a UAV and are described in 

detail below.  

The microcontroller board  
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The microcontroller (model ATmega32u4, Aduino, Duemilanove, Italy) is an open source 

board, which has 20 digital input/output pins (of which 7 can be used as pulse width 

modulation (PWM) outputs and 12 as analog inputs). This microcontroller has built-in 

USB communication, eliminating the need for a secondary processor and allowing the 

microcontroller to take control of the USB ports (using libraries). The small dimensions 

and weight of this microcontroller facilitated mounting on the UAV platform without 

affecting the navigation performance (Table 3.1). 

Table 3.1 Microcontroller specific features 

Arduino board features 

Microcontroller: ATmega32u4 

Operating Voltage: 5 V 

Input Voltage (recommended): 7-12 V 

Input Voltage (limits) 6-20 V 

Analog input channels 12 

DC current per I/O Pin: 40 mA 

Flash memory: 32 KB (ATmega 32a4) of which 4KB used by bootloader 

EEPROM: 1 KB 

Clock Speed: 16 MHz 

Length, width, weigth: 68.6 mm. 53.3 mm, 20 g 

 

Infrared sensor specifications  

An infrared thermometer, model MLX90614, was tested over a reference surface at 

constant temperature in the laboratory, before taking temperatures of the sugar beet 

canopy. Table 3.2 shows the specifications of the sensor. The sensor was selected 

because of its small size and its high accuracy-to-cost ratio. The sensor kit consists of a 

long-wave filter that allows infrared radiation (with wavelengths of 5.5–14 µm) to pass 

through, a thermopile detector chip and a unique proprietary signal-conditioning chip. 

The two voltages, Vs and Vo, correspond to the respective sensor body temperature 

(Ta) and the object or target temperature (To), which is internally compensated for by 

Ta. The voltage outputs were converted to temperatures using the following expression 

(Melexis Data Sheet 2009): 

                                                            𝑇𝑖(𝐾) =  𝑉𝑗  𝑥 0.02                            (1) 

where Ti represents either To or Ta in Kelvin, being later converted to Celsius degrees 

and Vj (measured in Volts) is either Vo or Vs. 

The advantages of this measurement method included the simple automation of data 

collection and the low-cost of the system components. The infrared sensor provides 
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spatial awareness to the infrared temperature measurements, which would otherwise 

require an expensive thermal imager. The sensor’s parameters, such as the emissivity 

constant K, can be adjusted through an evaluation board (model EVB90614), which acts 

as the interface between the MLX90614 infrared thermometer and a personal computer 

(PC). The software enables temperature measurements using a PC as well as 

reconfiguration of the sensor by modification of the interface type, output ratings and 

temperature ranges, among other parameters. The emissivity of the sensor was set to 

0.98 because this value has been reported to induce errors of less than 1º C (López et 

al. 2012). To properly calculate the emissivity of a leaf, the actual temperature must be 

known at each moment; thus, a noncontact hand-held pyrometer, model FLUKE 62 mini 

(FLUKE Europe, Eindhoven, Netherlands), was used to compare measurements from 

the infrared sensor and a thermometer in laboratory tests. The temperature 

measurements were taken such that 100 % of the temperature signal came from leaves. 

A similar hand-held pyrometer was used by Bellvert et al. (2014). 

Table 3.2 MLX90614 temperature sensor technical data. 

Sensor features 

Temperature ranges: -40 … +125 ºC for ambient temperature 

 -70 … + 380 ºC for object temperature 

Measure resolution 0.02 ºC 

Emissivity: K = 0.85 

Accuracy: ± 0.5ºC 

Supply voltage: 5 V 

Output: 10-bit PWM output 

 SMBus compatible digital interface 

Output high level: PWMHI Isource = 2 mA 

Field of View: 90º 

 

The sensor was mounted vertically in the middle of the bottom side of the UAV in a nadir-

view position. This position helps avoid the influence of air streams generated by the 

blades of the vehicle, which can artificially lower the registered temperature. The data 

acquired by the sensor were collected using an Arduino Leonardo board because of the 

broad possibilities of environmental adaptation provided by this method. An ethernet/ 

MicroSD shield was used as a data logger. This device allowed temperature readings to 

be stored on an SD card in a text format for analysis on a computer at a later time. 

Thermal camera  
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Thermal images of sugar beet fields were acquired during daytime hours, when the 

foliage exhibited the highest temperature of the day. The uncooled thermal camera used 

was the Tau 2 324 model (FLIR Systems, Inc., Wilsonville, OR, USA), which was used 

for receiving thermal imagery from the crop canopy and comparing the temperature data 

with the data captured by the infrared sensor. Its main characteristics are summarized in 

Table 3.3. The camera was installed vertically on the middle of the bottom side of the 

UAV, positioned next to the IR sensor, and allowed to record video images and adjust 

the isotherm thresholds to colorize the temperatures of interest on a grey scale.  

Table 3.3 Thermal camera technical data 

Thermal Camera features 

Scene range -25 … +135 ºC for ambient temperature 

 -70 … + 380 ºC for object temperature 

Measure resolution 0.02 ºC 

Emissivity: K = 0.85 

Accuracy: ± 0.5ºC 

Supply voltage: 5 V 

Output: 10-bit PWM output 

 SMBus compatible digital interface 

Output high level: PWMHI Isource = 2 mA 

Field of View: 90º 

 

Unmanned aerial vehicle  

A small multi-rotor copter equipped with a GNSS receiver was used as an aerial platform 

to mount the body of the remote sensing system. The multi-rotor copter was powered by 

a 5200-mA lithium ion rechargeable battery pack allowing for a maximum flight time of 

45 min without payload and 1000 m of operating communication distance in open areas. 

As mentioned before, the infrared sensor, red–green–blue (RGB) and thermal camera 

assembly were mounted on the bottom side of the UAV to determine the key features of 

accurate temperature measurements, flight altitude and image stabilization. The RGB 

camera mount incorporated an autonomous mechanical stabilizer.  

Laboratory tests  

Two preliminary laboratory tests were performed to (i) validate the infrared sensor and 

its configuration parameters and (ii) assess the feasibility of using the canopy 

temperature as a water stress indicator for sugar beets. The first test consisted of 

comparing measurements of leaf temperature performed in potted and field-grown sugar 

beets with the inexpensive infrared sensor and the hand-held infrared pyrometer Fluke 
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62 (Fig. 3.1). Both potted and field-grown sugar beet plants were grown outdoors at the 

University of Seville experimental facilities. The test was performed when plants were at 

the post-emergence stage with 4–5 true leaves. Measurements were taken at midday 

over the period November 20th to December 12th 2014. Clear-sky and overcast days 

prevailed during this period, characterized by midday air temperatures within the range 

13.3–23.6 ºC and solar radiation within the range 4.5–11.1 MJ m-2 day-1. These records 

were collected from a standard weather station located near the University facilities, 

belonging to the Agro-climatic Information Network of the Andalusia Government. The 

suitability of using canopy temperature as a decision-making tool in irrigation 

management of sugar beets was assessed for potted sugar beets grown in a greenhouse 

through trials conducted over the same period described earlier. Two irrigation 

treatments were established: FI (full irrigation), which met the full crop water 

requirements, and DI (deficit irrigation), in which irrigation was withheld over the course 

of experiment. Six potted plants (pot volume of 0.3 l) of similar size were used in each 

treatment. The pot weight of each of the potted plants was measured at midday. The 

daily evapotranspiration (ET) was estimated during the experimental period as the 

difference in the pot weights between two consecutive days. After pot weighing, the FI 

pots were watered, left to drain and weighed again to reliably determine the ET estimates 

under non-limiting soil water conditions. The relative ET (RET), used as reference crop 

water stress indicator to be compared with canopy temperature, was calculated as 

follows: 

                                                 𝑅𝐸𝑇 =  
𝐸𝑇𝐷𝐼

𝐸𝑇 𝐹𝐼
                               (2)   

where ETDI and ETFI denote ET for DI and FI treatments, respectively.  

The canopy temperature (Tc) was measured in both FI and DI plants with the low-cost 

infrared sensor (MLX90614) at the same time that the pot weight was measured. Tc 

measurements were performed before watering the FI plants by placing the infrared 

sensor approximately 20–30 mm from the leaf surfaces to ensure that the Tc readings 

were actual leaf surface measurements. At least two Tc measurements were collected 

per potted plant. The air temperature (Ta) and relative humidity (RH) were continuously 

recorded using a HOBO Pro Temp-HR U23-001 data logger (Onset Computer Corp., 

Bourne, Massachusetts, USA). The difference between the Tc and Ta values (∆T = Tc–

Ta) was determined daily for the FI and DI plants. 
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Figure III.1 Components of the temperature data acquisition system: a) infrared sensor MLX90614 b) 
evaluation board EVB90614, c) Arduino Leonardo board with Ethernet/SD shield mounted above, and d) 
hand-held infrared thermometer Fluke 62. 

Field site and experimental design 

Field tests were conducted during the spring of 2015 in a commercial sugar beet field in 

southern Spain with a fraction of ground covered by the canopy of nearly 100 %. A total 

of approximately 12 ha were planted in November 2014, 20–25 mm deep, 120 mm 

between plants and 500 mm between rows of plants, with a 12-row pneumatic drill 

seeder. Two sugar beet plots of 73 m2 grown on clay soil were selected for the study 

(Latitude: 36.69560328º N, Longitude: 6.31925158º W). The sprinkler irrigation system 

was retrofitted to have two distinct areas: irrigated (according to the criterion of the 

farmer) plots and deficit irrigated plots that were subjected to a drying period that lasted 

21 days. This consisted of withholding three irrigation events (one per week) that took 

place in the irrigated plot. Different flight altitudes (5, 10, 20, 30 and 40 m) were used 

over these areas to survey the surface temperature of the plots; here, some experience 

in manual flight control was essential in order to adjust the multi-rotor altitude. The 

assessment of the LITAS system to measure crop temperature at these flight altitudes 

was performed because variations in flight altitude are expected depending on the spatial 

variability of commercial fields. In fields with high spatial variability, lower flight altitudes 

to attain higher spatial resolution with the LITAS system may be required, whereas in 

more uniform fields the need for high spatial resolution is lower and higher flight altitudes 

will reduce the cost of the operation. A single-layer atmosphere with uniform conditions 

was considered because the atmospheric variation for a typical UAV flight altitude (150–

200 m) can be neglected. However, the assumption that atmospheric corrections can be 

neglected for flight altitudes up to 40 m needs to be evaluated. The measurements were 

taken at the same time (between 12:00 and 1:00 pm) 2 days after irrigation. Before the 

measurements were taken, an internal calibration of the thermal camera was carried out 

in the laboratory using a blackbody. The total energy a blackbody radiates and the 

wavelength of maximum emittance depend on the temperature of the blackbody and can 
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be described by Stefan- Boltzmann’s and Wien’s laws, respectively (Walker 2008; Tipler 

2000). After each flight, the data were transferred from the thermal sensors to the 

computer and the data quality was checked. Individual data and thermal image files were 

processed to obtain the sugar beet canopy temperature for the whole survey. A simplified 

workflow for the multi-rotor mission planning, survey and processing is provided in Fig. 

3.2. 

Statistical analysis  

The normal distribution of the data set was tested using Shapiro–Wilk’s test. This test 

specifies the distribution using a W statistic parameter. Small values of W values indicate 

deviation from a normal distribution. For each test, a p level >0.05 (5 % probability of 

error) was used as an acceptable error level. 

 

Figure III.2 Workflow scheme for the UAV mission planning, survey and processing 

3.3 Results and discussion 

The results of the inexpensive infrared sensor validation for the leaves of potted and 

field-grown sugar beet plants are shown in Fig. 3.3a, b, respectively. The experiment, 

which consisted of measuring leaf temperature in 26 sugar beet leaves (n = 13 in potted 

sugar beet plants, n = 13 in 2-row field plots of sugar beet plants), aimed to validate (i.e. 

prior to being mounted on the UAV) the usefulness of the inexpensive sensing platform 

envisaged in this study to accurately measure variations in leaf temperature. 
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Figure III.3  a) Correlation between leaf temperature measured with the reference thermometer and 
temperature measured with the inexpensive IR sensor in a potted sugar beet plants and; b) field-grown 
sugar beet plants. 

 

As depicted in Fig. 3.3, a good linear correlation was observed between the temperatures 

measured with the reference thermometer and the low-cost IR sensor, evidencing a 

similar degree of accuracy among both sensing systems. The correlation coefficients 

were as follows: rxy = 0.977, p < 10-4 (potted plants) and rxy = 0.975, p < 10-4 (2-row field 

plot). 

Assessment of the responsiveness of sugar beet leaf temperature to soil water 

availability. 

The canopy-to-air temperature difference (∆T = Tc-Ta) was significantly affected by the 

irrigation regime (Fig. 3.4). DI plants had higher ∆T than FI plants from day 5 after the 

onset of the experiment. The ∆T of the DI plants (∆TDI hereafter) was generally greater 

than 0 ºC, whereas the corresponding value for FI plants (∆TFI) was normally less than 

0 ºC. During the first days of the experiment and in the absence of soil water restrictions 

in both treatments, the FI and DI plants exhibited a decreasing trend of ∆T from 

approximately 3 ºC to approximately -1 ºC. From day 5 onwards, the ∆T values were not 

constant; a variable trend was observed in both treatments, although it was more 

accentuated in ∆TDI.  

∆T variability can be ascribed to variations in soil water content but also to variations in 

a number of climatic variables, such as vapor pressure deficit, solar radiation or wind 

speed (Maes and Steppe 2012). Since the experiment was performed over a period with 

changing climatic conditions (see Materials and Methods section), ∆T variability in FI and 

DI was likely driven by changes in vapour pressure deficit and solar radiation on different 

measurement days. In order to use ∆T as a water stress indicator, it needs to be 

normalized as, for example, using an upper and lower boundary ∆T for the prevailing 
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weather conditions of the day of measurement. This is the base for CWSI calculation 

(Jackson et al. 1981), but this water stress indicator was not calculated in this study 

because it was outside the scope of the work. As stated in the objectives, the focus of 

the work was instead to demonstrate that canopy temperature is sensitive enough to 

water stress in this species and that the envisaged low-cost IR sensing platform (LITAS) 

is accurate enough to capture these differences. 

 

Figure III.4 Changes in canopy-to-air temperature differences (∆T = Tc-Ta) for FI and DI plants throughout 
the experimental period. Each point indicates the mean of six potted plants. The error bars denote the 
standard error. 

The difference in ∆T between the DI and FI plants (which is equivalent to the differences 

in Tc between the treatments) was related to the RET, a surrogate of soil water deficit 

(Fig. 3.5). The results indicate that ∆TDI-∆TFI increased with decreasing RET values, 

thereby confirming the sensitivity of this plant water status indicator to soil water deficit 

in sugar beets. Earlier work using infrared thermometry on sugar beets infected with 

Phytium aphanidermatum Edson (Fitz.) (Pinter et al. 1979), a root-rot disease of mature 

sugar beets, revealed that the midday leaf temperature of infected plants was 3–5 ºC 

warmer than that of adjacent plants with no sign of disease. Although their work was not 

focused on irrigation management, water stress is an early symptom of this disease and 

caused leaf temperature increments of a similar magnitude as those observed in this 

study for water-stressed plants (Fig. 3.5). The high scatter observed in the ∆TDI-∆TFI Vs 

RET relationship (Fig. 3.5) can be explained by the influence that other factors (e.g., 

atmospheric demand represented by air vapor pressure deficit), besides soil water 

availability, have on Tc (Maes and Steppe 2012). 
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Figure III.5 Relationship between the difference among ∆T of FI and DI plants and the relative 
evapotranspiration (RET). 

 

LITAS vs. a conventional thermal camera on a UAV 

The mean and standard deviation values of the surface temperature of the irrigated and 

deficit-irrigated plots measured with the conventional thermal camera and LITAS during 

7 UAV flights performed in the field site are shown in Table 4. The boxplot diagrams of 

these measurements are shown in Figs. 3.6 and 3.7. The mean canopy temperature (Tc) 

obtained with the thermal camera for the various flight altitudes varied between 25.60 ºC 

and 27.11 ºC in the DI plots and between 24.56 ºC and 26.86 ºC in the irrigated plots. 

The standard deviation (SD) values of the thermal camera measurements were between 

1.26 ºC and 2.28 ºC for deficit irrigated plants and between 2.20 ºC and 3.54 ºC for those 

under normal irrigation regime, both being quite consistent for all flight levels (Table 3.4). 

The mean LITAS Tc for the various flight altitudes ranged within 26.34 and 27.3 ºC for 

the DI plots and between 26.30 ºC and 26.62 ºC for the irrigated plots. The LITAS SD 

values were between 0.47 ºC and 1.31 ºC for plots under deficit irrigation conditions, and 

between 1.06 ºC and 1.32 ºC for those under normal irrigation regime, both also 

consistent for all flight levels but lower than those obtained with the thermal camera 

(Table 4). The similarity in the mean Tc for both the irrigated and DI plots between the 

thermal camera and the inexpensive IR sensor confirms that LITAS is a promising low-

cost alternative to conventional thermal cameras for remote estimations of surface 

temperature of crops covering the full ground surface. Moreover, the infrared sensor may 

be mounted on the aerial platform together with an RGB camera that both focus on the 

same target and record data simultaneously. This allows obtaining canopy temperature 

measurements from areas of clearly defined observation. 

Table III.4. Mean IR canopy temperature (Tc) and standard deviation (SD) of the 

measurements taken with the conventional thermal camera and LITAS. 
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Flight Level, m 

Conventional Thermal Camera  LITAS 

Deficit irrigated Irrigated  Deficit irrigated Irrigated 

Tc (ºC) SD (ºC) Tc (ºC) SD (ºC)  Tc (ºC) SD (ºC) Tc (ºC) SD (ºC) 

h1, 5 26.21 2.05 25.96 2.24  27.30 0.63 26.53 1.25 

h2, 10  27.11 1.26 26.86 2.64  27.01 0.65 26.56 1.25 

h3, 20  26.07 1.93 26.73 3.54  26.62 0.70 26.62 1.32 

h4, 30  25.81 2.28 25.06 2.28  26.34 0.47 26.55 1.08 

h5, 40 25.60 1.83 24.56 2.20  27.21 1.31 26.30 1.06 

 

Figure III.6 Boxplot diagrams of mean canopy temperature (Tc) measured at various flight levels with 
LITAS. Measurements were taken throughout the irrigation season on both a) irrigated and b) deficit-
irrigated plots. 

 

The differences in Tc between the irrigated and DI plots were small (Tc ≈ 0.5 ºC higher in 

DI plots) and consistent between the two sensing systems employed. These relatively 

small differences in Tc, compared with the values obtained in the laboratory tests (Fig. 

3.5), indicate that the water shortage under DI was not sufficiently severe to trigger more 

intensive Tc-based crop water stress signals. 

 



Chapter 1. A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet 

46 

 

 

Figure III.7 Boxplot diagrams of mean canopy temperature (Tc) measured at various flight levels with the 
thermal camera. Measurements were taken throughout the irrigation season on both a) irrigated and b) 
deficit-irrigated plots. 

 

Measurements of Tc with the conventional thermal camera decreased with flight altitude. 

The maximum mean Tc values were registered at a flight altitude of 10 m (26.86 and 

27.11 ºC for the irrigated and DI plots, respectively), while minimum Tc values were 

obtained at a flight altitude of 40 m (24.56 and 25.60 ºC for the irrigated and DI plots, 

respectively). The fact that the sensor-target distance can influence remote estimations 

of surface temperatures is well documented (Jimenez-Munoz and Sobrino 2006; Meier 

et al. 2011). When remotely sensed from airborne or spaceborne sensors, an 

atmospheric correction of the thermal infrared imagery has to be performed for accurate 

determinations of surface temperatures. However, most studies that have focused on 

atmospheric corrections of remotely-sensed surface temperatures have been conducted 

for much larger sensor-target distances than those employed in this study (maximum 

flight altitude of 40 m). In fact, atmospheric effects for flight altitudes with less than ±50 

m variation have normally been neglected (Berni et al. 2009b). The results confirm that 

thermal cameras using uncooled microbolometer sensors require atmospheric 

corrections to be performed even at flight altitudes as low as those used in this work. 

These findings agree with the simulated effects of flight altitude and atmospheric 

conditions on the estimated surface temperature obtained by (Berni et al. 2009b) using 

the MOTRAN radiative transfer code (Berk et al. 1999). Their simulation outputs showed 

that for a flight altitude of 40 m, a relative humidity of 60 % and an air temperature within 

20/30 ºC, the target to sensor temperature difference may increase to approximately 1.5 

ºC, which is in agreement with the Tc reductions of approx. 1.5 - 2 ºC observed in this 

study. 
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Unlike the conventional thermal camera, the surface temperatures estimated with LITAS 

remained relatively constant with flight altitude (Table 4). The fact that LITAS does not 

seem to require atmospheric corrections at low altitude of flight may be regarded as an 

advantage of this system versus thermal cameras, as long as the estimated surface 

temperatures are sufficiently accurate to derive crop water status indices and that the 

percentage of ground covered by the crop is almost 100 %. 

3.4 Conclusions 

This work tested a low-cost sensing platform mounted on a small UAV for monitoring 

canopy temperature. The low-cost platform, called LITAS system, has been tested in a 

sugar beet field for irrigation management purposes. Laboratory tests showed that 

canopy temperature (Tc) measurements performed with the low-cost infrared sensor 

used in LITAS were correlated with Tc measurements obtained with a reference hand-

held infrared thermometer. Under controlled laboratory conditions, sugar beet plants 

registered significantly higher leaf-to-air temperature differences in deficit irrigated potted 

plants than in well-watered plants. Under field conditions, the LITAS system mounted on 

a small aerial platform captured smaller Tc differences among well-watered and deficit 

irrigated sugar beet plots, suggesting that the level of water stress developed by the crop 

was not severe enough to trigger more intense Tc signals. LITAS measurements were 

compared to Tc derived from thermal images that were recorded simultaneously during 

the flights. When compared, both systems reported similar Tc differences between well-

watered and deficit irrigated plots, indicating that the LITAS system is stable and a 

promising low-cost alternative to costlier thermal technologies.  

A properly timed RGB camera accurately aligned with the infrared sensor can be used 

to indicate the area where the sensor is monitoring the temperature. Unlike the thermal 

camera, surface temperature measured with the low-cost infrared sensor was not 

affected by flight altitude, at least for the atmospheric conditions prevailing within the 0–

40 m atmospheric layer of the experimental site. 

An important challenge for the inexpensive IR sensing platform is to validate its utility in 

crops with reduced percentages of ground cover, e.g. fruit tree orchards. Although further 

research is needed, the combination of low flight altitudes with narrower sensor field-of-

views (e.g. there are sensor models with 10º view angle rather than the 90º view angle, 

as used in this study) could overcome this constraint. 
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Abstract 

 

Characterization of the spatio-temporal variability of tree water status is a prerequisite to 

conducting precise irrigation management in fruit tree orchards. This study assessed the 

suitability of a crop water stress index (CWSI) derived from high-resolution aerial thermal 

imagery for estimating tree water status variability in super high density (SHD) olive 

orchards. The experiment was conducted at a commercial SHD olive orchard near 

Seville (southwestern Spain), with drip irrigated trees under three irrigation treatments 

(four plots per treatment in a randomized block design): a full irrigation treatment to 

replace the crop water needs (ETc) and two regulated deficit irrigation treatments to 

replace around the 45% of ETc. Meteorological variables, soil moisture content, leaf 

water potential, stem water potential and leaf gas exchange measurements were 

performed along the irrigation season. Infrared temperature sensors (IRTs) installed 

approximately 1 m above the canopies were used to derive the required Non-Water-

Stressed Baselines (NWSBs) for CWSI calculation. NWSBs were not common during 

the growing season, although the seasonal effect could be partly explained with solar 

angle variations. A thermal camera installed on a mini Remotely Piloted Aircraft System 

(RPAS) allowed for the recording of high-resolution thermal images on 5 representative 

dates during the irrigation season. The CWSI values derived from aerial thermal imagery 

were sensitive to the imposed variations in tree water status within the SHD olive 

orchard. Among the recorded variables, maximum stomatal conductance showed the 

tightest correlation with CWSI. We concluded that high-resolution thermal imagery 

captured from a mini RPAS is a suitable tool for defining tree water status variability 

within SHD olive orchards. 
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4.1 Introduction 

Hedgerow olive orchards with high plant densities (>1500 trees ha−1), or super high 

density (SHD) olive orchards, have expanded dramatically since the early 1990s. Over 

100,000 ha are currently under this management system, half of them in Spain (Rius and 

Lacarte, 2010). Most SHD olive orchards are underirrigation, requiring ca. 5000 

m3ha−1to replace maximum crop evapotranspiration in semi-arid areas such as SW 

Spain (Fernández et al., 2013). This explains the increasing interest in developing 

precision irrigation techniques to increase water productivity (Cuevas et al., 2013; Egea 

et al., 2016; Fernández et al., 2013; Gómez Del Campo and García, 2013; Padilla-Díaz 

et al., 2016). The spatial variability in crop water needs caused by soil heterogeneity and 

differences in canopy cover may be an important limitation for efficient irrigation when 

water is applied uniformly across the orchard (Couvreur et al., 2016). Characterization 

of the spatial variability of crop water needs is therefore a prerequisite to apply precise 

irrigation management within SHD olive orchards. It will allow to supply different irrigation 

amounts to zones within the orchard with different water requirements. Mapping the 

spatio-temporal variability of tree water needs with conventional methods such as the 

pressure chamber (Scholander et al., 1965) is time and labour consuming (Jiménez-

Bello et al., 2011). In addition, the reliability of the information provided by the pressure 

chamber decreases when the species shows an isohydric behaviour, characterized by a 

strong stomatal regulation that avoids marked decreases in leaf water potentials under 

conditions of low soil, water and high evaporative demand (Fernández, 2014). There are 

other conventional although reliable indicators of water stress, such as the stomatal 

conductance but, once again, measurements must be made manually (Jones, 2007). 

Remote sensing techniques offer a promising alternative to traditional tree water status 

measurements, as they provide a snap-shot of the whole orchard over a reduced period 

of time. The advent of Remote Piloted Aerial Systems (RPAS) has offered an opportunity 

to develop remote sensing-based methodologies for precision irrigation more affordably 

than the costly airborne campaigns with manned aircrafts and with higher spatial and 

temporal resolutions than those normally offered by satellites. Various sources of 

remotely sensed imagery, with differences in spectral, spatial, radioactive and temporal 

characteristics, are known to be suitable for different purposes of vegetation mapping 

(Xie et al., 2008).  

Among these sources, thermal imagery of vegetation is becoming popular for water 

stress detection and for irrigation management purposes (Bellvert et al., 2016b; Berni et 
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al.,2009). This is due to the existing relationship between crop transpiration rate and 

canopy temperature through a cooling effect that the former exerts on vegetation 

temperature (Maes and Steppe,2012). Since the refinement of the technique for 

measuring crop surface temperature with infrared thermometers in the 1960s(Fuchs and 

Tanner, 1966), thermal remote sensing has been extensively used to diagnose plant 

water stress in multiple crop species(Hatfield et al., 1985; Nielsen and Anderson, 1989; 

Sepulcre-Cantó et al., 2006; Testi et al., 2008). Variations in crop temperature are due 

to water stress, but are also affected by various meteorological land morphological 

factors (Maes and Steppe, 2012). Therefore, crop temperature must be normalized 

before being used as water stress indicator. In the early 1980s, Idso et al. (1981) and 

Jackson et al. (1981) developed the concept of CWSI, a normalized index that 

overcomes the influence that other environmental variables play on the relationship 

between crop temperature and water stress. Since then, CWSI has been successfully 

used in a variety of crops, in which temperature readings were often made with hand-

held infrared thermometers (Alderfasi and Nielsen, 2001; Hatfield et al.,1985).  

Currently, the combined used of modern high-resolution thermal infrared cameras and 

RPAS offer the possibility to map spatial variability in tree water status from thermal 

imaging and temperature-derived indicators (Bellvert et al., 2016a). As reviewed in Maes 

and Steppe (2012), CWSI can be determined by at least three different methodologies. 

Among them, the empirical CWSI has attained much more popularity and become more 

successful among scientists and non-scientists mainly due to the limited data 

requirements and straightforward calculation as compared to the analytical and direct 

methodologies (Agam et al., 2013; Maes and Steppe, 2012). Idso et al. (1981) calculated 

the empirical CWSI as follows: 

𝐶𝑊𝑆𝐼 =  
(𝑇𝑐 − 𝑇𝑎) − (𝑇𝑐 − 𝑇𝐴)𝐿𝐿

(𝑇𝑐 − 𝑇𝐴)𝑈𝐿 − (𝑇𝑐 − 𝑇𝐴)𝐿𝐿
  (4.1) 

where Tc-Ta denotes the measured canopy-air temperature difference; (Tc-Ta)LL is the 

lower limit of (Tc-Ta) for a given vapor pressure deficit (VPD) which is equivalent to a 

canopy transpiring at the potential rate; and (Tc-Ta)UL is the maximum (Tc-Ta), which 

corresponds to a non-transpiring canopy. (Tc-Ta)LL is a linear function of VPD (non-water-

stressed baseline, NWSB) that, once empirically obtained, (Tc-Ta)LL is calculated by 

solving the baseline equation for the actual VPD. 

To our knowledge, there are two reports in the literature that provide empirical NWSBs 

for olive trees (Bellvert et al., 2016a; Berni et al., 2009). However, both equations are 

reasonably different as denoted by the very small (expressed as absolute value) slope 

(−0.35ºC kPa−1) obtained by Berni et al. (2009) as compared to that (−2.05ºC kPa−1) 
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reported in Bellvert et al. (2016a). These differences in the sensitivity of Tc-Ta to VPD in 

olive are so important that more research is needed to reduce the degree of uncertainty 

in the appropriate NWSB to be used in SHD olive orchards. Moreover, these studies 

provided a single NWSB obtained with measurements collected at a certain daytime (e.g. 

12:30 GMT in Berni et al. (2009)), but a comprehensive study on how NWSB varies both 

along the day and the season is lacking in olive trees. To reduce the lack of information 

mentioned above on the use of CWSI and NWSB in olive, we design this study according 

to the following objectives:  

(i) to determine the NWSB for olive in a commercial SHD olive orchard as 

well as its diurnal and seasonal (throughout the irrigation season) time 

courses,  

(ii) to compute CWSI throughout the irrigation season in trees under three 

irrigation treatments from the obtained NWSB and high-resolution aerial 

thermal imagery taken from a mini RPAS, and  

(iii) to assess the suit-ability of the derived CWSI values to estimate the 

variation of tree water status within SHD olive orchards. 

 

4.2 Materials and methods 

 

4.2.1 Experimental site 

The experiment was conducted in 2015 at a commercial SHD olive orchard near Seville, 

in southwestern Spain (37.248979, −5.796538). Nine-year-old olive trees (Olea 

europaea L., cv. Arbequina) were planted with 4 m x 1.5 m tree spacing (1667 trees 

ha−1). The drip irrigation system consisted of one drip line per tree row and three 2 L h−1 

pressure compensating drippers (0.5 m apart) per tree. One flow meter per irrigation 

treatment recorded the amount of water applied during each irrigation event. An irrigation 

controller (Agronic 2000, Sistemes Electrònics PROGRÉS, S.A., Lleida, Spain) was 

used for irrigation scheduling. Trees were fertilized to cover the crop needs and no weeds 

were allowed to grow in the inter-row spacing over the spring-summer seasons. The 

climate of the study area was Mediterranean, with rainfall occurring normally from late 

September to May. The average annual value of potential reference evapotranspiration 

(ET0) and precipitation calculated for the 2002–2014 period from data recorded by a 

standard weather station belonging to the Andalusian government and located near the 

orchard, were 1528 mm and 540 mm, respectively. Table 4.1 below shows the weather 

data (monthly averages) recorded over the experimental year. The orchard soil has a 
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sandy loam top layer (0.0–0.4 m) and a sandy clay layer (0.4–1.0 m) underneath. The 

electrical conductivity of the saturated soil-paste (ECe), pH and organic matter content 

determined in the 0.0-0.4 m soil layer were 2.5 dS m−1, 6.34% and 0.28%, respectively. 

Table 4.1 Weather variables measured during 2015 at a nearby standard weather station 
belonging to the Agroclimatic Information Network of the Junta of Andalusia. P (mm): 
rainfall; Ta (ºC): air temperature; RH (%): relative humidity; u (m s−1): wind speed; Rs (MJ 
m−2 d−1): solar radiation; ET0 (mm d−1) is the calculated FAO-Penman Monteith reference 
crop evapotranspiration. The suffixes av, max and min indicate the average, maximum and 
minimum, respectively. 

 

Month P Tav Tmax Tmin RHav RHmax RHmin u Rs ET0 

Jan 42.2 8.8 16.0 2.8 82 99 50 2.3 10.3 1.5 

Feb 6.8 9.4 15.8 3.4 75 95 45 2.5 12.5 2.1 

Mar 42.0 12.8 21.1 5.2 73 95 40 1.7 18.2 3.1 

Apr 26.8 16.4 24.0 9.3 71 97 38 1.6 21.5 4.0 

May 0.4 21.6 31.4 11.9 50 86 20 1.6 27.6 6.2 

Jun 2.2 24.0 32.8 14.8 47 77 23 2.4 28.5 7.3 

Jul 0.0 28.1 37.4 18.6 42 66 17 2.6 29.9 8.9 

Aug 1.6 26.1 34.3 18.7 50 73 26 2.6 23.6 7.0 

Sep 28.6 21.7 29.4 14.8 59 83 31 2.6 20.4 5.2 

Oct 73.4 18.7 25.0 13.7 74 92 45 1.9 12.6 2.9 

Nov 33.0 13.7 22.1 7.0 68 91 39 1.7 12.5 2.1 

Dec 25.2 12.0 20.3 5.5 70 90 42 1.3 9.1 1.6 

Year 282.2 17.8 25.8 10.5 63 87 35 2.1 18.9 4.3 

 

 
4.2.2. Irrigation treatments 

Three irrigation treatments were established in the orchard, as described in Padilla-Díaz 

et al. (2016): a full irrigation treatment (FI) in which the trees were irrigated daily for the 

whole irrigation season to supply 100% of the irrigation needs (IN), and two regulated 

deficit irrigation treatments (45RDI) for which the total water supplied during the season 

was aimed to replace 45% of IN. One of the 45RDI treatments was scheduled on the 

basis of the crop coefficient method (45RDICC), whereas the other 45RDI treatment was 

scheduled from leaf turgor related measurements (45RDITP) made with ZIM probes 

(Zimmermann et al., 2008). More details about the irrigation scheduling and the 45RDI 

strategies can be found in Padilla-Díaz et al. (2016). We used four 16 m x 12 m plots per 

treatment, in a randomized block design. Each plot contained 32 trees, of which 

measurements were made on the central 8 trees to avoid border effects. 

4.2.3. Thermal imagery acquisition 

A thermal infrared (TIR) camera (Tau 2 324, FLIR Systems, Inc., Oregon, USA) was 

mounted on a multirotor RPAS (Remote Piloted Aerial System) model Phantom 2 (SZ 

DJI Technology Co., Ltd., Shenzhen, China). The RPAS is equipped with a GNSS 
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receptor, has flight autonomy of 25 min and a remote-control range of 1,000 m in open 

spaces. The TIR camera was installed to aim vertically downward (nadir view) at the 

bottom of the RPAS. The camera spectral range is 7.5–13.5 µm with a resolution of 324 

x 256 pixels, a focal length of 9 mm, and a field of view of 49° (H) x 39° (V). The RPAS 

was flown across the experimental orchard on five clear sky days, at 20 m above the 

ground level and at solar noon, delivering thermal images with a ground spatial resolution 

of 5 cm. The thermal images were stored on board in a raw format with 14-bit radiometric 

resolution. At the time of each flight, surface temperature measurements of ground 

targets were used for indirect calibration of the thermal imagery (Bellvert et al., 2014; 

Dupin et al., 2011). In particular, a cold (wet cotton sheet) and hot references (40 cm x 

50 cm black plastic panels) located in the center of each experimental plot along with 

four monitored trees with infrared thermometers (IRTS) (Section 4.2.4) were used as 

ground targets. The cold and hot references were measured with a hand-held infrared 

thermometer model FLUKE 62 Max (FLUKE, Washington, DC, USA).   

4.2.4. Measurements at ground level 

Volumetric soil water content (θ) was measured in all plots (n=4) with a PR2-type Profile 

Probe (Delta-T Devices Ltd, Cambridge, UK). On each location, measurements were 

made at 0.1, 0.2, 0.3, 0.4, 0.6 and 1.0 m depth, once every 7-10 days throughout the 

irrigation season. The θ measurements were always performed after an irrigation event, 

between 10:00 and 12:00 Greenwich Mean Time (GMT), i.e. close to solar noon at the 

longitude of our experimental site. The probe was calibrated in situ by Fernández et al. 

(2011). The θ values were used to calculate changes in the relative extractable water 

(REW) for all treatments, as described elsewhere (Fernández et al., 2013). The midday 

stem water potential (ψst) was measured with a Scholander-type pressure chamber (PMS 

Instrument Company, Albany, Oregon, USA) on the same days that the RPAS was flown. 

One leaf per tree, from the inner part of the canopy, was wrapped in aluminum foil ca. 2 

h before sampling, in two representative trees per plot (n=8). Measurements of ψst were 

made at 11:30 – 12:30 GMT when minimum daily values are usually recorded in olive. 

Stomatal conductance (gsm) was measured on the same days and on the same trees 

where ψst was measured, but between 09:00–10:00 GMT, the time of maximum daily 

stomatal conductance in this species (Fernández et al., 1997). A Licor LI-6400 portable 

photosynthesis system (Li-cor, Lincoln Nebraska, USA) with a 2 cm × 3 cm standard 

chamber that was used to measure gsm and leaf transpiration rate (Em) in sunny leaves 

of current-year shoots from the outer part of the canopy facing SE and in ambient light 

(≈ 1,500 μmol m−2 s-1) and CO2 (370 – 400 μmol mol−1) conditions. 
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Four Infrared Remote Temperature Sensors (IRTs) (model IR120, Campbell Scientific 

Ltd., Shepshed, UK) were mounted over two representative trees of one out of four plots 

in FI and 45RDITP treatments. The sensors had an angular field of view of 20º (half angle), 

and the accuracy over the calibrated range was ± 0.2 ºC. The IRTs were mounted on 

galvanized steel masts with a horizontal mounting arm (model IR1X0, Campbell 

Scientific Ltd., Shepshed, UK) ending with a white PVC solar shield (model IR-SS, 

Campbell Scientific Ltd., Shepshed, UK) to protect the sensor. The IRTs were mounted 

to aim vertically downward (nadir view), targeting the center of the canopy from a 

distance of approximately 1 m. The dense canopies typical of hedgerow olive orchards 

allowed the IRTs to view mostly foliage in a circular area of approximately 0.7 m diameter 

at the top of the canopy. The IRTs were connected to two dataloggers (model CR1000, 

Campbell Scientific Ltd., Shepshed, UK), which recorded the canopy temperatures (Tc) 

every minute and stored the 15-min averages. The canopy temperature measurements 

began on June 16th, 2015 (DOY 167) and continued with a sole interruption of 12 days 

due to power outage until November 5th (DOY 275). 

Values of Tc measured with the IRTs above the FI trees were used to derive the Non-

Water-Stressed Baselines (NWSB) for CWSI calculation. Only clear-sky days were used 

for NWSB determination. Clear-sky days following a rainfall event were also discarded 

to avoid errors associated with wet foliage. Air temperature (Ta) along with VPD data 

recorded in the orchard every 30 min with a Campbell weather station (Campbell 

Scientific Ltd., Shepshed, UK) at the same time that Tc were used to derive the NWSB 

of the SHD olive orchard. 

4.2.5.  Image processing and CWSI calculation 

The thermal images taken with the RPAS (Fig. 4.1) were used to calculate the mean 

canopy temperature (Tc) of each experimental plot. Only the central 8 trees of each plot 

were used to calculate the mean Tc to avoid border effects. An image segmentation 

algorithm written in R (R Core Team, 2015) was used to extract pure vegetation pixels 

from the thermal image. At solar noon, the effects of tree shadow are minimized, and the 

thermal images are composed mainly of canopy, soil and mixed plant-soil pixels. Firstly, 

vegetation pixels from a bi-modal histogram (i.e. a histogram with two clearly 

differentiated peaks ascribed to soil and vegetation pixels in the point cloud) (Fig. 4.2) 

were selected with the mentioned algorithm. Then, the ‘full width at one-eighth maximum 

(FWEM)’ rule was used to distinguish the pixels with high probability of being pure 

vegetation from pixels that were likely to be mixed vegetation with soil and/or shadow 

effects. The FWEM rule is similar to the ‘full width at half maximum’ (FWHM) rule that 
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has been previously used to extract pure vegetation pixels from olive canopies (Rud et 

al., 2015), but differed in the amplitude of the selected histogram (one-eighth of the 

maximum in FWEM versus half the maximum in FWHM). FWHM demonstrated a lack of 

suitability for segmenting thermal images with multiple trees that differ greatly in their Tc, 

since vegetation pixels from trees with severe water stress can be erroneously discarded 

by the FWHM rule (Fig. 4.3). The selected segment resulting from the FWEM rule was 

then used to compute the mean Tc for each experimental plot.  

Mean Tc was used to calculate the CWSI for each experimental plot using Eq. 4.1. For 

each day of flight, (Tc-Ta)LL was calculated from the NWSB that was determined with the 

IRTs, as described in Section 4.2.4 and with the actual air VPD. The value of (Tc-Ta)UL 

was determined as Ta + 5ºC based on previous studies conducted in different crop 

species (Irmak et al., 2000; Möller et al., 2007), including olive trees (Agam et al., 2014, 

2013; Ben-Gal et al., 2009; Rud et al., 2015). 

 

Figure 4.1 Thermal mosaic acquired with a FLIR Tau 2 324 thermal camera on board a RPAS model 
Phantom 2 observing (left) the experimental SHD olive orchard (white rectangle), and (right) details of the 
hot and cold reference surfaces. 

 



Chapter 2. Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards 

61 

 

 

Figure 4.2 Example of bi-modal histogram of temperatures obtained from a thermal image of an 
experimental plot. 

 

Figure 4.3 (left) Fraction of a thermal mosaic in which FI and 45RDICC trees have been delimited with white 
and blue dashed rectangles, respectively. The white circles show the hot reference surfaces. Date of flight: 
DOY 218; (upper right) thermal image plotted in the left panel with a superimposed layer denoting the 
vegetation pixels selected by the segmentation algorithm based on the full width at half maximum rule 
(FWHM); (middle right) thermal image with a superimposed layer showing the vegetation pixels selected 
by the segmentation algorithm based on the full width at one fifth maximum rule (FWFM); (lower right) 
thermal image with a superimposed layer showing the vegetation pixels selected by the segmentation 
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algorithm based on the full width at one-eighth maximum rule (FWEM). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

 

4.2.6. Statistical analyses  

The relationships between Tc-Ta and VPD (NWSBs) as well as between CWSI and the 

physiological measurements were analyzed through linear regression analyses. The 

diurnal time-course of slopes and intercepts of the derived NWSBs was modeled through 

non-linear regression analysis. In all cases, the coefficient of determination (R2) was 

used to assess the goodness of fit of the associations among variables. Significant 

differences between slopes and non-zero intercepts of the NWSBs obtained diurnally 

and seasonally were evaluated with the Comparison of Regression Lines tool included 

in the statistical package Statgraphics (Statgraphics Centurion XV).  

 

4.3 Results 

 

4.3.1. Non-Water-Stressed Baselines 

The relationship between hourly ∆T (Tc – Ta) and VPD values derived for FI olive trees 

in clear-sky days throughout the study period, did not yield any significant relationship 

when all hours and days were pooled together (data not shown). The relationships 

became significant when ∆T and VPD were regressed for a given time of the day, as 

shown in Table 4.2. The coefficients of determination (R2) were notably affected by the 

daytime. The highest R2 were observed early in the morning (R2 = 0.74 at 8.00 GMT). 

These values decreased progressively down to 0.28 (14:00 GMT), recovering partially 

afterwards (R2 = 0.51 at 18.00 GMT). The intercepts and slopes of the fitted NWSBs also 

varied throughout the day. The intercepts were higher at midday (2.50 at 12:00 GMT) 

and lower in the morning and afternoon whereas the slopes showed an increasing trend 

throughout the day (from -0.77 ºC kPa-1 at 8.00 GMT to around -0.3 ºC kPa-1in the 

evening). 

Table 4.2 Fitted parameters for the non-water stressed baselines (Tc-Ta = a + b·VPD). Only 

clear-sky days from day of year 167–275 were used in the analyses. GMT: Greenwich Mean 
Time. 

GMT 
Intercept 

ºC 
Slope 

ºC kPa-1 
R2 

8:00 0.94 -0.77 0.74 

9:00 0.97 -0.67 0.64 

10:00 1.44 -0.61 0.67 
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11:00 2.18 -0.55 0.7 

12:00 2.5 -0.36 0.49 

13:00 2.43 -0.3 0.32 

14:00 2.05 -0.32 0.28 

15:00 1.43 -0.3 0.35 

16:00 0.83 -0.3 0.41 

17:00 0.31 -0.31 0.42 

18:00 -0.09 -0.32 0.51 

 

In addition to the diurnal effect on the NWSBs, a marked seasonal effect in the ∆T vs 

VPD relationship was also observed (Fig. 4.4), as the NWSB shifted in August (Period 

B) and September (Period C), compared to the values derived in June-July (Period A). 

When ∆T and VPD of a given time of the day and for a given phenological period were 

regressed, the level of agreement of the NWSBs increased significantly, and the diurnal 

effect of R2 observed using pooled data (Table 4.2) was not noticed (Table 4.3). 

Seasonal variations in the NWSBs were mainly due to significant variations in the NWSB-

intercepts, as the NWSB-slopes remained almost invariant throughout the irrigation 

season (Table 4.3).  

Table 4.3 Fitted parameters for the non-water-stressed baselines (Tc-Ta = a+b·VPD) 

determined for three representative periods: A (June-July, day of year −DOY- 167–212), B 

(August, DOY215–243), C (September, DOY 244–273). Only clear-sky days were used. GMT: 
Greenwich Mean Time. 

GMT Period Intercept 
ºC 

Slope 
ºC kPa-1 

R2 

8:00 A 1.02a −0.79a 0.72 
8:00 B 1.15a −1.00a 0.68 
8:00 C 1.32a −1.40a 0.75 
9:00 A 1.28a −0.73a 0.74 
9:00 B 0.97b −0.83ab 0.56 
9:00 C 1.79b −1.50b 0.82 

10:00 A 1.68a −0.64a 0.77 
10:00 B 1.67b −0.89a 0.67 
10:00 C 1.91b −1.02a 0.7 
11:00 A 2.60a −0.62a 0.82 
11:00 B 2.06b −0.58a 0.52 
11:00 C 2.84b −0.98a 0.68 
12:00 A 3.29a −0.50a 0.82 
12:00 B 2.85b −0.54a 0.71 
12:00 C 2.86c −0.70a 0.56 
13:00 A 3.53a −0.47a 0.82 
13:00 B 2.68b −0.45a 0.67 
13:00 C 2.98c −0.71a 0.66 
14:00 A 3.42a −0.53a 0.81 
14:00 B 2.76b −0.59a 0.65 
14:00 C 2.35c −0.71a 0.63 
15:00 A 2.60a −0.48a 0.82 
15:00 B 2.09b −0.54a 0.76 
15:00 C 1.67c −0.62a 0.6 
16:00 A 1.55a −0.41a 0.8 
16:00 B 1.40b −0.49ab 0.65 
16:00 C 1.33c −0.67b 0.66 
17:00 A 1.11a −0.45a 0.69 
17:00 B 0.88b −0.50a 0.77 
17:00 C 0.64c −0.68a 0.79 
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18:00 A 0.56a −0.45a 0.79 
18:00 B 0.56a −0.64b 0.88 
18:00 C 0.01b −0.64ab 0.9 

 

 As observed for the NWSBs obtained with pooled data (Table 4.2), the NWSBs 

derived during the three periods of study (A, B and C) also exhibited a strong diurnal 

variation (Fig. 4.5).  

 

Figure 4.4 Example of seasonal effect on the NWSB (∆T = a + b·VPD). The upper panel (a) shows the ∆T 

vs VPD relationship when data of the period DOY 167–275 are gathered together. The lower panel (b) shows 

the same relationship when data are split in three periods: A (June-July, DOY 167–212), B (August, DOY 

215–243), C (September, DOY 244–273). Only clear-sky days were used in the calculations. In both panels, 

data for GMT = 14 h have been used. The straight lines represent the best fit to the data, whose fitted 

parameters and coefficients of determination are shown in Tables 2 (panel a) and 3 (panel b). 



Chapter 2. Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards 

65 

 

 

Figure 4.5 Diurnal variation of the NWSB (∆T = a + b·VPD) for the period June–July (DOY 167–212). The 

upper panel (a) shows the ∆T vs VPD relationship for GMT 8 to GMT 12. The lower panel (b) shows the 

same relationship for GMT 13 to GMT 18. Only clear-sky days were used in the calculations. The straight 

lines represent the best fit to the data, whose fitted parameters and coefficients of determination are shown 

in Table 4.3. 

The diurnal time-course of the NWSB-intercepts was successfully modeled with fourth-

order polynomial equations during the three periods of study (A, B and C) (Fig. 4.6), 

whereas that of the NWSB-slopes was successfully modeled with second-order 

polynomial equations (Fig. 4.7). In order to reduce the empiricism and site specificity of 

these models, the parameters of the NWSBs obtained were regressed against the zenith 

solar angle (Testi et al., 2008).  

 

Figure 4.6 Diurnal evolution of the NWSB-intercept (◦C) for the three different periods of study: A (June–
July, DOY 167–212), B (August, DOY 215–243), C (September, DOY 244–273). The lines represent the 
best-fit to the data. 
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Figure 4.7 Diurnal evolution of the NWSB-slope (◦C kPa−1) for the three different periods of study: A 
(June–July, DOY 167–212), B (August, DOY 215–243), C (September, DOY 244–273). The lines 
represent the best-fit to the data. 

While the relation between the NWSB-slopes and zenith solar angle was not significant 

(data not shown), the NWSB-intercepts showed a tight relationship with solar angle (Fig. 

4.8). As depicted in Fig. 4.8a, this relationship showed a marked hysteresis during 

periods A and B but not in period C. When the dataset was split into morning and 

afternoon data, it was observed that the relationship NWSB-intercept vs solar angle was 

season-dependent during the morning hours only (period C differed from A and B) (Fig. 

4.8b), whereas no seasonal effect on NWSB-intercept was observed during the 

afternoon (Fig. 4.8c). 
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Figure 4.8. Relationship between NWSB-intercepts and zenith solar angle for the period (a) 08:00-18:00, 
(b) 08:00-13:00 and (c) 13:00-18:00. 

4.3.2. Crop Water Stress Index derived from IRTs and RPAS  

The canopy temperature measurements obtained with the IRTs and with the thermal 

camera mounted on the RPAS were used to derive the seasonal dynamics of CWSI in 

the irrigation treatments (Figs. 4.9a, b). The CWSI obtained from the IRT readings was 

markedly influenced by the irrigation regime (Fig. 4.9a). In FI, CWSI values ranged within 

the interval -0.17 to 0.15 throughout the irrigation season, with a mean value of 0.00. 

During the first water stress period depicted in Fig. 9 (DOY 174-236), the deficit irrigation 

treatment monitored with the IRTs (45RDITP) exhibited values of CWSI that were much 

higher than those found in FI trees, up to approximately 0.7 (Fig. 4.9a). During the last 

water stress period (DOY 258 onwards), the differences in CWSI between FI and 

45RDITP were lower, with values close to 0 and 0.2, respectively.  

The CWSI values determined from aerial thermal imaging in FI, 45RDITP and 45RDICC 

treatments are depicted in Fig. 4.9b. The FI trees exhibited values of CWSI that ranged 

from -0.07 to 0.17, with mean seasonal values of 0.04. The 45RDITP and 45RDICC 

treatments showed similar trends, with maximum values close to 0.8 observed during 

the first water stress period. The differences in CWSI between FI and 45RDI treatments 

for DOY 239 and 281 were much smaller and not statistically significant, with mean 

values close to 0.3-0.4 in 45RDITP and 45RDICC and close to 0 in FI. The seasonal trend 

of CWSI derived from aerial thermal imaging was similar to that of REW (Fig. 4.9c), which 

also revealed significant differences between FI and the 45RDI treatments during the 

first water stress period but not afterwards.            

4.3.3. Relationship between CWSI and other plant-based water status indicators 

The CWSI values derived from aerial thermal imaging for the five days of flight and the 

three irrigation treatments were plotted against stem water potential (st), leaf water 

potential (l), stomatal conductance (gsm) and leaf transpiration rate (Em) (Fig. 10). In all 

cases, significant (P <0.01) linear regressions were observed. The goodness of fit of the 

relationship between st and l with CWSI were similar, with coefficients of determination 

close to 0.7 (Figs. 4.9a, 4.9b). The relationship between leaf transpiration rate (Em) and 

CWSI was somewhat weaker than that previously described for st and l, with a 

coefficient of determination of 0.6 (Fig. 4.10d). Stomatal conductance (gsm) was the 

physiological variable that exhibited the tightest linear relationship with CWSI, with a 

coefficient of determination of 0.91 (Fig. 4.10c).  
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Figure 4.9 Seasonal time-course of (a) CWSI determined from canopy temperature measured with the 
infrared thermometers (IRTS) at 12.00 GMT, (b) CWSI derived from RPAS thermal imaging (12.00 GMT) 
and (c) REW. The NWSB shown in Table 4.3 for periods A, B & C were used in CWSI calculation. In (a), 
only clear-sky days were used for CWSI determination. Each point is the mean of two (a), four (b) and 
three (c) replicates per treatment. Down-facing arrows indicate the onset of water stress periods in RDI 
treatments; the up-facing arrow indicates the end of a water stress period. The error bars represent the 
standard error of the mean (SE). In (b) and (c), asterisks denote significant differences at P < 0.05. 

 

4.4. Discussion 

The diurnal variation observed in the non-water-stressed baselines (NWSBs) derived for 

olive trees (Fig. 5) has already been described in other woody species, such as pistachio 

(Testi et al., 2008) and grapevine (Bellvert et al., 2014). Both of these studies found that 

diurnal shifts in the NWSBs were mainly due to variations in the NWSB-intercept, as the 

slope of the baselines was rather stable. As explained theoretically by Jackson et al. 

(1981), the intercept of the NWSB is expected to increase with solar radiation and to 

decrease with wind speed. decrease with wind speed.  

In our case study, diurnal variations of the NWSB-intercept due to wind speed are 

unlikely since the experimental area is not particularly windy (diurnal wind speed was 

below 2 m s-1 most of the days) and the effect of low to moderate wind speed on NWSB 

has been reported to be negligible (Testi et al., 2008), although it has to be noted that 

was in a different species with different aerodynamic conductance for sensible heat flux. 
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Therefore, the observed diurnal variation in the NWSB-intercept (Tables 4.2, 4.3) was 

likely driven by solar radiation, as evidenced by the tight relationship found with zenith 

solar angle (Fig. 4.8). As compared to previous findings in which NWSB-intercept and 

solar angle were linearly related (Testi et al., 2008), in olive trees the relationship showed 

a marked hysteresis during periods A and B (Fig. 4.8a).  

 

Figure 4.10 Relationship between CWSI determined from aerial thermal imaging and (a) midday stem 
water potential (ψst), (b) midday leaf water potential (ψl), (c) stomatal conductance (gsm) and (d) leaf 
transpiration rate (Em) for FI, 45RDICC and 45RDITP treatments. The straight lines represent the fitted 
regression lines to the data. 

 

This behaviour indicates that, for similar radiation and VPD levels, the cooling effect of 

transpiration in the summer (periods A and B) is higher during the morning hours. This 

can be due to the fact that, in olive, stomata opening is greater in the morning than in the 

afternoon (Fernández et al., 1997). Therefore, transpiration and its cooling effect is also 

greater in morning than in afternoon hours. Unlike what has been observed in previous 

studies on woody crops (Bellvert et al., 2014; Testi et al., 2008), the diurnal evolution of 

the NWSB-slope in olives was stable only from 12:00 GMT onwards, whereas an 

increasing trend that was more pronounced as the season progressed was observed 

between 8:00 to 12:00 GMT. 
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Compared to other crop species, the NWSB-intercept derived for olives (the maximum 

was approximately 3.5 ºC for period A and close to 3 ºC in periods B and C; Fig. 4.6) 

was within the order of magnitude of those found in the literature for other herbaceous 

(Idso, 1982) and woody crop species (Bellvert et al., 2015; Testi et al., 2008). However, 

the NWSB-slope (maximum values around −0.5 ºC kPa−1 for periods A and B and close 

to −0.7 ºC kPa−1 in period C; Fig. 4.7) derived for olives was substantially lower 

(expressed as an absolute value) than the slopes derived for other crop species, with 

the sole exception of the values derived for citrus trees (Gonzalez-Dugo et al., 2014). In 

herbaceous crops, Idso (1982) found NWSB-slope values within the interval −3.25 ºC 

kPa−1 to −1.23 ºC kPa−1, whereas in other fruit tree species the corresponding midday 

values were around −1.35 ºC kPa−1 (pistachio), −1.7 ºC kPa−1 (peach) and −1.9 ºC kPa−1 

(vineyard) (Bellvert et al., 2016a, 2014; Testi et al., 2008). In olive trees, two previous 

studies provided controversial NWSB-slope values, as denoted by the very small slope 

(−0.35 ºC kPa−1) obtained by Berni et al. (2009) compared to that (−2.05 ºC kPa−1) 

reported by Bellvert et al. (2016a). Our findings are in agreement with the small slope 

value found by Berni et al. (2009), who argued that this value was a consequence of the 

small size of olive leaves, which makes them to be highly coupled to the atmosphere, 

causing a marked stomatal closure when the evaporative demand increases, even in 

trees under non-limiting soil water conditions (Fernández et al., 1997). 

Seasonal differences in the NWSBs were already reported early in the 1980s for two 

herbaceous crops, wheat and barley (Idso, 1982), but little is known about the seasonal 

stability of the NWSBs derived for many others herbaceous and woody crop species. In 

peach trees, within season differences in the NWSB were small (Bellvert et al., 2016a); 

thus, a unique NWSB for the whole growing season was recommended by the authors. 

In olive trees, Berni et al. (2009) obtained their NWSB (Tc− Ta = −0.35·VPD + 2.08, R2 

= 0.67) by computing the values from clear days (12:30 GMT) from April to September. 

They did not report any seasonal effect on such a relationship, but stressed the high 

scatter and the low slope as compared to those reported by other authors. By comparing 

their NWSB with the one obtained in this study (Tc− Ta = −0.36·VPD + 2.50, R2 = 0.49) 

for the period June-September at a similar time (12:00 GMT, Table 4.2), it can be 

observed that there are no differences in the slopes and the intercepts are very similar. 

Therefore, a plausible explanation for the high scatter reported by Berni et al. (2009) is 

a within-season shift in the NWSB, like the one shown by our results. Recently, Bellvert 

et al. (2015) found that some vineyard cultivars exhibited seasonal NWSB shifts, which 

were associated to variations in the energy balance of the canopy, zenith solar angle or 

leaf orientation. In our case study, the seasonal shift of the NWSBs (Figs. 4.6 and 4.7) 
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was partly explained by variations in zenith solar angle (Fig. 4.8). In fact, the seasonal 

variation of NWSB-intercept derived for afternoon hours could be explained by zenith 

solar angle variations (Fig. 4.8c). However, this could not be done for the morning 

NWSB-intercept values, since NWSB-intercept of period C was higher than that of 

periods A and B for similar solar angles (Fig. 4.8b). In any case, the robustness of the 

derived NWSB to be used for irrigation scheduling, as well as its daily and seasonal 

dynamics, should be assessed in different locations and cultivars similarly to what has 

been performed for other olive water status indicators (Corell et al., 2016). 

Although the CWSI values calculated from IRTs and RPAS are not fully comparable, 

since the former was calculated from measurements collected at one out of the four plots 

used to compute CWSI from RPAS measurements, both indicators followed the same 

seasonal trend and depicted values within the same order of magnitude, both for the FI 

and 45RDITP treatments (Fig. 4.9). Although CWSI is supposed to vary within 0 and 1, 

slightly negative values of CWSI may also be found in well-watered plants, as in our FI 

trees (Fig. 4.9a, b), due to the data scatter of the NWSBs (Bellvert et al., 2015; Testi et 

al., 2008). Values of CWSI derived from the FI trees with both sensing platforms 

throughout the irrigation season were close to zero. The deficit treatment that was 

monitored with IRTs and RPAS exhibited the highest values during the first water stress 

period depicted in Fig. 4.9 (end of June-end of August), reaching ca. 0.7 and 0.8 

respectively for REW values ca. 0.2 (Fig. 4.9c). The close matching in CWSI trends 

among proximal (IRTs) and remote (RPAS) thermal sensing indicates that the Tc 

measurements derived from the mini RPAS using a segmentation method based on a 

bi-modal histogram analysis and the FWEM rule are suitable for monitoring the CWSI in 

SHD olive orchards. 

The suitability of CWSI as a water stress index for SHD olive orchards was also 

demonstrated through the sound relationships found between CWSI and the reference 

plant water stress indicators, such as ψst, ψl, gsm and Em (Fig. 4.10). Interestingly, the 

CWSI explained 91% of the variability observed in gsm across treatments and periods 

(Fig. 4.10c), whereas the variability of ψst, ψl and Em that could be explained with CWSI 

was only 60%–73% (Fig. 4.10a, b and d). These results are in agreement with the 

theoretical basis of CWSI (Maes and Steppe, 2012) which denotes that, under water 

stress, variations in CWSI are driven by variations in Tc and gsm is a main driving 

physiological variable. However, and due to the near-isohydric behaviour of the olive tree 

(Cuevas et al., 2010), decreases in leaf and stem water potential under conditions of 

water stress are minimized by stomatal regulation, thus explaining the poorer 

relationships found between CWSI and these variables. In a previous work conducted in 
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an olive orchard with less tree density than ours, Berni et al. (2009) also found that CWSI 

was linearly related to both gsm and ψl and that CWSI was better correlated with gsm than 

with ψl. However, gsm is not always better correlated with CWSI than ψl, as recently found 

in nectarines (Bellvert et al., 2016a). Despite that leaf transpiration (Em) and gsm are 

strongly related (Jones, 1992), the relationship between CWSI and Em was weaker than 

that with gsm (Fig. 10), likely because Em depends not only on gsm but also on the boundary 

layer conductance (gb) (Jones, 1992), whose value within the leaf cuvette of the gas 

analyzer set by the user may greatly differ from the prevailing gb values in the orchard. 

In the majority of studies performed to assess CWSI performance on fruit tree species, 

the variable used to validate the suitability of CWSI as a water status indicator was ψst 

(Gonzalez-Dugo et al., 2014, 2013; Testi et al., 2008) or ψl (Bellvert et al., 2016a, 2015, 

2014). However, reported relationships between CWSI and these variables are not 

always linear, as it has also been observed in this study (Figs. 4.10a, b). For mandarin 

and orange trees, for instance, curvilinear relationships have been reported (Gonzalez-

Dugo et al., 2014). In other species, such as grapevine (Bellvert et al., 2015, 2014) or 

peach (Bellvert et al., 2016a; Gonzalez-Dugo et al., 2013) both linear and curvilinear 

relationships have been reported. 

 

4.5. Conclusions 

 

The Non-Water-Stressed Baseline (NWSB) for CWSI calculation in SHD olive orchards 

was not constant throughout the growing season, but its seasonal shift could be partly 

explained by variations in zenith solar angle. Both NWSB-intercepts and NWSB-slopes 

exhibited diurnal variation, but these trends were successfully modelled with polynomial 

equations to ease CWSI calculation at any time of the day. In order to reduce the 

empiricism and site specificity of these models, a sound relationship between NWSB-

intercept and solar angle was found. The CWSI values derived from high-resolution 

thermal imagery captured from a mini RPAS demonstrated to be a suitable indicator for 

both monitoring water stress and assessing water status variability in SHD olive 

orchards. Stomatal conductance had the tightest relationship with CWSI, over 

performing other widely used plant water status indicators such as leaf or stem water 

potential. 
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Abstract:  

The feasibility of automated individual crop plant care in vegetable crop fields has 

increased, resulting in improved efficiency and economic benefits. A systems-based 

approach is a key feature in the engineering design of mechanization that incorporates 

precision sensing techniques. The objective of this study was to design new sensing 

capabilities to measure crop plant spacing under different test conditions (California, 

USA and Andalucía, Spain). For this study, three different types of optical sensors were 

used: an optical light-beam sensor (880 nm), a Light Detection and Ranging (LiDAR) 

sensor (905 nm), and an RGB camera. Field trials were conducted on newly 

transplanted tomato plants, using an encoder as a local reference system. Test results 

achieved a 98% accuracy in detection using light-beam sensors while a 96% accuracy 

on plant detections was achieved in the best of replications using LiDAR.  These results 

can contribute to the decision-making regarding the use of these sensors by machinery 

manufacturers. This could lead to an advance in the physical or chemical weed control 

on row crops, allowing significant reductions or even elimination of hand-weeding tasks. 
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5.1. Introduction 

Precision agriculture requires accurate plant or seed distribution across a field. This 

distribution is to be optimized according to the size and shape of the area in which 

nutrients and light are provided to plant to obtain the maximum possible yield. These 

factors are controlled by the spacing between crop rows and the spacing of plants/seeds 

in a row (Klenin et al., 1985). For many crops, row spacing is determined as much by the 

physical characteristics of agricultural machinery used to work in the field as by the 

specific biological spacing requirements of the crop (Blas et al., 2013). According to the 

crop and machinery used, the accuracy of planting by the precision transplanter/seeder 

to the desired square grid pattern must be adequate for the operation of agricultural 

machinery in both longitudinal and transverse crop directions. 

The current designs of vegetable crop transplanters and seeders utilize several 

uncoordinated planting modules mounted to a common transport frame. These systems 

use sub-optimal open-loop methods that neglect the dynamic and kinematic effects of 

the mobile transport frame and of plant motion relative to the frame and the soil. The 

current designs also neglect to employ complete mechanical control of the transplant 

during the entire planting process, producing an error in the final planting position, due 

to the increased uncertainty of plant location as a result of natural variations in plant size, 

plant mass, soil traction and soil compaction (Prasanna Kumar et al., 2008). 

Accurately locating the crop plant, in addition to allowing automatic control of weeds, 

allows individualized treatment of each plant (e.g., spraying, nutrients). Seeking to 

ensure minimum physical interaction with plants (i.e., non-contact), different remote 

sensing techniques have been used for the precise localization of plants in fields. For 

these localization methods, some authors have decided to address automatic weed 

control by localizing crop plants with centimeter accuracy during seed drilling (Ehsani et 

al., 2004) or transplanting (Sun et al., 2010; Pérez-Ruiz et al., 2012) using a global 

positioning system in real time (RTK-GNSS). These studies, conducted at UC Davis, 

have shown differences between RTK-GNSS-based expected seed location versus 

actual plant position. The position uncertainly ranged from 3.0 to 3.8 cm for seeds, and 

tomato transplants, the mean system RMS was 2.67 cm in the along-track direction. 

Nakarmi and Tang used an image acquisition platform after planting to estimate the inter-

plant distance along the crop rows (Nakarmi and Tang, 2012). This system could 

measure inter-plant distance with a minimum error of ±30 cm and a maximum error of 

±60 cm. 
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Today, one of the biggest challenges to agricultural row crop production in industrialized 

countries is non-chemical control of intra-row (within the crop row) weed plants. Systems 

such as those developed by Pérez-Ruiz et al. (2014) or the commercial platforms based 

on computer-controlled hoes developed by Dedousis et al. (2007) are relevant examples 

of innovative mechanical weeding systems. However, the current effectiveness of 

mechanical weed removal is constrained by plant spacing, the proximity of the weeds to 

the plant, the plant height and the operation timing. Other methods for non-chemical 

weed control, such as the robotic platform developed by Blasco et al. (2002) (capable of 

killing weeds using a 15-kV electrical discharge), the laser weeding system developed 

by Shah et al. (2015) or the cross-flaming weed control machine designed for the RHEA 

project by Frasconi et al. (2014), demonstrate that research to create a robust and 

efficient system is ongoing. A common feature of all these technological developments 

is the need for accurate measurement of the distance between plants. Spatial distribution 

and plant spacing are considered key parameters for characterizing a crop. The current 

trend is towards the use of optical sensors or image-based devices for measurements, 

despite the possible limitations of such systems under uncontrolled conditions such as 

those in agricultural fields. These image-based tools aim to determine and accurately 

correlate several quantitative aspects of crops to enable plant phenotypes to be 

estimated (Li et al., 2014; Fahlgren et al., 2015). 

Dworak et al. (2011) categorized research studying inter-plant location measurements 

into two types: airborne and ground-based. Research on plant location and weed 

detection using airborne sensors has increased due to the increasing potential of 

unmanned aerial systems in agriculture, which have been used in multiple applications 

in recent years (López-Granados, 2011). For ground-based research, one of the most 

widely accepted techniques for plant location and classification is the use of Light 

Detection and Ranging (LiDAR) sensors (Garrido-Izard et al., 2015). These sensors 

provide distance measurements along a line scan at a very fast scanning rate and have 

been widely used for various applications in agriculture, including 3D tree representation 

for precise chemical applications (Rosell et al., 2009; Garrido-Izard et al., 2012) or in-

field plant location (Shi et al., 2013). This research continues the approach developed 

by Garrido-Izard et al (2014), in which a combination of LiDAR + IR sensors mounted on 

a mobile platform was used for the detection and classification of tree stems in nurseries. 

Based on the premise that accurate localization of the plant is key for precision chemical 

or physical removal of weeds, we propose in this paper a new methodology to precisely 

estimate tomato plant spacing. In this work, non-invasive methods using optical sensors 

such as LiDAR, infrared (IR) light-beam sensors and RGB-D cameras have been 

employed. For this purpose, a platform was developed on which different sensor 
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configurations have been tested in two scenarios: North America (UC Davis, CA, USA) 

and Europe (University of Seville, Andalucia, Spain). The specific objectives, given this 

approach, were: 

-To design and evaluate the performance of multi-sensor platforms attached to a 

tractor (a UC Davis platform mounted on the rear of the tractor and a University of Seville 

platform mounted on the front of the tractor). 

-To refine the data-processing algorithm to select the most reliable sensor for the 

detection and localization of each tomato plant. 

 

5.2. Materials and Methods 

 

To develop a new sensor platform to measure the space between plants in the same 

crop row accurately, laboratory and field tests were conducted in Andalucia (Spain) and 

in California (USA). This allowed researchers to obtain more data under different field 

conditions and to implement the system improvements required, considering the plant 

spacing objective. These tests are described below, characterizing the sensors used and 

the parameters measured. 

 

5.2.1. Plant Location Sensors 

5.2.1.1. Light-Beam Sensor Specifications 

IR light-beam sensors (Banner SM31 EL/RL, Banner Engineering Co., Minneapolis, MN, 

USA) were used in two configurations: first as a light curtain (with three pairs of sensors 

set vertically, Figure 5.1 central and Figure5. 4) and later a simpler setup, using only one 

pair of sensors (Figure 5.2), which simplifies the system while still allowing the objective 

(plant spacing measurement) to be attained. In the light curtain, light-beam sensors were 

placed transversely in the middle of the platform to detect and discriminate the plant stem 

in a cross configuration to prevent crossing signals between adjacent sensors. Due to 

the short range and focus required in laboratory tests, it was necessary to reduce the 

field of view and the strength of the light signal by masking the emitter and receiver lens 

with a 3D-printed conical element. In laboratory tests, the height of the first emitter and 

receiver pair above the platform was 4 cm, and the height of 3D plants (artificial plants 

were used in laboratory tests; see Section 5.2.2) was 13 cm. In the field tests, the sensor 

was placed 12 cm from the soil (the average height measured manually for real plants in 

outdoor tests was 19.5 cm) to avoid obstacles in the field (e.g., dirt clods, slight surface 

undulations). In both cases, the receiver was set to obtain a TTL output pulse each time 
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the IR light-beam was blocked by any part of the plant. The signals generated by the 

sensors were collected and time-stamped by a microcontroller in real time and stored for 

off-line analysis. Technical features of the IR light-beam sensors are presented in Table 

5.1. 

Table 5.1. IR light-beam sensor features. 

Operational Voltage (V) 10–30 V 

Detection range (m) 30 m 

Response time (milliseconds) 1 ms 

Sinking and sourcing outputs (mA) 150 mA 

 

5.2.2.2 Laser Scanner 

A LMS 111 LiDAR laser scanner (SICK AG, Waldkirch, Germany), was used in the 

laboratory and field testing platforms to generate a high-density point cloud on which to 

perform the localization measurements. Its main characteristics are summarized in Table 

5.2. The basic operating principle of the LiDAR sensor is the projection of an optical 

signal onto the surface of an object at a certain angle and range. Processing the 

corresponding reflected signal allows the sensor to determine the distance to the plant. 

The LiDAR sensor was interfaced with a computer through an RJ 45 Ethernet port for 

data recording. Data resolution was greatly affected by the speed of the platform’s 

movement; thus, maintenance of a constant speed was of key importance for accurate 

measurements. During data acquisition, two digital filters were activated for optimizing 

the measured distance values: a fog filter (becoming less sensitive in the near range (up 

to approximately 4 m)); and an N-pulse-to-1-pulse filter, which filters out the first reflected 

pulse in case that two pulses are reflected by two objects during a measurement 

(LMS100 Product Family Operating Instructions, Waldkirch SA). Different LiDAR scan 

orientations were evaluated: scanning vertically with the sensor looking downwards 

(Figure 5.1), scanning with a 45° inclination (push-broom) and a lateral-scanning 

orientation (side-view). 

 



Chapter 3. Optical Sensing to Determine Tomato Plant Spacing for Precise Agrochemical Application: two scenarios 

 

83 

 

Figure 5.1. Details of the sensors on the laboratory platform (vertical LiDAR and Light-beam sensors) 

for the detection and structure of the modular 3D plant. 

Table 5.2. LMS 111 technical data. 

Operational Range From 0.5 to 20 m 

Scanning field of view 270° 

Scanning Frequency 50 Hz 

Angular resolution 0.5° 

Light source 905 nm 

Enclosure rating IP 67 

 

5.2.1.3. RGB-D Camera 

 

A Kinect V2 commercial sensor (Microsoft, Redmond, WA, USA), originally designed for 

indoor video games, was mounted sideways on the research platform during field trials. 

This sensor captured RGB, NIR and depth images (based on time-of-flight) of tomato 

plants, although for further analysis, only RGB images were used for the validation of 

stick/tomato locations obtained from the LiDAR scans, as detailed in Section 5.2.4.3. 

Kinect RGB-captured images have a resolution of 1920 × 1080 pixels and a field of view 

(FOV) of 84.1 × 53.8°, resulting in an average of approximately 22 × 20 pixels per degree. 

NIR images and depth camera have a resolution of 512 × 424 pixels, with an FOV of 70 

× 60° and a depth-sensing maximum distance of 4.5–5 m. Although systems such as the 

Kinect sensor were primarily designed for use under controlled light conditions, the 

second version of this sensor has higher RGB resolution (640 × 480 in v1) and its infrared 

sensing capabilities were also improved, enabling a more lighting-independent view and 

supporting its use outdoors under high-illumination conditions. Despite this improvement, 

we observed that the quality of the RGB images were somewhat affected by luminosity 

and direct incident light, and therefore, the image must be post-processed to obtain 

usable results. The images taken by the Kinect sensor were simultaneously acquired 

and synchronized with the LiDAR scans and the encoder pulses. Because the LabVIEW 

software (National Instruments, Austin, TX, USA) used for obtaining the scan data was 

developed to collect three items (the scans themselves, the encoder pulses and the 

timestamp), a specific Kinect recording software had to be developed to embed the 

timestamp value in the image data. With the same timestamp for the LiDAR and the 

image, the data could be matched and the images used to provide information about the 

forward movement of the platform.  

 

5.2.2. Lab Platform Design and Tests 
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To maximize the accuracy of the distance measurements obtained by the sensors, an 

experimental platform was designed to avoid the seasonal limitations of testing outdoors. 

Instead of working in a laboratory with real plants, the team designed and created model 

plants (see Figure 5.1) using a 3D printer (Prusa I3, BQ, Madrid, Spain). These plants 

were mounted on a conveyor chain at a predetermined distance. This conveyor chain 

system, similar to that of a bicycle, was driven by a small electric motor able to move the 

belt at a constant speed of 1.35 km·h−1. For the odometry system, the shaft of an 

incremental optical encoder (63R256, Grayhill Inc., Chicago, IL, USA) was mounted so 

that it was attached directly to the gear shaft and used to measure the distance travelled, 

thus serving as a localization reference system. Each channel in this encoder generates 

256 pulses per revolution, providing a 3-mm resolution in the direction of travel. The data 

generated by the light-beam sensors and the cumulative odometer pulse count were 

collected using a low-cost open-hardware Arduino Leonardo microcontroller (Arduino 

Project, Ivrea, Italy) programmed in a simple integrated development environment (IDE). 

This device enabled recording of data that were stored in a text file for further computer 

analysis. Several repetitions of the tests were made on the platform to optimize the 

functions of both light-beam and LiDAR sensors. From the three possible LiDAR 

orientations, lateral scanning was selected for the field trials because it provided the best 

information on the structure of the plant, as concluded in Garrido-Izard et al., (2015). In 

lab tests, two arrangements of light-beam sensors were assessed: one in a light curtain 

assembly with three sensor pairs at different heights and another using only one emitter-

receiver pair. 

5.2.3. Field Tests 

The initial tests, performed in Davis, CA (USA), were used to assess the setup of the 

light-beam sensor system and detected only the stem of the plants rather than locating 

it within a local reference system. Once the tomato plants were placed in the field, tests 

were conducted at the Western Center for Agriculture Equipment (WCAE) at the 

University of California, Davis campus farm to evaluate the performance of the sensor 

platform for measuring row crop spacing. For this test, an implement was designed to 

house the sensors as follows. The same IR light-beam sensor and encoder, both 

described in Section 5.2.1, were used (Figure 5.2). The output signals of the sensors 

were connected to a bidirectional digital module (NI 9403, National Instruments Co.), 

while the signal encoder was connected to a digital input module (NI 9411, National 

Instruments Co.). Both modules were integrated into an NI cRIO-9004 (NI 9411, National 

Instruments Co.), and all data were recorded using LabVIEW (National Instruments Co.). 
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In these early field trials, the team worked on three lines of a small plot of land 20 m in 

length, where the methodology for detecting the plants within a crop line was tested. 

  

(a) (b) 

Figure 2. (a) Light-beam sensors mounted on the experimental platform designed for field trials at UC 

Davis, California; (b) Progressive monitoring flowchart using light-beam sensors. 

To continue the study of plant localization in a different scenario, additional experiments 

were designed at the University of Seville, in which a refinement of the LiDAR sensors 

and data processing were performed. These tests were conducted on several lines of 

tomato plants manually transplanted from trays, with the plants placed with an 

approximate, though intentionally non-uniform, spacing of 30 cm. Two of these lines were 

analyzed further, one with 55 tomato plants and the other with 51, and a line of 19 

wooden sticks was also placed to provide an initial calibration of the instruments. Due to 

the initial test conditions, where tomato plants were recently transplanted and had a 

height of less than 20 cm, the team built an inverted U-shaped platform attached to the 

front of a small tractor (Boomer 35, New Holland, New Holland, PA, USA, Figure 5.3). 

The choice of the small tractor was motivated by the width of the track, as the wheels of 

the tractor needed to fit on the sides of the tomato bed, leaving the row of tomatoes clear 

for scanning and sensors.  
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(a) 

 

(b) 

Figure 3. (a) Structure housing the sensors mounted on the tractor (left) and detail of the LiDAR and 

Kinect setup (right) for field trials at the University of Seville; (b) Progressive monitoring flowchart using 

LiDAR and Kinect sensors. 

As was done in the laboratory platform, the encoder described in Section 5.2.1 was used 

as an odometric system, this time interfaced with an unpowered ground wheel, to 

determine the instantaneous location of the data along the row.  

During the tests, the platform presented several key points that were addressed: (i) The 

encoder proved to be sensitive to vibrations and sudden movements, so it was integrated 

into the axis of rotation of an additional wheel, welded to the structure and dampened as 

much as possible from the vibrations generated by the tractor. In addition, the team had 

to reduce the slippage of the encoder wheel on the ground to avoid losing pulses; (ii) 

Correct orientation of the sensors was also key because the mounting angles of the 

LiDAR sensors would condition the subsequent analysis of the data obtained in the 

scans and the determination of which data contributed more valuable information; (iii) 

The speed of the tractor should be as low as possible remain uniform (during the test the 

average speed was 0.36 m/s) and maintain a steady course without steering wheel 

movements to follow a straight path. 

 

5.2.4. Data-Processing Methodology 

To detect precisely and determine properly the distances between plants in both 

laboratory and field tests, the data provided by the sensors were merged and analyzed. 

 

5.2.4.1. Plant Characterization Using Light-Beam Sensors 
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The methodology followed to analyze data obtained from the light-beam curtain (which 

was formed by three light-beam sensors in line) was similar to that described in Garrido 

et al., (2014). The algorithm outputs the moment that the beam was interrupted and 

associates the beam with an encoder pulse. Because the 3D plants had a wider shape 

at the top (leaves) than the bottom (stem), and therefore more interruptions were 

received, the algorithm had to be adapted to each sensor pair and each height for plant 

detection. To discriminate correctly between plants for the light curtain case, the 

developed algorithm implemented a distance range, measured in pulses from the 

encoder, that allowed the verification of the presence or absence of a plant after the 

detection of the stem, inferring that interruptions received from the sensors placed at the 

middle and top heights before and after the stem corresponded to the leaves and the 

rest of the plant structure, respectively. For the analysis of data obtained from the single 

pair of IR light-beam sensors, a Matlab routine (MATLAB R2015b, MathWorks, Inc., 

Natick, MA, USA) was developed. System calibration was performed using 11 artificial 

plants in the laboratory test and 122 real tomato plants in the UC Davis field test. The 

methodology used for the detection of tomato plants was based on the following steps: 

1. Selection of Values for the Variables Used by the Programme for Detection: 

a) Pulse_distance_relation: This variable allowed us to convert the pulses 

generated by the encoder into the distances travelled by the platforms. In 

laboratory trials, the encoder was coupled to the shaft that provided motion to the 

3D plants, and in the field, it was coupled to a wheel installed inside the structure 

of the platform. The conversion factors used for the tests were 1.18 and 0.98 mm 

per pulse for the laboratory and the field, respectively. 

b) Detection_filter: To eliminate possible erroneous detections, especially during 

field trials due to the interaction of leaves, branches and even weeds, the 

detections were first filtered. We filtered every detection that corresponded to an 

along-track distance of less than 4 mm while the sensor was active (continuous 

detection). 

c) Theoretical_plant_distance: The value for the theoretical distance between 

plants in a crop line. The value set during testing was 100 mm and 380 mm for 

the laboratory and the field, respectively. 

d) Expected_plant_distance: Expected distance between plants in a crop line was 

defined as the theoretical plant distance plus an error of 20%. 

2. Importing of raw data recorded by the sensors (encoder and existence “1” or absence 

“0” of detection by the IR sensors). The conversion factor (pulse_distance_relation) 

provided the distance in mm for each encoder value. 
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3. Data were filtered by removing all detections whose length or distance travelled, while 

the sensors were active, was less than the set value (detection_filter). Thus, potential 

candidates were selected by registering the following:  

a) The distance at the start of the detection;  

b) The distance at the end of the detection;  

c) The distance travelled during detection and (iv) the mean distance during the 

detection, which was considered the location of the stem of the plant. 

4. Distance evaluation between the current candidate and the previous potential plant: 

a) If the evaluated distance was greater than the value set 

(expected_plant_distance), we considered this candidate as a potential new plant, 

registering in a new matrix: the number of the plant, the detections that defined it, 

the midpoint location and the distance from the previous potential plant. 

b) If the evaluated distance was less than the set value (expected_plant_distance), 

plant candidate data was added to the previous potential plant, recalculating all 

components for this potential plant. The new midpoint was considered the detection 

closest to the theoretical midpoint. 

 

5.2.4.2. Plant Characterization Using a Side-View LiDAR 

 

For the analysis of the data obtained from the LiDAR, it is important to mention the high 

complexity of its data, in both volume and format, compared with those data obtained by 

the light-beam. This is reflected in the following section, which explains the proposed 

methodology for obtaining both the aerial point clouds of the tomato rows referenced to 

the encoder sensor and the tomato plant identification. This is a prerequisite for tomato 

plant localization. For this purpose, it was necessary to pre-process the data, followed 

by a transformation and translation from the LiDAR sensor to the scanned point. 

 

5.2.4.2.1. Pre-Processing of Data 

 

(i) Data pre-processing performed at the LiDAR sensor.  

An off-line Matlab process was used with the actual field data collected during the field 

experiments. Data were filtered to eliminate false positives or those that did not 

contribute relevant information, considering only those detections with a distance greater 

than 0.05 m. Later, the resulting detections were transformed from polar to Cartesian 

coordinates using a horizontal orientation coordinate system as a reference. 
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(ii) From the LiDAR sensor to the scanned point: transformations and data 

delimitation. 

To transform the horizontal LiDAR coordinates to the actual LiDAR orientation (lateral in 

our case), the following steps were followed: 

a) The starting points were the Cartesian coordinates obtained using the horizontal 

orientation as a reference (𝑥𝑝𝑜𝑖𝑛𝑡
′ , 𝑦𝑝𝑜𝑖𝑛𝑡

′ , 𝑧𝑝𝑜𝑖𝑛𝑡
′ ). 

b) To integrate the scan from LiDAR into the platform coordinate system, a different 

transformation (𝑥𝜑 , 𝑦𝜃 , 𝑧𝜓)  was applied (see Equation (5.1)), considering the actual 

orientation of the LiDAR (see Table 5.3). Each LiDAR scanned point in the platform 

coordinate system (𝑥𝑝𝑜𝑖𝑛𝑡 , 𝑦𝑝𝑜𝑖𝑛𝑡 , 𝑧𝑝𝑜𝑖𝑛𝑡) was obtained: 
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 (5.1) 

Table 5.3. Transformation and translation values applied to LiDAR data with a lateral 

orientation. 

Roll “φ” (°) Pitch “θ” (°) Yaw “ψ” (°) x Translation (m) 

0 −180 0 Enct 

Once transformed, the x translation was applied to coordinates obtained for the actual 

LiDAR orientation. The encoder values recorded at each scan time were used to update 

the point cloud x coordinate related to the tractor advance. Additionally, the height values 

(z coordinate) were readjusted by subtracting the minimum obtained. 

 

5.2.4.2.2. Plant Localization 

 

The 3D point cloud processing was performed at each stick or tomato row. Thus, using 

manual distance delimitation, point clouds were limited to the data above the three 

seedbeds used during the tests. 

(i) Aerial Point Cloud Extraction 
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The aerial point data cloud was extracted using a succession of pre-filters. First, all points 

that did not provide new information were removed using a gridding filter, reducing the 

size of the point cloud. A fit plane function was then applied to distinguish the aerial 

points from the ground points. In detail, the applied pre-filters were: 

a) Gridding filter: Returns a downsampled point cloud using a box grid filter. 

GridStep specifies the size of a 3D box. Points within the same box are merged to 

a single point in the output (see Table 5.4). 

b) pcfitplane (Thor et al., 2000): This Matlab function fits a plane to a point cloud 

using the M-estimator SAmple Consensus (MSAC) algorithm. The MSAC 

algorithm is a variant of the RANdom SAmple Consensus (RANSAC) algorithm. 

The function inputs were: the distance threshold value between a data point and 

a defined plane to determine whether a point is an inlier, the reference orientation 

constraint and the maximum absolute angular distance. To perform plane 

detection or soil detection and removal, the evaluations were conducted at every 

defined evaluation interval (see Table 5.4). 

Table 5.4 shows the parameter values chosen during the aerial point cloud extraction. 

The chosen values were selected by trial and error, selecting those that yielded better 

results without losing much useful information. 

Table 5.4. Aerial point cloud extraction parameters selected. 

Test 

Grid 

Step 

(m3) 

MSAC 

Theoretical 

Distance Between 

Plants (m) 

Evaluation 

Intervals (m) 

Threshold 

(m) 

Referenc

e Vector 

Maximum Absolute 

Angular Distance 

Sticks (3 × 3 × 

3) × 

10−9 

0.240 0.08 

0.04 [0,0,1] 5 Tomatoes 1 
0.290 0.096 

Tomatoes 2 

(ii) Plant Identification and Localization (Plant Clustering) 

A k-means clustering (Arthur et al., 2007) was performed on the resulting aerial points to 

partition the point cloud data into individual plant point cloud data. The parameters used 

to perform the k-means clustering were as follows: 

▪ An initial number of clusters: Floor 

((distance_travelled_mm/distance_between_plants_theoretical) + 1) × 2 

▪ The squared Euclidean distance for the centroid cluster. Each centroid is the 

mean of points in the cluster. 
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▪ The squared Euclidean distance measure and the k-means++ algorithm were 

used for cluster centre initialization. 

▪ The clustering was repeated five times using the initial cluster centroid 

positions from the previous iteration. 

▪ Method for choosing initial cluster centroid positions: Select k seeds by 

implementing the k-means++ algorithm for cluster centre initialization.  

A reduction in the number of clusters was determined directly by evaluating the cluster 

centroids. If pair of centroids were closer than the min_distance_between_plants, the 

process was repeated by reducing the number of clusters by one (Table 5.5). 

A clustering size evaluation was performed, excluding clusters smaller than 

min_cluster_size. 

 

Table 5.5. Plant identification and stem identification parameters.  

Minimum Distance between Plants Minimum Cluster Size Histogram Jumps (mm) 

Distance_between_plants_theoretical×0.2 5 4 

(iii) Plant Location 

Three different plant locations were considered: 

• Centre of the cluster 

• Location of the lowest point at each plant cluster 

• Intersection of the estimated stem line and ground line 

o By dividing the aerial plant data in slices defined by “histogram jumps”, the x 

limits on the maximal number of counts were obtained. For the z limits, data 

belonging to the bottom half of the aerial point cloud were considered. 

o The remaining data inside these limits were used to obtain a line of best fit, 

which was considered the stem line. 

o Plant location was defined as the intersection between the stem line and the 

corresponding ground line obtained previously from the MSAC function. 

 

 

5.2.4.3. Validation of Plant Location Using RGB Kinect Images 

 

To obtain the distance between the stems of two consecutive plants using the Kinect 

camera, it is necessary to characterize the plants correctly and then locate the stems 

with RGB images from the Kinect camera. This characterization and location of the stem 

was conducted as follows: a sequence of images of the entire path was obtained (~250 
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images in each repetition), where the camera’s shooting frequency was established 

steadily in at 1-s intervals. Obtaining the string with the timestamp of each image was a 

key aspect of the routine developed in Matlab, as this string would later be used for 

integration with the LiDAR measurement. The relationship between the timestamp and 

its corresponding encoder value was used to spatially locate each image (x-axis, 

corresponding to the tractor advance).  

Image processing techniques applied in the characterization of tomato plants from Kinect 

images generally followed these steps:  

(i)  According to Hamuda et al. (2015), the first step in most works regarding image 

analysis is the pre-processing of the image. In this work, an automatic cropping of the 

original images was performed (Figure 5.4a), defining a ROI. Because the test was 

conducted under unstructured light conditions, the white balance and the saturation 

of the cropped image (Figure 5.4b) were modified;  

(ii) Next, the image segmentation step of an object-based image analysis (OBIA) was 

performed to generate boundaries around pixel groups based on their colour. In this 

analysis, only the green channel was evaluated to retain most of the pixels that define 

the plant, generating a mask that isolates them (Figure 5.4c) and classifying the pixels 

as plant or soil pixels. In addition, morphological image processing (erosion and 

rebuild actions) was performed to eliminate green pixels that were not part of the plant;  

(iii) Each pair of consecutive images was processed by a routine developed in Matlab 

using the Computer Vision System Toolbox. This routine performs feature detection 

and extraction based on the Speeded-Up Robust Features “SURF” algorithm (Bay et 

al., 2008) to generate the key points and obtain the pairings between characteristics 

of the images. 

Once the plant was identified in each image, the location of the stem of each plant was 

defined according to the following subroutine:  

(1) Calculating the distance in pixels between two consecutive images, as well as the 

encoder distance between these two images, the “forward speed” in mm/pixel was 

obtained for each image; 

(2) For each image, and considering that the value of the encoder corresponds to the 

centre of the image, the distance in pixels from the stem to the centre of the image 

was calculated. Considering whether it was to the left or to the right of the centre, 

this distance was designated positive or negative, respectively;  

(3) The stem location was calculated for each image using the relation shown in 

Equation (5.2) below;  
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(4)   Plant location was obtained for each image in which the plant appeared; the 

average value of these locations was used to calculate the distance between 

plants: 

Stem Location = Encoder Value ± Distance (from stem to centre) × motion relation (
mm

pixel
) (5.2) 

 

Figure 5.4. (a) raw image captured by the Kinect sensor with the ROI indicated; (b) ROI with white 

balance and saturation adjustment; (c) OBIA resulting image with isolated plant pixels. 

 

 

5.3. Results 

 

5.3.1. Laboratory Test Results 

Several laboratory tests were conducted to properly adjust and test the sensors. As an 

example, Figure 5.5 shows various profiles representing detections, comparing the pair 

of light-beam sensors placed on the bottom (stem detection) with those placed in the 

middle, detecting the aerial part of the 3D plant. Detections of the third pair of sensors, 

placed above the plants, were not considered relevant because most of their beam was 

above the plants. Figure 5 also shows that the detection of the stem using a single pair 

of light-beam located at a lower height with respect to the soil was more effective and 

robust than trying distinguish between different plants based on the detection of the aerial 

part of the plant. From our point of view and in agreement with the results in Garrido et 

al., (2014), this justifies the use of a single pair of light-beam sensors for the field tests 

rather than the use of the curtain mode (3 pairs as originally tested in the laboratory). 

The algorithm to analyze data from a single light-beam is also simpler and faster, being 

more adequate for real-time usage. 
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Figure 5.5. (Left) Stem detection of the 11 artificial plants through the lower pair of light-beam sensors. 

(Right) Detection of the aerial part (leaves and branches) of the 11 artificial plants through the centre 

pair of light-beam sensors. 

 

Figure 5.6 shows the positions of the stem detections and the estimated distances 

between them. In all laboratory tests, 100% of the stems were detected using the light-

beam sensor. Notably, under laboratory conditions, there were no obstacles in the 

simulated crop line, which does not accurately represent field conditions. Figure 5.6 

(right) shows the stem diameter measured from a test, with an estimated average 

diameter of 11.2 mm for an actual value of 10 mm. 

 

(a) (b) 

Figure 5.6. (a) Positions of the stems of the 11 plants in the laboratory test; (b) Average plant position 

for a distance of 11 mm. 

Three laboratory tests corresponding to three different stages of the light-beam sensor 

adjustment process are shown in Figure 5.7.  



Chapter 3. Optical Sensing to Determine Tomato Plant Spacing for Precise Agrochemical Application: two scenarios 

 

95 

 

 

Figure 5.7. Histogram of measured distances between 3d plant stems during the adjusting process of 

sensors on the detection platform in the laboratory.  

The histogram in this figure represents the estimated distances between plant stems, 

where the average distance is 102.5 mm when the real distance between plants was 

100.0 mm. The average standard deviation for the three trials was 2.2 mm. For test 3 

(last histogram in Figure 5.7), all distance values between plants were estimated 

between 100.1 mm and 103.8 mm. 

For the results obtained by the LiDAR in the laboratory, as described in Section 5.2.2, 

multiple scanning configurations and orientations were tested. After a visual comparison 

of the results of these tests, lateral-scanning orientation gave the best point clouds, and 

its plant representation and spacing measurements were therefore more accurate. 

Figure 5.8 shows the point cloud representation of one of the laboratory scans made 

using the LiDAR sensor with lateral orientation. 

 

Figure 5.8. Point cloud representation of artificial 3D plants obtained using a lateral-scanning LiDAR 

sensor during laboratory tests. 
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5.3.2. Field Tests Results 

Preliminary tests results using the light-beam sensors are presented in Figure 5.9a. 

Unlike laboratory detections, in the field data, the determined distances between stems 

were more variable. This variability is mainly due to crop plants missing from the line or 

the presence of a weed very close to the stem of the detected plant. Figure 5.9b reveals 

that several positions for potential plants (marked with a cross) were established, while 

only one plant was present (marked with a circle). 

 

                                        a)                       b) 

Figure 5.9. (a) Detections and positions of the 41 tomato plants in first field test with IR sensors; and 

(b) detail of the positions of potential plants. 

During the first field test, 41 detections occurred when there were 32 real plants growing 

in the line; thus, for this trial, the error in the number of detections was 22% (Table 5.6). 

We speculate three possible causes of this error in the initial test: the plants were very 

close together, soil clods were detected between plants, or the evaluation of the distance 

between plants for the selection of potential plants was not optimal. However, in trial two, 

32 stem detections occurred when 34 real plants were in the line, resulting in a 94% 

success rate. For test three, the accuracy was 98%. 

 

Table 5.6. Plant detection ratio in field trials. 

Test5 Real Plants Detected Plants % Accuracy 

First test 32 41 78 

Second test 34 32 94 

Third test 48 49 98 

 

Regarding the experiments conducted to estimate the response of the LiDAR system in 

real field conditions, the detection system was used on three lines (one with wooden 
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sticks and two with tomatoes). The system was intended to detect the presence of plant 

stems correctly and to distinguish between the foliage and the stem. In addition, this 

system was used to measure the distances between plants accurately, providing 

valuable information for future herbicide treatments.  

Because the use of the laser scanner for detection implies the generation of a very dense 

cloud of points, in which not all data are relevant, an initial filtering was performed as 

explained above. Table 5.7 presents the number of original points obtained by 

eliminating the seedbed, and those considered to be representative of the aerial part of 

the plant, which comprised only 4.5% of the total. 

 

Table 5.7. Point cloud reduction during plant point cloud extraction. 

Test Seedbed delimit Gridding Plant Points 

Stick: Test 1 44,708 (100%) 40,903 (91.5%) 1667 (3.7%) 

Tomatoes 1: Test 1 374,963 (100%) 328,593 (87.6%) 14,720 (3.9%) 

Tomatoes 1: Test 2 237,396 (100%) 220,714 (93%) 13,098 (5.5%) 

Tomatoes 2: Test 2 3,807,858 (100%) 340,051 (89.3%) 18,706 (4.9%) 

 

Regarding plant detection, Table 5.8 summarizes the results of some of the tests, 

implementing the methodology explained previously. Based on these data, it is observed 

that 100% of the sticks have been correctly detected, without obtaining false positives or 

negatives. When this analysis was performed on tomato plants, about 3%–21% of false 

positive or negative detections were found. A plant detected by the LiDAR was defined 

as a false positive when the estimated plant centre was more than half of the plant 

spacing from the real plant centre.  

 

Table 5.8. Plant and sticks detection results. 

Test Plant Location Method 
Correctly 

Detected 

False 

Positive 

False 

Negative 

Stick with filter 

Test 1 

Centre of the cluster 19 0 0 

Lowest point 19 0 0 

Intersection of stem line and ground line 19 0 0 

Tomatoes 1 with 

filter Test 1 

Centre of the cluster 49 2 6 

Lowest point 48 3 7 

Intersection of stem line and ground line 46 5 9 
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Tomatoes 1 with 

filter Test 2 

Centre of the cluster 53 6 2 

Lowest point 52 7 3 

Intersection of stem line and ground line 47 12 8 

Tomatoes 2 with 

filter Test 2 

Centre of the cluster 51 5 0 

Lowest point 48 8 3 

Intersection of stem line and ground line 42 14 9 

Related to the data presented in Table 5.8, Figure 5.10 below shows stick and plant 

LiDAR detection results in three rows. Platform advance information (x-axis on the plot) 

provided by the encoder is given in mm. Each plant/stick detected is marked with 

different colour (note the overlapping on some plants, explaining false negative and false 

positive detections).  

 

(a) 

 

(b) 

Figure 5.10. Detection results on three tested lines. Green dotted lines represent the cluster centre 

and black dotted lines the real plant interval obtained by the Kinect image (location ± Std). (a) 19 stick 

detections using LiDAR; (b) 51 plants detected during Test 1 in row 1. 

As explained in Section 5.2.4.2.2, the plant location method based on the point-to-ground 

intersection has been evaluated (in addition to the lowest-point and centre-of-cluster 

methods). Figure 5.11 shows an example of the insertion point obtained from the 

intersection of the two lines (aerial part and soil line) in tomato plants and sticks. 

Plant locations obtained from the LiDAR and Kinect data are shown in Table 5.9. As 

explained in Section 5.2.4.3, when processing the Kinect images, a value of the encoder 

was automatically selected for each image. Mean values are obtained from the difference 

between the actual location and the location obtained with the LiDAR.  

The negative mean value obtained for Tomatoes 2 with filter  

Test 2 for the intersection of the stem and ground line method means that the LiDAR 

detected the plant at a distance greater than the actual distance (obtained from the 
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Kinect). High standard deviation values can be explained due to the high variability found 

in the encoder values assigned to each plant or stick during the image processing. 

 

Figure 5.11. Plant location method based on the intersection of stem line and ground line.  

(a) Intersection point between the average aerial part of the plant line (green line) and the average 

ground line (red line); (b) Intersection point between the stick aerial part line (green line) and the ground 

line (red line). Both histograms of aerial part of the plant points are shown on the bottom. 

 

Table 5.9. Mean and standard deviation (Std.) of the plant and stick locations during 

the tests.  

Test Plant Location Method Mean (mm) Std. (mm) 

Stick—Test 1 

Centre of the cluster 8.32 10.09 

Lowest point 7.25 8.47 

Intersection of stem line and ground line 6.15 9.45 

Tomatoes 1—Test 1 

Centre of the cluster 20.74 40.37 

Lowest point 10.06 51.72 

Intersection of stem line and ground line 5.34 62.65 

Tomatoes—Test 2 

Centre of the cluster 30.42 37.03 

Lowest point 35.48 52.90 

Intersection of stem line and ground line 27.60 50.36 

Tomatoes 2—Test 2 

Centre of the cluster 1.33 41.49 

Lowest point 10.00 61.86 

Intersection of stem line and ground line −5.95 53.32 

Figure 5.12 shows the plant identifications in each line during the different tests. For each 

detection previously shown in Figure 5.10, tags for each of the localization methods are 

shown by colored lines.  
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(a) 

 

(b) 

 

(c) 

Figure 5.12. Plant and sticks location results obtained by the three different methods: Centre of the 

cluster; lowest point; and ground-plant intersection. (a) Sticks row data using LiDAR; (b) Tomato plants 

detected during Test 1 on row 1; (c) Detail of the aerial point cloud of tomato plants generated by the 

LiDAR during Test 1 on row 1. Each plant location method is marked with different colored dotted line. 

The centre of the cluster is marked in green, the lowest point in blue, and the intersection 

in red. Encoder stick/plant locations by the Kinect image (location ± Std.) are both marked 

in black lines, and their distances are represented by black doted. 

5.4. Conclusions 

A combination of optical sensors mounted on a frame on a tractor, which are capable of 

detecting and locating plants and utilizing ground-wheel odometry to determine a local 

reference system, was successfully developed and tested. Combining the use of 

affordable sensors (light-beam and Kinect) with more expensive ones (LiDAR), a 

laboratory setup platform and two field test platforms have been created. The following 

conclusions were drawn based upon the results of this research: 

• The results obtained from the precise locations of the plants allow us to consider 

the viability of further methods capable of performing individualized treatments 

for each of the plants, or accurate agrochemical treatments to remove existing 

weeds between crop plants in the same row. 

• A light-beam detection system was improved by reduction of the number of 

sensor pairs used. The reduction from three pairs to one pair had no effect on 

the desired plant detection results. In the field tests, 98% precision of detection 

was obtained, similar to that obtained by Garrido et al. (2014), showing that this 
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is a robust technology and can be deployed in the field. Also, light-beam 

detection data allows faster processing than the LiDAR, so it could be used in 

real-time applications. 

• Based on the methodology presented in the analysis of the data from the LiDAR 

and the Kinect sensors, different considerations can be established regarding 

the location of the same plant. According to the structure and morphology of the 

plant, it is assumed that the aerial part will not always be vertically in line with 

the stem (in fact, in the tests done this occurred frequently). For this reason, one 

of three proposed locations can be established as the location of the plant: the 

aerial part, the cluster centroid of the filtered point cloud or the insertion of the 

stem. Depending on the type of treatment to be made, one of these locations 

could be more interesting to evaluate than the others. For example, if a variable 

foliar herbicide treatment is to be applied (discriminating between weeds and 

crop plants), the distance between the aerial parts of the plants should be given 

greater weight in the application system (to avoid applications on the crop plants 

and maximize efficiency by ensuring the herbicide is applied to weeds). In the 

case of physical weed-removal systems, as proposed in Perez-Ruiz et al. 

(2014), priority should be given to the location of stem insertion, and 

adjustments should be made to detect this element more precisely. 

• The high volume of data generated by the more accurate sensors, such as the 

LiDAR used in this work, can be a hurdle for automatic weed detection machines 

when working in real time. However, it is important to emphasize the exponential 

growth of the processing algorithms available for the researcher, which can 

significantly reduce the time required for point cloud data analysis. Reducing 

the density of information necessary while continuing to give accurate 

information is an interesting subject for future work. 

• The precise locations of the plants were determined using an encoder. The use 

of this type of sensor is vital to implementation of low-cost referencing. Correct 

localization and integration to enable determination of reliable reference of the 

movement is of great importance. 

• Agricultural use of affordable electronic components will lower costs in the near 

future, but the authors conclude that these systems must be robust and provide 

a rapid response and processing times. 
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IV. General Results 

 

At the beginning of this thesis was established as main objective the analysis, 

implementation and validation of the use of cost-affordable sensors for the study of 

water stress in row crops such as sugar beet and super high-density olive orchards, 

and for the detection of tomato plants and measurement of the intra-row distances 

between plants for automated weed control. 

The achievement of this objective has been accomplished through three major 

milestones, embodied in the three publications that compose the thematic unity of 

this compendium. The results obtained from these three publications are 

summarized below, responding to the partial objectives initially proposed. 

• An affordable infrared thermometry system was developed and validated, 

capable of being mounted on a UAV to perform temperature measurements on 

a sugar beet culture. A high effectiveness and precision in its behaviour was 

observed, obtaining a narrow margin of difference of only 1ºC with respect to the 

use of a commercial thermal camera. In addition, the response of the crop to the 

induced water stress was evaluated, validating the canopy temperature as a 

reliable indicator of this stress. This will allow better management of irrigation 

water at the same time as cost savings, both in the input and in the monitoring 

systems. 

• The CWSI index was developed empirically and its NWSBs were obtained based 

on aerial thermography combined with ground measurements. When determining 

the NWSB for three RDI periods, the relationship between the difference in air 

and canopy temperatures and the vapor pressure deficit was directly affected by 

the incident solar radiation on super high-density olive orchards. The CWSI has 

been calculated for three different irrigation regimes, obtaining a CWSI in RDI 

zones around 0.7-0.8, which validates the aerial thermal imaging as a 

methodology for the study of this index. In addition, a large correlation of the 

CWSI with other water status indicators such as ψL, ψst and gs has been obtained, 

with the gs showing the highest correlation with an R2 = 0.91. 

• A system based on 3 types of optical sensors for the precise determination of the 

space between plants of the same line and the detection of tomato plants has 
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been developed. Detection of plant stems using light-beam infrared sensors has 

reached a 98% success in the field. The LiDAR laser scanner has achieved a 

100% detection of test sticks, but has generated a remarkable number of false / 

negative false positives in the detection of plants in the field. The Kinect RGB 

sensor has achieved the detection of 100% of elements in the field based on 

image analysis techniques. The calculation of spacing between plants has been 

complex due to the heterogeneity of the terrain and the difficulty of progress, but 

it has been possible to fine tune a low-cost odometric system that acts as a local 

positioning system. This development constitutes an advance in the intra-row 

weed localization techniques at a low cost, which will contribute to the adoption 

of this technology by the producers. 
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V. General Discussion of Results 

and Future Work 

 

 

Irrigation water management and accurate weed control are currently two of the main 

concerns in the agricultural sector, as they directly affect both crop quality and yield. 

Social and political demands show that it is necessary to move towards sustainable 

management levels, which in turn has motivated the growing interest in precision 

agriculture in the last two decades. This agricultural approach aims to take advantage of 

the current technological potential to reduce the efforts from producers, managing to 

increase the productivity and reduce the impact on the environment. 

The main contribution of this thesis is the study and validation of the use of affordable 

sensors, mounted on both aerial and terrestrial platforms, which has been addressed in 

order to contribute generating management strategies regarding the two major lines of 

work for this research: irrigation water management and automated weed detection and 

control, whose overall results based on initial hypotheses are summarized hereunder. 

Due to the inherent spatial and temporal variability of crop fields, the adoption of 

technologies capable of conduct site-specific management is necessary as a first step, 

in order to be able to deal with this type of issues. A large number of sensors and 

electronic solutions are available for automated crop sensing, monitoring, and collecting 

information, but several constraints exist which can limit their application in research 

work and acceptance by farmers. Features and prices of these commercial sensing 

devices typically range from low-cost sensors with low resolution, limited inputs or weak 

manufacturing to very expensive, full-featured devices with high resolution measurement 

capacity. Usually, this type of expensive sensors needs specialized maintenance, while 

offers the customer a closed and proprietary environment, dependent on a particular 

brand both for data collection and analysis, building ecosystems that result incompatible 

with other manufacturers, which could be one of the causes of the low adoption of these 

technologies.  

In recent years, rapid advances in consumer electronics, coupled with the growth of the 

do-it-yourself (DIY) and maker movement, has made fairly inexpensive sensors readily 
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available. At a very low cost (few euros/dollars), standardized sensors can be acquired 

for any type of monitoring, automation or data logging tasks, interfacing directly with 

microcontrollers, which simplifies electronic designs and reach people with limited 

previous knowledge in electronics. In addition to the sensors, this low-cost sensing 

approach needs that the microcontroller should also be affordable and easy to 

programme. Arduino is an open-source electronics prototyping platform based on 

flexible, easy-to-use hardware and software which could be considered a very good 

alternative to develop precision agriculture oriented sensors, having a big community of 

users that employs this platform in multidisciplinary projects (Mesas-Carrascosa et al., 

2015; USAID, 2016; Fisher and Gould, 2012).   

The characteristics of irrigated crops in arid and semi-arid zones demonstrate the need 

to develop techniques that allow the efficient use of water resources, providing the right 

amount of water at the right time and place. One possibility that offers the use of remote 

sensing is the development of methodologies that allow to delimit uniform management 

zones, attending to spatial variability of the soil and crops, while also allows irrigation 

scheduling based on them.  

Data obtained through these sensors can be used as an accurate indicator for irrigation 

management, since through it water status of the plants can be determined; this status 

is commonly measured in terms of water potential (Jones, 1992), for which the pressure 

chamber has traditionally been used (Scholander et al., 1965). In this way, the water 

deficit can be determined from the water potential of the leaves (ψL). Although this 

method is effective for measuring the water status of the plant, it is very slow and 

laborious and requires continuous analysis that makes it ineffective (Cohen et al., 2005).  

For more than 30 years, there are evidences on the usefulness of the measurement of 

crop temperature to monitor the water status of the crop. When water stress is induced, 

leaf stomata close, the rate of transpiration is reduced and its cooling effect decreases, 

which causes leaf temperature to rise. Crop canopy temperature (Tc) is the result of the 

energy balance between energy gains (air temperature and incident radiation) and 

losses due to evapotranspiration. Chapter 1 of this thesis addresses the use of a low-

cost sensing device for infrared thermometry, in order to determine the temperature of 

the crop canopy as an alternative method to water potential, for measuring the plant 

water status. Firstly, laboratory validation of the measurements obtained with the sensor 

was conducted, comparing them with a conventional thermometer, and an open source 

hardware/software-based temperature recording system capable of being mounted on 

board a small multi-rotor UAV was successfully developed.  
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Under field conditions, the work carried out on sugar beet during a complete growing 

season had the aim of determine the responsiveness of the crop to induced water stress 

under different soil and irrigation conditions, dividing the plots according to the texture 

(sandy or clay texture).  

The differences between the canopy and the air temperature (∆T =Tc- Ta) were measured 

in both controlled deficit irrigation (CDI) and full irrigated (FI) treatments. The results 

indicate that the difference in ∆T between DI and FI plants increased as the relative ET 

values decreased, although a large dispersion was found in the relation between both, 

possibly due to the influence of other factors such as air vapor pressure deficit, as 

explained in Maes et al. (2012).  

After the validation against a conventional infrared thermometer, the developed system 

was compared to the canopy temperature measurements performed by a commercial 

thermal camera several orders of magnitude more expensive. Seven flights at different 

flight heights were made during the period in which the crop completely covered the soil, 

mounting the two sensors together on board the UAV.  

The similarity in the Tc measurements in both treatment zones using the thermal camera 

and the low-cost sensors (view Table 3.4) indicates that the developed system can be a 

promising alternative to expensive thermal cameras. The percentage of good data 

collected by the sensor averaged the 95%, similar to that obtained by Fisher et al. (2010), 

with the added challenge of having been gathered aboard an aerial platform. Despite the 

system demonstrated its robustness in terms of operation and acceptable accuracy, this 

type of sensor has some drawbacks: In the study of the operational parameters with 

respect to the measurements, it was revealed that the absence of wind and clouds was 

a relevant factor in the measurement. This limit the areas in which the Tc can be a reliable 

indicator, since as stated Jones et al., (1997), infrared thermometry has had several 

application difficulties in humid regions due to the lower vapour pressure deficit than in 

semi-arid areas.  

Another drawback is the wide FOV (around 90º), doesn’t allow knowing which physical 

element is being targeted by the sensor. This limits its use to measurements that seek 

to know the temperature of a surface as a whole and not a particular point, especially 

when mounted on a platform for in-height measurements. In addition, this fact also limits 

its use in crops that completely cover the soil, to be sure that the measurements 

correspond to the Tc and not to the soil temperature.  

However, this work has demonstrated that the implementation of this type of affordable 

remote sensors allows the estimation of the water status in large areas using infrared 
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thermometry and taking advantage of aerial platforms. Therefore, this technology opens 

up a range of possibilities while at the same time reduces costs, something that will 

certainly allow its mass adoption even in developing areas. 

 

A relevant aspect to accurately know the crop water status (that was already observed 

in the first chapter of this thesis) is that unlike other physiological parameters such as 

leaf water potential (ψL) or stomatal conductance (gs), the canopy temperature is strongly 

affected by the climatic conditions at the time of measurement. In order to minimize the 

effect of the environmental variation and to be able to adequately estimate the water 

status of the crop, it is necessary to develop indexes that have reference temperature 

values. In the Chapter 2 of this thesis the Crop Water Stress Index (CWSI) has been 

developed according to the empirical model proposed by Idso et al. (1981), as a reliable 

estimator of the water status variability in super high-density olive orchards during 

irrigation season. For this, the non-water-stressed-baseline (NWSB) and its daily and 

seasonal evolution have been determined. In addition, the CWSI has been calculated 

based on high resolution aerial thermal images and the suitability of the CWSI to estimate 

the variation of water status in super high-density olive orchards has been determined.  

Three treatments were defined in this olive grove: a full irrigation (FI) treatment that 

covered the complete demand for water, and two treatments of regulated deficit irrigation 

(CDI) covering 45% of the demand (one determined by the method of the crop coefficient 

45RDICC and another one based on the leaf turgor 45RDILT). In order to determine the 

NWSB, the temperature of the canopy was measured continuously for one year using 

infrared thermometers, permanently placed at a height of one meter above the canopy. 

From the results obtained regarding the NWSB calculation, a significant correlation 

between ∆T and VPD was found, with a clear effect of diurnal variation, in which this 

correlation was greater during the central hours of the day. A seasonal variation was also 

found, being the period from June - July (in which the angle of solar incidence is higher) 

in which the relationship between ΔT and VPD was more significant. These variations 

were previously reported by other authors (Bellvert et, 2014; Testi et al., 2008), and 

explained by the tight relationship between the solar radiation and NWSB-intercept.  

The canopy measurements obtained with the infrared thermometers and the thermal 

camera mounted on the UAV were used to derive seasonal CWSI in the three irrigation 

treatments. This CWSI was highly determined by the treatment: while the FI treatment 

maintained a CWSI near to 0 during all the irrigation season, values for the 45RDICC and 

45RDILT ranged from 0.8 to 0.2 during the stress seasons. A seasonal trend was also 
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observed in the data obtained, besides that CWSI showed a linear correlation between 

stem water potential (ψst), leaf water potential (ψL) and stomatal conductance (gs). 

This work also allowed to corroborate the suitability of aerial thermography to map water 

stress in discontinuous canopy structures such as the super high-density olive grove, as 

previously reported in Sepulcre-Cantó et al. (2006). Because the flights were made using 

a thermal camera with a resolution that can be considered low (324x256 pixels), low 

altitude flights (20 meters) had to be performed, which, considering the limited autonomy 

of these equipment, does not allow to cover large areas. As reported in Bellvert et al. 

(2014), camera resolution plays a determining role in the acquisition of thermal images, 

and it was recommended not to perform flights whose height generated pixels greater 

than 30 cm of ground sampling distance (GSD). In our case, the flights were conducted 

at a height in which the GSD was around 13 cm. 

In addition, it was necessary to develop an algorithm of image analysis, which by 

segmentation techniques was able to extract the pixels that actually corresponded to the 

vegetation and separate them from those corresponding to the ground or shadows, 

which have different temperatures. 

 

Chapter 3 of this thesis is devoted to the study of automated weed control, focusing on 

the plant/weed detection and intra-row plant spacing measurement. This line of work is 

considered to be of great interest for producers (and also for the author), since 

sustainable weed management presents a major challenge in the coming years, even 

more if it is approached from the perspective of automation (Fennimore et al., 2016). The 

objective defined in this chapter was to design a system capable of detecting the 

presence of tomato plants of the same crop line, and to determine the distance between 

them. For this purpose, a system based on three types of optical sensors was developed 

and tested: i) three pairs of light-beam sensors, in curtain arrangement, that allowed to 

detect the presence/absence of plants with no ability to discern its morphological 

structure, only distinguishing between weeds and crops based on its height; (ii) Kinect 

sensor (camera), a commercial RGB-D sensor capable of obtaining RGB, NIR images 

and depth images (based on Time-of-Flight); iii) LiDAR sensor, a commercial laser 

scanner that provide distance measurements along a line scan at a very fast scanning 

rate, generating 3D point clouds. The first two aforementioned sensors are considered 

low-cost sensors, since they did not exceed a hundred euros in both cases, while the 

LiDAR scanner used to perform the validation was much more expensive. The different 
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sensors mounted on a platform in the front of the tractor were tested under field 

conditions in California and Seville, assisted by an encoder-based odometry system.  

The results obtained with light-beam sensors indicated a very high detection capacity (~ 

98% accuracy in California test). The LiDAR sensor was able to detect 100% of sticks 

that simulated the stem of the tomato plant, whereas when tested on real plants, the 

developed algorithm obtained between 3-21% of false positives or negatives when 

detecting the plant. The insertion point of the stem in the ground was demonstrated to 

be the most difficult to detect. On the other hand, the image analysis from those captured 

by the Kinect sensor (combined with the odometry system), provided very good results, 

detecting the 100% of the plants and being able to accurately measure the distance 

between stems. 

These detection results with LiDAR and light-beam sensors are in agreement with the 

obtained by Garrido-Izard et al., (2014), whereas the precise detection using the Kinect 

sensor demonstrates the validity of what Fennimore et al. (2016) stated before: computer 

vision is one of the most promising fields in the challenge of detecting and discriminating 

weeds mounted on modern implements and farm machinery. The results obtained from 

the precise locations of the plants demonstrate the viability the low-cost detection 

system, and contributes to the development of further methods capable of performing 

individualized treatments to remove existing weeds between crop plants in the same row.  

Different considerations can be established regarding the location of the same plant. 

According to the structure and morphology of the plant, it is assumed that the aerial part 

will not always be vertically in line with the stem. For this reason, three locations can be 

established as the location of the plant: the aerial part, the cluster centroid of the filtered 

point cloud or the insertion of the stem. Depending on the type of treatment to be made, 

one of these locations could be more interesting to evaluate than the others.  

This work showed the importance of the robustness of these systems, despite being low 

cost, since they are mounted on the tractor and are subject to vibrations and an 

unstructured environment. 

Future work 

The contributions of this thesis open new lines of future research that will be interesting 

to explore. 

On the one hand, as already mentioned in the introduction, the integration of affordable 

sensors is open to help irrigation management systems and complete automation of 

them. It will be interesting to achieve this integration in these systems for its later 
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inclusion on the modern FMIS. As has been pointed out, one of the barriers that these 

FMIS still present, is the lack of adaptation to the local conditions of the crops. Affordable 

sensors can achieve greater adoption of technology, and generate a cycle of 1) greater 

data acquisition, 2) algorithm refinement, 3) more accurate decision-making and 4) 

greater yields in crops. 

Based on the response of these sensors and its ability to measure temperature in the 

field and its relationship with water stress indexes, it will be interesting to see these 

responses in other crops, as well as to evaluate the suitability of carrying out 

developments with other affordable and commercial sensors in order to compare the 

results. 

On the other hand, the improvement and price-lowering of detection and localization 

systems in crops with row-growing patterns will enable the research group to develop 

agricultural implements that can act accurately on weeds among crop plants. One of the 

objectives is to develop an intelligent implement capable of eliminating weeds by 

abrasion using solid waste from other crops. 

In addition, the implementation of these detection and measurement methods on robotic 

platforms opens a very interesting future research route. Author envisions these robotic 

platforms being commonplace on farms in the next decades, with fully automated 

operations such as weed control made by smart machinery and implements. 

It will also be interesting to continue the development of algorithms for the identification, 

classification and training of systems based on computer vision. The author finds in this 

branch a promising way of working in agriculture regarding its use for example for 

navigation, weed detection, pest identification or yield predictions.
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VI. Conclusions 

 

As a summary, the conclusions and final considerations that can be established from the 

present dissertation are presented below: 

- Affordable sensors validated on this thesis have proven their reliability and 

precision when developing innovative solutions for specific field contexts within 

data driven agriculture. 

- The use of infrared thermometry using low cost sensors to estimate the water 

status of sugar beet crops can be performed satisfactorily. In addition, it has been 

shown that the canopy temperature is a reliable indicator of water status, while it 

is highly conditioned by climatic variables (air temperature, wind speed, presence 

of clouds, etc.), which limit its use to non-humid regions. 

- The variability in water status and sustainability in water management presents 

a considerable challenge when it comes to evaluating highly technified crops 

such as super high-density olive groves. Due to the influence of climatic variables 

in the determination of water status, it is important to use indexes that take into 

account these environmental conditions, such as CWSI.  

- The feasibility of obtaining CWSI maps through the acquisition of thermal imagery 

using unmanned aerial platforms has been demonstrated. The determination of 

the NWSBs has allowed to quantify the diurnal and seasonal variability due to the 

incidence angle of solar radiation. 

- Infrared sensors and aerial thermography allows estimating the water status in 

industrial and woody crops, studying the spatial variability as a function of the 

temperature of the crop canopy and effectively delimiting areas of homogeneous 

management for precision irrigation. 

- The feasibility of the use of optical sensors for the detection of crop plants and 

the measurement of the space between tomato stems has been demonstrated. 

Combining cameras, infrared sensors and LiDAR laser scanner, high detection 

rates and high localization accuracy have been achieved. 

- The use of optical sensors as a detection system can lead to a new era in which 

precise weed control can be carried out in an affordable manner and be robust in 

field conditions. 

- The most significant technology barriers these affordable sensor presents are: 1) 

the need of enabling efficient data gathering and transmission, 2) the need of 

testing and refining analysis to accurately reflect local conditions, and 3) reaching 

a robustness scale that supports the challenges of field conditions. 
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