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SUMMARY 

 

DNA replication and transcription take place on the same DNA template, and the correct 

interplay between these processes ensures faithful genome duplication.  DNA replication must 

be highly coordinated with other cell cycle events, such as segregation of fully replicated DNA 

in order to maintain genomic integrity.  Transcription generates RNA:DNA hybrids, transient 

intermediate structures that are degraded by the ribonuclease H (RNaseH) class of enzymes.  

RNA:DNA hybrids can form R-loops, three-stranded, thermodynamically stable forms of the 

RNA:DNA hybrid, which have been shown to challenge replication and genome integrity.   

 

Replication is initiated during S phase from defined replication origins and requires the activity 

of specialized DNA “primases” to provide the RNA to prime DNA synthesis.  However, it has 

been shown that RNA:DNA hybrids can function to initiate replication in bacteriophage T7, 

E.coli plasmids, or mitochondrial DNA,  Here we describe, for the first time in a eukaryotic 

genome, the formation of replication intermediates that are indicative of RNA:DNA hybrid-

mediated replication in the ribosomal DNA of S. cerevisiae.  These unscheduled replication 

events were transcription dependent and induced by increased torsional stress due to the 

elimination of Top1 activity.  We named this process “transcription-initiated replication” (TIR) 

and suggest that it may have important roles in genetic diseases and evolution.   

 

By genetic dissection we demonstrate that cells lacking RNaseH activity depend on 

homologous recombination and post-replicative repair pathways in order to deal with the 

deleterious impact of R-loops.  Special emphasis is given to the observation that the MRC1-

complex, considered as a mediator of the replication checkpoint, is very important to tolerate 

the lack of RNaseH activities.  Our data indicate that replication bypass of R-loops may rely on 

the Mrc1-dependent but Rad53-independent stabilization of replication forks, or suggest that 

the MRC1-complex has a yet to be defined role in genomic stability.   



 

 

Finally, we show that R-loops constrain chromosome segregation and nucleolar organisation.  

As a consequence, the action of the phosphatase Cdc14 (a key player in mitotic exit) is 

constrained and accordingly, we observe a misregulation of B-type cyclins.  Thereby, R-loops 

lead to premature entry into S-phase and promote apoptotic events.   

 

The absence of RNaseH activity had previously been linked to embryonic lethality in mice 

lacking RNaseH1 activity, and the neurological disorder Aicardi-Goutieres syndrome (AGS) in 

humans lacking RNaseH2 activity.  The findings presented in this thesis extend these 

observations and highlight the importance of proficient R-loop processing in genome stability 

and evolution.   

 



 

RESUMEN 

 

La replicación y la transcripción del ADN suceden al mismo tiempo y en la misma molécula de 

ADN de modo que su correcta interacción asegura la duplicación precisa del material genético.  

La replicación del ADN se debe también coordinar con otros eventos del ciclo celular, como la 

segregación de los cromosomas replicados para, de este modo, mantener la estabilidad del 

genoma.  La transcripción forma híbridos de ARN:ADN, estructuras intermediarias transitorias 

que son degradadas por unas enzimas denominadas ribonucleasas H (RNasaH).  Los “R-loops” 

de triple hebra son formas termodinámicamente estables de los híbridos de ARN:ADN cuya 

acumulación puede comprometer la replicación e integridad del genoma.   

 

La replicación del ADN se inicia durante la fase S a partir de orígenes de replicación bien 

definidos y requiere la actividad de primasas especializadas para generar cebadores de ARN 

para la síntesis del ADN.  No obstante en procariotas como el bacteriófago T7 o plásmidos de 

E.coli, y en el ADN mitocondrial, los híbridos ARN:ADN pueden iniciar replicación fuera del 

origen.  En esta tesis, describimos por primera vez en un genoma eucariota la formación de 

intermediarios de replicación que indican una iniciación de replicación mediada por híbridos 

ARN:ADN en el ADN ribosómico de S. cerevisiae.  Estos eventos de replicación no programadas 

son dependientes de la transcripción e inducidos por el aumento de estrés torsional como 

consecuencia de la eliminación de la actividad de Top1.  Nombramos este proceso replicación 

iniciada por transcripción (TIR pos sus siglas en inglés) y sugerimos que estos eventos pueden 

ser altamente mutagénicos siendo de particular relevancia en enfermedades genéticas así 

como para la evolución. 

 

Mediante análisis genético demostramos que las células que no poseen actividades RNasaH 

depende de las vías de reparación de daño en el ADN de la recombinación homologa y la 



 

reparación post-replicativa para enfrentarse a los impactos perjudiciales de los R-loops.  De 

particular importancia es el hecho que el complejo MRC1, un mediador del checkpoint 

replicativo, es fundamental para tolerar la falta de actividad de RNasaH.  Nuestros datos 

indican que el “bypass” replicativo de los R-loops podría depender de la estabilidad de las 

horquillas de replicación mediada por Mrc1 pero independiente de Rad53 o puede apuntar a 

un papel novedoso y sin definir del complejo MRC1.    

 

Por último, demonstramos que los R-loops provocan dificultades en la segregación de los 

cromosomas y la organización nucleolar.  Como consecuencia,  decrece la acción de la fosfatasa 

Cdc14 (un factor clave en la salida de mitosis) y, en concordancia,  observamos un 

misregulación de las ciclinas de tipo B.  Así, la acumulación de R-loops lleva a una entrada 

prematura en la fase S y promueven eventos apoptóticos.  En estudios previos se ha 

relacionado la ausencia de la actividad RNasaH con mortalidad embrionaria en ratones que no 

poseen RNasaH1 y la enfermedad neurológica del síndrome de Aicardi-Goutières (AGS) en 

humanos que no poseen RNasaH2.  Los hallazgos presentados en esta tesis amplían este 

conocimiento y destacan la importancia del procesamiento de los R-loops en la estabilidad del 

genoma y la evolución.   
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3. INTRODUCTION  

 

DNA replication and the cell cycle 

DNA replication is a highly regulated process responsible for the accurate duplication of a cell´s 

genetic material once per cell cycle, which is subsequently segregated into an identical 

daughter cell.   The mechanisms controlling this process are described by the four stage cell 

cycle, in which the two major events of DNA replication (S phase) and chromosome 

segregation and cytokinesis (M phase), are separated by two gap phases, known as G1 and G2.  

In eukaryotes, DNA synthesis occurs during the S phase of the cell cycle.   

DNA replication requires the action of DNA polymerases, to synthesize a new DNA strand 

complementary to the original template strand.  This mechanism is conserved from 

prokaryotes to eukaryotes and is known as semi-conservative DNA replication.  DNA 

replication initiation must be highly coordinated with other cell cycle events, including the 

repair of damaged DNA and segregation of fully replicated DNA to the daughter cell, to 

maintain genomic integrity. 

 

Origins of replication and replication initiation  

DNA replication is initiated at specific sites, known as origins of replication (ori), throughout 

the genome.  Initiation from multiple origins allows eukaryotes to multiply their large 

chromosomes in an appropriate time (for a review see (1)).  The yeast Saccharomyces 

cerevisiae (S. cerevisiae), a unicellular fungal eukaryote, has a genome of approximately 12.1Mb 

with over three hundred origins of replication, referred to as autonomously replicating 

sequences (ARS), and a doubling time in rich media of approximately 90 minutes (2).  ARSs 

consist of a short consensus sequence that acts as a site of recognition and assembly for the 

Origin of Replication Complex (ORC).  The ORC is associated with the ARS throughout the cell 

cycle, and acts as a platform for sequential recruitment of the pre-replicative complex (pre-RC) 
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components Cdc6, Cdt1 and the Mcm2-7 helicase complex, a process known as replication 

licensing (Figure 1).  Once the pre-RC is assembled, the Mcm2-7 helicase complex is activated 

by Cdc7 phosphorylation and can unwind DNA, converting the pre-RC into a pre-initiation 

complex (pre-IC) and the origin is fired.  The activity of the major cyclin dependent kinase 

(CDK), Cdc28, directs the formation of pre-RCs.  In G1 phase, Cdc28 activity is absent, 

permitting the formation of pre-RCs but these are not competent to fire (3).  Cdc28 then blocks 

the formation of new pre-RCs until cells have passed through the G2 and M phases of the 

current cell cycle (4).  This Cdc28 control acts to regulate replication initiation, ensuring that 

each origin is activated, or fired, just once per cell cycle.   

 

 

 

Figure 1. Schematic representation of origin firing. ORC is bound to replication origins 

throughout the cell cycle. During G1 phase of the cell cycle, Cdc6 binds to ORC-DNA.  Cdc6 and Cdt1 

bring MCM complexes to the origin, promoting the opening of the MCM ring, so it can encircle DNA.  

Cdc6 ATP hydrolysis promotes closing of the MCM ring and the release of Cdt1 and Cdc6. Orc1 ATP 

hydrolysis promotes release of ORC from the MCM2-7 complex. Cdc6 and Cdt1 are no longer 

required and are removed from the nucleus or degraded. Cdc7 phosphorylates MCM2-7 that can 

now slide on DNA, and MCMs (and associated proteins, GINS and Cdc45) unwind DNA to expose 

template DNA. At this point replisome assembly is completed and replication in initiated. Schematic 

taken from (5). 

 

Replication priming 

Following origin firing, the two strands are separated and factors required for DNA synthesis, 

such as the yeast replicative polymerases alpha (α), delta (δ) and epsilon (ε), now have access 

to the template DNA and can undertake DNA synthesis. However, the replicative polymerases 
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need a 3´-hydroxyl group to extend from and require the prior production of RNA primers by 

specialized polymerases known as primases.  This necessity means that the replicative 

polymerases can only advance in a 5´ to 3´ direction along a template strand.  As such, the 

leading strand is synthesized in the same direction as the movement of the replication fork 

(RF) in a continuous manner, by DNA Polymerase (DNA Pol) ε (6).  The lagging strand, 

however, is synthesized in the opposite direction to the movement of the RF as discrete 

segments of replicated DNA, known as Okazaki fragments of approximately 150 nucleotides in 

eukaryotic cells (Figure 2).  The primase synthesizes an RNA primer, of approximately 10-12 

nucleotides, and DNA Polα then adds some 20 nucleotides of DNA, allowing the lagging strand 

polymerase DNA Polδ to extend from the primers formed and produce an Okazaki fragment.  

The RNA primers must subsequently be removed before the fragments of replicated DNA can 

be joined by the action of DNA ligase into a continuous fully replicated complementary strand. 

 

 

Figure 2. Schematic representation of a replication fork. . DNA Polε (blue) synthesizes the 

leading strand in the 5´to 3´direction in a continuous manner. For the lagging strand, DNA Polα-

primase first synthesizes an RNA fragment of about 10 nt (red) and then extends that with 20–30 nt 

of DNA (orange). DNA Polδ extends the primer to a length of 200–300 nucleotides (green) until it 

reaches the already synthesized fragment downstream. Joining of the Okazaki fragments involves 

additional enzymes, such as FEN1 and DNA ligase. Adapted from (7).  

 

RNA:DNA hybrids  

RNA:DNA hybrids are frequently occurring intermediate structures, formed by base pairing 

between a ssDNA and its complementary RNA strand.  Such hybrids exist transiently during 

normal replication, as part of the primers for DNA synthesis (as Okazaki fragments), and are 
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also formed during telomere elongation and transcription. For example, during transcription, 

the two strands of the DNA double helix are separated to form a transcription bubble and the 

synthesizing RNA forms a short-lived RNA:DNA hybrid of 8bp with the template DNA strand, 

leaving the non-template DNA to loop out as single-stranded DNA behind the elongating RNA 

polymerase (8).  Under normal conditions this hybrid is a temporary structure and the RNA 

transcript is removed and further processed and packaged into a ribonucleoprotein particle.  

However, in some cases the nascent RNA can reanneal to its DNA complement, and form an R-

loop (Figure 3).  R-loops are a three-stranded, thermodynamically stable form of the RNA:DNA 

hybrid, formed by base pairing between the hybrid and the displaced ssDNA strand.  Certain 

conditions can favour the formation of R-loops.  For instance, negatively supercoiled DNA (9) 

and G-rich sequences (10) are more prone to form R-loops since both facilitate the opening up 

of the DNA double helix. 

 

BA

 

 

Figure 3.  Schematic (A.) and electron micrograph (B.) of an R- loop.  Electron micrograph 

taken from (11).  R-loop is indicated by arrowhead. 

 

RNaseH enzymes 

Ribonuclease H endonucleases (RNaseH) specifically hydrolyze the RNA moiety when annealed 

to a complementary DNA.  All living organisms possess at least one RNaseH activity to remove 

RNA:DNA hybrids (reviewed in (12)).  S. cerevisiae possess two RNaseHs: the monomer Rnh1 

(encoded by RNH1) and the heterotrimeric protein complex Rnh2 (formed by the gene 
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products of RNH201, the catalytic subunit, and RNH202 and RNH203 accessory subunits) (13).  

Although they seem to have some overlapping functions, Rnh1 specifically recognises 

RNA:DNA hybrids with stretches of 4 or more consecutive ribonucleotides (rNMPs), whereas 

Rnh2 can remove hybrids and has an additional activity capable of removing rNMPs covalently 

attached to DNA, such as those misincorporated into DNA during replication of the genome 

(14).  For instance, DNA Polα lacks 3´-5´exonuclease proofreading activity and includes an 

average of 1 rNTP per 625 bases of replicated DNA (15). 

 

What happens if R-loops are not removed? 

Persistent R-loops have been linked to various forms of genomic instability (for a review see 

(16)) and may be lethal if not resolved.  The looped out ssDNA of the R-loop structure is 

exposed and more susceptible to damage than dsDNA.  For this reason, R-loops have been 

referred to as “fragile” sites, since they are more likely to suffer base lesions, such as 

deamination (17), which may lead to mutations or strand breaks (18); R-loop forming regions 

have also been linked to hyper-recombination (19,20).  

Mutations in genes that are involved in the packaging of nascent RNA into a ribonucleoprotein 

particle increase the likelihood of R-loop formation (21,22), and include genes with roles in 

transcription and RNA processing and export, such as THO/TREX (19), and the ASF/SF2 

splicing factor (20).  Mutations in these genes are associated with transcription-dependent 

genomic instability phenotypes, such as transcription-associated recombination (TAR) (23), 

and such instability can be suppressed by the overexpression of Rnh1 (19,21), demonstrating 

that the instability is due to the presence of RNA:DNA hybrids.  Furthermore, the R-loop 

structures themselves may hinder DNA metabolism, blocking transcription elongation (24) or 

RF progression (25,26).   

R-loops have been associated with the instability of trinucleotide repeat (TNR) sequences  

(27,28). Their formation has been demonstrated in vitro at the disease-associated TNR (CAG)n, 
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(28) in spinocerebellar ataxia disease (SCA1), and (GAA)n, in Friedrich´s ataxia (FRDA) (11), 

and thus R-loops have been linked to these and other TNR diseases, including myotonic 

dystrophy (DM1) and fragile X type A (FRAXA) (11,28).   

Despite their detrimental consequences to genomic stability, R-loop structures also play some 

important physiological roles.  For instance, they promote transcription termination of RNA 

PolII genes, such as the human β-actin gene (29), and aid class switch recombination (CSR) of 

immunoglobulin (Ig) genes, responsible for the diversification of Ig isotypes in mammalian B 

lymphocytes (30).  The looped out ssDNA of the R-loop at the highly repetitive switch regions 

is specifically attacked by activation-induced cytidine deaminase (AID), an enzyme that 

deaminates cytidine residues (31), and leads to the formation of DSBs (32) necessary for CSR 

to take place.  

There is also growing evidence associating R-loops with epigenetic modifications and control 

of gene expression.  For example, R-loops may protect against DNA methylation and have been 

shown to form at CpG islands (CGI) in gene promoters (33).  Interestingly, AID-mediated 

demethylation of DNA has been shown to be important for epigenetic reprogramming of 

mammalian cells (reviewed in (34)) and linked to the pluripotency of stem cells (15,35).  

Furthermore, R-loops may favour chromatin accessibility through a reduced affinity for 

histones (36) and recently, R-loop formation has also been shown to trigger histone 3 S10 

phosphorylation (H3S10P) and linked to chromatin compaction (37).  

 

RNA:DNA hybrid-primed replication 

In eukaryotes, DNA Polα and its´ intrinsic primase activity initiates RNA-primed DNA synthesis.  

However, in the case of prokaryotic and mitochondrial DNA, RNA Pol transcripts existing as 

stable R-loops can function as primers for the extension of DNA synthesis.  For example, R-

loops can function as origins of replication for T4 and T7 bacteriophages (38), and for ColE1-

type plasmids in E.coli (39), where replication is sensitive to rifampcin, an RNA Pol inhibitor.  



   14 

Mitochondrial DNA is a good example of a transcription-primed DNA replication mechanism 

(for a review see (40)).  Replication origins in mtDNA are highly conserved from yeast to 

humans and consist of a promoter for the initiation of transcription by RNA Pol and a high GC 

content downstream. In the case of mammalian mtDNA, transcription from the light-strand 

promoter (LSP) opens up the heavy-strand origin (OH) (41) and produces a stable and 

persistent RNA:DNA hybrid (42) (Figure 4), that once processed, can be used as a primer for 

extension by DNA Polγ (43).  

 

 

Figure 4. Schematic representation of mtDNA replication, as an example of transcription-

primed DNA replication.  Transcription from the light-strand promoter creates an RNA:DNA 

hybrid,  which acts as a primer for the initiation of DNA replication of the mitochondrial genome.   

 

Apart from RNA:DNA-primed replication, transcription has also been shown to bypass the 

need for replication initiation factors in E.coli (44).  Under normal conditions, E.coli 

chromosomal DNA replication is initiated from one specific origin (oriC), whose opening up is 

essential for the assembly of the replisomes and depends on the replication initiation factor 

DnaA.  However, mutants capable of initiating constitutive stable DNA replication in the 

absence of DnaA were identified (44) and the mutation was mapped to the RNH locus (rnhA) 

(45). oriC independent replication was transcription-dependent suggesting that stabilized R-

loops provided access for factors needed for replication initiation.  Importantly, rnhA mutants 
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cannot bypass the growth defect of primase deficient dnaG mutants (46), indicating that 

replication has to initiate from a primase generated RNA primer.   

 

Importance of RNA:DNA hybrid removal by RNase H enzymes 

The RNaseH enzymes specifically remove RNA:DNA hybrids.  Eukaryotic RNases H1 and H2 are 

important participants in maintaining genome stability by resolving R-loops that form during 

transcription, and in the case of RNase H2, by initiating the removal of rNMPs in DNA, making 

an excision on the 5´ side of the rNMP.  Misincorporated rNTPs must be removed by DNA 

repair pathways, since they are more mutagenic than mispaired dNTPs due to the reactive 

hydroxyl 2´group on the ribose ring (47), and their presence in the template strand can cause 

the RF to stall in vitro (6,48) and sensitize the DNA backbone to spontaneous breaks (49). 

The importance of RNaseH activity is exemplified by the fact that deletion of RNaseH1 in 

drosophila and mice results in embryonic lethality due to the inability to amplify mitochondrial 

DNA (mtDNA) (50).  Furthermore, deletion of RNaseH2B in mice causes embryonic lethality 

with an observed accumulation of single ribonucleotides in the DNA (51).  Mutation in any of 

the subunits of the human Rnh2 complex can lead to Aicardi-Goutieres syndrome (AGS) (52), a 

severe but rare autosomal recessive neurological disorder (Figure 5).  Patients manifest basal 

ganglia calcification, cerebral atrophy (loss of tissue), chronic cerebrospinal fluid 

lymphocytosis (increase of lymphocytes in the cerebrospinal fluid), and characteristic 

chilblains of fingers, toes and ears.  AGS can also be caused by mutations in other enzymes with 

roles in the removal of nucleic acid species, such as SAMHD1 that reduces dNTP pools and 

TREX1 (53), a 3´ to 5´ DNA exonuclease, deletion of which leads to the accumulation of 

fragments of ssDNA of 60-65bp in the endoplasmic reticulum (ER). The accumulation of nucleic 

acids can trigger the inappropriate activation of the innate immune system (IFNα response) 

(for a review see (54)), with the body responding as if to a viral infection, and many of the 

clinical features of AGS parallel those for a viral infection.   
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Figure 5. Mutations in nucleic acid removing enzymes can cause Aicardi-Goutieres 

syndrome. A. Loss of AGS-related protein activity leads to nucleic acid accumulation, which 

triggers an innate immune response. TREX1 – human exonuclease; degrades ss- and dsDNA. 

SAMHD1 – converts dNTP to a nucleoside and a triphosphate. Schematic adapted from (55). B. 

Characteristic phenotypes of AGS patients include chilblains of the ears, toes and fingers (photos 

taken from www.aicardi-goutieres.org.), and calcification of the basal ganglia.  The MRI scan shows 

rarified white matter, characteristic of neonatal AGS (56).  

 

Other means of removing RNA:DNA hybrids 

Since R-loops are a threat to genomic integrity, bacteria and eukaryotic cells possess different 

mechanisms to prevent the formation of R-loops (Figure 6).   Yeast RNH double deletion 

mutants are viable, indicating that cells have other means of processing RNA:DNA hybrids.  

These may include helicases such as the yeast (and mammalian) Pif1, which has been shown to 

unwind RNA:DNA hybrids in vitro (57), and the yeast Sen1 (known as Senataxin in mammals), 

whose absence has been shown to result in an accumulation of RNA:DNA hybrids downstream 

of the poly(A) signal (58).    
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Figure 6. Schematic of RNA:DNA hybrid removal/avoidance mechanisms in yeast.   

 

Additionally, R-loop formation is promoted when genes are transcribed at high rates (59): with 

the introduction of positive supercoiling ahead of, and negative supercoiling behind the 

passing transcriptional machinery.  As previously mentioned, negatively supercoiled DNA is 

more prone to R-loop formation because nascent RNA can anneal to the underwound DNA.  

Such supercoiling is resolved by the type 1B topoisomerase (Top1), which plays an important 

role in preventing the formation of RNA:DNA hybrids during transcription.  In E.coli the lack of 

Top1 results in R-loop formation (59), and in yeast the combination of loss of Top1 and 

RNaseH functions leads to a hyper-accumulation of R-loops and subsequent lethality (60).   

Topoisomerase 1 activity and inhibitors 

Topoisomerases (Top) are important enzymes found in both prokaryotes and eukaryotes, 

which act to relieve the torsional stress of nuclear and mitochondrial DNA (for a recent review 

see (61)).  Torsional stress is introduced by repair, replication and transcription machineries, 

and Top1-type topoisomerases relax supercoiling by transiently nicking the DNA, staying 

covalently bound, and enable the broken strand to rotate (61).  In this manner the stress on the 

helical backbone is released and the covalent phosphodiester bond is reformed.  In the absence 

of Rnh2 and when transcription rates are high, an alternative mechanism can act to remove 

rNMPs from the DNA, which requires the activity of Top1.  However, the Top1-dependent back-

up pathway is not particularly efficient, since in the absence of Rnh2 many rNMPs still remain, 

and is a mutagenic process, introducing short deletions of 2-5bp (14).  For these reasons, the 

removal of misincorporated rNMPs is not believed to be the normal function of Top1.   
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Incomplete Top1 action has been shown to be a natural source of DNA damage, such as DNA 

single strand breaks (SSBs), which can be converted to DSBs during replication (62).  

Camptothecin (CPT) is a Top1 specific inhibitor that acts by trapping the Top1 after nick 

formation on the DNA as a cleavage complex (Top1cc; Figure 7A), binding at the Top1-DNA 

interface, and thus impedes religation of the nick (Figure 7B) (63).  Water-soluble derivatives 

of CPT are commonly employed as anti-tumour drugs, such as topotecan for the treatment of 

ovarian cancer (64). 

The CPT sequestered, covalently bound, 90kDa Top1 must be removed from the 3´ end before 

the DSB can be repaired and replication resumed.  Specialized enzymes, such as the tyrosyl-

DNA phosphodiesterase, Tdp1 (65), as well as the Rad1-Rad10 and Mus81 endonucleases (66), 

can remove Top1cc.  In addition, the homologous recombination machinery has been reported 

to be involved in the repair of Top1-mediated lesions (67).  

 

Figure 7. Camptothecin (CPT) is a Top1 specific inhibitor. A. Molecular structure of CPT.  The 

lactone ring in CPT is important for the drug’s biological activity, active as a “closed” α-

hydroxylactone form and inactive as the “open” carboxylate form.  The lactone ring can rapidly 

open at physiological (or higher) pH.  B. Schematic of CPT mode of action.  Under normal 

conditions, the covalent Top1cc, formed in the action of nicking, are short-lived and reversible.  

However, under some circumstances, such as upon treatment with CPT and deriviatives, the Top1cc 

is stabilized and the ligation stage is impaired, leading to the introduction of a SSB.  Adapted from 

(64).   
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Organisation of Ribosomal DNA  

The ribosomal DNA (rDNA) is compartmentalized within the nucleolus, a crescent-shaped sub-

compartment of the nucleus (Figure 8A), which is the site of rDNA transcription and ribosome 

assembly, essential processes for the cell since cell growth is directly dependent on the rate of 

protein synthesis (68).  Top1 is enriched at the nucleolus (69), and Top1´s activity at this site is 

particularly important to relieve torsional stress, since rDNA transcription by RNA PolI can 

account for approximately 80% of the total transcription in yeast (68).  The highly transcribed 

rDNA is more prone to RNA:DNA hybrid formation, and accordingly R-loop formation in the 

rDNA have been shown to be enhanced in top1 mutants in yeast (60).   

The ribosomal locus of S. cerevisiae consists of a single array of 150-200 copies of a 9.1kb 

repeat unit located in the middle of chromosome XII (Figure 8B).  In contrast to yeast, the rDNA 

repeats of higher eukaryotes are located in multiple nucleolar organizing regions (NORs).  One 

yeast repeat unit consists of the RNA PolI transcribed 35S gene that encodes the 35S precursor 

rRNA, which is processed into the mature 18S, 5.8S and 26S rRNAs, and the RNA PolIII 

transcribed (in opposite direction) 5S gene, respectively.  Two non-transcribed intergenic 

spacers (NTS1 and NTS2) separate the 35S and 5S rRNA sequences. The NTS regions contain 

cis-regulatory elements for the control of DNA replication, which include a replication fork 

barrier (RFB) and an origin of replication (ARS), respectively (for a review of the rDNA 

organisation, see (70)).  The RFB is polar, allowing RFs to pass if moving in the same direction 

as transcription of the 35S gene, but blocks over 90% of advancing forks from opposing 

direction (71).  RFBs appear to be a highly conserved feature of rDNAs, confirmed in a number 

of other organisms, including humans (72).  
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Figure 8. A. Fluorescent microscopy image to show the nucleolus. The nucleolus is seen in red 

(Nop1-mRFP), and the nucleus in blue (DAPI stain). B. Schematic representation of the rDNA locus 

of S.cerevisiae. A single rDNA unit measures 9.1kb and contains two transcribed genes – 35S 

transcribed by Pol I, processed to mature 18S, 5.8S and 25S species, and 5S by Pol III. NTS, non-

transcribed spacer; RFB, replication fork barrier; ARS, origin of replication; CAR, cohesion 

attachment region. 

 

In addition, each rDNA repeat contains a cohesion attachment region (CAR) located proximal 

to the 5S gene in the NTS2 (73).  Cohesion is an evolutionarily conserved complex that contains 

several members of the Smc (structural maintenance of chromosomes) family.  The association 

of cohesion is thought to hold sister chromatids together during S phase, to regulate 

recombination between repeats, until their controlled separation and segregation during 

mitosis (74).  Smc proteins are also found in condensin complexes, and there is an intimate 

relationship between cohesin and condensin functions (cohesin and condensin are reviewed in 

(74)), both of which are important for the correct segregation of the rDNA array (75).  The 

presence of cohesion within the tandem repeated rDNA array may limit the template available 

for recombinational repair of a DNA break (73) and therefore is important for maintaining 

rDNA repeat stability (75).   

 

The replication-transcription conflict 

The polarity of the ribosomal RFB allows the replication and transcription machineries to 

move in the same direction.  However, in other regions of the genome, this is not the case such 

that replication and transcription machineries can collide (76,77) leading to RF stalling or 
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arrest (reviewed in (78,79)).  It has been suggested that head-on collisions are more 

detrimental than co-directional collisions (80), and consequently, highly expressed genes tend 

to be transcribed with the same polarity as RF progression (71,81).  For example, RFs were 

shown to pause at tRNA genes when the direction of transcription was opposite to the 

direction of RF progression (82).  Therefore, eukaryotes have evolved mechanisms to help 

prevent head-on collisions (for a recent review see (83)), explaining the presence of RFBs in 

the highly transcribed rDNA (71).   

 

Pathways that resolve constrained replication  

In addition to transcription-induced impediments, the RF must deal with other DNA-bound 

proteins, secondary structures, and frequently occurring DNA lesions caused by various 

exogenous and endogenous sources, which can cause RF stalling.  Blocks to replication can lead 

to RF collapse if not resolved and result in DNA strand breaks.  As such, a plethora of repair 

factors and pathways exist to remove DNA lesions and facilitate RF progression, in order to 

maintain genomic integrity.  The choice of which repair system to use depends on both the 

type of lesion and on the cell-cycle phase (reviewed in (84)).   

Continuously produced reactive oxygen species (ROS), a by-product of normal cellular 

metabolism, can modify bases by oxidation, and such oxidative base lesions can block the 

progress of DNA and RNA polymerases (85,86).  The Base Excision Repair (BER) pathway acts 

to repair damage to individual bases, including methylation, deamination and 

depurination/depyrimidation (for a review of BER see (87)).  In contrast, Nucleotide Excision 

Repair (NER) acts to remove bulky DNA adducts that cause a structural deformation of the 

DNA helix, such as DNA intrastrand and interstrand crosslinks, and pyrimidine dimers that can 

be produced by ultraviolet (UV) radiation (for a review of NER see (88)).  A specific sub-

pathway of NER can repair lesions that impede RNA Pol progression through transcribed 
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genes.  A stalled RNA Pol at the lesion, for example helix-distorting lesions, appears to be the 

signal for Transcription-coupled repair (TC-NER) (reviewed in (89)).   

However, the most commonly formed lesions resulting from stalled or collapsed RFs are 

double-strand breaks (DSBs).  The two major pathways for repair of DSBs are non-homologous 

end joining (NHEJ) and homologous recombination (HR).  NHEJ is error-prone, ligating 

together the broken DNA ends with little or no homology, often resulting in loss or gain of 

sequence at the site of repair (reviewed in (90)), while HR repairs the DSB with high fidelity, 

using the sister chromatid or homologous chromosome as template.  NHEJ has been shown to 

be active throughout the cell cycle, although it is particularly active in G1 (91), whereas HR is 

restricted to the S and G2 phases, when the sister chromatid is available to act as the template 

for this mode of repair (reviewed in (92)).   

The Mre11/Rad50/ Xrs2 (MRX) complex functions in both HR and NHEJ, where Rad50 holds 

DSB ends together to favour NHEJ (93).  In yeast, HR is initiated with processing of the ends of 

the break by the MRX complex to generate 3′-ssDNA.  Rad51 then searches for the homologous 

sequence and facilitates strand invasion of the ssDNA at the homologous sequence, allowing 

the DNA Pol to extend the 3´ end using the homologous sequence as a template. 

There are at several different mechanisms of homologous recombination that can be used to 

repair a chromosomal DSB in yeast cells, including double strand break repair (DSBR), 

synthesis-dependent strand annealing (SDSA), single-strand annealing (SSA) and break-

induced replication (BIR) (see Figure 9) (reviewed in (94)). 
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Figure 9.  . Recombinational repair pathways.  Schematic highlighting key factors in double-

strand break repair (DSBR), synthesis-dependent strand annealing (SDSA), single-strand annealing 

(SSA) and break-induced replication (BIR) homology-dependent recombinational repair pathways.  

Adapted from (34).  

 

Eukaryotic cells also possess two damage tolerance mechanisms that depend on the activities 

of Rad6 and Rad18 to allow the RF to by-pass blocking lesions (95,96).  Damage tolerance can 

be mediated by the error-prone TLS, where a specialized polymerase can replicate across the 

DNA lesion (97), or the error-free Rad5-dependent pathway, that uses the undamaged sister 

chromatid via template switching (98) to re-prime replication downstream of the lesion.  The 

deletion of both template switch and TLS pathways were shown to be essential to tolerate 

misincorporated rNMPs in the DNA of yeast lacking RNaseH activity upon replicative stress 

(99).  

 

Cell cycle checkpoints 

Surveillance mechanisms known as checkpoints exist, which act to detect problems that may 

arise during eukaryotic DNA replication and respond by eliciting a signalling cascade (100).  

Checkpoints contain sensor proteins that can detect stretches of ssDNA, an indication of stalled 

forks or DNA damage, incorrect attachment of sister chromatids to the mitotic spindle, cell size, 
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or cellular conditions such as protein and nutrient levels.  Depending on the stimulus, the 

checkpoint can activate signal transducers, protein kinases that transmit the checkpoint signal 

to induce the expression of specific downstream target genes that act to maintain the stability 

of the RF and/or facilitate repair, in the case of damage (101), and in all cases, delay cell cycle 

progression to allow time for the problems to be resolved (100).  Loss of checkpoint function 

results in genomic instability (102) and has been implicated in the evolution of normal cells 

into cancer cells (103,104).   

In S. cerevisiae there are three checkpoint pathways that recognize the presence of damaged 

DNA at the G1/S transition, during the S-phase (Intra-S), and at the G2/M cell cycle phases (see 

Figure 10).  The G1/S cell cycle checkpoint, also known in yeast as START (for a review see 

(105)), ensures there is no damaged DNA before transition into S phase (106).  Additionally, 

START acts as a decision point to confirm that all conditions required for DNA synthesis, 

including a minimum cell size and sufficient nutrient and enzyme levels, before committing to a 

cell division cycle.  Alternatively, cells arrest at START and enter a resting state called G0.   

 

The S-phase checkpoint senses both DNA damage and replication stress, caused by stalled or 

broken RFs, which result in stretches of ssDNA (for a review see (107)).  The Mec1 checkpoint 

sensor is recruited to the RPA-bound ssDNA and activates the downstream effector kinases 

that include Rad9 and Mrc1 ((108) and (109), respectively).  The phosphorylation of either 

Mrc1 or Rad9 recruits and activates Rad53 (110).  In addition to RAD9, the checkpoint genes 

RAD17 and RAD24 are also required for the intra-S and G2/M damage checkpoints and function 

upstream of Rad53.  Rad53 activation stabilizes the RF (111), induces damage-responsive 

genes via its downstream paralogue kinase Dun1 (112), and slows down DNA replication, by 

the inhibition of late origin firing (113).   
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Figure 10.  The G1/S, intra-S, and G2/M checkpoint responses.  Schematic representation of the 

key factors involved in the checkpoint pathways.   

 

Any unrepaired damage in the newly synthesized DNA will trigger the G2/M damage 

checkpoint, which prevents cells from entering mitosis until the DNA damage has been 

resolved, to prevent the segregation of damaged chromosomes (114).  Other G2/M checkpoints 

include the morphogenesis checkpoint, which delays cells at the G2/M transition in response to 

problems that delay bud formation (115), and the spindle-assembly checkpoint (SAC) that 

monitors attachment of replicated chromatids to the microtubules to achieve spindle 

connection (for a review see (116)).  SAC activation achieves G2/M arrest by inhibiting the 

anaphase promoting complex/cyclosome (APC/C) specificity factor Cdc20, delaying exit from 

mitosis [22].  The APC/C is an E3 ubiquitin ligase that regulates the metaphase/anaphase 

transition through the ubiquitin-mediated proteolysis of various substrates (117), including 

mitotic cyclins and the sister chromatid separation inhibitor securin/Pds1 (118).  When the 

kinetochores are attached to microtubules the APC/CCdc20 ubiquitinates securin and cyclin B 

and thereby activates the protease separase and inactivates the cyclin-dependent kinase-1 

(Cdk1).  Separase can cleave the cohesin complexes that are holding sister chromatids together 

and separate sister chromatids.  The activated SAC inhibits the capability of APC/CCdc20 to 

ubiquitinate securin and cyclin B and thereby prevent anaphase and mitotic exit.  As such, the 
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SAC ensures a correct chromosome segregation and is a key mechanism to prevent aneuploidy, 

a contributory factor of cancer (119).  
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4. OBJECTIVES  

 

RNA:DNA hybrids are transient structures generated during DNA replication, transcription and 

telomere elongation and can lead to R-loop formation.  R-loops may physically interfere with 

transcription elongation (24) or cause replication fork blockage (25,26).  As such, persistent R-

loops are detrimental to the cell and have been linked to various forms of genomic instability 

(for a review see (16)).  All eukaryotes and bacteria possess at least one enzymatic activity to 

specifically remove RNA:DNA hybrids.  The human disease AGS and embryonic lethality in 

mouse (and Drosophila) caused by the lack of RNaseH2 and RNaseH1 respectively, 

demonstrate the important contributions of the RNaseH enzymes to global DNA metabolism 

(50,52).  Furthermore, recent studies have shown that R-loops are linked to disease-associated 

alterations in trinucleotide repeat sequences, supporting the need for further investigation of 

the cellular roles of the RNaseHs and the consequences when their activity is compromised. 

Using Saccharomyces cerevisiae as a model organism, this thesis aims to explore the 

contributions of RNaseH activity to faithful DNA replication, genomic stability and cell cycle 

control.  

The objectives of this thesis are: 

 

1. To categorize the replication/recombination intermediates formed in RNaseH- cells. 

 

2. To identify factors and pathways, that interact with RNaseH enzymes by genetic          

analyses.  

 

3. To dissect the impact of R-loop formation on cell cycle progression.   
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5. RESULTS 

 

CHAPTER 1 - Transcription-initiated DNA Replication in Yeast  

Yeast lacking RNaseH activity are sensitive to the Top1 inhibitor CPT  

The yeast S. cerevisiae possess two RNaseH activities, Rnh1 and Rnh2, which can act to remove 

RNA:DNA hybrids and have been suggested to have some redundancy in functions (120).  

Deletion of the RNH201 gene, coding for the catalytic subunit of Rnh2, eliminates yeast Rnh2 

activity, and deletion of both RNH1 and RNH201 abolishes all RNaseH activity in yeast cells.  

Double mutants rnh1∆ rnh201∆ (referred to herein as rnh1∆ rnh2∆) are viable, suggesting that 

this activity in dispensable for viability or that yeast have other means of removing RNA:DNA 

hybrids. However, yeast cells lacking RNaseH activity have been shown to be more sensitive to 

the DNA damaging agent ethymethylsulfanate (EMS), the checkpoint inhibitor caffeine and the 

ribonucleotide reductase inhibitor hydroxyurea (HU) (120).  To confirm and extend these 

observations, we performed drop test analyses using HU; the DNA alkylating agent methyl 

methanesulphonate (MMS); and the Topoisomerase 1 (Top1) specific inhibitor camptothecin 

(CPT; Figure 11A).  Cells lacking either RNaseH activity were not sensitive to genotoxic agents, 

but we noted that the rnh1∆ rnh2∆ double mutant became hypersensitive to HU, MMS, and 

CPT; suggesting that although each RNaseH enzyme has a specialized role, they can substitute 

for each other (Figures 11A and B).  We found the CPT sensitivity of the rnh1∆ rnh2∆ double 

mutant particularly interesting, because rnh1∆ rnh2∆ has been shown to be synthetic lethal in 

the absence of the CPT target, Top1 (60). Top1 is crucial during transcription to relieve the 

accumulation of torsional stress associated with the formation of negative supercoils behind 

the transcription machinery (121).  Negative supercoils in the DNA can enhance RNA:DNA 

hybrid formation (59), and consequently Top1 plays an important role in preventing R-loop 

formation.  CPT sequesters Top1 via the formation of a covalently bound Top1 cleavage 

complex (Top1cc) Top1-DNA complex (reviewed in (122)), so that it cannot act elsewhere in 
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the genome, analogous to a depletion of Top1.  A recent report of Marinello et al. has shown 

that CPT treatment of human cells leads to an increase in R-loops at highly transcribed regions, 

such as ribosomal genes, due to an increased negative torsion (123).  Thus, CPT treatment of 

rnh1∆ rnh2∆ mutants can be used as a tool to chemically induce and maximize RNA:DNA 

hybrid formation in yeast.   

 

Figure 11.  Yeast lacking RNase H activity are sensitive to replication stress and DNA damage 

independent of proficient Rad5 and Ssd1 activity. A. Analysis of sensitivity to genotoxic agents. 

10-fold serial dilutions of cells grown for 3 days on YPAD or YPAD-containing HU (50mM), MMS 

(10mM), or CPT (10µg/ml).  B. Cell survival after prolonged incubation with CPT. Data is shown as 

the mean ± standard deviation. C. 10-fold serial dilutions of cells containing an empty (control), or 

the RAD5-expressing (pBJ6) or SSD1-expressing (pLO92) plasmids grown on SC-Ura or SC-Ura-

containing CPT (5µg/ml).  

 

The YKL83 strains used in this study are derivatives of W303-1A (124) (a complete list of 

strains used in this thesis can be found in Table 2).  However, genetic alterations in the W303-

1A strain include a mutation in the RAD5 (rad5-535 (125)) and SSD1 genes (ssd1-1 (126)).  

RAD5 codes for a factor with both DNA helicase and ubiquitin ligase activities that functions in 

postreplicative repair (PRR), and the rad5-535 mutation has been associated with a slight 

increase in UV and MMS sensitivity (125), while SSD1 codes for a translational repressor with 

roles in polar growth, TOR signalling and cell wall integrity (126,127).  To determine whether 

the rad5-535 or ssd1-1 mutations contribute to the CPT sensitivity of the rnh1∆ rnh2∆ mutant, 
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strains were transformed with the RAD5- or SSD1- expressing plasmids (a list of plasmids 

included in this thesis can be found in Table 3).  RAD5 or SSD1 expression from low copy 

number plasmids did not alleviate the rnh1∆ rnh2∆ CPT sensitivity (Figure 11C), supporting 

the idea that CPT sensitivity is due to the lack of RNaseH activities.  

 

Yeast lacking RNaseH activity suffer from increased genome instability 

CPT damages DNA by trapping the Top1-DNA cleavage complex (Top1cc) such that it cannot 

ligate the single-strand nick made by Top1 (128,129).  Such Top1cc can be processed by the 

action of Rad1 and Tdp1, which form part of redundant DNA damage repair pathways (66).  

Tdp1 is a tyrosyl-DNA phosphodiesterase, capable of hydrolyzing the covalent link between 

Top1 and DNA, while Rad1 acts in conjunction with Rad10, as a structure-specific 

endonuclease during nucleotide excision repair (NER).  The rad1∆ tdp1∆ double mutants are 

themselves very CPT sensitive due to accumulation of Top1-mediated DNA damage (Figure 

12A; note the drop test analysis was performed at the lower CPT concentration of 1µg/ml due 

to the elevated sensitivity of the strain). To test if the RNaseHs contribute to the Rad1 or Tdp1-

dependent CPT-repair pathways, we therefore generated rnh1∆ rnh2∆ mutants lacking only 

Rad1, Tdp1 or both activities (Figure 12A).  The rnh1∆ rnh2∆ mutants were further sensitized 

to CPT in the absence of both rad1 and tdp1 (see the quadruple mutant), but not in the absence 

of either repair protein.  The enhanced CPT sensitivity of the quadruple but not the triple 

mutants indicates that it is unlikely that RNase H enzymes are involved in the repair of Top1-

mediated DNA damage but rather, DNA damaging events might be more frequent in these 

mutants.  

Next, we examined if rnh1∆ rnh2∆ mutants suffer from a general increase in genome instability. 

Genetic alterations can be detected as events that lead to a loss of heterozygosity (LOH) in 

yeast cells, where a cell only contains a single copy of an allele due to loss or inactivation of the 

second copy.  LOH can become critical when the sole remaining allele contains a point 
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mutation that renders the gene inactive.  For example, LOH is a common occurrence in cancers 

where a tumor suppressor gene is inactivated (130,131).  We measured the frequency of LOH 

in yeast cells by monitoring the formation of “a-like faker” cells (ALF, (132); Figure 12B), 

resulting from loss or inactivation of the MATα locus leading to the default MATa mating type 

in yeast.  MAT allele disruption can be due to chromosomal rearrangement or gene conversion 

of the silent mating type locus HMRa, and more frequently, due to loss of chromosome III, that 

hosts the mating cassette. ALF cells can be detected by the selection of mated products, since 

ALFs will mate as a-type cells.  In wild-type yeast, ALF mitotic segregants are generated at a 

rate of approximately 10−6 (133). The rnh1∆ rnh2∆ double mutants exhibited a frequency of 

ALF formation about 10-fold increased, as compared to the WT, suggesting that cells lacking 

RNaseH activity have chromosome instability. 

To further monitor genomic instability, mutation frequencies in rnh1∆ rnh2∆ mutants were 

detected by measuring the frequency of Ura- mutations (selected in medium containing FOA; 

Figure 12B), using the pCM184-LAUR plasmid system ((134), see Materials & Methods for 

details).  We found that cells lacking RNaseH activity had a 12-fold increase in the frequency of 

Ura- mutators as compared to the WT, suggesting that loss of RNaseH activity is associated 

with a hypermutator phenotype. In addition, we measured forward mutation rates by 

monitoring the spontaneous appearance of colonies in a medium supplemented with the toxic 

compound L- canavanine (Can).  S. cerevisiae take up arginine and canavanine by means of a 

specific permease, and resistance to Can is associated with a loss of arginine permease function 

encoded by the CAN1 locus.  We observed an increase in Can resistant cells of over 6-fold in the 

rnh1∆ rnh2∆ double mutant (Figure 12B).  Notably, in order to perform the CAN1 forward 

mutation assay we had to use strains in the BY background, since YKL83 strains are mutated in 

the CAN1 gene (can1-100).  Taken together, these results indicate that RNaseH double mutants 

are prone to genomic instability.   
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Figure 12. Loss of RNaseH activity contributes to genome instability. A. Drop test analysis of 

genetic interaction between RNaseH activity and CPT repair pathways. 10-fold serial dilutions of 

cells grown for 3 days on YPAD or YPAD-containing CPT (1µg/ml). B. Rate of MATα conversion to a-

mating type. ALF frequency values (mated products/total cells) shown as fold change (F.C.) relative 

to WT (left panel). Mutation rates as determined by the pCM184-LAUR plasmid mutation system 

(middle panel) and by canavanine resistance (right panel). Data represent the mean ± standard 

deviation obtained from the mean of three fluctuation tests of four independent colonies each. 

Differences between mutants and the WT were examined by Student’s t-test and were considered 

statistically significant for p-values<0.05 (asterisks). C. Representative image of Rad52-YFP foci co-

localized with the nucleolar periphery (left). Percentage of Rad52-YFP foci counted in exponentially 

growing cells growing with or without the presence of CPT (10µg/ml, 3hr treatment). Nuclear 

versus nucleolar Rad52-YFP foci were determined according to co-localization with the nucleolar 

Nop1-mRFP marker. Data represent mean ± SD from at least three independent experiments. 

Differences between mutants and the WT were examined by Student’s t-test and were considered 

statistically significant for p-values<0.05.  

 

Subsequently, we asked whether rnh1∆ rnh2∆ yeast were also more susceptible to 

spontaneous DNA lesions and we tested for this by analysing the formation of Rad52-YFP foci.  

Rad52 is a key player in repair by homologous recombination (HR); when assembled at a DSB, 

the clustering of Rad52-YFP proteins can be seen as an intense focus, such that foci are 

representative of sites of DNA repair (135).  Interestingly, we observed a statistically 

significant increase of Rad52-YFP foci formation in rnh1∆ rnh2∆ cells (5-fold with respect to 

the WT), and an even greater increase upon the addition of CPT (Figure 12C). Notably, the 

Top1 specific inhibitor CPT introduces single-stranded nicks that can be converted into DSBs 

by collision of the replication or transcription machineries with the covalently bound Top1cc 
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(136,137), and so we questioned whether we would observe an even greater frequency of 

Rad52-YFP foci formation in a highly transcribed region of the genome.  The nucleolus is ideal 

to test for this possibility because it hosts the highly transcribed ribosomal genes. Ribosomal 

genes are needed for the synthesis of rRNA by RNA PolI accounting for about 80% of the total 

transcription in yeast (68).  High rRNA levels are achieved by transcription of approximately 

100-200 identical repeats of the yeast ribosomal genes, organized into the rDNA locus on 

chromosome XII.  Cells were co-transformed with Rad52-YFP- and Nop1-mRFP-expressing 

plasmids to compare the localization of Rad52 foci with the Nop1 nucleolar stain (Figure 12C).  

We observed that 31% of Rad52-foci colocalized with the nucleolar periphery in WT cells 

following CPT treatment.  Strikingly, some 66% of the Rad52-YFP foci in the rnh1∆ rnh2∆ 

double mutant appeared to be associated with nucleolar DNA following CPT treatment.  In fact, 

an already significant proportion of rnh1∆ rnh2∆ cells (57%) had foci that co-localized with the 

nucleolar periphery in logarithmically growing cells under normal conditions.  Extensive work 

by the groups of Michael Lisby and Luis Aragon using 3D reconstruction, demonstrated that 

Rad52 is excluded from the nucleolus and damaged rDNA relocates to the nucleolar periphery 

to interact with the recombinational repair machinery (138).  Collectively our results suggest 

that RNaseH activities contribute to the maintenance of genomic stability, and are particularly 

important  for preserving rDNA genome stability. 

 

Genome stability of the rDNA is particularly affected in RNH- mutants   

Chromosome XII (cXII) is approximately 2.5Mb in length, being one of the largest yeast 

chromosomes.  From sequence information, non-rDNA regions on the chromosome account for 

approximately 1.1Mb, and therefore, the remaining 1.4Mb are made up of rDNA repeats, 

constituting some 150 copies of the rDNA repeat in a control strain.  The repetitive nature of 

the rDNA locus makes this region of the genome particularly unstable.  Changes in rDNA repeat 

length can occur in response to repair processes initiated at stalled replication forks within the 

rDNA array (139-141).  Homologous recombination-mediated invasion of an rDNA repeat with 
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a complementary sequence can lead to expansion - a gain in copy number, or contraction - 

resulting in copy number loss - of the rDNA array; such events being related to genome 

instability.  The mobility of chromosome XII can be easily visualized by CHEF analysis, and 

provides a direct measurement of rDNA repeat length.  We investigated whether the repeat 

length of the rDNA array was altered in mutants lacking RNaseH activity.  CHEF analysis 

showed that the regulation of rDNA repeats was significantly affected in yeast lacking RNaseH 

activity (Figure 13A).  We observed a substantial decrease in rDNA copy number for the rnh2∆ 

mutant as compared to the WT, related to a loss of rDNA repeats.  The cXII signal for rnh1∆ 

cells and the double mutant was observed as an intense band just below the wells.  For the 

rnh1∆ simple mutant, cXII migrates in a higher intense band, however, a second band 

corresponding to cXII can be observed just below the WT band.  This result would indicate a 

population of rnh1 cells with a strongly enhanced repeat expansion phenotype and a second 

sub-population with a shorter rDNA array. In the case of cells lacking both RNaseH activities, 

cXII was always detected as a diffuse signal, and generally the cXII signal seemed reduced in 

the double mutant.  A diffuse signal represents a dispersed population that has undergone 

larger expansions of the rDNA array (142), and such copy number heterogeneity would reflect 

a particularly unstable rDNA array in the RNH double mutant. 

Ribosomal repeat stability can also be monitored by the pop-out of rDNA repeats from cXII by 

intra-chromatid recombination (143), and consequently, the formation of extrachromosomal 

rDNA circles (ERCs) (Figure 13B).  ERCs are maintained in the cell as plasmid-like circular 

DNA, since they can replicate autonomously (144).  It has been proposed that the accumulation 

of ERCs is an aging factor in yeast, and the “rDNA theory” directly relates rDNA stability with 

longevity in yeast (145).  As we had observed considerable fluctuations in rDNA repeat length 

in the RNH- mutants we questioned whether we could associate this with changes in the levels 

of ERCs.  ERCs were separated from logarithmically growing yeast by gel electrophoresis, 

followed by Southern blot and hybridization with an rDNA probe.  The number of ERCs was 

increased 4-fold in rnh2∆ cells yet reduced in the rnh1∆ as compared to the WT (Figure 13B), 
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which complements the previously observed decrease and increase in rDNA copy number, 

respectively.  The double mutant has an increased number of ERC pop-outs compared to the 

WT further demonstrating ribosomal repeat instability.  

 

 

Figure 13. Lack of RNase H activity specifically affects genome stability of the rDNA array. A. 

CHEF analysis to measure rDNA repeats. Left panel EtBr-stained gel, right panel following 

hybridization with rDNA probe. B. Schematic of how a copy of the rDNA repeat can be lost when a 

broken end recombines with its own chromatid (intrachromatid recombination), with subsequent 

pop-out of an ERC (left); adapted from (143). BamHI digested genomic DNA separated by gel 

electrophoresis (right). The strongest band observable corresponds to chromosomal rDNA (rDNA 

repeat); monomeric and dimeric ERC bands are observed below, and larger multimers above the 

chromosomal rDNA band.  The three ERC signals were quantified relative to the rDNA repeat signal. 

Fold change relative to the WT is indicated. C. Recombination frequencies of strains containing the 

leu2-k::ADE2-URA3::leu2-k recombination system (146). Data represent the mean ± SD of three 

independent fluctuation tests, each fluctuation test representing the median value of 6 independent 

colonies.  Fold change (F.C.) relative to WT is indicated. Differences between mutants and the WT 

were examined by Student’s t-test and were considered statistically significant for p-values<0.05 

(asterisk). D. 10-fold serial dilutions of fob1∆ and rrm3∆ strains on YPAD or YPAD-containing 

5µg/ml CPT for 3 days. 

 

Next, we measured recombination frequency within the rDNA repeats.  Using an intra-

chromosomal recombination system (leu2-k::ADE2-URA3::leu2-k) (146), loss of a functional 

copy of the URA3 gene inserted into the rDNA repeats can be measured by 5-FOA resistant 

colony formation.  We observed a 20-fold increase in FOA resistant colonies in the rnh2∆ 
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mutant, and a 9-fold increase in the double mutant (Figure 13C), corroborating the observed 

increase in ERC levels.  Collectively these results confirm that RNaseH activities are important 

for normal rDNA repeat number maintenance.  In RNase H lacking cells, the rDNA array 

undergoes higher rates of recombination with associated fluctuations in length, and reveals the 

rDNA array as a hot-spot for genome instability in RNH- mutants.  

Finally, to further substantiate the importance of RNaseH in rDNA stability, we investigated 

whether alterations in the structural integrity of rDNA constrains the viability of rnh1∆ rnh2∆ 

mutants. To do so, we generated triple mutants lacking either Fob1 or Rrm3 activities.  Fob1 

codes for a replication fork blocking protein, which is important for rDNA copy number 

regulation (140) and is also needed to prevent collision between RNA PolI and the replication 

machinery (71,143); while the helicase Rrm3 is needed for the RF to bypass protein-DNA 

complexes formed during rDNA replication (147). Interestingly, while the fob1∆ and rrm3∆ 

single mutants themselves are not CPT sensitive, CPT sensitivity of both respective triple 

mutants was increased as compared to the rnh1∆ rnh2∆ double mutant (Figure 13D).  This 

result indicates that RNaseH activities are important for unperturbed rDNA replication.  

 

Impaired R-loop processing leads to aberrant DNA replication fork progression  

To further investigate DNA replication in the rnh1∆ rnh2∆ double mutants and the impact of 

CPT on rDNA maintenance, we monitored the fate of replication intermediates (RIs) at the 

molecular level by 2D agarose gel electrophoresis (2D-gel) (71).  2D-gel RI separation is a 

powerful technique that allows one to investigate the structural properties of replicating DNA 

fragments, and to localise and characterise origins of replication and fork progression (see 

Materials & Methods for a more detailed explanation of the 2D-gel technique).  

In order to address the fate of RFs, we monitored S-phase transition of α-factor synchronized 

cells upon release into CPT-containing medium (Figure 14A).  Interestingly, in contrast to CPT 

treated WT cells, S/G2 progression was impaired in rnh1∆ rnh2∆ mutants.  This finding 
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corroborates the previously described cell-cycle delay of rnh1∆ rnh2∆ cells in G2/M (99).  Next, 

we monitored by formation of Rad52-YFP foci whether DNA damage increases during S-phase 

progression (Figure 14B).  This was indeed the case for the WT and rnh1∆ rnh2∆ mutants, but 

importantly, only in cells devoid of RNaseH activities was DNA damage massively induced 

upon CPT treatment, with a peak of Rad52-YFP foci observed at the timepoints corresponding 

with late S/G2 phases of the cell cycle.   

 

 

Figure 14. CPT treatment of rnh1Δ rnh2Δ mutant cells causes an increase of DNA damage at 

late S-phase. A. Flow cytometry analysis of strains grown in the presence or absence of 10µg/ml 

CPT following release from α-factor. B. Time-course analysis of Rad52-YFP foci appearance 

following release from α-factor in the presence or absence of CPT. Data represent mean from two 

independent experiments.  

 

Genomic DNA was isolated and cut with BglII, which gives rise to two fragments of 

approximately 4.5kb, encompassing the 35S transcribed region or the non-transcribed 

intergenic region (which includes the ARS and RFB) and RIs were separated by 2D-agarose 

gels.  We first probed against the non-transcribed intergenic region of the rDNA locus (Probe A, 

Figure 15A, top left).  As replication starts bi-directionally at the ribosomal ARS, the leftwards-

moving RF will be paused at the replication fork barrier (RFB), while the rightwards moving 

fork will proceed until it meets a RF stalled at the downstream RFB.  Accordingly, the expected 

2D-gel pattern corresponds to simple Y-shaped molecules (simple Y arc), an accumulation of 

stalled molecules at the RFB, revealed as a discrete spot on the Y-arc, and recombination 

intermediates that migrate along the 2n spike (Figure 15A, top right, expected RIs represented 
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in gray).  This was indeed the case for WT cells, where such RIs increased within 45 min upon 

release from α-factor and then decayed towards the end of S-phase.   

During the first 45 min, the S-phase specific patterns were very similar, however at late S/G2 

phase we monitored a dramatic difference between the 2D-gel patterns of RIs isolated from 

WT and rnh1∆ rnh2∆ cells.  Firstly, the 2n spike, representative of increased recombination 

intermediates, persists in rnh1∆ rnh2∆ mutants, as does the RFB signal.  It´s interesting to note 

the stronger RFB signal for the RNH double mutant at all time points, suggesting an increase in 

the number of rDNA replication origins fired or a delay in the advance of the rightwards-

moving replication fork needed for replicon fusion and RFB resolution (see RFB quantification, 

Figure 15B).  Secondly, we found that RNH- mutants exhibited an increase in Y-arc RIs and 

noted the appearance of additional replication fork pausing sites (RFPs), observed as distinct 

spots along the Y-arc (shown with the white arrows, 105 min time point) in the non-

transcribed spacer region.  Thus the RNH double mutants are still replicating rDNA at 105 

minutes post-release, when replication would normally be completed (compare to the WT).   

We also observed a novel, cone shaped signal above the inflection point (indicated by the black 

arrow).  Interestingly, Daalgard et al. had identified a similar intermediate in this position in 

Schizosaccharomyces pombe (S. pombe) (148).  This cone signal in S. pombe was caused by the 

specific incorporation of two ribonucleotide residues into the lagging stand at the mat1 locus, 

acting to initiate a replication-coupled recombination that leads to mating type switching 

(reviewed in (149)).  The authors state that this cone signal is characteristic of a chicken foot 

structure, representative of regressing RFs, signifying that the imprint causes a programmed 

RF block. 
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Figure 15. CPT treatment of rnh1Δ rnh2Δ mutant cells provokes replication fork pausing. A. 

Schematic representation of the rDNA locus (top left). BglII restriction sites (B) are indicated. 

Predicted (gray) and novel (black) replication intermediates following hybridization to the non-

transcribed ribosomal spacer region (NTS; probe A; top right). 2D-gel analysis of BglII-digested 

replication intermediates at the rDNA locus in WT versus rnh1Δ rnh2Δ mutants following release 

from α-factor in the presence of CPT (bottom left); hybridization with probe A. RFPs represented by 

white arrows. B. Quantification of RIs.  Quantifications are relative to the “n” spot intensity. 

 

Impaired R-loop processing leads to origin independent replication initiation 

To continue, the 2D-gel membranes were hybridized with a second probe (Probe B), 

corresponding to the 35S rRNA gene (Figure 16A, left).  Because the 35S rRNA gene does not 

contain an origin of replication, it must be replicated by RFs that enter the fragment from 

either direction, leading to Y-shaped molecules (Figure 16A, right).  For the WT, the Y arc signal 

increases following release from the G1 block, peaking at 45 minutes and then the signal 

diminishes as replication is completed.  In contrast, persistence of the Y arc and X spike signals 

was apparent throughout the time-course in the rnh1∆ rnh2∆ mutants.  A particular 

accumulation of Y-structures towards the end of the descending Y-arc (to the right of the 

inflection point) was evident for the double mutant, and confirmed by quantification of right 

versus leftwards Y-arc signal (Figure 16B).  This result is consistent with a slowdown of RFs 

through this highly transcribed gene region and would suggest that RF progression through 

the 35S rRNA gene was affected in the RNH-mutant.  
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Surprisingly, for the rnh1∆ rnh2∆ double mutant we noted the appearance of bubble-shaped 

molecules, most clearly seen at 105 minutes (indicated by blue arrow, Figure 16A; quantified 

in Figure 16B), but arising 75 minutes after release from CPT treatment.  

 

 

Figure 16. CPT treatment of rnh1Δ rnh2Δ mutant cells provokes rARS-independent 

replication initiation at late S-phase. A. Predicted (gray) and novel (black) replication 

intermediates (right) following hybridization to the transcribed 35S gene (probe B).  2D-gels as for 

Figure 15. but hybridized with probe B (left).  Blue arrows represent bubble arcs; red arrows 

represent sub-Y arcs. B. Quantification of RIs for CPT treated samples. Quantifications are relative 

to the “n” spot intensity.  

 

A bubble arc is indicative of active replication from an origin within this fragment, since only 

active replication within a fragment leads to the formation of replication bubbles in 2D-gel.  

Additional signals resembling Y-arcs were observed in the 2D-gels of the RNH double mutants, 

which were not observed in the WT and were dependent upon CPT treatment (Figure 17).  

These signals, apparent from 45 minutes, have been denominated sub-Y arcs (150), as they 

migrate below the standard Y-arc, (indicated by red arrows, Figure 16A).   
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Figure 17. rARS-independent replication initiation is only observed in RNH- mutants 

following CPT treatment.  2D-gels as for Figure 6.   

 

We wished to characterize these interesting 2D-gel results further.  Firstly, in order to classify 

the pausing sites more precisely they were compared to the pause sites of a fob1∆ rrm3∆ 

mutant (Figure 18A).  Work by Virginia Zakian´s group has described known pausing sites for 

the rrm3∆ mutant (147), a helicase needed to allow RF passage through protein-DNA 

interactions.  We chose to use a fob1∆ rrm3∆ double mutant, to additionally remove the strong 

pause signal caused by the RFB, as RF blocking activity at the RFB is dependent upon the 

activity of Fob1.  The majority of the pausing sites identified in the RNH- mutant in response to 

CPT treatment overlapped with those previously described for DNA helicase-deficient rrm3∆ 

mutants (147).  Consequently, the RFPs, (labelled a to e, Figure 18A), correspond to sites of 

protein barriers provided by the ribosomal ARS (sites a/b), or the RNA PolIII transcribed 5S 

gene (site c) or the 3’ end of RNA PolI transcribed 35S gene (site d).  Notably one RFP was 

exclusively observed in the rnh1∆ rnh2∆ mutants (depicted by an arrow).  The novel spot 

observed in rnh1∆ rnh2∆ cells (adjacent to pause site c, depicted by arrow) corresponds to a 

RFP in the region between the ARS and 5S rRNA gene, and could possibly correspond to the 

region rCNS3.  rCNS3 was identified in the rDNA (151) as corresponding to a previously 

identified bidirectional RNA PolII promoter (152).  No specific function has been attributed to 

this element, although it seems to play a key role in the regulation of recombination in the 

rDNA (151).  Another important difference is the lack of pausing site e in rnh1∆ rnh2∆ mutants; 

according to the work of the Zakian group (153), spot e corresponds to RIs stalled at the 
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ribosomal ARS.  The lack of this pausing site might be explained by the temporal appearance of 

pausing sites in the RNH- mutants.  In rrm3∆ mutants, replication pausing sites coincide with 

ongoing DNA synthesis, while rnh1∆ rnh2∆ mutant-dependent pausing sites are restricted to 

late S/G2, at which time the ribosomal ARS might be devoid of origin interacting proteins that 

are needed to impair fork progression.   

 

 

 

To address whether these bubble-shaped intermediates consist of extensive R-loops, after 

restriction digestion we performed in vitro RNaseH digestion of the genomic DNA from rnh1∆ 

rnh2∆ yeast cells at the 105 min time point prior to 2D-gel (Figure 18B).  RNaseH would digest 

regions of RNA hybridized to DNA, and therefore if the bubble-shaped molecules simply 

corresponded to extended RNA:DNA hybrid regions the bubble arcs should collapse upon RNA 

degradation.  This, however, was not the case, as the bubble-shaped molecules were resistant 

to in vitro RNaseH treatment (Figure 18B, blue arrows).  Furthermore, the sub-Y arcs, 

consistent with the presence of segments of ssDNA, were equally unaffected by RNaseH 

treatment (Figure 18B, red arrows).  Secondly, we questioned whether such molecules 

contained a 3’ extendable DNA polymerase substrate.  Prior to 2D-gel, RIs were subjected to in 

vitro treatment with the exo- Klenow Polymerase, gp32 single-stranded DNA binding protein 

Figure 18. A. Characterization of 

RFP sites in the NTS region in rnh1∆ 

rnh2∆ as compared to fob1Δ rrm3Δ 

mutant strain.  Pausing sites are 

labelled a-e; black arrow represents 

unique RFP site. B. Prior to 2D-gel, 

RIs isolated from CPT-treated rnh1∆ 

rnh2∆ cells at 105 minutes were 

subjected to heat or enzymatic 

treatments as indicated. Blue arrows 

represent bubble arcs; red arrows 

represent sub-Y arcs. Schematic 

representation of species that would 

migrate as sub-Y arcs (right). 2D-gel 

analyses shown were performed by 

Nestor García Rodríguez. 
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and nucleotides (154) (Figure 18B).  The disappearance of bubble-shaped molecules suggests 

that these intermediates are a substrate for the DNA polymerase and indicates that they 

contain an extendable 3´ hydroxyl group.  Together our results open the possibility that the 

bubble signals were not made up of an RNA:DNA hybrid, but rather have all of the features of 

replicating molecules, and thus represent origin-independent replication initiation events.  

 

Lack of Top1 is crucial for origin-independent replication initiation events 

The bubble arcs detected in the RNH double mutant were only evident following growth in the 

presence of CPT. CPT stabilizes a Top1-DNA complex and results in nicked DNA by a so-called 

Top1 cleavage complex (Top1cc). This kind of DNA damage or the sequestering of Top1 could 

be critical for bubble arc formation.  To distinguish between these two possibilities, we decided 

to employ the conditional protein degradation system, or “Degron”, as a tool to rapidly deplete 

Top1 proteins from yeast cells.  Consequently, we constructed an auxin-inducible Top1 degron 

(Top1AID-9Myc) in rnh1∆rnh2∆ yeast expressing the SCFTIR1. The auxin-inducible degron (AID) 

system acts to proteolytically remove the target protein upon addition of the plant auxin-like 

pheromone, indole acetic acid (IAA) to the growth media (see Materials & Methods for details) 

(155).   

 

Firstly, we confirmed that Top1AID-9Myc protein levels were reduced in response to auxin.  

G1-synchronized cells were incubated for 30 minutes in the presence of 1mM IAA to induce 

degradation of the aid-tagged protein, prior to release into fresh YPAD containing IAA, and 

samples were collected at the indicated timepoints for western blot analysis (Figure 19A).  

After 30 minutes, Top1AID-9Myc protein levels were significantly down-regulated.  In line with 

the rapid degradation of Top1AID-9Myc, growth of the rnh1∆ rnh2∆ Top1AID-9Myc strain was 

severely impaired in the presence of IAA (Figures 19B and 19C), thus resembling synthetic 

lethality observed for the top1∆ rnh1∆ rnh2∆ triple mutant (60).   
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Figure 19.  Confirmation of functionality of the 9Myc-Top1AID degron in rnh1∆ rnh2∆ TIR1-

expressing yeast. A. Western blot analysis against the Myc tag to confirm degradation of Top1AID 

protein in response to 1mM IAA. Ponceau stained membrane (right panel); Western with α-Myc 

and α-PGK loading control (left panels). B. Halo assay with increasing concentrations of IAA.  C. 

Drop test analysis on YPAD plates containing 1mM IAA in the presence or absence of 5µg/ml CPT.  

D. Immunofluorescence analysis of RNA:DNA hybrids with S9.6 antibody in the Top1AID degron in 

rnh1∆ rnh2∆ yeast in the absence or presence of 1mM IAA for 30 minutes.  Representative images 

(left) of RNA:DNA hybrids (S9.6; red) and co-localisation with DAPI nuclear strain (blue); photos 

taken with the same settings for comparison of signal intensity.  Quantification of cells with 

RNA:DNA hybrid and DAPI co-localising signals.   

 

Furthermore, formation of RNA:DNA hybrids was significantly increased (Figure 19D), as 

determined by  immunofluorescence using the S9.6 antibody that recognizes RNA:DNA hybrids 

(156).  Importantly, the signal for RNA:DNA hybrids co-localized in its majority with DAPI-

stained nuclear material, although some additional foci could be observed, indicative of 

mitochondrial RNA:DNA hybrid detection.  

Next, we examined the fate of DNA replication of the auxin-inducible rnh1∆ rnh2∆ Top1AID-

9Myc strain.  Monitoring cell cycle progression following release from α-factor in the presence 

of IAA (Figure 20A) the conditional triple mutant was able to pass through and complete S 
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phase by 45 minutes.  However, up to 165 minutes post-release the mutant remained in G2/M 

phase.  As for CPT treated rnh1∆ rnh2∆ mutants, 2D-gel analysis confirmed the formation of 

RFPs with probe A (Figure 20B upper panels), and sub Y-arcs (blue arrows) and bubble arc 

signals with probe B (red arrows, Figure 20B lower panels).  Interestingly, in contrast to the 

CPT treated RNH double mutant, only the RFP site labelled as d (white arrows) was prominent 

upon induction of the conditional rnh1∆ rnh2∆ top1∆ triple mutant.   

 

 
 

Figure 20.  Absence of Top1 activity in RNH- mutant cells leads to RF pausing and replication 

re-initiation. Flow cytometry (top panels) and 2D-gel analysis of Top1AID rnh1∆ rnh2∆ strain 

grown in the presence of 1mM IAA following release from α-factor. Gels were hybridized with 

probe A and probe B, and quantified (right panels) as previously described.  

 

Both CPT treatment and Top1 depletion could induce the formation of novel RFP sites and the 

formation of bubble like structures with some exceptions.  In contrast to CPT treatment, only 

pausing site d, which corresponds to pausing at the 3’ end of the highly transcribed 35S rRNA 

gene was clearly evident in Top1 depleted cells.  These results indicate that it is not the nicking 

activity of CPT, but rather the down-regulation of Top1 activity that leads to the formation of 

these replication intermediates.   
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Unscheduled replication initiation events at rDNA are RNA PolI transcription-

dependent  

Because the bubble-shaped replication intermediates were restricted to the RNA PolI-

transcribed 35S rRNA fragment, we asked whether their appearance was dependent on 

transcription.  To specifically reduce transcription of the rDNA locus we took advantage of 

temperature sensitive RNA PolI mutants for alleles of Rpa190 (rpa190-3), which is the largest 

and catalytic core component of RNA PolI, and Rrn3 (rrn3-8), which recruits RNA PolI to the 

35S rRNA gene promoter.  Transcription of the rDNA array occurs normally when the 

temperature sensitive RNA PolI mutants are grown at permissive temperatures (23ºC), but 

growth of these mutants at higher restrictive temperatures (34-37ºC) impairs transcription 

and leads to cell death due to impaired ribosome biogenesis (157).  These mutants are viable at 

semi-permissive temperatures (30ºC), although rDNA transcription by RNA PolI is reduced.  

Interestingly, growth of the rpa190-3 (and to a lesser extent, rrn3-8) triple mutant at semi-

permissive temperatures suppressed the CPT-sensitivity of the RNH- mutants (Figure 21A), 

suggesting a link between RNA PolI transcription and CPT toxicity.    

It´s tempting to speculate that highly transcribed genes are more prone to DNA damage 

formation, perhaps caused by increased RF stalling at RNA:DNA hybrids or by collision with 

the transcription machinery.  To test for this possibility we assayed the RNA PolI-dependent 

formation of Rad52-YFP foci formation.  Interestingly, a down-regulation of RNA PolI 

transcription reduced the formation of nucleolar DNA repair centres (Figure 21B).  Raising the 

temperature from 23º to 30ºC (permissive to semi-permissive conditions), caused a general 

increase in the number of Rad52-YFP foci in the rpa190-3 rnh1∆ rnh2∆ triple mutant, however, 

the number of foci that localize to the nucleolar periphery was significantly decreased in the 

triple mutant at the semi-permissive temperature of 30ºC.  These experiments suggest that 

rDNA transcription by RNA PolI has a major impact on the formation of CPT induced rDNA 

lesions in the RNH double mutant.  To gain insight into this possibility, we determined the 
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recombination frequency within the rDNA repeats (Figure 21C).  Indeed, and in accordance 

with a previous study (143), down-regulation of RNA PolI transcription at the semi-permissive 

temperature reduced the recombination frequency within the rDNA repeats.    

 

 

Figure 21. CPT sensitivity of rnh1∆ rnh2∆ is related to rDNA transcription by RNA PolI. A. 10-

fold serial dilutions of the temperature-sensitive conditional RNA PolI subunit mutant rpa190-3 

grown on YPAD or YPAD-containing 5µg/ml CPT for 3 days at permissive (23ºC) or semi-

permissive (30ºC) temperature. B. Reduced RNA PolI transcription in rpa190-3 rnh1∆ rnh2∆ triple 

mutants correlates with a reduced amount of nucleolar DNA damage. Percentage of nuclear versus 

nucleolar Rad52-YFP foci (determined by co-localization with the Nop1-mRFP) at permissive 

(23ºC) or semi-permissive (30ºC) temperature with or without the presence of 10µg/ml CPT (3hr 

treatment). Data represent mean ± SD, from at least three independent experiments. The p-value 

for 23°C rDNA versus 30°C rDNA was 0.0053 without and 0.001 with CPT. C. Recombination 

frequencies of strains containing the leu2-k::ADE2-URA3::leu2-k recombination system. Data 

represent the mean ± SD of three independent fluctuation tests, each fluctuation test representing 

the median value of 6 independent colonies.  Fold change relative to WT is indicated. The p-value 

for rpa190-3 rnh1∆ rnh2∆ at 30°C versus 23°C was 0.0361. Differences were examined by Student’s 

t-test and were considered statistically significant for p-values<0.05 (asterisks). 

 

Subsequently we examined the fate of replication in rpa190-3 rnh1∆ rnh2∆ mutants by 2D-gels, 

to test if the previously observed origin-independent replication re-initiation requires active 

transcription of the rDNA unit by RNA PolI (Figure 22A).  Triple mutant rpa190-3 rnh1∆ rnh2∆ 

yeast were grown at 26°C, prior to synchronization with α-factor and release into CPT 

containing media at permissive (23°C) or semi-permissive (30°C) temperatures.  As expected, 

upon hybridization with probe B against the transcribed 35S rRNA gene, we observed bubble 

arcs in the rpa190-3 triple mutant at the permissive temperature when RNA PolI transcription 
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is most active.  Strikingly, bubble-shaped molecules were barely detectable at the semi-

permissive temperature when RNA PolI transcription is down-regulated (Figure 22B).   

 

Figure 22. ARS-independent replication initiation is dependent on 35S rDNA transcription 

by RNA PolI. A. Analysis of replication intermediates of rpa190-3 rnh1Δ rnh2Δ triple mutant by 2D-

gel. Strains grown under permissive or semi-permissive conditions following release from α-factor 

in the presence of 10µg/ml CPT. Gels were hybridized with probe A and probe B as before. B. 

Quantification of replication intermediates relative to n spot intensity. 

 

In addition, the sub-Y arcs (red arrows, Figure 22A), previously observed in the RNH- mutant 

were observed at both 23º and 30ºC for the rpa190-3 triple mutant, whereas bubble arcs were 

only seen at the permissive temperature.  We can conclude, therefore, that the formation of 

replication bubbles does not depend on the formation of the sub-Y arcs, and that these 

structures are two independent intermediates.  Furthermore, as the sub-Y arcs were observed 

at permissive and semi-permissive temperatures, formation of these structures does not 

appear to be affected by RNA PolI transcription of the rDNA. 

Re-hybridization of the 2D-gels with probe A against the non-transcribed ribosomal spacer 

region (Figure 22A, left panels) revealed some RFPs in the rpa190-3 triple mutant at both 

permissive or semi-permissive temperatures (indicated by white arrows; see Figure 18A for 

explanation of pausing sites).  The RFP corresponding to the RNA PolI transcribed 35S gene 

(site d) was especially prominent at both temperatures. The RNA PolIII transcribed 5S gene 
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pause site (site c) was also observed in both conditions as would be expected, since the down-

regulation of RNA PolI would not necessarily affect the transcription of RNA PolIII.  These 

results indicate that even with the down-regulation of RNA PolI activity, replication forks have 

problems to progress through the rDNA locus, and in particular the 35S rRNA gene.     

Taken together, our results reveal that the CPT sensitivity and instability of the rDNA array of 

rnh1∆ rnh2∆ yeast are linked to the transcriptional activity of rDNA.  We propose that the 

absence of RNaseH activity, in combination with a reduction in Top1 activity (either by 

reducing protein levels or by CPT sequestering) leads to an accumulation of RNA:DNA hybrids, 

particularly across highly transcribed regions such as the rDNA locus.  These hybrids can 

interfere with ongoing replication, lead to replication fork blockage or even initiate 

unscheduled replication (see Figure 23 for hypothetical model).  We infer from our results that 

RNA:DNA hybrids provide the nucleation point for the assembly of a non-canonical replication 

machinery and are able to initiate origin-independent DNA replication in a eukaryotic genome.   

 

Figure 23. Model for Transcription Initiated Replication in Yeast Ribosomal DNA. 
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DISCUSSION for CHAPTER 1 

 

Consequences of Persistent R-loops 

Persistent R-loops have previously been linked to genomic instability ((16) and references 

within), including mutations and hyper-recombination.  This thesis confirms the critical role of 

the RNaseH enzymes in removing R-loops for the maintenance of genome integrity, and 

extends these findings, highlighting in particular the ribosomal DNA array as a hot-spot for R-

loop mediated genome instability.  Furthermore, we reveal a novel impact of R-loops as sites of 

replication initiation in a eukaryotic genome, which we refer to as “transcription-initiated 

replication” or TIR.   

R-loops Promote Origin-Independent Replication 

DNA replication is normally initiated at determined origins of replication throughout the 

genome and requires the function of DNA Polα-primase to initiate DNA synthesis.  

Furthermore, origin firing follows a strict temporal control, with replication initiated 

specifically during S phase of the cell cycle (reviewed in (158)).  However, we show that the 

origin-independent replication initiation observed in the highly transcribed 35S rRNA occurs 

outside of the normal program of origin firing, both spatially (not at a defined ori) and 

temporally (the replication initiation occurs in late S/G2 phase of the cell cycle, when 

replication would normally be completed).   

The function of RNA:DNA hybrids as “origins of replication” has been well documented in 

prokaryotic plasmids, bacteriophages and mitochondrial DNA.  In these cases, transcription 

produces an RNA:DNA hybrid that can subsequently prime replication initiation.  In fact, an 

origin-independent replication initiation was observed in dnaA mutants of E.coli over 40 years 

ago (44).  DnaA is a replication initiation factor that promotes the unwinding and strand 

separation of DNA at the bacterial origin (oriC), essential for the assembly of the replisome 
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(159).  Mutants capable of initiating DNA replication in the absence of DnaA were mapped to 

the RNH locus (rnhA) (45) encoding the bacterial RNaseH.  RNA:DNA hybrids are 

thermodynamically stable structures, where the two strands of the DNA duplex are open.  

Therefore, the persistence of such structures could by-pass the need for DnaA or strand 

separation activity.  However, mutants in rnhA are unable to suppress the need for DnaG, the 

bacterial primase (46), suggesting that this mode of replication initiation is not sufficient for 

replication of the complete genome.   

Various alternatives could account for the R-loop-mediated replication observed in the yeast 

genome.  These could include the direct assembly of the replisome at the open and stable R-

loop, with the RNA moiety acting as a primer for extension by a DNA Pol (with or without 

processing to generate a 3´end), analogous to the replication initiation of the multi-copy 

plasmid ColE1 (160).  Another possibility may be that an R-loop could be a suitable substrate 

for a specialized polymerase such as the recently characterized human PrimPol (161).  PrimPol 

could re-prime with dNTPs to re-initiate DNA synthesis downstream of hybrid-stalled RFs 

(162), although such an activity has not been identified in yeast to date.  On the other hand, the 

R-loop structure could facilitate strand invasion for a recombination-dependent assembly of 

the replisome.  An ongoing canonical RF may stall at the R-loop creating a break, and the 

processed 3' single stranded end could invade a homologous template, promoting RF assembly.  

The repetitive nature of the rDNA array, and subsequent ease of homology search, might make 

this mechanism of replication initiation particularly favourable.  This mode of origin-

independent replication would be similar to the recombination-dependent replication 

mechanism of E. coli and bacteriophage.  This possible mechanism of TIR will be investigated in 

more detail in Chapter 2 of this thesis.  An alternative hypothesis, not explored further in this 

thesis, would be the possibility that TIR events are restricted to ERCs.  Yeast lacking RNaseH 

activities exhibited copy number heterogeneity and concomitant increase in the number of 

ERCs (see Figure 13) and interestingly, top1 mutants were also reported to have more ERCs 

(163).  ERCs are maintained in the cell as plasmid-like circular DNA (145), and can replicate 
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autonomously (164).  One could presume that an rDNA repeat-containing ERC could replicate 

by an R-loop mediated mechanism analogous to ColE1 plasmid replication.  However, 

investigating this possibility is hampered by the fact that the DNA sequences that constitute 

ERCs and the genomic rDNA are identical.  Therefore, ERCs would have to be separated from 

genomic DNA to distinguish between an rDNA 9.1kb repeat unit located on chromosome XII or 

found on an ERC by 2D-gel and subsequent probe hybridization.   

Persistent R-loops Particularly Affect the Stability of rDNA 

The accumulation of ERCs has been shown to be toxic and has been linked to a decreased 

lifespan (senescence) in yeast (145).  However, in the case of the hpr1 mutant, shown to 

accumulate R-loops (19), no increase in ERCs was observed despite an increased rate of 

recombination within the rDNA array (165).  In this case the reduced life span was associated 

with increased genomic instability, and over time a revised “rDNA instability” theory of aging 

has been proposed (142).  In fact, in aging mammalian cells changes in nucleolar morphology 

have been detected (166), and the tumour suppressor protein RB, an important regulator of 

senescence (167), has been shown to accumulate in the nucleolus and repress PolI 

transcription (168,169).  Due to the increased production of ERCs in yeast lacking RNaseH 

activities, and the increased genomic instability of the rDNA locus, it would be interesting to 

investigate whether the lifespan of the RNH- mutants is affected.   

DNA damaging events were found to be particularly frequent in the rDNA locus in yeast lacking 

RNaseH activities (see Figure 12).  We found that the down-regulation of RNA PolI could 

suppress the CPT sensitivity of the RNH- mutants (see Figure 21), suggesting that the majority 

of the DNA lesions were mediated by rDNA transcription.  A recent study demonstrated that 

Top1ccs are specifically enriched and stabilized at the RFB of the yeast rDNA (170), and the 

formation of these targeted Top1cc complexes would explain the previously reported 

occurrence of DSBs near the RFB (63,64).  Consequently, we were very interested to note that 

there is a Top1 binding site near the 35S promoter, at approximately 180bp upstream of the 
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35S rRNA transcriptional start (171).  This specifically located Top1 binding site may reflect 

the importance of the action of Top1 to prevent RNA:DNA hybrid formation across this highly 

transcribed active gene, and thus repress R-loop assisted RF assembly.  An alternative 

explanation may be that programmed RF pausing at the 35S promoter, due to the presence of a 

Top1 cleavage complex, is necessary for subsequent DSB formation and recombination-

mediated replication fork re-start.  Interestingly, TIR was only observed upon the down-

regulation of Top1 activity (by protein depletion or CPT treatment).  This would indicate that 

the action of Top1 for the avoidance of the formation of RNA:DNA hybrids is normally 

sufficient to suppress TIR in the absence of RNaseH activity.   

Origin-Independent Replication Outside of S-phase 

As seen by our immunofluorescence timecourse, RNA:DNA hybrids were present in yeast from 

G1 synchronization and throughout S phase (see Figure 19), and therefore replication 

initiation could have occurred at any stage during the cell cycle.  However, the appearance of 

the RF pause sites and the transcription dependent replication bubbles were only observed 

when cells were held in late S/G2 phases of the cell cycle.  Perhaps TIR can only occur in late 

S/G2 phase, since this is when an enzymatic activity needed for the formation of a replication 

bubble is available. For example, an enzymatic activity that could liberate a free 3´OH end to 

allow strand invasion, such as the nucleases Mus81, Yen1, or Slx1-4, may be necessary for R-

loop assisted RF assembly.  The highly redundant activities of the 3´end resection factors make 

it difficult to study the contributions of each individual factor but it would be interesting to 

investigate the impact of these nucleases on TIR. 

R-loops Provoke Replication Fork Pausing 

The progression of both transcription (24) and replication machineries (25,172) can be 

blocked by R-loops and our results confirm that yeast cells lacking RNaseH activity have an 

impaired ability in replication progression.  The majority of the pausing sites identified in this 

study corresponded to sites of protein barriers provided by the ribosomal ARS, or the RNA 
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PolIII transcribed 5S- or RNA PolI transcribed 35S genes (see Figure 18).  However, we 

suggested that one novel pause site corresponded to rCNS3 (151), a bidirectional RNA PolII 

promoter (152) of dubious function.  It´s interesting to note that the RDN1 (rDNA) locus 

contains some RNA PolII transcribed units, including the gene TAR1, encoding a mitochondrial 

protein, found on the opposite strand to the 25S rRNA gene (173).  Furthermore, as we 

observed common pausing sites between yeast lacking RNaseH activity and those published 

for the rrm3∆ mutant, we can reason that the replisome assembled for TIR missed some factors 

necessary to move through protein-DNA interaction sites.  Our findings predict a non-canonical 

replication machinery is involved in TIR.  A future challenge will be to determine the molecular 

composition of such a replication machinery e.g. by selective immunoprecipitation against 

factors that may interact with TIR intermediates. 

Removal of R-loops Protects Genome Integrity 

Our report of a transcription-dependent mechanism of replication initiation reveals a critical 

interplay between replication and transcription.  Both processes must be highly regulated and 

coordinated in order to occur simultaneously without risking genome integrity.  Maintaining 

the stability of rDNA is vital since cell growth is directly dependent on the rate of protein 

synthesis and thus on the transcription of rDNA.  Interestingly, a common feature of rapidly 

proliferating cancer cells is an increase in rDNA transcription (reviewed in (174)) and the 

human prostate cancer line 15PC3 was shown to express RNaseH2 throughout the cell, when 

it´s expression is usually confined to the nucleus (175).  As such, determining how cells activate 

rDNA transcription and how this can influence DNA replication is important for understanding 

mechanisms that can lead to tumourigenesis. We reveal TIR at the highly transcribed 35S rRNA 

gene and one may presume that such a mechanism of R-loop primed replication initiation 

could occur at other highly-transcribed regions of the genome.   

Our work highlights the essential roles of the RNaseH enzymes, and redundant activities, to 

eliminate RNA:DNA hybrids, and thus repress an inefficient and unregulated origin-



   55 

independent mechanism of DNA replication in eukaryotic cells.  Unscheduled replication, 

particularly in regions of repetitive sequences such as the rDNA array, could lead to re-

replication, loss of heterozygosity, and the deletion of repetitive sequences or gene 

amplifications.  Such copy number changes are relevant to carcinogenesis, as gene 

amplification can lead to tumourigenesis, i.e. through the enhanced levels of an oncogene 

(176,177), and DNA amplification is also one of the key mechanisms by which cells acquire 

resistance to many cytotoxic compounds, i.e. the overexpression of multidrug transporter 

proteins has been observed frequently in many types of human tumors (178).  However, gene 

amplification is also an important condition for beneficial adaptation to environmental changes 

(reviewed in (179)).  In some organisms gene amplification is developmentally regulated and 

is an essential feature of the life cycle, for example for the amplification of chorion gene 

clusters in Drosophila melanogaster follicle cells during oogenesis (180), where gene 

amplification occurs through repeated initiation of the chorion gene cluster (for a review see 

(181)).  We believe that highly transcribed genes might be more prone to gene amplification 

events induced by RNA:DNA hybrid-mediated replication.  Such events might be more frequent 

than anticipated and may contribute significantly to genetic alterations in eukaryotic 

chromosomes, and open the possibility that TIR could present a driving force in evolution.   

The RNaseHs have an essential role in the removal of R-loops, whose formation has been 

linked to genome instability and cancer, neurodegenerative diseases and possibly senescence.  

Our work adds a new perspective to the critical role of the RNaseH enzymes and Top1 enzymes 

in eukaryotic genomes to prevent unscheduled TIR mediated by R-loops.    
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RESULTS 

CHAPTER 2 – RNH coding genes: genetic interactions reveal a link to 

genome stability and nucleolar function 

 

Genetic interactions of RNH enzymes with DNA replication and repair factors 

To understand how the RNaseH activities are linked to rDNA replication, stability and 

organisation, we first conducted a genetic analysis by crossing a selection of non-essential 

mutants covering representative steps in DNA replication and/or DNA repair with rnh1Δ rnh2Δ 

lacking yeast, then analysing the growth and viability of meiotic segregants (examples are 

shown in Figure 24A and summarized in Table 1).  Triple mutants were classified as synthetic 

sick if the triple mutants showed a considerably smaller spore size or a slow growth phenotype 

on rich medium, when compared to the rnh1Δ rnh2Δ double mutant.  Synthetic sick 

interactions were obtained as soon as cells were impaired in checkpoint function (e.g. DUN1 

and RAD24), DNA repair (e.g. EXO1, RAD18 and MUS81), replication fork stability (e.g. CSM3 

and RRM3) or rDNA organisation (e.g. FOB1 and HMO1). 

Besides the well-documented synthetic lethal interactions between RNH- mutants with TOP1 

and RAD27 (60,182), our genetic analyses revealed previously unreported synthetic lethal 

interactions between rnh1Δ rnh2Δ mutants and mutants in RAD52, SRS2, POL32, and the MRX 

complex (MRE11, RAD50, and XRS2).  We confirmed that Rad52 activity is essential in RNH- 

mutants by expressing RAD52 under control of a galactose-inducible promoter (from plasmid 

pMDL5 (183)) in the double mutant, and crossed with a rad52 mutant (Figure 24A).  The 

rad52∆ rnh1∆ rnh2∆ (GAL1p-RAD52-URA3) triple mutant was subsequently streaked onto S-

Ura galactose (plasmid inducing conditions) or SC-Ura glucose-containing plates (plasmid 

expression repressed).  The rad52∆ rnh1∆ rnh2∆ (GAL1p-RAD52-URA3) triple mutants were 

unable to grow on medium containing glucose, indicating that the RNH double mutant cannot 



   57 

survive without RAD52 expression.  Therefore, the action of Rad52 and/or HR is essential for 

rnh1∆ rnh2∆ viability.  

 

Figure 24. Synthetic lethal and synthetic sick interactions with the RNH mutants. A. Tetrad 

analysis of rnh1∆ rnh2∆ in combination with null mutations of rad52, rad51, srs2, rad59, and the 

MRX complex members mre11, rad50 and xrs2 (top panel).  Rad52 activity is essential in RNH 

double mutants (lower panel). Yeast transformed with GAL1p-RAD52-URA3 were streaked onto SC-

Ura and SC supplemented with 500mg/ml of 5-Fluorotic acid (5-FOA).  B. Diagram of synthetic 

lethal and synthetic sick interactions with the rnh1Δ rnh2Δ double mutant. Filled circles represent 

synthetic lethal, and open circles represent synthetic sick interactions.  The mutants were broadly 

grouped according to gene function, as indicated by the different coloured connecting lines. PRR, 

post-replicative repair; NER, nucleotide excision repair. Note that the synthetic lethal interactions 

between the rnh1Δ rnh2Δ double mutant, SIC1, MRC1 and other checkpoint genes will be further 

explored in Chapter 3 of this thesis. 
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TIR is Rad51 independent 

Our genetic analyses revealed that homologous recombination is a critical pathway in yeast 

lacking RNaseH activity, because Rad52 activity became essential even in the absence of 

exogenous DNA damage.  Rad52 is a key factor for the repair of single-strand and double-

strand DNA breaks, and is required for the homology search and strand invasion steps of all 

homology-dependent repair pathways (reviewed in (184)).  For example, Rad52 acts in both 

the Rad51-independent pathways: single-strand annealing (SSA) and break-induced 

replication (BIR), (185) and the Rad51-dependent DSBR and synthesis-dependent strand 

annealing (SDSA) pathways (as summarized in Figure 9).  In contrast to the synthetic lethal 

interaction with RAD52 and the synthetic sick genetic interaction with RAD59, the rad51∆ 

rnh1∆ rnh2∆ triple mutants were viable and did not manifest a significant growth defect when 

compared to the RNH double mutant.  The rad51∆ simple mutant itself is very CPT sensitive 

(drop tests carried out with 0.1µg/ml CPT), and the rad51∆ rnh1∆ rnh2∆ triple mutant is even 

more sensitive to CPT (Figure 25A).  This result indicates different constrains mediate CPT 

sensitivity in the absence of Rad51 or RNaseH activities.   

HR may drive the formation of bubble shaped replication intermediates in CPT-treated rnh1∆ 

rnh2∆ mutants.  Given that rad51∆ rnh1∆ rnh2∆ triple mutants are viable we intended to test 

for this possibility by 2D agarose gel analysis of replication intermediates (Figure 25B).  

Interestingly, bubble shaped replication intermediates were present in CPT-treated rad51∆ 

rnh1∆ rnh2∆ triple mutants.  However, we cannot rule out that Rad51, but not HR, is 

dispensable for the formation of bubble shaped RI because melting of the DNA double helix by 

RNA:DNA hybrids may provide sufficient single-stranded DNA in order to bypass the need for 

Rad51 activity during HR.  As HR is stimulated in the absence of Srs2 (186,187), we questioned 

whether we would see more TIR events in the absence of Srs2 activity.  We were interested to 

find that the srs2∆ rnh2∆ double mutant is synthetic lethal, and only 31% of srs2∆ rnh1∆ rnh2∆ 

triple mutants were viable (Figure 24A).  Viable triple mutants were very small and sensitive to 
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CPT, suggesting that Srs2 is an important factor when RNaseH activity is absent, particularly in 

the case of Rnh2.  However, we were still able to observe bubble arcs in the srs2 triple mutant 

(Figure 25B).  Therefore, although the activity of Srs2 is important in response to CPT and for 

survival of the RNaseH- yeast, it does not contribute to the R-loop dependent replication 

initiation.  In this manner, we demonstrate that neither Rad51 nor antagonistic Srs2 activity is 

required for TIR.   

 

Figure 25.   Rad51 is not needed for the formation of replication bubbles by TIR.  A. Drop test 

analysis of CPT sensitivity of rad51. B. 2D-gel analysis of rad51, rad18, srs2 and mrc1 triple mutants 

following release from α-factor in the presence of CPT, as previously described.  C. Tetrad analysis 

of rnh1∆ rnh2∆ in combination with null mutations of the PRR factors rad18 and pol32. D. Drop test 

analysis of CPT sensitivity of rad18 triple mutants.  
 

PRR, NER but not NHEJ is required for the repair of CPT mediated DNA damage 

For viable triple mutants, we performed a more extensive analysis of how the formation of 

CPT-mediated DNA damage or Top1-depletion would affect the viability by drop test analysis.  



   60 

Classification was carried out according to the following categories; as additive – the triple 

mutant was more sensitive than the double mutant; epistatic – the triple mutant has the same 

sensitivity as the double mutant; or suppressive – the triple mutant is less sensitive than the 

double mutant, or the triple mutant has an intermediate CPT sensitivity, between the double 

mutant and the single mutant (in the case of an exceptionally sensitive simple mutant).  The 

results are summarized in Table 1.   

The NHEJ-member triple mutants showed no synthetic sick interaction with the RNH- mutant 

and behaved differently upon treatment with CPT, e.g. the triple mutant with ku70 showed an 

additive CPT sensitivity whilst the triple mutant with lig4 suppressed to some extent the CPT 

sensitivity of the RNH double mutant (data not shown).  This difference may be due to the 

additional role of Ku70 in telomere maintenance (for a review see (188)).  However, we can 

conclude that NHEJ, in contrast to HR, is not an essential process in yeast lacking RNaseH 

activity.   

Genetic analyses revealed that homologous recombination is a critical pathway in yeast that 

lack RNaseH activity, even in the absence of exogenous damage.  The structure-specific 

endonuclease Mre11 plays an important role in the repair of DSBs by HR.  As a component of 

the MRX complex (Mre11-Rad50-Xrs2), it is responsible for processing of the ends of the break 

to produce a free 3´ ssDNA end, which is essential for strand invasion and for subsequent 

extension by a DNA Pol.  Mre11 has also been reported to be a specialized nuclease capable of 

removing bulky adducts from DNA ends (67,189), and may be able to cleave the Top1 tyrosyl-

DNA bond (190).  Therefore, Mre11 could play a role in the repair of CPT-induced damage in 

yeast (67).  Therefore, we were particularly interested to identify a synthetic lethal interaction 

of the rnh1Δ rnh2Δ double mutant with mre11Δ (Figure 24A).  Subsequently, we crossed rnh1Δ 

rnh2Δ cells with rad50Δ and xrs2Δ, and identified synthetic lethal interactions with all the 

members of the MRX complex (Figure 24A).   
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  YPAD CPT  Checkpoints 

WT +++++ +++++  rad9Δ +++++ +++++ 

rnh1Δ rnh2Δ +++++ +++  rad9Δ rnh1Δ rnh2Δ +++++ ++ 

   chk1Δ +++++ +++++ 

Replication   chk1Δ rnh1Δ rnh2Δ +++++ ++ 

sic1Δ +++++ ND  tel1Δ +++++ +++++ 

sic1Δ rnh1Δ rnh2Δ SL ND  tel1Δ rnh1Δ rnh2Δ +++++ ++ 

clb5Δ +++++ +++++  rad24Δ +++++ +++ 

clb5Δ rnh1Δ rnh2Δ +++ ++++  rad24Δ rnh1Δ rnh2Δ ++++ ++ 

rad27Δ +++++ +++++  dun1Δ +++++ +++++ 

rad27Δ rnh1Δ rnh2Δ SL ND  dun1Δ rnh1Δ rnh2Δ ++++ +++ 

mrc1Δ +++++ +++++  mec1Δ sml1Δ +++++ +++ 

mrc1Δ rnh1Δ rnh2Δ +++ ++  mec1Δ sml1Δ rnh1Δ rnh2Δ ++++ ++ 

csm3Δ +++++ +++++  sml1Δ +++++ ++++ 

csm3Δ rnh1Δ rnh2Δ ++++ ++  sml1Δ rnh1Δ rnh2Δ +++++ +++ 

tof1Δ +++++ +++++  swe1Δ +++++ +++++ 

tof1Δ rnh1Δ rnh2Δ ++++ +++  swe1Δ rnh1Δ rnh2Δ +++++ ++++ 

top1Δ +++++ ++++  mad1Δ +++++ +++++ 
top1Δ rnh1Δ rnh2Δ SL ND  mad1 Δrnh1Δ rnh2Δ +++++ +++ 

rrm3Δ +++++ +++++    

rrm3Δ rnh1Δ rnh2Δ ++++ ++  PRR 

   pol32Δ +++++ +++++ 
 rDNA related functions    pol32Δ rnh1Δ rnh2Δ SL ND 

fob1Δ +++++ ++++  rad18Δ +++++ ++++ 

fob1Δ rnh1Δ rnh2Δ ++++ ++  rad18Δ rnh1Δ rnh2Δ +++ ++ 

hmo1Δ +++++ ++++  shu1Δ +++++ +++++ 
hmo1Δ rnh1Δ rnh2Δ ++++ ++  shu1Δ rnh1Δ rnh2Δ +++++ ++ 

rpa190-3 +++++ ++++    

rpa190-3 rnh1Δ rnh2Δ +++++ ++++  NHEJ 

tof2Δ +++++ +++++  ku70Δ +++++ +++ 

tof2Δ rnh1Δ rnh2Δ +++++ +++  ku70Δ rnh1Δ rnh2Δ +++++ ++ 

rrn3-8 +++++ ++++  lig4Δ +++++ +++++ 

rrn3-8 rnh1Δ rnh2Δ +++++ ++++  lig4Δ rnh1Δ rnh2Δ +++++ ++++ 

tdp1Δ +++++ ++++     
tdp1Δ rnh1Δ rnh2Δ +++++ ++  Recombination   

nsr1Δ +++++ +++++  rad52Δ +++++ +++ 

nsr1Δ rnh1Δ rnh2Δ +++++ +++  rad52Δ rnh1Δ rnh2Δ SL ND 

rpa12Δ +++++ ++++  rad51Δ +++++ ++ 

rpa12Δ rnh1Δ rnh2Δ +++++ ++++  rad51Δ rnh1Δ rnh2Δ ++++ + 

rpa49Δ +++++ ++++  exo1Δ +++++ ++++ 

rpa49Δ rnh1Δ rnh2Δ +++++ ++++  exo1Δ rnh1Δ rnh2Δ ++++ + 

uaf30Δ ++++ ++  rad59Δ +++++ ++ 

uaf30Δ rnh1Δ rnh2Δ ++++ +++  rad59Δ rnh1Δ rnh2Δ ++++ + 

   mus81Δ +++++ ++ 

Telomere related functions  mus81Δ rnh1Δ rnh2Δ ++++ + 

rif2Δ +++++ +++++  mre11Δ +++++ + 
 rif2Δ rnh1Δ rnh2Δ +++++ ++++  mre11Δ rnh1Δ rnh2Δ SL ND 

pif1-m2 +++++ +++++  srs2Δ +++++ +++ 
pif1-m2 rnh1Δ rnh2Δ +++++  +++++   srs2Δ rnh1Δ rnh2Δ +++ + 

   sgs1Δ +++++ +++++ 

NER  sgs1Δ rnh1Δ rnh2Δ +++++ ++ 

rad16Δ +++++ +++++  top3Δ +++++ ++ 
rad16Δ rnh1Δ rnh2Δ +++++ ++  top3Δ rnh1Δ rnh2Δ ++++ ++ 

rad3-2 +++++ +++++  sae2Δ +++++ ++ 
rad3-2 rnh1Δ rnh2Δ +++++ ++  sae2Δ rnh1Δ rnh2Δ ++++ + 

rad1Δ +++++ +++++  siz1Δ +++++ +++++ 

rad1Δ rnh1Δ rnh2Δ ++++ ++  siz1Δ rnh1Δ rnh2Δ +++++ ++ 
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Table 1. Analysis of the CPT sensitivity of rnh1Δ rnh2Δ triple mutants.  Triple mutants were 

obtained by genetic crosses and tested for sensitivity to CPT by drop test assay.  Sensitivity was 

scored as SL synthetic lethal/unviable; + severe growth defect/ very CPT sensitive; +++ moderate 

CPT sensitivity; +++++ normal growth, as WT; ND not determined.  Growth of the triple mutants 

was compared to growth of the rnh1Δ rnh2Δ double mutant, whose CPT sensitivity was scored as 

+++. Light gray shading represents an additive effect and dark gray shading represents suppression 

of CPT sensitivity. PRR, post-replicative repair; NER, nucleotide excision repair, NHEJ, non-

homologous end joining. 

 

100% of mre11Δ and xrs2 triple mutants were lethal, and 86% of rad50 triple mutants.  In 

addition, 39% of mre11Δ rnh2Δ, 50% of rnh2Δ rad50Δ and 33% of rnh2Δ xrs2Δ were synthetic 

lethal, revealing important interactions of the RNaseH enzymes with the MRX end-processing 

complex under normal conditions.  Mre11 is believed to be recruited to DSBs by the 

endonuclease Sae2.  Sae2 itself possesses endonuclease activity and is thought to be involved 

in processing of 3´ends for ssDNA tail generation (191).  In a yeast deletion screen, Deng et al. 

identified deletion of sae2 as one of the most CPT sensitive (ranked 6th out of the 4728 deletion 

strains tested) and suggest that Sae2 acts in a pathway redundant to Tdp1 or Rad1 to repair 

CPT-induced lesions.  In fact, it has been reported that Sae2 is able to cleave off by 

endonucleolytic action the Top1 enzyme covalently bound at the 3´ end of the SSB, to create an 

appropriate end for repair and/or strand invasion (192).  The structure-specific endonuclease 

Mus81 (acting with Mms4) has also been implicated in repairing the Top1-DNA complex by 

resecting the DNA ends where Top1 is covalently attached (66).  Additionally, Exo1 has been 

shown to perform 3´end resection roles (193-195).  We identified interesting interactions with 

the end-processing factors Mus81, Exo1, and Sae2 (Figure 24B), with roles in recombinational 

repair.  The single mutants were already extremely sensitive to CPT, suggesting that these 

factors play a role in the processing of CPT damage, compatible with the published data for 

these mutants.  However, the triple mutants were even more CPT sensitive in combination 

with the RNH double mutant and showed a synthetic sick interaction with the RNH enzymes 

(data not shown).  Together these results highlight a key role for end-processing factors, and 

the recombinational repair machinery in general, in yeast cells lacking RNaseH activity under 

normal growth conditions as well as for the repair of CPT-induced lesions.  
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Additionally, we observed that mutants affected in PRR (rad18∆ and shu1∆) became highly 

sensitive to CPT treatment.  The PRR pathway allows the bypass of DNA lesions so that DNA 

replication can resume, through an error-prone translesion synthesis (TLS) or error-free 

template switch mechanism (196,197).  Both pathways are controlled by Rad6 and Rad18 

(95,96) and mediated by the mono- or poly-ubiquitination of PCNA, respectively (198).  We 

found a major interaction with the E3 ubiquitin ligase Rad18.  The rad18Δ rnh1∆ rnh2∆ triple 

mutant had a significant synthetic growth defect, including a slow growth phenotype on rich 

medium and an increased sensitivity to CPT (Figures 25C and 25D).  However, we decided not 

to investigate interactions with other members of the RAD6 epistasis group further in this 

study, since contributions of the template switch and TLS pathways to the genomic stability of 

RNH- mutants had been published recently by another group (99).  Nevertheless, we did ensure 

that the function of Rad18 was not contributing to the origin-independent replication events 

observed in this study.  We demonstrated by 2D-gel that replication bubbles still appeared 

when the rad18 triple mutant was released from G1 block in the presence of CPT (Figure 25B, 

blue arrows).  In fact, the replication bubbles increased in intensity during the timecourse, 

persevering until 180 minutes and possibly longer (data not shown).  We conclude that RAD18-

RAD6 mediated PRR is important for the fitness of RNaseH lacking yeast (this study, and (99)), 

and PRR pathways may play a role in the repair of single-stranded gaps and replication-

blocking Top1-DNA lesions introduced by CPT.  However, the origin-independent replication 

initiation observed in the RNH- mutants is not dependent on Rad18, and the higher intensity 

bubble arcs suggest that absence of template switching activity may even channel lesions into 

an alternative pathway that encourages TIR events.  

Break induced replication (BIR) is a PRR pathway capable of repairing collapsed replication 

forks, where homology only exists on one side of the DSB, or where only one of the two free 

DNA ends can find homology for strand invasion (for a review see (199)).  The non-essential 

subunit of DNA Polδ, Pol32, has been shown to play an important role in BIR (200), although it 

is dispensable for normal DNA replication and DSB repair (200).  We were unable to recover 
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any viable pol32∆ rnh1∆ rnh2∆ triple mutants (Figure 25C).  This result indicates that Pol32 is 

essential for the survival of yeast cells lacking RNaseH activity, and also implies that BIR may 

be an important mechanism in the RNH- mutants.   

It is interesting to note that RNaseH lacking cells became more sensitive to CPT in the absence 

of the NER factors rad1, rad3-2 and rad16.  Rad16 codes for a protein that binds to damaged 

DNA and is involved in transcription-coupled repair (TCR), a subpathway of NER mediated 

DNA repair.  Rad16 acts together with Rad7 and TCR-defects can only be detected in the 

absence of either repair factor (see (89) for a recent review on TCR).  TCR has also been shown 

to be active on ribosomal DNA lesions (201), questioning if NER may facilitate the repair of 

CPT-mediated DNA lesions in the presence of RNA:DNA hybrids.  There are various reports 

that NER factors can erroneously recognize and bind abnormal DNA structures, including R-

loops (202), mistaking these for the intermediate bubble structures formed during NER.  For 

example, the NER nucleases XPF-ERCC1 and XPG can cleave bubble structures at the duplex-

single strand junctions, at the 5´side, and 3´side of the junction, respectively.  Both XPF-ERCC1 

and XPG have been shown to cleave RNA:DNA hybrids formed in the transcribed S regions of 

the class switch sequences (203).  

Nucleolar activity and integrity is linked to CPT sensitivity 

We found a rather striking correlation between CPT sensitivity and nucleolar function.  

Specifically, the lack of factors involved in rDNA replication and organisation (fob1∆, rrm3∆, 

hmo1∆ and siz1∆) enhanced CPT sensitivity, while mutants impaired in rDNA/35S 

transcription (uaf30∆, rpa190-3, rrn3-8, rpa12Δ and rpa49Δ) alleviated CPT hypersensitivity.  

The link between impaired RNA PolI transcriptional activity and CPT resistance is given by the 

fact that: Uaf30 is needed to assist RNA PolI in the initiation of rDNA transcription together 

with the core factor, the TATA-binding protein and Rrn3, (for a review see (204)); proficient 

recruitment of the Rrn3-RNA PolI complex to the 35S rRNA gene promoter requires Rpas12 

and 49 (205); and mutants affected in Rpa190, the largest and catalytic core component of RNA 
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PolI, are also more CPT resistant at semi-permissive temperatures, as previously discussed in 

Chapter 1 (Chapter 1, Figure 21A).  

Although the rDNA array on cXII contains approximately 150 repeats of the rDNA locus, under 

normal conditions only about 50% of the 35S rRNA genes are active (206).  Hmo1 is a high-

mobility group protein found to bind across the 35S rDNA sequence that has a structural role 

in the formation of rDNA-specific chromatin (207).  In fact, actively transcribed rRNA genes are 

largely devoid of histone molecules (206,208,209), and instead associate with Hmo1 (210), 

although not all studies concur on this matter (211).  Work by Takehiko Kobayashi´s group has 

shown that inactive ribosomal genes are necessary since transcription by RNA Pol I blocks 

binding of cohesin and condensin (75), important for chromosome segregation and 

chromosome condensation, respectively (212).  In combination with the rnh1Δ rnh2Δ, the 

hmo1 triple mutant showed a synthetic sick phenotype and an additive CPT sensitivity.  

Therefore, as previously described for Fob1 and Rrm3 (Chapter 1, Figure 13), the role of Hmo1 

in maintaining the structural integrity of the rDNA locus seems to be an important contributory 

factor to the sensitivity to CPT of the rnh1Δ rnh2Δ mutants.   

In chapter 1 we described that the regulation of rDNA repeats was significantly affected in 

yeast lacking RNaseH activity (Chapter 1, Figure 13).  The lack of factors involved in rDNA 

repeat stability (mus81Δ, tof2Δ, sgs1Δ and top3Δ) had an additive effect such that the 

corresponding triple mutants were further sensitized to CPT.  Mus81 has key roles both in the 

quality control of replication forks at the rDNA and in the maintenance of rDNA repeat number 

(213), and from our genetic analyses we observed that the mus81 triple mutant was synthetic 

sick and extremely CPT sensitive.  Furthermore, interactions with tof2, required for rDNA 

silencing, and sgs1-top3, needed to maintain the integrity of rDNA repeats (214) and prevent 

rDNA recombination (215), both led to an increased CPT sensitivity.  

The synthetic growth defect of fob1∆ rnh1∆ rnh2∆ mutants is especially interesting, because it 

suggests that collision of the replication and transcription machineries could increase torsional 
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stress in the absence of the replication fork blocking activity (143).  Sogo and co-workers have 

shown that the number of active copies can be influenced by temperature, growth media, and 

growth phase (216).  For example, the transcription of rRNA and ribosomal proteins coding 

genes increases after yeast are shifted to rich medium (217).  A temperature shift from 30º to 

37ºC also causes an increase in growth rate, and silencing of rDNA copies is reduced, leading to 

more actively transcribed 35S genes to deal with the increased demand for ribosome 

biogenesis, with a subsequent increase in negative supercoiling (218).  To see if growth 

conditions affect CPT sensitivity, we therefore incubated rnh1∆ rnh2∆ yeast cells in the 

presence of CPT at different temperatures (Figure 26A) and observed an increase in the CPT 

sensitivity of the RNH- mutant with increased temperatures.  This experiment relates the CPT 

sensitivity of the RNH- mutants to rDNA transcription suggesting that increasing the number of 

transcribed 35S genes increases sensitivity to CPT.  

 

Figure 26. Growth at higher temperatures further sensitizes rnh1∆ rnh2∆ mutants to CPT. A. 

10-fold serial dilutions of cells grown for 3 days on YPAD or YPAD-containing 5µg/ml CPT at the 

indicated temperatures. B. 10-fold serial dilutions on plates with 10mM HU, 5mM MMS or 10mM 

MMS at the indicated temperatures. C. Percentage of Rad52-YFP foci counted in exponentially 

growing cells growing at 30º or 37ºC with or without the presence of 10µg/ml CPT (3hr treatment) 

(above). Nuclear versus nucleolar Rad52-YFP foci were determined according to co-localization 

with the nucleolar Nop1-mRFP marker. The proportion of rDNA-associated foci in the RNH- mutant 

upon CPT treatment increased significantly from 30º to 37ºC (p=0.0166).  Data represent mean ± 

SD, from at least three independent experiments. 

 



   67 

To study whether the increase in CPT sensitivity with higher temperature was specific to CPT 

or a general effect, similar drop test analyses were performed with the genotoxic agents MMS 

and HU.  Raising the temperature from 30º to 37ºC sensitized WT and rnh1∆ rnh2∆ mutants to 

the DNA alkylating agent MMS but not to HU (Figure 26B).   

Ide et al. previously demonstrated that sensitivity to MMS depends on transcription by RNA 

Pol I and state that increased rDNA transcription may be toxic due to greater sensitivity to DNA 

damaging agents (75).  Therefore, we can speculate that higher RNA PolI transcription rates 

are responsible for the increased sensitivity to MMS observed at 37ºC in an RNA:DNA hybrid 

independent manner.  Notably, growth at 30°C or 37°C did not change the number of cells with 

damaged DNA as determined by Rad52-YFP foci formation in both the WT and rnh1∆ rnh2∆ 

cells (Figure 26C).  However, growth at 37ºC caused a marked increase in the proportion of 

Rad52-YFP foci that co-localized with the Nop1 nucleolar marker protein, suggesting an 

increase in the proportion of rDNA-associated DNA damage.  Thus, it is possible that increased 

rDNA transcription exacerbates genomic instability of the rDNA locus at the higher 

temperature. 
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DISCUSSION for CHAPTER 2 

 

HR and PRR are Critical Pathways in Yeast Lacking RNaseH Activity 

In Chapter 1 of this thesis we described how unprocessed R-loops could act as sites of 

replication initiation, demonstrating a critical role for the RNaseH enzymes and Top1 in 

preventing unscheduled TIR events and thus maintaining genomic stability.  We then sought in 

this Chapter, by genetic analysis, to identify activities needed for survival in the absence of 

RNH.  RNH double mutants display negative genetic interactions or increase the CPT sensitivity 

of mutants affected in genes coding for proteins involved in NER, HR, and PRR pathways.  HR 

was identified as a critical pathway in yeast lacking RNaseH activity, since both Rad52 and 

MRX-complex activity became essential even in the absence of exogenous DNA damage.  These 

observations suggest RNH- cells accumulate toxic DNA intermediates that are a substrate for 

HR.  R-loops could also be channeled into repair pathways that convert them into toxic DNA 

intermediates.  Yet, it remains to be determined if TIR-intermediates are HR dependent.  HR 

could contribute to the formation or resolution of TIR-intermediates and it would be 

interesting to test for this possibility, for example by the use of Rad52- or Rnh2-degron 

constructs.  Surprisingly, RNH- cells were still viable in the absence of Rad51 (see Figure 25), 

the bacterial RecA homologue, which binds to ssDNA and catalyzes the search for and strand 

invasion of homologous sequences (219).  Importantly, we detected bubble-shaped replication 

intermediates in rad51∆ rnh1∆ rnh2∆ mutants suggesting that TIR is Rad51-independent.  

However, Rad51 seems to be essential in the repair of Top1-mediated DNA lesions, seen by the 

acute CPT sensitivity of rad51∆ mutants (Figure 25 and (66)).  It is therefore perhaps 

surprising that we did not detect more TIR molecules in the rad51∆ background.  This result 

would suggest that TIR is not initiated by DNA repair of a Top1cc but rather due to the lack of 

Top1 activity, perhaps due to an increase in torsional stress.   
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As described in Chapter 1 (Figure 23) two alternative mechanisms could account for TIR, 

including a direct assembly of the replication machinery at the R-loop, or by recombination-

dependent replication.  TIR appears to be a post-replicative event, as bubble arcs were only 

observed in cells held in late S/G2 phase of the cell cycle, and apart from RAD52, genetic 

analyses revealed that POL32 is essential for the viability of RNH- yeast.  Rad52 and Pol32 are 

required for break-induced replication (BIR), a mechanism of replication-dependent repair 

(220).  BIR was originally studied in prokaryotes (where it is referred to as recombination-

dependent repair (RDR)) as a mode of oriC-independent chromosomal replication, where the 

processing of arrested replication forks into a DSB led to replication restart (reviewed in 

(221)).  In the BIR described in yeast, a DSB with only one free end initiates repair by strand 

invasion of the 3´end into an intact homologous duplex DNA, priming DNA replication to the 

chromosome end (reviewed in (199)).  The complex lesion of a Top1cc bound to the 3´ end of a 

DSB could potentially explain why there is only one free end available for strand invasion.  

Rad52-mediated strand invasion could occur by annealing between the single-stranded strand 

and the open and stable R-loop structure, in the absence of Rad51 (222), perhaps assisted by 

Rad59 activity (223).  According to Lydeard et al.: “Two of the major questions regarding the 

DNA synthesis steps of BIR are: 1. What DNA helicases are responsible for unwinding the template 

DNA? 2. How is the replication fork established in the absence of an origin?” (220).  In our 

opinion, R-loops could open up the DNA, particularly in combination with a loss of Top1 

activity and associated increase in torsional stress, and provide a starting point for replication, 

as described for prokaryotes, thereby offering a solution to both of these questions.   

Mrc1 is important for viability in the absence of RNaseH activities  

The observation that RNH- mutants require a functional MRC1-complex to combat CPT toxicity 

suggests that replication fork stability may be important for the fitness of yeast lacking RNaseH 

activity.  A functional MRC1-complex is important for both cell viability and CPT resistance in 

the absence of RNaseH activities.  This was a rather surprising observation given that single 
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mutants of the MRC1 complex do not display sensitivity to CPT.  Mrc1, together with Csm3 and 

Tof1, exists as an integral member of the replisome (224), maintaining the stability of stalled 

RFs and promoting subsequent DNA repair events by activation of Rad53-dependent intra S 

replication checkpoint (109).  These observations made it likely that RNA:DNA hybrids not 

only constrain genome stability but also interfere with cell cycle progression (for further 

results and discussion on the MRC1-complex see Chapter 3).  Importantly, TIR-mediated 

replication intermediates were evident in CPT treated mrc1 triple mutants, suggesting that TIR 

events do not constrain the viability of these cells.  R-loops could hinder replication fork 

progression leading to replication fork break-down.  The Sgs1 and RecQ-like helicases have 

been suggested to play roles in maintaining lagging strand polymerases at stalled forks (225) 

via interactions with the ssDNA binding complex, RPA (226).  The differences observed in the 

CPT sensitivity between sgs1 and top3 triple mutants, may suggest that the Top3-independent 

RF stability function of Sgs1 may be important in response to CPT treatment in the RNH- 

mutants, however, we have not investigated further the roles of Sgs1 in yeast lacking RNaseH 

activity.  Rrm3 belongs to the Pif1-class of helicases and is needed for the bypass of protein-

DNA interaction sites, and whose absence leads to the accumulation of paused replication forks 

in the rDNA (147).  In vitro studies showed that Pif1 is able to resolve RNA:DNA hybrids (57), 

but  notably, pif1-m2 triple mutants are viable and CPT resistant suggesting that, at least for 

ribosomal DNA, Pif1 is dispensable for RNA:DNA hybrid processing in vivo.  Interestingly, 

mutations in the E.coli mutation Pif1 homologue recG are synthetic lethal in combination with 

mutation to rnhA (46).  Recent reports suggest a role for Pif1 in BIR (227), and therefore the 

difference in the requirement for Pif1 and Pol32 activity may reflect the need for BIR for R-loop 

tolerance.  Mutations to Pol32 specifically affected the rDNA array with no detectable 

alterations to other chromosomes (228), suggesting that Pif1-independent but Pol32-

dependent BIR may be of particular relevance for stability of the rDNA region of the genome.  
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Loss of Rnh2 Activity is more detrimental than Loss of Rnh1  

We find that the absence of Rnh2 activity generally had a greater contribution to viability and 

CPT sensitivity in combination with DNA replication and/or DNA repair mutants, than the 

absence of Rnh1.  For example 39% of mre11Δ rnh2Δ, 50% of rnh2Δ rad50Δ and 33% of rnh2Δ 

xrs2Δ mutants were inviable, while 100% of the corresponding rnh1 double mutants were 

viable and only affected in growth.  The same was true for cells lacking Srs2, where 96% of the 

srs2Δ rnh2Δ double mutants were inviable, but 100% of the srs2Δ rnh1Δ double mutants were 

found to be viable.  These results emphasize that although Rnh1 and Rnh2 have overlapping 

specificities in removing transcription-associated R-loops, Rnh2 has additional functions, 

including the removal of misincorporated rNMPs that contribute to genomic stability (14).  

Interestingly, deletion of RNH1 was reported to be more deleterious than the deletion of 

RNH201 in combination with defects on RNA biogenesis factors (21).  It may be possible to take 

advantage of the Rnh201 P45D-Y219A separation-of-function mutant that can remove R-loops 

but not rNMPs to see if impaired rNMP repair would still constrain viability in the absence of 

Top1  (229).  The lack of Rnh201 may have additive effects, weakening protein interactions of 

its accessory subunits, Rnh202 and Rnh203, with other factors.  For example, Rnh202 has been 

reported to interact with the cyclin-dependent kinase Cak1, that has roles in passage through 

the G2/M stages of the cell cycle; and the replication fork clamp, proliferating cell nuclear 

antigen complex (PCNA) (12), the sliding clamp for DNA Polδ and an interaction site for other 

replication and repair proteins (for a review see (230)).  PCNA itself is responsible for the 

recruitment of PRR (231), NER (232), and cohesion (233) factors.  In addition, PCNA interacts 

recruits Srs2 (234), playing a role in the repair of replicative damage by directing the repair of 

stalled RFs away from HR and into translesion synthesis (TLS) and template switching 

pathways, both shown to be important repair pathways for yeast lacking RNaseH activities 

(99). 
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Persistent R-loops may impede TCR 

Rad16, together with Rad7, has a role in both global genomic repair (GGR) and TCR.  TCR-

defects can only be detected in the absence of either repair factor (see (89) for a recent review 

on TCR).  Interestingly the rad16 triple mutant was found to be more sensitive to CPT than the 

RNH double mutant.  This result would suggest that yeast have defective TCR in the absence of 

RNaseH activity, and TCR may be particularly impeded at the rDNA locus.  We would like to 

confirm this observation in a rad7 triple mutant, as it would suggest that persistent R-loops 

impede RNA Pol progression through transcribed regions and could lead to more lesions than 

TCR can deal with.  

Nucleolar Function Affects CPT Sensitivity and Viability 

Ribosomal DNA function was shown to have a major influence on CPT sensitivity in Chapter 1, 

and in this chapter we analysed many different factors linked to rDNA organisation and 

transcription.  We observed the reproducible pattern that a disruption of rDNA organisation 

enhanced CPT sensitivity of RNH- mutants, whereas the down-regulation of RNA PolI 

transcription alleviated CPT sensitivity.  Together these results confirm that proficient 

transcription of the rDNA locus is crucial for CPT-mediated genotoxicity and reveal the rDNA 

as a major contributory factor of CPT-mediated DNA damage.  

As the rDNA constitutes such a large part of the eukaryotic genome, it is perhaps not surprising 

that RNA PolI-mediated R-loops in the rDNA can have such a major impact on cell viability.  In 

Chapter 3 of this thesis we will investigate in more detail by what means viability is 

constrained in the RNH- mutants.  
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RESULTS 

CHAPTER 3 – Yeast lacking RNaseH activity exhibit altered cell cycle 

progression  

 

RNH lacking cells suffer from premature S-phase entry 

Cell cycle analysis of rnh1∆ rnh2∆ yeast revealed that the RNH double mutant consistently 

showed a much faster S-phase transition than the WT following release from α-factor 

synchronization (Figure 27A, best observed at the 30 minute time point). This highly 

reproducible, premature progression through S-phase was observed in both BAR1+ and bar1∆ 

strains, and was CPT independent.   

 

Figure 27.  Yeast lacking RNase H activity show a premature S-phase transition.  A. Flow 
cytometry analysis of strains following release from α-factor in YPAD. B. Representation of the 
S.cerevisiae cell cycle with approximate time of activity for different cyclins and checkpoint factors. 
C. Genetic analysis of sic1∆ rnh1∆ rnh2∆ and clb5∆ rnh1∆ rnh2∆ tetrads.  

 

An earlier activation of standard origins of replication, leading to a precipitated G1/S 

transition, would make the S-phase appear “shorter”.  CDC28 is an essential gene, encoding the 

catalytic subunit of the main CDK factor, which acts as the major coordinator of the yeast cell 

cycle (reviewed in (235)).  The activity of Cdc28 is controlled post-translationally via 

associations with many different regulators throughout the cell cycle.  During G1, Sic1 binds to 

and inhibits the CDK Cdc28 (Figure 27B).  Cells are able to enter S-phase and begin DNA 
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replication by phosphorylating Sic1, which targets it for ubiquitin-mediated degradation (236), 

thus permitting Cdc28 activity and the G1 to S-phase transition.  Mutants in yeast sic1 exhibit 

premature entry into S-phase due to unusually high Cdc28 activity (237).  We studied the 

interaction of RNH- mutants with the cyclin-dependent kinase inhibitor (CKI) SIC1 to examine 

the possibility that yeast lacking RNaseH activity present a faster transition through S phase 

due to an accelerated entry into S phase.  Interestingly, we revealed synthetic lethal 

interactions between the RNH double mutant and sic1Δ by genetic analysis (Figure 27C) and 

furthermore, deletion of sic1 was lethal in combination with the rnh1∆ or rnh2∆ simple 

mutants in 33% and 25% of the cases, respectively.  Also of interest was the observation that 

the RNH double mutant is synthetically sick with the B-type cyclin Clb5 (Figure 27C).  Like Sic1, 

Clb5 also acts to regulate Cdc28 levels and promotes the initiation of DNA synthesis, however, 

contrary to mutation of sic1, loss of clb5 results in an extension of the S-phase due to the 

inability to activate late origins of replication (238).  Collectively, these results suggest that 

rnh1∆ rnh2∆ mutants enter early into S-phase, and the G1 to S-phase transition activity of Sic1, 

and to a lesser extent Clb5, is essential to maintain the viability of cells in the absence of 

RNaseH activity.   

An earlier activation of standard origins of replication, leading to a precipitated G1/S 

transition, would make the S-phase appear “shorter”.  CDC28 is an essential gene, encoding the 

catalytic subunit of the main CDK factor, which acts as the major coordinator of the yeast cell 

cycle (reviewed in (235)).  The activity of Cdc28 is controlled post-translationally via 

associations with many different regulators throughout the cell cycle.  During G1, Sic1 binds to 

and inhibits the CDK Cdc28.  Cells are able to enter S-phase and begin DNA replication by 

phosphorylating Sic1, which targets it for ubiquitin-mediated degradation (236), thus 

permitting Cdc28 activity and the G1 to S-phase transition.  Mutants in yeast sic1 exhibit 

premature entry into S-phase due to unusually high Cdc28 activity (237).  We studied the 

interaction of RNH- mutants with the cyclin-dependent kinase inhibitor (CKI) SIC1 to examine 

the possibility that yeast lacking RNaseH activity present a faster transition through S phase 
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due to an accelerated entry into S phase.  Interestingly, we revealed synthetic lethal 

interactions between the RNH double mutant and sic1Δ by genetic analysis (Figure 27C).  

Deletion of sic1 was also lethal in combination with the rnh1∆ or rnh2∆ simple mutants in 33% 

and 25% of the cases, respectively, indicating a significant interaction between RNaseH activity 

and Sic1.  Also of interest was the observation that the RNH double mutant is synthetically sick 

with the B-type cyclin Clb5 (Figure 27C).  Like Sic1, Clb5 also acts to regulate Cdc28 levels and 

promotes the initiation of DNA synthesis, however, contrary to mutation of sic1, loss of clb5 

results in an extension of the S-phase due to the inability to activate late origins of replication 

(238).  Collectively, these results demonstrate that rnh1∆ rnh2∆ mutants enter early into S-

phase, and the G1 to S-phase transition activity of Sic1, and to a lesser extent Clb5, is essential 

to maintain the viability of cells in the absence of RNaseH activity.   

R-loop formation partially overcomes cdc7-4 temperature sensitivity 

The initiation of DNA replication in eukaryotic cells during S phase is regulated by 'origin 

licensing', and requires the sequential assembly of pre-RC proteins, such as Cdc7 and Cdc6, at 

the ARS.  Cdc6 is an essential component of the pre-RC and acts prior to Cdc7 kinase activation, 

loading the Mcm2-7 proteins onto the ORC (239,240).  Firing from normally inactive origins, or 

the formation of entirely new sites of replication initiation could account for the completion of 

DNA synthesis more quickly in the absence of RNaseH activity.  We questioned whether the 

origin-independent, R-loop-mediated replication initiation (see Chapter 1), could by-pass the 

need for canonical origin firing.  To address this question we created a cdc7-4 rnh1∆ rnh2∆ 

triple mutant (Figure 28A).  The cdc7-4 allele permits growth at 23ºC (permissive 

temperature) but not at 30ºC (4) because the Cdc7 kinase is essential for the opening up and 

firing of replication origins by phosphorylation of Mcm2-7 proteins (4,241).  Notably, 

restrictive temperature was shifted from 30°C to 37ºC in the cdc7-4 rnh1∆ rnh2∆ triple mutant, 

indicating that R-loops could help to make replication origins more accessible to replication 

factors.  Additionally, the CPT sensitivity of cdc7-4 rnh1∆ rnh2∆ mutants was comparable to 
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rnh1∆ rnh2∆ mutants at 23ºC, but this sensitivity was increased dramatically at 30ºC (Figure 

28B).  Interestingly, transcription through origins of replication has been shown to inactivate 

replication firing (242).  It is conceivable, that R-loop stabilization within replication origins by 

CPT could have the same effect.  

 

Figure 28. R-loop formation partially overcomes cdc7-4 temperature sensitivity. A. Viability 

of cdc7-4 simple and triple mutants grown at 23º, 30º, or 37ºC. B. Drop test analysis of cdc7-4 

rnh1∆ rnh2∆ at 23º or 30º on YPAD or YPAD-containing CPT (5µg/ml). C. Tetrads (top) and drop 

test analysis for cdc7∆ mcm5-bob1 quadruple mutant. Plates contained 0.5 or 1µg/ml CPT.  

 

Besides its well-reported roles in replication initiation, Cdc7 also operates in post-replicative 

repair (PRR).  Cdc7 is a member of the DNA damage tolerance RAD6 epistasis group, associated 

with the TLS branch (243).  It has been proposed that different cdc7 alleles can result in hyper- 

or hypo-mutagenic phenotypes (244).  To exclude the possibility that the PRR function of Cdc7 

was interfering in the analysis of viability of the cdc7-4 rnh1∆ rnh2∆ mutant we opted to use a 

cdc7∆ mcm5-bob1 strain.  The function of Cdc7 in replication initiation is no longer essential in 

a mcm5-bob1 (P83L) mutant (245), since presence of the mcm5-bob1 allele bypasses the need 

for the phosphorylation and activation of the MCM helicase by Cdc7 kinase (246).  Analysing 

the viable spores from genetic crosses between the cdc7∆ mcm5-bob1 and rnh1∆ rnh2∆ yeast 

strains, we attained cdc7∆ mcm5-bob1 rnh1∆ rnh2∆ quadruple mutant spores (Figure 28B).  



   77 

We confirmed the mcm5-bob1 genotype by back-crossing the quadruple spore with a WT yeast 

strain: the ability to recover viable cdc7∆ spores from the back-cross meant that the yeast also 

carried the mcm5-bob1 allele, originating from the quadruple spore from the first cross (results 

not shown).  These analyses tell us that cdc7∆ rnh1∆ rnh2∆ yeast are inviable without the 

compensatory mcm5-bob1 allele, and that Cdc7 kinase activity is essential in the RNH- mutant, 

as for the WT.  Therefore, the origin-independent transcription-initiated replication events that 

we observe in the RNH double mutant do not bypass the need for normal replication initiation 

from origins in S-phase. 

RNH- mutants are not held in G2/M in the absence of Mrc1 activity 

The synthetic lethal interaction of RNH- mutants and SIC1 suggested that cells may suffer from 

constrains that may be generated during replication and still be present when cells are in the 

next G1 phase.  To assess for replication-associated DNA damage, we inactivated different S-

phase specific checkpoint pathways including rad9, chk1, tel1, and rad24.  No significant 

differences were observed in the cell cycle progression of the triple mutants tested; all the 

triple mutants exhibited a similar holding of cells in G2/M phase as per the RNH double mutant 

(data not shown), although they showed an additive CPT sensitivity (see Chapter 2, Table 1).  

Interestingly, we detected a synthetic lethal interaction of RNH- mutants with MRC1 (see 

Chapter 2; Figure 24).  Mrc1, mediator of the replication checkpoint, the homologue of human 

Claspin, associates with replication forks shortly after replication initiation, remaining during 

elongation as an integral part of the replication machinery (224) and has been shown to have a 

dual role, acting both as a component of the RF and as a mediator of the S/G2 checkpoint (247).  

Viable mrc∆ rnh1∆ rnh2∆ triple mutants notably manifested a different cell cycle progression 

profile to that of the RNH double mutant.  The mrc1Δ rnh1Δ rnh2Δ triple mutant was able to re-

enter G1-phase of the following cell cycle whilst the RNH double mutant remained held in late 

S/G2 (Figure 29A). Moreover, the mrc1Δ rnh1Δ rnh2Δ yeast exhibited an even more 

accelerated entry into and passage through the S-phase, compared to the RNH double mutant.  
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Furthermore, of significant interest was the finding that Mrc1 is important for cell survival in 

the absence of RNaseH enzymes.  From tetrad analysis we detected that only 33% of triple 

spores were viable (Figure 29B).  Remaining viable triple mutant spores have a growth defect, 

and interestingly, whilst the mrc1Δ itself is not CPT sensitive, elimination of MRC1 in the RNH 

double mutant resulted in a highly CPT sensitive triple mutant (Figure 29C).  These results 

suggest that Mrc1 activity is crucial in cells lacking RNaseH activity and can protect them from 

CPT-induced replication stress. 

 

Figure 29. Mrc1 protects cells from CPT-induced replication stress. A. Flow cytometry 
analysis of mrc1 triple mutant cells grown in the presence or absence of CPT following release from 
α-factor. B. Tetrad analyses of Mrc1 separation-of-function alleles (top) and Mrc1 mediator 
complex members (bottom). C. Drop test analysis of Mrc1 separation-of-function alleles (top) and 
Mrc1 mediator complex members (bottom). D. Flow cytometry analysis of Mrc1 mediator complex 
members. 

 

Since mrc1∆ rnh1∆ rnh2∆ triple mutants did not arrest in late S/G2-phase in response to CPT 

(Figure 29A), their increased CPT sensitivity could reflect a problem in S/G2-dependent 

damage repair or RF stability.  To discriminate between these possibilities, we took advantage 

of the Mrc1 separation of function mutants.  Combination of the checkpoint-defective allele 

mrc1AQ, which cannot be phosphorylated by the checkpoint kinases (248), and the RF stability 

mutant allele, mrc1-c14 (249), with the RNH double mutant, resulted in an increased CPT 
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sensitivity.  These results suggest that both S/G2-checkpoint and RF stability functions of Mrc1 

contribute to CPT tolerance in the rnh1Δ rnh2Δ background.  In contrast, only the triple mutant 

with the RF stability mutant allele, mrc1-c14, closely resembled the growth, CPT sensitivity and 

spore viability phenotypes of the mrc1∆ rnh1∆ rnh2∆ mutant (Figures 29B and 29C).  The 

mrc1-c14 triple mutant spores were affected negatively in growth with some lethality observed 

in meiotic segregants (87% viability of spores corresponding to triple mutants).  Collectively, 

these results demonstrate that Mrc1 plays an important role in the stabilization of RFs in the 

RNH- mutant, and may be particularly important for the survival of CPT-induced lesions, and 

that both functions of Mrc1 are indispensable for the viability of yeast lacking RNaseH activity.  

Mrc1 exists as an integral member of the replisome (224), with Csm3 and Tof1, as part of the 

Mrc1-mediator complex.  Csm3 and Tof1 are specifically required for the association of Mrc1 

with the RF, interacting directly with the MCM helicase, and thus play a central role in RF 

progression.  The complex is also important in maintaining the stability of stalled RFs and 

promoting subsequent DNA repair events (224,247).  Genetic interaction analysis revealed 

novel functional relationships between the RNaseH enzymes and all members of the Mrc1 

mediator complex (Figure 29B).  Triple mutants of rnh1Δ rnh2Δ with csm3∆ and tof1∆ were 

synthetic sick; triple mutants also exhibited extreme sensitivity to CPT, in contrast to the CPT 

resistant csm3∆ and tof1∆ single mutants (Figure 29C).  Cell cycle progression of the tof1∆ 

triple mutant, upon release from G1 synchronization into media in the presence of CPT, was 

very similar to that previously observed for the mrc1∆ triple mutant (Figure 29D).  In contrast, 

the csm3∆ triple mutant remained held in late S/G2, as for the RNH double mutant, suggesting a 

possible difference in functions for individual members of the complex in the absence of 

RNaseH activity.  These results indicate that the replication fork stabilization function of Mrc1 

(together with Tof1) is important in protecting cells from R-loop mediated replication 

constrains and, similar to its role in the response to osmostress (250), support a role for Mrc1 

in the co-ordination of transcription and replication events in CPT treated RNH- mutants. 
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G2/M DNA damage- and morphogenesis checkpoints fail to hold RNH- cells in G2/M   

The presence of RNA:DNA hybrids caused by the lack of RNaseH activity led to an accumulation 

of yeast cells in G2/M stages of the cell cycle.  A large budded cell arrest can be triggered by the 

DNA damage checkpoint, or by activation of the morphogenesis or the spindle checkpoints, 

both of which would cause yeast to arrest as large budded cells with an undivided nucleus.  

Wee1-related kinases function in the highly conserved morphogenesis checkpoint that 

coordinates cell size and entry into mitosis.  The budding yeast Swe1 kinase accumulates 

during the S-phase and can inhibit Clb2-Cdc28 (251); it is then targeted for proteasome-

mediated degradation in late S/early G2-phase (252).  Activation of the morphogenesis 

checkpoint in response to defects in cytoskeletal function or bud formation blocks Swe1 

degradation (253), leading to Swe1-dependent phosphorylation of Cdc28, and delaying entry 

into mitosis (for review see (115)).  Deletion of SWE1 causes cells to enter prematurely into 

mitosis before sufficient growth has occurred (253), leading to the formation of abnormally 

small daughter cells.  Conversely, we found that cell size of the swe1∆ rnh1∆ rnh2∆ triple 

mutant was actually increased and no difference was observed in the cell cycle progression of 

the swe1 triple mutant compared to the RNH double (results not shown).  Therefore, it seems 

improbable that the G2/M phase holding of the RNH- mutants is due to the activation of the 

morphogenesis or size checkpoint.  Nevertheless, removal of the morphogenesis checkpoint 

did slightly favour the survival of yeast lacking RNaseH activity in response to CPT (results not 

shown).     

The S-phase DNA damage and DNA replication checkpoints employ many common factors.  The 

effector kinase, Rad53, becomes hyperphosphorylated in response to replication stress, acting 

to stabilize stalled replication forks and prevent the activation of later origins of DNA 

replication. Mrc1 acts by transducing signals from Mec1 to Rad53, activating Rad53 upon fork 

stalling (109).  In response to DNA damage, Rad53 is also phosphorylated and activated, and 

the dNTP levels in the cell are upregulated.  Dun1 is an effector kinase downstream of Rad53, 
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whose activation leads to an up-regulation in the transcription of the ribonucleotide reductase 

(RNR) genes.  The RNR complex catalyzes the rate-limiting step in the synthesis of dNTPs from 

NTPs, a process essential for both DNA repair and for normal replication.  In addition, Sml1, an 

inhibitor of RNR, is degraded in response to DNA damage (254).  Sml1 is the substrate for 

Dun1, making Dun1 directly responsible for Sml1 phosphorylation and its subsequent 

degradation (255).  Analysis of genetic interactions revealed that the triple mutant with dun1 

resulted in a synthetic sick interaction (see Chapter 2; Table 1), yet no difference was observed 

in the CPT sensitivity of the triple mutant as compared to the RNH double mutant; the sml1 

triple was also as sensitive to CPT as the RNH double (results not shown).  The observation that 

triple mutants are not more sensitive to CPT than the RNH double mutant could indicate an 

epistatic interaction between the RNaseH enzymes and control of cellular dNTP levels.   

Detection of the “active” phosphorylated form of Rad53 by Western blot is widely used to 

follow S-phase checkpoint activation.  Hyper-phosphorylated Rad53 can be detected as a shift 

in the mobility of the 92 kDa band corresponding to Rad53 on a protein gel.  We examined 

whether Rad53 is activated in RNH- mutants by performing a Western blot against the 

phosphorylated form of Rad53 (Figure 30, upper panel).  We observed that HU treatment of 

WT yeast cells caused a positive shift in Rad53 mobility related to phosphorylation and thus 

checkpoint activation.  In contrast to cellular treatment with other DNA damaging agents, CPT-

induced DNA lesions are not sensed by the intra-S-phase checkpoint protein Rad53 (256) and 

accordingly, we see no activation of Rad53 for the WT upon CPT treatment.  However, we did 

note a minimal shift in the mobility of the Rad53 bands for the simple mutants rnh1Δ and 

rnh2Δ in response to CPT treatment, and a slight shift for the CPT treated rnh1Δ rnh2Δ double 

mutant.   
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Figure 30. Western analysis against Rad53 (top) and Rad53 in situ kinase assay (ISA; below). HU 

treatment was used as positive and hexokinase (Hxk1) as loading control. Experiments performed 

by Nestor García Rodríguez. 

 

To confirm whether CPT treatment of the RNH- mutants is able to activate the replication 

checkpoint we monitored Rad53 kinase activation directly using the Rad53 in situ kinase assay 

(ISA; (257)) (Figure 30, lower panel).  We saw a weak Rad53 autophosphorylation in response 

to CPT-treated WT, rnh1Δ, rnh2Δ and rnh1Δ rnh2Δ yeast, albeit to lower levels than following 

HU treatment of the WT.  These results support the previously described minor 

phosphorylation of Rad53 for the rnh1Δ rnh2Δ double mutant following HU or MMS treatment 

(99) and suggest that CPT leads to an increased replicative stress in the RNH- mutants.  

However, the threshold of hyper-phosphorylation of Rad53 necessary to trigger the S-phase 

DNA damage checkpoint is not reached, as the RNH double mutant, even following CPT 

treatment, shows no delay in S-phase progression.   

 

The degradation of cyclin Clb2 is delayed in RNH- mutants 

The protein levels of Sic1 following release from α-factor were monitored in yeast lacking 

RNaseH activity.  Sic1 multiple phosphorylation and subsequent degradation is essential for 

the G1/S transition and the initiation of DNA replication.  The timing of Sic1 degradation for 

the double mutant seemed similar to the WT (Figure 31A), and thus, would not account for the 

accelerated S-phase progression in our RNH- mutants.  However, the RNH double mutant 

appeared to have lower levels of Sic1 throughout the cell cycle.   
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Figure 31. Western blot analysis of Sic1 and Clb2.  A. Sic1 and Clb2 levels following release from α-

factor. α-factor was re-added 60 minutes after release. B. Release of yeast cells in the presence of 

10µg/ml CPT.  Western analyses performed by Marta Muñoz Barrera. 

 

The B-type cyclins Clb1-4 are required for mitotic events, such as spindle morphogenesis, but 

must be down-regulated for cytokinesis to take place (reviewed in (258)).  Clb2 is 

proteolytically degraded in early anaphase, necessary for the exit from mitosis and re-entry 

into G1 of a new cell cycle (259).  In response to microtubule destabilizing drugs, mitotic arrest 

of WT cells is maintained by high levels of Clb2 and Cdc28 kinase activities (260).  We 

monitored the levels of Clb2 by Western blot during the cell cycle to investigate whether a 

disregulation of Clb2 levels could account for the prolongation of cells in late G2/M-phase in 

the RNH- mutant.  Western blot analysis (Figure 31A) shows that Clb2 protein appears at 45 

minutes post-release and is degraded from 135 minutes in the WT.  However, in the double 

mutant, Clb2 protein was detectable even in the G1 synchronized sample and remains present 

until 210 minutes.  The degradation of Clb2 is further delayed by treatment with CPT in both 

the WT and the rnh1∆ rnh2∆, but in the case of the RNH- mutant, considerable levels of Clb2 

protein can be observed throughout the complete time course (Figure 31B).  These results may 

help explain why rnh1∆ rnh2∆ cells are held in G2/M-phase, since they cannot exit mitosis due 

to the high activity of Clb2.  Additionally, this experiment reveals that RNaseH activity is 

required for the normal fluctuation of Clb2 protein since the cyclin is observed during G1 and S 

phases, when it is not normally active, and the levels of Clb2 remain elevated in the RNH- 

mutant.  These results are very similar to those published for yeast mutants in hct1 (CDH1), an 

activator of the APC (261). 
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The CDK Cdc28 is the key cell cycle regulator, whose activity declines as mitosis is completed 

due to the degradation of mitotic Clbs such as Clb2 and the accumulation of the G1-phase-

specific Cdc28 inhibitor Sic1 (reviewed in (262)).  Prevailing levels of Clb2 at G2/M and low 

levels of Sic1 throughout the cell cycle would explain why yeast cells lacking RNaseH activity 

manifest abnormal cell cycle transitions at G2/M and G1/S respectively, and may be the reason 

why RNH- mutants re-initiate DNA replication without having finished mitosis.   

 

Nucleolar Cdc14 is constrained in RNH- mutants  

The nucleolus is known to segregate after the nucleus, with the segregation of rDNA occurring 

in late anaphase (263).  During anaphase, yeast cells must condense and compact the long 

rDNA array to ensure that segregation takes place before cytokinesis (264).  We followed the 

progression of RNH- mutants though meta- and anaphase monitoring spindle morphology with 

tubulin staining.  The percentage of cells in metaphase and anaphase was determined for the 

RNH double mutant and found to be similar to the WT (Figure 32A).  However, the rnh1∆ rnh2∆ 

cells entered slightly earlier into metaphase, and metaphase itself seemed slightly longer (by 

15 minutes approximately), consistent with earlier observations by flow cytometry of RNH- 

cells rushing through the S phase into G2/M. 

The action of Cdc14 is required for rDNA segregation as it is necessary for the localization of 

the condensin complex to rDNA (265).  Cdc14 is regulated by the inhibitory protein Net1, both 

being members of the RENT complex (for regulator of nucleolar silencing and telophase), 

which also contains Sir2 with important roles in transcriptional silencing of the rDNA locus.  

Net1 binding of Cdc14 maintains Cdc14 inactive in the nucleolus during the cell cycle.  Net1 

only releases Cdc14 during anaphase, promoted by the FEAR (CDC Fourteen Early Anaphase 

Release) and MEN (Mitotic Exit Network).  Net1 release allows active Cdc14 to 

dephosphorylate its downstream targets and stimulate the exit from mitosis and cytokinesis 
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(266).  Of particular interest to this study, Cdc14 activity in anaphase also leads to the 

dephosphorylation and thus stabilization of Sic1 (267).   

 

Figure 32. Reduced nucleolar Cdc14 is released in RNH- mutants. A. Percentages of metaphase 

and anaphase cells as determined by spindle (tubulin) morphology are shown for each timepoint.   

B. Representative images of 3HA-Cdc14 subcellular localization.  Cdc14 is shown in red, 

microtubules (tubulin) are shown in green and DNA (DAPI) is shown in blue.  C. Percentage of cells 

with 3HA-Cdc14 sequestered, partially released, or fully released for the WT and rnh1∆ rnh2∆ cells 

(left panel).  At least 200 cells were counted at each timepoint.  Size bar represents 10µm.   

 

To address if the timing of Cdc14 release from the nucleolus was affected in RNH- mutants we 

investigated the localization of Cdc14 during the cell cycle following release from G1 

synchronization.  We first crossed rnh1∆ rnh2∆ yeast with a 3HA-tagged Cdc14 bearing strain 

and confirmed that the HA tag did not affect either CPT sensitivity or cell cycle progression of 

the RNH double mutant (data not shown).  Next, cells were released from α-factor block in G1 

and samples were fixed every 15 minutes (α-factor was re- added after 45 min to prevent re-

entry into the next cell cycle) and the localization of Cdc14 was monitored by 

immunofluorescence in relation to spindle length.  Cdc14 localization was recorded as 

sequestered in the nucleolus, partially released into the nucleus, or fully released and 

cytoplasmic (see Figure 32B for an example of each).  Cdc14 was released from the nucleolus of 

rnh1∆ rnh2∆ cells with approximately the same kinetics as the WT (Figure 32C).  However, 



   86 

fewer cells were counted with partially- and fully-released Cdc14 in the RNH- mutant.  This 

result could indicate that the FEAR (or MEN) pathway was not fully activated in the absence of 

RNaseH activity.  Perhaps a critical level of Cdc14 release is necessary to trigger mitotic exit 

and this level is not reached in yeast lacking RNaseH activity.  

 

RNH- mutants do not respond to the spindle assembly checkpoint (SAC)  

The apparent delay in G2/M exit of the RNH double mutant could be a consequence of 

activation of the spindle assembly checkpoint (SAC) which, through Mad1 and Mad2 activity, 

delays the onset of anaphase in cells with defects in mitotic spindle assembly (for a recent 

review see (268)).  To investigate whether activation of the SAC was responsible for holding of 

the RNH- mutants in late S/G2 we deleted the mitotic spindle checkpoint gene MAD1 in rnh1∆ 

rnh2∆.  The triple mutant was viable, and CPT sensitivity at the level of viability and cell cycle 

progression (results not shown) were very similar to the double mutant.  Spindle checkpoint 

mutants, such as MAD (Mitotic Arrest Deficient) mutants, are sensitive to the microtubule 

destabilizing drug benomyl.  Consequently, we decided to analyse the benomyl sensitivity of 

the rnh1∆ rnh2∆ double and mad1∆ triple mutant (Figure 33A).  The RNH double and the mad1 

triple mutant were as sensitive to benomyl as mad1∆.  Such epistasis would imply that the 

RNaseH enzymes and Mad1 are found in the same pathway, implying that the SAC is defective 

in these mutants.  Nevertheless, the benomyl sensitivity phenotype alone is not sufficient to 

classify a mutant as checkpoint defective.  

Treatment with either benomyl or nocodazole (Noc), another microtubule destabilizing drug 

that activates the SAC, causes an interference of microtubule polymerization and attachment to 

kinetochores, such that cells are unable to progress into mitosis (269,270).  Cells treated with 

Noc arrest with a 2N DNA content at the G2/M phase of the cell cycle, indicating that 

replication is complete but chromosome separation has not yet taken place.   SAC mutants, 

such as the mad mutants, re-enter G1 of the next cell cycle with concomitant initiation of 
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replication.  Given that the mutants are unable to complete mitosis correctly, further rounds of 

replication can lead to a higher than 2N DNA content that can be easily monitored by flow 

cytometry.  In addition, the re-initiation of DNA replication without appropriate mitosis of the 

previously replicated genetic material can be observed by microscopy as the generation of new 

buds or “re-budding”.  To elucidate whether yeast lacking RNaseH activity bypass the SAC we 

analysed the RNH double mutant by FACS and microscopy following a prolonged incubation 

with Noc (Figure 33B).  Cells were first synchronized with α-factor before release into Noc-

containing medium and growth for 2 or 4 hours in continual presence of the drug (with re-

addition of Noc every 90 minutes).  WT cells treated with Noc exhibit a dumbbell phenotype of 

large budded cells, characteristic of G2/M arrest, and following 4h incubation just 10% of G2-

arrested cells had more than one bud.  In contrast 29% of large budded rnh1∆ rnh2∆ cells 

manifested the re-budded phenotype after 2h, and after 4h of continual Noc incubation 37% of 

rnh1∆ rnh2∆ cells were re-budded (Figure 33B), with more than half of these G2/M cells having 

more than one re-bud.  The peak of cells corresponding to a 2N DNA content (Figure 33B, black 

arrow), was shifted slightly to the right for the RNH- mutant, which would infer that the 

majority of cells lacking RNaseH activity had a DNA content between 2- and 3N.  Furthermore, 

a small group of cells with a cellular DNA content of 3-4N was observed in the RNH double 

mutant using flow cytometry (Figure 33B, blue arrow), further evidence of the re-initiation of 

DNA replication in these mutants.  The percentage of re-budded cells was not as high for the 

RNH double mutant as for the mad1 simple mutant, and the mad1 triple mutant showed an 

additive effect in the proportion of re-budded cells and loss of viability. 
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Figure 33. RNH- mutants do not respond to the spindle assembly checkpoint. A. Benomyl 
sensitivity drops at 5 and 10µg/ml. B. Representative microscope images of “re-budding observed 
in rnh1∆ rnh2∆ cells in G2/M following 4h Noc treatment (top). Size bar represents 10µm. 
Analysis of replication by flow cytometry following 4h Noc treatment (bottom). Black arrow 
showing population of cells with 2N DNA content; 2N content indicated by dotted line.  Red arrow 
represents < 1N DNA content; blue arrow represents > 2N DNA content. Percentage of G2 cells re-
budded (right).   

 

To confirm whether the SAC was indeed activated in yeast lacking RNaseH activity we 

monitored the phosphorylation of Mad1, since Mad1 is hyperphosphorylated when the SAC is 

activated.  Utilizing a GFP-tagged Mad1 strain we were unable to observe 

hyperphosphorylation of the Mad1 protein in the RNH double mutant by Western analysis 

(results not shown).  Collectively, these results imply that yeast lacking RNaseH do not respond 

to the SAC and continue to replicate their DNA although chromosome separation has not yet 

been completed.   

R-loops are responsible for chromosome segregation defects  

To further monitor chromosome segregation in the RNH- mutants, we employed clamped 

homogeneous electrical field (CHEF) analysis, to separate replicating chromosomes.  The yeast 
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genome contains 16 linear chromosomes, ranging from approximately 200kb to 2.2Mb.  

Chromosomes with branched DNA structures, such as replication forks and recombination 

intermediates, cannot migrate into the gel and remain trapped in the wells.  Following alpha-

factor synchronization, and release with or without CPT, we collected and embedded cells in 

low-melting agarose plugs at various timepoints.  Replicating chromosomes were separated 

using CHEF analysis and then probes against two different chromosomes were applied (cV and 

cXII) to look at the replication and segregation of these chromosomes.  We quantified linear 

molecules that are able to migrate into the gel (signal b, Figure 34A) and include fully 

replicated DNA, versus non-linear chromosomes that cannot migrate due to their branched 

structures and remain stuck in the well (signal a) and would include replication and 

recombination intermediates, (271,272). For the quantifications, the signal corresponding to 

time 0 (cells held in G1) was set as 100%, as one would expect no replication of DNA in G1 

synchronized cells (nor recombination).  A high bar in the quantifications corresponds to more 

signal in the gel and, therefore, more fully replicated molecules (Figure 34B).   

 

Following release from G1, a signal can be detected in the well for WT at 30 minutes for 

chromosome V, as chromosomes are beginning replication; this signal would include 

replication bubbles, and replication forks.  Through 60 to 90 minutes the signal in the gel is 

increasing, until the 120 minute timepoint where we observe the majority of the signal in the 

gel rather than the well, as chromosomes V and XII are fully replicated and resolved.  At 150 

minutes, for cV of the WT we can observe a second round of replication, with some signal once 

again in the well.  The pattern for cXII of the WT is similar, although the appearance of the 

signal in the gel is slightly detailed.  This result is compatible with the observation that the 

rDNA locus, located on cXII, is one of the last chromosome regions to be fully replicated and 

resolved (263).  However in the presence of CPT, less signal is observed in the gel for cXII in 

the WT indicating that CPT leads to cXII-specific problems.   
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Figure 34. Yeast lacking RNase H activity show chromosome segregation defects. A. Analysis 
of replication status by CHEF of DNA from cells synchronized in G1 prior to release in the presence 
or absence of CPT 10µg/ml. Plugs were prepared with cells taken at the indicated time-points 
following release. Hybridization with cV-specific or cXII-specific probes. Nonlinear chromosomes 
(a), which include replication intermediates, correspond to the signal coming from the gel well. B. 
Quantification of the results (below). The intensity of chromosomal signal from the Southern blot 
that migrates into the gel (b) is plotted relative to total intensity of chromosome bands in the gel 
and well (b+a). 100% implies that 100% of DNA has replicated and entered the gel.  

 

 

For cV of the rnh1∆ rnh2∆ mutant we can observe the signal in the gel appearing earlier than 

for the WT.  This can be best seen by comparing the 60 minute timepoints for rnh1∆ rnh2∆ 

versus the WT.  This result supports the earlier observation by flow cytometry analysis that 

double mutants show a faster S-phase transition than the WT.  As for cV, we note that cXII 

molecules enter into the gel earlier for the double mutant.  However, upon comparison of 

signals for cXII, we note a much lower signal corresponding to fully replicated cXII molecules 

for the rnh1∆ rnh2∆ mutant than for the WT and more perseverance of the well signal.  Upon 

CPT treatment, we see the gel signal earlier for cV and cXII of the WT, with a higher signal at 60 

minutes upon CPT treatment compared to non-treated cells.  This difference is not observed in 

the CPT-treated rnh1∆ rnh2∆ cells, presumably because the S-phase transition is already 

quicker.  CPT treatment may cause more nicking of the DNA, which could potentially lead to 

more strand breaks, and therefore lead to more linear molecules, explaining the apparent 

earlier entry of molecules into the gel.  Chromosomes V and XII from CPT-treated rnh1∆ rnh2∆ 
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cells also seems to be more slightly more smeared than for the WT.  Smearing observed in a 

CHEF analysis is analogous with more breakage of DNA, and would suggest more DSBs in 

genomic DNA from rnh1∆ rnh2∆ cells.  It´s also interesting to note that a large fraction of the 

cXII-probed DNA remained trapped in the wells for the RNH- mutant with or without CPT 

treatment.  This would suggest that cXII of the RNH- mutant contains structures blocking DNA 

migration, such as unresolved replication or recombination intermediates, and such structures 

could also impede the segregation of chromosomes.  Furthermore, CPT treatment led to 

problems in the resolution of cV only for the RNH- mutant. 

 

To verify these observations we performed a visual analysis of fixed cells to determine the 

percentage of large-budded cells, and we assessed the nuclear morphology of large budded 

cells using the DNA stain DAPI (Figure 35A, bottom left).  Exponentially growing cells were 

classified according to the cell cycle stage by cellular morphology, and scored as: unbudded 

(G1), small budded (S), or large budded (G2/M), in the presence or absence of CPT (Figure 35A, 

top left).  We considered nuclear material that remained solely with the mother, or was 

observed in the bud neck, as indications of problems in chromosomal segregation, in contrast 

to nuclear material observed in both sides of the large budded cell as would be expected for 

normal chromosome segregation.  The WT showed a distribution of G1, S and G2/M phase cells 

typical of an exponentially growing culture (273).  Significantly more large budded cells were 

observed for the rnh1∆ rnh2∆ double mutant, indicating the accumulation of cells that had 

replicated their DNA but had not yet undergone mitosis, and this difference was even more 

pronounced following a 3 hour CPT treatment.  By this visual analysis, we noticed that CPT 

treatment caused an increase in the number of cells in G2 and in cell size (Figures 35A and 

35B) for both the double mutant and the WT.  Interestingly, RNH- yeast cells were already 

somewhat larger in size than the WT.  Yeast cells typically measure 5-8 µm, however, a larger 

proportion of the cell population was observed to have a size above this threshold in the rnh1∆ 

rnh2∆ double mutant.  CPT treatment caused an increase in cell size for the rpa190-3 RNA PolI 

triple mutant at the permissive temperature of 23ºC, but this effect was suppressed at the 
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semi-permissive temperature of 30ºC.  Therefore, we can conclude that CPT treatment leads to 

a RNA PolI transcription-mediated increase in cell size.   

 

Figure 35. Yeast lacking RNase H activity show DNA segregation defects.A. Quantification of 
cell cycle stage by visual analysis of cell morphology (left, top).  A detailed classification of the 
nuclear material segregation phenotype of large budded cells is depicted (left, bottom). Numbers 
were derived assessing the nuclear morphology of 600 DAPI stained cells. Representative image of 
DAPI-stained wild-type and rnh1∆ rnh2∆ cells after treatment with 10µg/ml CPT (middle panel). 
Ph, phase contrast. B. Size distribution of the cell population (right panel). Cells were counted as 
below or above the size threshold of 8 µm. C. Representative image of rnh1∆ rnh2∆ Top1AID cells 
after 165 minutes in the presence of IAA. DAPI-positive bridges indicated by white arrowhead. Ph, 
phase contrast. Size bars correspond to 10µm. 

 

Importantly, fewer cells exhibited a normal segregation phenotype following CPT treatment.  

In the case of the nuclear signal at the bud neck, this increased for the WT upon CPT treatment 

from 14 to 22%, yet increased drastically more in the RNH- mutant, from 18 to 45%.  

Concomitantly the number of normally segregated cells in the CPT-treated rnh1∆ rnh2∆ mutant 

was very low, just 12%.  It is worth mentioning that DAPI-stained nuclear material can be 

observed in the bud neck of cells that do not have segregation problems, as part of a normal 

replicative cycle; however, in a normally exponentially growing population we would not 

expect such a high proportion of cells with this phenotype.  Moreover, the bud necks in the 

rnh1∆ rnh2∆ mutant in many cases were pronounced and appeared elongated (Figure 35A, 

right panel).  These results indicate that the absence of RNaseH activity leads to the formation 

of replication or recombination intermediates, which cause the cells to be held in late S/G2 

stages of the cell cycle and may impede chromosome segregation. 



   93 

When Top1 protein was depleted from G1 synchronized rnh1∆ rnh2∆ yeast, cells were able to 

progress into the G2 stage but unable to complete mitosis and re-enter the next cell cycle (see 

Figure 20A), suggesting that the persistence of RNA:DNA hybrids was responsible for the 

holding of cells in the G2 phase.  Furthermore, the majority of Top1 depleted RNH- cells were 

large budded and had extremely long necks when observed under the microscope (Figure 

35C).  Strikingly the DAPI stained nuclear material could be seen in the bud neck as a DAPI 

bridge (shown by arrowhead) connecting the mother and daughter nuclei.  Such DAPI-positive 

bridges are representative of incompletely segregated chromosomal DNA, such as hemi-

catenated sister chromatids (274) and such structures have been associated with increased to 

chromosome breakage or nondisjunction during mitosis.  Taken together our results reveal 

that persistent RNA:DNA hybrids can lead to the accumulation of replication intermediates, 

culminating in difficulties in chromosome segregation and failure to complete mitosis.   

RNH- mutants are prone to premature re-budding and apoptosis 

Cells respond to impaired chromosome segregation by a delay in cytokinesis (reviewed in 

(275)).  The fact that RNH- mutants don’t show genetic interactions with mutants affected in 

NHEJ (e.g. ku70∆; see Chapter 2, Table 1) indicates that RNaseH-dependent chromosome 

segregation defects do not lead to DNA breaks after sister chromatide disjunction.  Indeed, cells 

lacking RNaseH activity rely on HR, but NHEJ would be required to process such DNA breaks.  

In contrast to WT cells, where nocodazole treatment arrests cells at the G2/M phase of the cell 

cycle, rnh1∆ rnh2∆ cells re-initiated DNA replication without having undergone mitosis.  We 

therefore asked whether the premature DNA replication could induce apoptosis in RNH- 

mutant cells. 

Indeed, we observed a substantial loss of viability of Noc treated rnh1∆ rnh2∆ cells (Figure 

33B), which was exaggerated by prolonged treatment of cells with nocodazole (results not 

shown). In addition measurement of cellular DNA content by flow cytometry revealed a sub-

population of rnh1∆ rnh2∆ cells with a less than 1N cellular DNA content (Figure 33B, red 
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arrow), which may be due to cells undergoing apoptotic DNA degradation (276).  We 

determined the percentage of apoptosing cells by microscopic analysis of cells using methylene 

blue staining, which stains dying or dead cells with defective cell wall integrity (Figure 36A).  A 

considerable increase in positively stained cells was observed in the RNH double mutant after 

2 hours of Noc treatment; this difference was even greater after 4 hour treatment, reaching 

56% of rnh1∆ rnh2∆ cells compared to less than 5% for the WT.  In parallel we monitored DNA 

fragmentation, a typical marker of apoptosis, using DAPI staining of nuclear DNA (Figure 36B).  

The RNaseH lacking yeast had almost twice as many cells with the DAPI nuclear material stain 

disrupted into several signals as the WT, with the number of cells containing fragmented 

nuclear material increasing with the length of nocodazole treatment.   

 

Figure 36. Nocodazole treatment of RNH- mutants causes re-budding and apoptosis. A. 
Methylene blue stained cells (indicated by black arrowheads) in the representative image of the 
RNH double mutant after 2h Noc treatment (top). Size bar represents 10µm.  Percentage of 
methylene blue stained G2 cells (bottom).   B. Representative microscope image of rnh1∆ rnh2∆ 
cells with fragmented nuclei (indicated by white arrowheads). Percentage of cells with fragmented 
nuclei, as determined by visual inspection of DAPI stained cells after 2h NOC treatment. C. 
Detection of FITC-VAD-FMK positive cells by flow cytometry for the analysis of metacaspase 
activation. Representative flow cytometry profiles (top) and quantification of fluorescent intensity 
(bottom).  

 

Consequently, we analysed other features of apoptosis in S. cerevisiae.  To do so, we detected 

the amount of activated metacaspase by flow cytometry with the caspase activity indicator 
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FITC-VAD-FMK (277).  Significantly more cells with activated metacaspase were detected in 

the RNH double mutant than in WT cells (Figure 36C).  Furthermore, the production of reactive 

oxygen species (ROS), monitored by flow cytometry with the detection of H2DCFA-FITC, was 

increased 5.7 fold in rnh1∆ rnh2∆ yeast with respect to the WT (results not shown), and 

apoptosis has been reported to be preceded by an increased generation of ROS (reviewed in 

(278).  CPT treatment itself led to an increase in both the production of ROS and the activation 

of metacaspases, consistent with the reported effects of CPT in inducing apoptosis in other 

organisms (279-281).  Noc treatment held WT cells at the G2/M phase of the cell cycle, 

however, rnh1∆ rnh2∆ cells re-initiated DNA replication without having undergone mitosis, 

with an associated loss of viability caused by the activation of apoptosis.   
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DISCUSSION for CHAPTER 3 

 

Lack of RNaseH Activity Leads to Abnormal Cell Cycle Transitions at G2/M and G1/S 

Given the connection between RNaseH activity and the rDNA described in the first two 

chapters and based on the observation that S-phase transition is altered in cells lacking 

RNaseH activity, we strove to dissect how R-loops may interfere with cell cycle regulation.  We 

first observed that Sic1, a stoichiometric inhibitor of Cdk1-Clb (B-type cyclins) (282), became 

essential for viability in these mutants (see Figure 27).  Sic1 prevents cells from a premature 

entry into S-phase and its phosphorylation-induced degradation allows cells to initiate DNA 

replication (236).  Sic1 levels accumulate during mitosis and are controlled by the activity of 

the phosphatase Cdc14.  Cdc14 is constrained in the nucleolus during the cell cycle and only 

becomes activated upon nucleolar liberation in anaphase.  Cdc14 phosphatase activity causes 

the accumulation of Sic1, by dephosphorylating and activating the SIC1 transcription factor 

Swi5 (283), and by dephosphorylation of Sic1 itself, thereby stabilizing the protein (267).  

Furthermore, Cdc14 activity triggers mitotic exit inducing the degradation of mitotic cyclins 

(266,284).  Yeast lacking RNaseH activity had lower levels of Sic1 protein throughout the cell 

cycle, and the degradation of cyclin Clb2 was significantly delayed (Figure 31), indications that 

Cdc14 may not have been fully active in RNH- mutants.   

RNH- Mutants are partially defective in nucleolar Cdc14 release  

Yeast uses an elaborate mechanism to control Cdc14 activity.  At S phase entry, Cdc14 is ‘caged’ 

in the nucleolus by its competitive inhibitor Net1 (285).  Net1, a core subunit of the RENT 

complex, is a Sir2-associated nucleolar protein that stimulates transcription by RNA PolI and 

regulates nucleolar structure (286).  Indeed, the timing of Cdc14 release from the nucleolus 

occurred normally in the RNH- mutants, but fewer cells released Cdc14 (see Figure 32).  This 

finding points to the possibility that the lack of RNaseH enhances nucleolar Cdc14 retention.  

The role of Net1 in RNA PolI transcription may link R-loop formation and Cdc14 retention, 
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although such a connection still needs to be explored.  Interestingly, Net1 has been shown to 

stimulate RNA PolI transcription and to regulate nucleolar structure independently of 

controlling mitotic exit (287).  It should be noted that deletion of the NET1 paralogue TOF2 has 

been shown to have synthetic genetic interactions with TOP1 and HPR1 (288,289).  

Interestingly, R-loop formation is stimulated in cells lacking Top1 or Hpr1 (19,60) but we could 

not detect a genetic interactions between RNH and TOF2 suggesting that Tof2 may not be 

involved in rDNA-dependent R-loop processing. 

Apart from its role in the cyclin B proteolysis, Cdc14 is required for the localization of the 

condensin complex to rDNA to resolve the sister chromatids held together at the rDNA loci 

(265).  When released by the FEAR pathway, active Cdc14 was required for the proper 

targeting of condensin to rDNA during anaphase (290).  Perhaps, a critical level of active Cdc14 

is required to complete sister chromatid separation.  It would be very interesting to address 

whether the localization of the condensin complex to rDNA is affected in the RNH- cells, and if 

mis-localized condensin could be related to a defect in sister chromatid decatenation.  Also of 

interest to this study are reports that the polo-like kinase Cdc5 promotes the nucleolar release 

of Cdc14 by stimulating the degradation of Swe1, and high levels of Swe1 were shown to 

impair FEAR activation (291).  In Chapter 2 of this thesis, we found the triple mutant with swe1 

to be viable and have large sized spores; furthermore, the triple mutant suppressed the CPT 

sensitivity of the RNH- cells (see Table 1).  Therefore, it might be worthwhile monitoring the 

timing of Cdc14 nucleolar release in the swe1 triple mutant, to see whether Cdc14 release is 

normalized in the absence of Swe1 activity.   

A further role of Cdc5 in yeast is to regulate sister chromatid separation by phosphorylation of 

the cohesin subunit Scc1 (292).  For successful chromosome segregation, cohesion complexes 

must be removed by separase (293), and as sister chromatids are frequently catenated or 

connected by hemicatenates (274), these structures must also be resolved before migration of 

duplicated genetic material into the daughter cell.  The Structural Maintenance of 
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Chromosomes complex Smc5-Smc6 plays a key role in cohesin functions (294), and the rDNA 

has been shown as a major binding site for the Smc5-Smc6 complex (295).  Furthermore, 

Smc5-Smc6 may contribute to the accurate restart of RFs after pausing (296) and we observe 

frequent RF pausing across the rDNA locus in yeast cells lacking RNaseH activity.  Therefore, it 

would be interesting to investigate whether there is a defect in cohesin binding at the rDNA 

locus and to elucidate the impact of deletion of Smc complex members on the segregation of 

chromosomes in RNH- yeast.  Moreover, as smc5-smc6 mutants could enter anaphase before a 

complete DNA replication of the rDNA array (296), it would be particularly interesting to see 

how deletion of Smc complex members would affect the cell cycle progression of yeast lacking 

RNaseH activity.   

Separase is activated when securin is targeted for degradation by a ubiquitin ligase, the 

anaphase promoting complex/cyclosome (APC/C) (for a review see (297)).  Notably, Cdc14 is 

required to dephosphorylate Cdh1, and this event is needed to trigger APC activation.  An 

alternative possibility for the defective chromosome segregation observed in yeast lacking 

RNaseH activity, may be that the lower levels of nucleolar released Cdc14 are not sufficient to 

activate the APC/C.  A read-out to test for this possibility would be to look at Cdc20, an 

activator of the APC (117) and see whether the APC is effectively activated in yeast lacking 

RNaseH activity.   

Persistent R-loops Impede Chromosome Segregation 

Christman et al. found that cXII, and specifically the presence of the rDNA locus impeded the 

complete segregation of replicating chromosomes of top1Δ yeast (298).  Moreover, it had been 

found that rDNA segregation in the absence of Cdc14 takes place if rRNA genes were not 

transcribed (299) and high rates of RNA PolI transcription have been reported to impede rDNA 

segregation by promoting the establishment of rDNA linkages (300).  In this chapter we 

describe that persistent RNA:DNA hybrids can lead to unresolved replication or recombination 

intermediates, which prevent cells from exiting mitosis.  Intrinsic segregation problems were 
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specifically observed for the rDNA-harbouring chromosome XII of yeast lacking RNaseH 

activity (Figure 34).  Furthermore, the incompletely segregated chromosomal DNA of the RNH- 

mutant cells was evident as DAPI-positive bridges in pronounced and elongated bud necks 

connecting the mother and daughter nuclei (see Figure 35).  A consequence of such events may 

be increased chromosome breakage or non-disjunction (the failure of the normal separation of 

chromosomes to opposite poles during nuclear division), and indeed RNH- mutants suffer from 

an elevated loss of heterozygosity (LOH), and a significant increase in spontaneous DNA 

damage (see Figure 12).  It remains to be determined whether the DNA in these bridges is in 

fact rDNA.  However, the LOH observed in yeast lacking RNaseH activity corresponded to 

chromosome III, at a non-rDNA locus, and such LOH could be attributed to the loss of 

chromosome III due to defective chromosome segregation.  Likewise, we show that CPT 

hinders the segregation of chromosome V (see Figure 34), further evidence that persistent R-

loops impede chromosome segregation.  Similar anaphase chromosome bridges have been 

observed in yeast mutants lacking condensin or Topoisomerase II (Top2) (301), and are also a 

feature of solid tumours in humans (302,303).  The yeast Rnh203 accessory subunit physically 

interacts with Top2 (304), raising the possibility that the Rnh2 complex might direct Top2 to 

R-loop associated anaphase chromosome bridges.  The ‘so-called’ NoCut checkpoint has been 

suggested to delay cytokinesis in response to impaired chromosome segregation (305).  NoCut 

inhibits completion of cytokinesis in the budding yeast top2 mutant (reviewed in (306)).  Thus, 

if the correct targeting of Top2 activity is constrained in RNH- mutants it is conceivable that the 

NoCut checkpoint is activated in order to delay cytokinesis.   

RNH- mutants are prone to premature re-budding and apoptosis 

We noted that RNH- cells re-bud and initiated DNA replication without having completed 

chromosome separation (Figure 33).  These events were associated with a loss of viability 

caused by the activation of apoptosis.  Interestingly, fewer cells exhibited rebudding when RNA 

PolI transcription was down-regulated (Figure 27), suggesting that a high rate of transcription 
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at the rDNA locus leads to segregation defects in the RNH- mutant, that cause mitotic arrest.  

CPT-mediated DNA damage has been reported to lead to an increased ROS production and 

increased apoptosis (280,281,307), however, there are no reports to our knowledge that such 

increases are related to R-loops.  The uncoupling of DNA replication from the cell cycle, such as 

an inappropriate activation of S phase, can contribute to apoptosis (277).  On the other hand, 

R-loops could induce apoptosis by causing chromosome segregation constrains, and at the 

same time by interfering with checkpoints that would normally restrain subsequent cell cycle 

events such as M/G1 or G1/S phase transition.  It is worth noting that the Polα-primase itself 

undergoes cell cycle-dependent phosphorylation and dephosphorylation, becoming 

phosphorylated and activated early in S phase and dephosphorylated while cells exit from 

mitosis (308).  As such events depend upon a functional Cdc28 complex (309), the mis-

regulation of cyclins observed in yeast lacking RNaseH activity could allow the primase 

complex to still be active during G2/M stages of the cell cycle, thus permitting TIR and/or re-

replication events.   

R-loop-Mediated Replication Cannot By-Pass the Need for Canonical Origin Firing 

Low Sic1 levels are associated with premature S phase entry and problems in M/G1 transition, 

both phenotypes that we identified in yeast lacking RNaseH activity.  Premature S-phase entry 

could also be attributed to genomic, R-loop dependent DNA replication initiation.  To gain more 

insight into this possibility, we tested if the need for Cdc6 and Cdc7 is bypassed in RNH- cells. 

CDC6 codes for an essential component of the pre-replicative complex (pre-RC) needed to load 

Mcm2-7 at origins of replication (239), while CDC7 codes for the kinase, whose 

phosphorylation of Mcm2-7 is required for origin firing (4).  Both genes are essential for 

replication initiation and cell viability, and their absence caused lethality in a RNH- strain 

background.  Surprisingly, temperature sensitivity at 30°C of the cdc7-4 allele was alleviated in 

cells lacking RNaseH activity (Figure 28).  In contrast to the CPT-resistant cdc7-4 allele, cdc7∆ 
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cells carrying a mcm5-bob1 mutation were CPT-sensitive, which may be related to the dual 

function of Cdc7 in replication initiation and post-replicative repair (243).   

Critical Role of the MRC1-Complex in Yeast Lacking RNaseH Activity  

A key finding from this study was the observation that the MRC1-complex is required for 

viability and CPT-resistance in yeast lacking RNaseH activity (see Figure 29).  We find that 

RNH- mutants were sensitive to the microtubule destabilizing drug benomyl; however the 

spindle assembly checkpoint was not activated.  Interestingly, mutants in mrc1, csm3 or tof1 

are described as benomyl sensitive (256) and it was shown that cells with chromatid cohesion 

defects, such as Ctf8-RFC complex mutants are also sensitive to benomyl (310).  The mrc1 

simple mutant was not CPT sensitive, suggesting that CPT itself does not affect cohesion, 

however in combination with the lack of RNaseH activity, the triple mutant was in many cases 

synthetic lethal, and extremely sensitive to CPT.  Although Mrc1 function is mainly related to 

replication fork stabilization in response to replicative constrains (224,247), these 

observations suggest that the critical role of the MRC1-complex in yeast lacking RNaseH 

activity may be related to cohesion functions.  Indeed, the human Timeless-Tipin (Tof1-Csm3) 

were shown to co-purify with cohesion subunits (311), and the Tof1 orthologue in C. elegans, 

Tim1, is required for proper chromosome cohesion and segregation (312).  Consequently, it 

will be interesting to examine the contributions of the cohesin subunits to the viability and 

chromosome segregation phenotypes of yeast lacking RNaseH function.   

The MRC1-complex may also contribute to stabilize rDNA replication (313).  Mrc1 itself can be 

phosphorylated by Hog1 in response to osmotic stress (250).  This osmotic stress induced S-

phase checkpoint acts to prevent conflicts between DNA replication and transcription (250).  

In a similar fashion, Mrc1 could be required to co-ordinate replication through the rDNA in 

RNH- mutants.  Mrc1 has been shown to induce a replicative checkpoint, leading to 

phosphorylation by Rad53 in response to replicative stress (109).  However, we find that 

neither the loss of RNaseH activity, nor CPT treatment is sufficient to activate Rad53 
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phosphorylation.  CPT does not affect S phase progression in WT or RNH- cells, although, it 

does provoke a delay in G2/M phases of the cell cycle, suggesting that CPT lesions are not 

sensed as DNA lesions during S-phase progression.  Mec1 is a master protein in the checkpoint, 

acting upstream of Mrc1.  It was therefore interesting, given the important genetic interaction 

of the RNaseH enzymes with Mrc1, to observe in Chapter 2 that the mec1sml1 quadruple 

mutant was viable, although spores were smaller in size and more sensitive to CPT than the 

RNH double mutant (see Table 1).  This result supports that the important role of Mrc1 in 

maintaining the viability of yeast cells lacking RNaseH activity is not related to the Rad53-

dependent replicative checkpoint.   

Loss of RNaseH Activity Does Not Activate the Rad53-Dependent S-phase Checkpoint 

Finally, it is interesting to note that yeast lacking RNaseH activity suffer from increased DNA 

damage (see Chapters 1 and 2), yet RNH- cells did not activate the Rad53-dependent S phase 

checkpoint.  This finding is in contrast to yeast hpr1 mutants, which also have been shown to 

accumulate R-loops, leading to a constitutive activation of the Rad53-signalling pathway (314).  

On the other hand, hpr1 mutants required a functional S-phase checkpoint but not DSB repair 

for survival (314), while DSB repair is critical for the viability of RNH- mutants even in the 

absence of exogenous stress.  Both, hpr1∆ and rnh1∆ rnh2∆ show a genetic growth defect with 

top1∆ (60,288,289).  However, Hpr1 and RNaseH may have a more specialized role in the 

avoidance of R-loop formation in genomic or rDNA, respectively.  

RNaseH Enzymes Play A Critical Role in Preventing Aneuploidy  

As detailed in Chapter 1, the RNaseH and Top1 enzymes play key roles in protecting the 

eukaryotic genome by preventing unscheduled TIR events mediated by R-loops, with 

particularly important repercussions on genome instability and cancer.  We also highlight the 

criticality of RNaseH activity in preventing non-disjunction, a major causative factor for 

aneuploidy, one of the most common characteristics of human tumours (315).  It remains to be 
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determined whether the aberrant segregation of chromosomes in the RNH- mutants observed 

in this study are the cause of defects in chromosome cohesion or condensin activities.   
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6. CONCLUSIONS 

 

Chapter 1 

1. Chemical (CPT) or degron-mediated depletion of Top1 activity promotes R-loop 

formation and induces cell death in RNaseH lacking yeast. 

2. R-loops promote the formation of unscheduled origin-independent replication 

intermediates indicative of transcription-induced replication (TIR) in ribosomal DNA 

at late S/G2 of the cell cycle.   

3. Replication by TIR paused at sites of protein-DNA interaction, which points to the 

possibility that TIR is driven by non-canonical replication machinery.  

4. TIR is RNA PolI transcription-dependent.  

 

Chapter 2 

5. The homologous recombination (HR), post-replicative repair (PRR), break-induced 

repair (BIR) and nucleotide excision repair (NER) pathways are required for viability 

or are essential to combat the genotoxic constrains in CPT-treated RNaseH lacking 

cells.   

 

6. Transcription-coupled repair (TCR), a NER sub-pathway may play a prominent role in 

the repair of CPT damage in RNaseH mutants.   

 

7. The genotoxic effects of CPT-treatment can be enhanced or alleviated by alterations in 

the structural integrity of rDNA or by down-regulation of RNA PolI transcription, 

respectively.    

 

8. TIR is not dependent on Rad18, Rad51 or Srs2 activities. 
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Chapter 3 

 

9. RNaseH H- cells enter prematurely into S-phase, making Sic1 essential to maintain 

viability in the absence of RNaseH activity. 

 

10. R-loops cannot bypass the need for Cdc6 and Cdc7 in genome replication but partially 

alleviate the temperature sensitive phenotype of the cdc7-4 mutation. 

 

11. The MRC1-complex is required to combat the R-loop induced constrains in a Rad53-

independent manner.  

 

12. R-loop dependent alterations in nucleolar organisation constrain nucleolar Cdc14 

release. 

 

13. Constrained Cdc14 activity precedes the mis-regulation of Clb2 (up) and Sic1 (down) 

protein levels. 

 

14. R-loops constrain chromosome segregation and lead to the formation of ‘chromosome 

bridges’. 

 

15. R-loop-mediated chromosome segregation defects are not monitored by the spindle 

assembly checkpoint (SAC). 

 

16. R-loop dependent replication and chromosome segregation constrains induce 

apoptotic events. 
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7. MATERIALS & METHODS 

1. MEDIA 

 

1.1 Bacterial media 

 

LB: (Lysogeny broth): 0.5% yeast extract, 1% tryptone and 1% NaCl, adjusted to pH 7.0.  

LB+Amp: LB media supplemented with 80 g/ml of ampicillin (Sigma). 

For solid media 2% agar is added. 

1.2 Yeast media 

 

YPAD: 1% yeast extract, 2% peptone, 2% glucose supplemented with 20mg/l of adenine.   

YPAG: 1% yeast extract, 2% peptone, 3% glycerol supplemented with 20mg/l of adenine. 

S: synthetic minimal medium, 0.17% YNB, 0.5% ammonium sulphate, that can be 

supplemented with different carbon sources, and with amino acids (leucine, tryptophan, 

histidine, methionine, lysine, aspartate, threonine, adenine and uracil) added to the final 

concentration as described by (316).   

SC: S media supplemented with 2% glucose and amino acids.   

SD: S media supplemented with 2% glucose (no amino acids).   

SGL: S media supplemented with 3% glycerol, 2% lactate and amino acids.   

SGAL: S media supplemented with 2% galactose and amino acids.   

SC+FOA: S media supplemented with 500mg/ml of 5-Fluorotic acid (5-FOA) and amino acids.  

Uracil was added at half the usual concentration.  

Sporulation media (SPO): 1% potassium acetate, 0.1% yeast extract, 0.005% glucose, 

supplemented with half the usual amount of each amino acid as used for SC media. 
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2. STRAINS AND GROWTH CONDITIONS 

 

2.1 Escherichia coli strains 

DH5 : F´  ∆lacU169  Φ80 lacZ∆M15  supE44  gyrA96  recA1  relA1  endA1  thi-1  hsdR17 (317).  

2.2 Saccharomyces cerevisiae strains 

The genotypes of all yeast strains used in this thesis are indicated in Table 2.  Yeast strains 

used in this study were derived from the YKL83 strain (124), based on W303-1a, unless 

otherwise stated.  If not generated by a direct knock-out in the YKL background, mutant strains 

were backcrossed at least twice to the YKL83 strain background.  Gene deletions were 

constructed by PCR-based methods using various template plasmids: pFA6a-kanMX6 (318), 

pAG32-hphMX4 (Euroscarf), pAG25-natMX4 (Euroscarf) and pFA6a-klLEU2MX6 (kindly 

provided by B. Pardo).  Deletion mutants were verified by Southern blot, or by PCR analysis 

from genomic DNA preparations with primers complementary to sequences within the gene 

cassette and upstream of the disrupted gene locus.  All experiments were performed with 

several meiotic segregants of the same genotype to ensure they behaved similarly.   

 

Meiotic segregants from crosses with the pif1-m2 strain were confirmed by PCR from genomic 

DNA using the forward primer with sequence: TGTAATATTATCCATTGAGC, and reverse 

primer: TATCATTTCCAAACTTCTCT.  The resulting 620bp band was digested with XhoI as the 

mutation creates a novel XhoI site.  To detect whether crossed strains were wild-type RAD5 or 

rad5-535, PCR was performed from genomic DNA with the forward primer: 

GCAGCAGGACCATGTAAACG, and reverse primer: AAACTCGTTACTCCACTGCG.  The resulting 

PCR fragment was digested with MnlI, as the mutation creates an additional MnlI site. 

Digestion of WT RAD5 PCR products leads to two fragments of 155 and 182bp, or three 

fragments of 155, 120, and 62 bp for digested rad5-535 PCR products, separated on a 3% 

agarose gel, respectively.   
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2.3 Genetic analyses 

Some strains were generated by genetic crosses, using standard methods. Parental strains 

were crossed on solid YPAD, diploids were selected and sporulated on SPO media for 4-5 days.  

Tetrads were dissected in a Singer MK1 micromanipulator (Singer LTD) after treatment with 

2mg/ml zymolyase 20T (USBiological) for 3 min.  The genotype was determined by replica 

plating on different selective media and the sex was determined by the ability to mate with the 

reporter strains F4 (a) and F15 (α).   

2.4  Growth conditions 

The rpa190-3 and rrn3-8 RNA PolI temperature-sensitive mutants, used in Chapter 1, are 

unable to grow at 37ºC.  Experiments were performed at the permissive or semi-permissive 

temperatures of 23ºC and 30ºC, respectively.  Growth of the cdc7-4 strain is blocked in G1 

phase at 37ºC.  Experiments were performed at the permissive or semi-permissive 

temperatures of 23ºC and 30ºC, respectively.  All other experiments were performed at 30ºC 

unless otherwise stated.  

2.5 Degron strains 

An auxin-inducible degron (AID) strain was created to control the protein levels of Top1, in 

order to produce a conditional triple mutant with rnh1∆ rnh2∆.  The AID system, developed by 

Kohei Nishimura et al., involves a plant-specific mechanism that responds to the plant hormone 

auxin (155) (Figure 37).  Auxin binds to the transport inhibitor response 1 (TIR1) protein and 

promotes the binding of the SCF (Skp1, Cullin and F-box protein) complex.  The SCF in turn 

recruits the E3 ubiquitin ligase and polyubiquitinates the SCFTIR1, targeting it for degradation 

by the 26S proteasome.  Expressing the TIR1 protein in yeast cells, which can assemble a 

functional SCFTIR1 complex due to the conserved nature of the Skp1 protein (319), permits the 

degradation of the protein of interest tagged with the auxin-binding domain, upon the addition 

of auxin.  
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The AID degron system was crossed into the rnh1∆ rnh2∆ strain, to create strain RS315 

expressing TIR1 under control of the constitutive ADH promoter.  The Top1 protein was tagged 

at the C-terminus with the IAA17 auxin-binding domain, which was amplified by PCR from the 

plasmid pKan–AID*–9myc (320) (see Table 3 for a list of plasmids used in this thesis) using 

primers specific for the protein of interest, and included the gene for GEN resistance.  

Subsequently, the rnh1∆ rnh2∆ degron-containing strain RS315 was transformed with the 

respective PCR products, and positive candidates were selected by growth on plates containing 

HYG, NAT and GEN.  The functionality of the aid strain was confirmed by halo assays, drop tests 

and Western blot analysis against the 9Myc tag.  

 

 
Figure 37. Schematic illustration of the auxin inducible degron (AID) system. Adapted from (155). 

 

3. TRANSFORMATIONS 

3.1 Transformation of bacteria 

Competent bacterial cells were prepared using the method of Hanahan et al. (317), modified by 

Inoue et al. (321).  100μl of competent cells were mixed with 50-100ng of DNA and incubated 

on ice for 30 min, then cells were subjected to heat-shock at 42ºC for 1 min followed by 1 min 
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on ice. 600µl of LB media was added and cells were incubated at 37ºC for 45 min.  Finally, cells 

were collected and plated on LB+Amp.   

3.2 Transformation of yeast 

Yeast cells were transformed according to the method described by Ito et al. (322) and 

modified by Gietz et al. (323).  30ml of cells growing in YPAD to an OD600 0.4-0.6 were collected 

and washed with sterile water.  Cells were then washed with 100mM LiAc and a 

“transformation mix” added, consisting of 240μl 50% PEG3350, 36μl LiAc 10M, 5μl SS-DNA 

(10mg/ml) and 0.1-10μg DNA.  Cells were vortexed vigorously to mix and incubated at 30ºC 

for 30 min, followed by a heat-shock at 42ºC for 20 min.  Finally, cells were washed with sterile 

water and plated on selective medium.   

3.3 Plasmid isolation from E.coli cells 

Plasmid DNA was extracted from 1.5 ml of an overnight culture growing in LB+Amp at 37ºC.  

The isolation was performed with the boiling method described by Holmes and Quigley (324). 

3.4  Yeast DNA extraction 

Yeast genomic DNA was extracted according to the yeast DNA miniprep protocol described by 

Amberg et al. (325).   

 

4. VIABILITY ASSAYS 

4.1 Growth rate determination 

The optical density is proportional to the number of cells, and therefore the growth rate of 

yeast strains (represented as the doubling time) can be quantified by monitoring the change in 

optical density at 600nm.  Yeast strains were grown overnight to stationary phase.  Cells were 

diluted in fresh YPAD to an OD600 of 0.1, and the OD was taken every hour.  Optical density was 

plotted as a function of time on a semi-log scale.  
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4.2 Viability assays 

Viability and sensitivity to genotoxic agents were determined by drop test assays.  Yeast cells 

were adjusted to an initial OD600 of 0.4, then serially diluted 1:10 and spotted onto plates with 

or without different genotoxic agents at the indicated concentrations.  Plates were incubated at 

30ºC for 3 days, except for temperature-sensitive mutants that were incubated at the 

corresponding permissive or semi-permissive temperatures. 

For UV irradiation, cells were serially diluted and spotted onto YPAD plates, irradiated with 50 

or 100 J/m2 UVC light in a UV-Mat (Dr. Gröbel UV-Elektronik GmbH) irradiation chamber, and 

incubated in the dark at 30°C for 3 days. 

4.3 Survival assays 

A sample of exponentially growing cells was taken from a liquid YPAD culture and plated on a 

YPAD plate – this point was considered as time 0.  At time point 0, 10µg/ml CPT was added to 

the medium and cells were incubated for 24 hours, with appropriate dilutions to maintain cells 

in the exponential phase of growth.  At determined time points, cells were taken from the 

population and plated onto YPAD plates.  Cells were counted after 3 days growth, and 

presented as the percentage of surviving cells, with respect to time 0, set as 100% survival.      

4.4 Halo assays 

To confirm whether a yeast strain is bar1Δ, or to confirm the functionality of an aid degron 

strain, 100µl of cells at OD600 0.2 were streaked over the surface of a YPAD plate to create a 

lawn.  Once dry, a sterile filter paper disc was laid onto the plate surface, and 2 µl of either α-

factor or IAA was dropped onto it.  A halo, or clearing in the lawn of cells around the paper 

circle containing α-factor or IAA was observed if cells were bar1Δ or if cells contained the 

functional aid degron system, respectively (Figure 38).  
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Figure 38.  An α-factor halo assay to test for bar1Δ phenotype of a yeast strain. 

 

 

4.5 Cell size distribution 

 

The size distributions of various yeast strains were analyzed using the COULTER COUNTER® 

Cell and Particle Counter (Beckman Coulter). The proportion of cells above or below the size 

threshold of 8 µm was determined.   

 

5. RECOMBINATION AND MUTATION ASSAYS 

5.1 A-like faker assay (ALF) 

The formation of a-mating cells from MAT  strains was scored as described (132) with some 

modifications.  Briefly, MAT  strains were grown on YPAD plates for three days to obtain 

single colonies.  A-like faker cells were selected by growing on YPAD plates overnight at 30ºC. 

Cells were then transferred onto a mating tester lawn of MAT  (F15 strain) by replica plating 

followed by incubation at 30º overnight.  The mated lawn was then replica plated to SD 

medium and mated products were counted. Total cells were grown on YPAD plates.  ALF 

frequency was calculated as mated products/total cells.  Each ALF frequency value was 

obtained by the mean of at least two different fluctuation tests of four independent colonies 

each.  Data are shown as the mean ± standard deviation.  Differences between groups were 

examined by Student’s t-test. 
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5.2 Interrupted LEU2 recombination assay 

Cells were transformed with the pRS314LB direct repeat recombination system (326) (Figure 

39). This plasmid carries the TRP1 selectable marker, and an interrupted LEU2 coding 

sequence (interrupted by 31bp of sequence).  Yeast strains were grown on solid SC media 

containing all amino acids for 3 days at 26ºC.  Single colonies were re-suspended in water and 

serial dilutions plated onto SC lacking tryptophan and leucine as fluctuation assays.  

Recombination frequencies were obtained by comparison to the total number of colonies 

obtained on SC lacking tryptophan plates.  Each recombination or mutation value was obtained 

as the mean value of three different fluctuation tests and each fluctuation test represents the 

median value of 6 independent colonies.  The fold change numbers represent the rate relative 

to WT, which was expressed as 1.  Values are expressed as the mean ± standard deviation (SD). 

Significance values (p) were obtained following Student´s t test for pairwise comparisons of 

data. 

 

    
  

 

 

 

Figure 39.  Plasmid pRS314LB direct repeat 

recombination system, which contains the LEU2 coding 

sequence interrupted by 31bp of sequence.  The 

chromosomal leu2-k::ADE2-URA3::leu2-k recombination 

system.  

 

 

5.3  Ribosomal DNA recombination assay 

 

Strains were crossed with leu2-k::ADE2-URA3::leu2-k harbouring strains (146) in order to 

express the intra-chromosomal recombination system (Figure 39).  Prior to recombination in 

the rDNA, cells are URA3+ and therefore are sensitive to 5-FOA.  URA3 and ADE2 markers are 

lost when recombination occurs between the two flanking mutated LEU genes, and cells are 

KKMM8844 
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now resistant to 5-FOA.  Strains containing the chromosomal system were first streaked onto 

SC plates lacking adenine and uracil for 2 days, and then streaked onto SC plates supplemented 

with all amino acids for a further 2 days.  Fluctuation tests were performed as previously 

described, with serial dilutions plated onto SC lacking uracil to score totals, and onto SC+FOA 

plates to score recombinants.   

 

5.4 Laur mutation assay 

 

Mutation frequencies were determined from cells transformed with the pCM184-LAUR 

plasmid (134).  Fluctuation tests were performed as previously described, with serial dilutions 

plated onto SC lacking uracil to score totals, and onto SC+FOA plates to score mutators.   

 

5.5 Canavanine mutation assay 

 

Forward mutation frequencies of nuclear DNA were obtained by fluctuation test as previously 

described, comparing the number of colonies growing on SC-Arg plates (SC media lacking 

arginine) containing 60mg/ml canavanine to the total number of colonies obtained on SC.   

 

6. CELL CYCLE SYNCHRONIZATION AND PROGRESSION ANALYSIS 

6.1 Alpha factor synchronization 

 

Cell cycle progression was determined by measuring DNA content using flow cytometry.  MATa 

yeast recognize the presence of alpha factor (α-factor), and respond by growing protrusions 

known as schmoos, and halt cell growth in the G1 phase of the cell cycle.  Following release 

from α-factor, the synchronized population of cells continues to grow.   

For G1 synchronization, cells were grown to OD600 0.4 in YPAD medium and synchronized by 

incubation with 1μg/ml α-factor (Biomedal) for 90 minutes. An additional 1μg/ml α-factor was 

added for a further 90 minutes.  Cells were released from α-factor treatment by washing three 

times in pre-warmed, fresh YPAD medium.  For the G1 synchronization of bar1Δ cells, which 

are more sensitive to α-factor than BAR1 strains, a lower concentration of 0.3μg/ml was used.  
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Since bar1Δ yeast lack expression of the aspartyl protease that cleaves and inactivates α-factor, 

cells were released by washing three times in pre-warmed, fresh YPAD medium containing 

0.1mg/ml Pronase E (Sigma).   

6.2 Flow cytometry analysis of cell cycle progression 

Following α-factor synchronization and release, samples of 1ml were taken at indicated times, 

fixed in 70% ethanol and stored at -20ºC for analysis by flow cytometry.  Samples were washed 

in 1x PBS (see Appendices for buffer compositions) and then resuspended in 1x PBS containing 

5μg/ml propidium iodide, following RNase A (1mg/ml) overnight treatment.  Cell doublets 

were separated by brief sonication and cell cycle progression was analyzed by flow cytometry 

using a FACSCalibur (Becton Dickinson) with CellQuest software.   

6.3 Nocodazole synchronization 

For flow cytometry analysis of the release from nocodazole synchronization, cells were grown 

to OD600 0.4 in YPAD medium, and synchronized in G2 phase of the cell cycle by incubation with 

15µg/ml nocodazole for 90 minutes, with 1% DMSO added to aid dissolution.  Cells were 

washed and released in pre-warmed, fresh YPAD medium. 1ml samples were taken at specified 

time points following release and fixed in 70% ethanol at -20ºC for later analysis by flow 

cytometry.  

For analysis of rebudded cells, yeast strains were grown to OD600 0.4 in YPAD medium and 

synchronized, as previously described, with α-factor.  Cells were released in pre-warmed, fresh 

YPAD medium in the presence of 15µg/ml nocodazole and 1% DMSO.  1ml samples were taken 

at specified time points and fixed for flow cytometry analysis as previously described.  

Nocodazole was added every 60 minutes during the incubation.   
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6.4 Induction of AID degron strains 

Cells were grown to OD600 0.4 in YPAD medium and synchronized in G1 as before.  In the last 

30 minutes of α-factor incubation, 5µM IAA was added to the medium to induce degradation of 

the aid-tagged protein.  Cells were released into fresh YPAD medium and samples were 

collected for FACS cell cycle progression analysis, protein extraction for Western analysis, and 

genomic DNA extraction for 2D-gel.   

7.  SOUTHERN BLOT ANALYSIS OF DNA FRAGMENTS  

 

7.1 Genomic DNA extraction 

10ml of cells growing in YPAD to OD600 1 were collected and washed.  Cells were spheroplasted 

by incubation in 320µl spheroplasting buffer (see Appendices for buffer compositions) 

containing 150μg/ml zymolyase and 1% (v/v) β-mercaptoethanol at 37°C with occasional 

mixing for 60 min.  Following centrifugation at 13,000rpm for 30 seconds, the pellet was 

resuspended in 370µl cocktail gently buffer.  A volume of 16μl 10% SDS was added, the mix 

gently agitated and incubated at 65°C for 30 min, followed by the addition of 85μl 5M 

potassium acetate with incubation with on ice for 1h.  After centrifugation for 15 min at 13,000 

rpm, the supernatant was transferred to a new tube and DNA was precipitated with 1.2ml 96% 

ethanol for 30 minutes at -20ºC.  The pellet, following 10 min centrifugation at 13,000rpm, was 

resuspended in 300µl TE containing 0.1mg/ml RNase A and incubated at 37°C for 30 min.  

200µl of phenol and chloroform were added and well mixed, and the upper phase was carefully 

transferred into a new Eppendorf tube following 5 min centrifugation at 13,000rpm.  DNA was 

precipitated with 1ml 96% ethanol and 120μl NaCl 2.5M followed by centrifugation at 

13,000rpm for 10 minutes, and a 500μl 70% ethanol wash of the pellet.  The dried pellet was 

finally resuspended in 30μl TE.  The purified DNA was digested for 5 hours with the 

determined restriction enzyme and loaded onto a 0.8% TAE-buffered agarose gel.  

Electrophoresis was carried out without ethidium bromide at 2 V/cm for 30h.  .  
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7.2 Alkaline DNA transfer 

Following separation of DNA fragments by electrophoresis, gels were treated with 0.25M HCl 

for 10 min, washed with water and then incubated with denaturation buffer for 30 min.  DNA 

was transferred to nylon membrane Hybond XL (Amersham) by capillary action in 

denaturation buffer for 12-16 h.  After UV-crosslinking (70 mJ/cm2), membranes were washed 

briefly with 2X SSC buffer and allowed to air-dry.   

7.3 DNA hybridization 

Membranes were hybridized with various radioactive DNA probes.  For α32P-dCTP labelling, 

100ng of denatured DNA was mixed with 1mM random hexanucleotides, 0.5mM dATP, dGTP 

and dTTP, 25μCi α32P-dCTP and 2U of Klenow DNA polymerase.  The mix was incubated at 

37ºC for 1h and non-incorporated radioactive nucleotides were then removed by using a G50-

Sephadex column.  Membranes were pre-incubated at 65ºC for 30 min in hybridization 

solution with constant rotation.  Hybridization was performed at 65ºC for 12-16 h in 10-15ml 

hybridization solution containing the radioactive probe, previously denatured at 100ºC for 5 

min. Following hybridization, unbound probe was washed off the membrane during two 

washes of 30 min at 65ºC using 50ml wash solution.  For re-hybridization, probes were 

stripped off the membranes by washing three times with 500ml boiled stripping solution for 

15 min.   

7.4 Signal quantification 

Radioactive signals were detected by exposure of the membranes on PhosphorImager screens 

(Fuji) that were scanned by a PhosphorImager FujiFilm FLA 5100.  Quantification of the signal 

was performed with the Image Gauge software (Fuji).   

7.5   Analysis of extrachromosomal rDNA circles 

For separation of ERCs, about 1µg CTAB-extracted genomic DNA from exponentially growing 

cells was digested with 15U BamHI in 20 μl of 1x buffer for 6hrs at 37°C and separated by gel 
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electrophoresis in 0.6% TBE-buffered agarose gel at 2 V/cm for 30hrs.  ERCs were detected by 

hybridization with ribosomal probe A, following alkaline transfer to Hybond XL (Amersham) 

membrane.  ERC levels were normalized against the rDNA repeat and expressed as fold change 

relative to the amount of ERCs in WT cells. 

 

8.   BI-DIMENSIONAL AGAROSE GEL ELECTROPHORESIS (2D-GEL) 

2D-gel first separates restriction-digested RIs by mass (1st dimension), and the 2nd dimension, 

performed in the presence of ethidium bromide (EtBr), separates molecules by their three-

dimensional shape.  When a linear DNA molecule (n) is replicated, it progressively doubles in 

mass until reaching a fully replicated linear molecule (2n), and will adopt various bubbled or 

branched structures in the process, depending on where the closest site of replication initiation 

is located (Figure 40).  Following transfer onto a membrane, replication across the DNA 

fragment of interest can be detected using specific probes. 

 

 

Figure 40. Schematic representation of two-dimensional gel analysis (2D-gel). The types of 

replication intermediates (RIs) that can be detected, include: bubble arcs, corresponding to an 

active origin within the fragment; simple Y arcs, which represent passive replication from an 

outside origin by a single replication fork entering from one end of a restriction fragment; and 

spikes above the 2n spot, which correspond to X-shaped molecules such as almost fully replicated 

molecules, converged forks and recombination hemicatenates. The n spot represents non-

replicating linear molecules. Information adapted from (327).  

 

In order to monitor RI formation by 2D-gel, cells were released from α-factor synchronization 

into minimal medium lacking adenine.  Work by Aiko Matsui et al. demonstrated that removal 
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of essential nutrients can slow progression through the yeast cell cycle (328).  We observed 

that entry into S-phase was specifically delayed in the RNH double mutant when released into 

minimal medium lacking adenine, but not into medium lacking other amino acids, such as 

leucine or tryptophan (Figure 41).  This delay helped to ensure that CPT was efficiently taken 

up by the cells upon α-factor release. It is interesting to note that only rnh1∆ rnh2∆ mutants 

cannot proceed through S-phase in the absence of Trp, because Trp has been shown to act as a 

Top1-DNA anchor (329). 

 

 

Figure 41. FACS showing synchronization in SC and release into SC, SD-Leu, SD-Trp or SD-Ade.  

 

Cells were synchronized in G1 with α-factor and released into minimal medium lacking 

adenine and containing 10µg/ml CPT.  100ml samples were retrieved at the specified time 

points following release (in minutes) and cooled down on ice.  To each sample, 0.1% sodium 

azide (final concentration) was added, since sodium azide immediately stops DNA replication 

(327).  

Following centrifugation, cells were washed with cold water and resuspended in 2.4ml 

spheroplasting buffer and incubated for 20 min at 30ºC, followed by a 30 min incubation at 

37ºC.  Spheroplasts were collected by centrifugation and the cell pellets were carefully 

resuspended in 1.125 ml of G2 solution.  After solubilization, 25μl of RNase A (10mg/ml) and 

75μl of freshly prepared proteinase K (20mg/ml) were added and the sample was incubated at 
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50ºC for 45-60 min.  The solution was centrifuged at 8500 rpm for 10 min and the supernatant 

was transferred to a new tube.  Then, 750μl of chloroform/isoamyl alcohol 24:1 at RT was 

added and the solution was mixed repeatedly.  After 10 min centrifugation at 8500 rpm, the 

upper aqueous phase was recovered and DNA was precipitated by adding 2 volumes of CTAB 

Solution II.  The sample was centrifuged for 10 min at 8500 rpm and the pellet was 

resuspended in 0.8ml of CTAB Solution III and 0.2ml of 2.5M NaCl.  DNA was precipitated with 

1 volume of isopropanol and centrifuged at full speed for 10 min.  The pellet was briefly rinsed 

with 96% ethanol, air-dried and resuspended in 250μl of 2mM Tris-HCl pH 8. 

In a total volume of 100µl, about 5µg of CTAB-extracted genomic DNA was digested with 40 

units BglII for 6 hrs.  DNA was precipitated with 1 volume of isopropanol and 20μl 2.5M NaCl, 

followed by centrifugation at full speed for 15 min.  The pellet was washed in 96% ethanol, air-

dried and resuspended in 20μl of 2mM Tris-HCl pH8 with loading buffer.   

Replication intermediates were resolved by 2D gel electrophoresis using a 20 cm x 25 cm gel 

tray.  The first dimension was carried out at room temperature in 0.4% agarose gels in TBE 1X 

at 45 V (28 mA) for 18 hours.  Gels were stained with 0.33μg/ml EtBr in water for 30 min and 

DNA fragments between 3-12 kb were cut off and rotated 90º for the second dimension 

electrophoresis in a 20 cm x 25 cm gel tray.  These fragments were resolved in the second 

dimension in 1% agarose gels in TBE 1X containing 0.33μg/ml ethidium bromide at 140 V (75 

mA) for 16 hours.  This electrophoresis was performed at 4ºC and with buffer re-

circularization.  After electrophoresis, gels were treated and transferred to a Hybond XL 

(Amersham) membrane by alkaline transfer.  Replication intermediates were detected by 

hybridization with specific 32P-labeled DNA probes: probe A of 4.6kb that hybridizes within the 

non-transcribed intergenic region (NTS1) and probe B of 4.5kb that hybridizes within the 35S 

gene.  Probe A was generated from the PCR product obtained using the primers: forward: 

GTGGTATTTCACTGGCGCCGA, and reverse: ATAACCGCAGCAGGTCTCA.  Probe B was generated 
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from the PCR product obtained using the primers: forward: CAACCCTGACGGTAGAGTAT, and 

reverse: ATTTCACTGGGCCAGCATCA.   

Signals were quantified using a PhosphorImager with ImageGauge software (FUJI). The 

relative intensity of replication intermediates was normalized to the signal intensity obtained 

in the 1n-spot (non-saturating exposure). Gel images represented in the figures are optimal 

exposures to show the replication intermediates.  Scanned images were optimized, in some 

cases, for brightness and contrast, but no gamma corrections or any other manipulations were 

carried out. 

8.1 Characterization of replication intermediates 

Following BglII digestion and isopropanol precipitation, DNA was resuspended in 2mM Tris-

HCl pH8.0 and subjected to heat or enzymatic treatments as previously described (154).  In 

brief, to induce branch migration, DNA was incubated at 56°C for 1h in the presence of 10mM 

EDTA pH8.  For the strand displacement reaction, Klenow polymerase was used.  Stepwise, 1 μl 

of nucleotide mix (5mM each of dATP, dCTP, dGTP, dTTP; Pharmacia), 1μl of gp32 protein 

(Biolabs, 4μg/μl), a single-stranded DNA binding protein that binds at 3´ hydroxyl group, and 

1μl of Klenow (Takara; 5U/μl) were added to 17 μl of restriction enzyme-digested DNA in 1× 

restriction buffer and were incubated for 1h at 37° C. For R-loop removal, 1µl RNase H 

(Biolabs; 5U/µl) was added to 19 μl of restriction enzyme-digested DNA in 1× restriction buffer 

and incubated for 1h at 37°C.  

8.2 Characterization of RF pausing sites 

.For characterization of RF pausing sites, replication intermediates from rnh1Δ rnh2Δ cells 

were compared to fob1Δrrm3Δ after growth with 10µg/ml CPT for 105 minutes or 60 minutes, 

respectively, following release from α-factor synchronization.  
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9.  CLAMPED HOMOGENEOUS ELECTRIC FIELD (CHEF) GEL 

ELECTROPHORESIS 

9.1 Agarose plug preparation 

DNA was extracted from approximately 108 cells per low melting agarose (Pronadisa) plug as 

previously described (330).  Briefly, yeast cells were washed in 50mM EDTA pH8 and then 

resuspended in 600µl CPES with 1.2M D-sorbitol and freshly added zymolyase 20T at 1mg/ml 

to hydrolyze the cell walls.  The spheroplasts formed are embedded in 1ml 2% low-melting-

point agarose prepared in CPE.  This mixture was pipetted into moulds and allowed to cool and 

solidify during 10 minutes at 4ºC.  Plugs were subsequently transferred to 10ml tubes and 

incubated for 4 hours at 30ºC with 5ml CPE.  The solution was poured off and the plugs were 

incubated overnight at 50ºC in 5ml TESP.  Plugs were washed three times at 50 ºC for 30 min, 

then twice at room temperature with TE.  Finally the plugs were covered with 5ml 50mM 

EDTA pH8 and stored at 4ºC.   

 

9.2 Analysis of replicating chromosomes 

To analyze the replication status of chromosome cXII in exponentially growing cells, samples 

were retrieved at the specified time points following release (in minutes) from α-factor 

synchronization in the presence or absence of 10µg/ml CPT.  Genomic DNA was extracted in 

low-melting agarose plugs as described previously.  Replication intermediates were separated 

using a CHEF Mapper (Bio-Rad), with a linear voltage gradient of 6.0V/cm, pulse time of 0.22 s 

to 266 s, switch angle of 120º, in 0.5x TBE buffered-1% agarose gel for 15.2 hrs at 14°C, as 

previously described (327).  For hybridization, 32P-labelled probes for cV or cXII were used.  cV 

probe was generated from PCR with forward primer: GTACGGTGGCCATTCTATGT, and reverse 

primer: AGATCCAGTAATGTGTTGGA.  The previously described ribosomal probe A was used to 

probe cXII.   
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9.3 rDNA array repeat length determination 

rDNA repeat length was determined by CHEF analysis of approximately 108 cells per LM-

agarose plug.  Cell lysis and chromosome separation conditions were carried out as previously 

described (75).  In brief, electrophoresis was performed in a Bio-Rad CHEF Mapper, using a 

voltage gradient of 3.4V/cm, pulse time of 300-900s, switch angle of 120º, in 0.8%  agarose gel 

in 0.5x TBE for 68 hrs at 14ºC.  Chr. XII was detected by hybridization with ribosomal probe A.   

 

10. MICROSCOPY 

For wide-field fluorescence microscopy, a Leica DM-6000B equipped with a 100×/1.40 NA oil 

immersion objective lens was used, with the appropriate light excitation and emission 

conditions (Table 4).  Images were taken using a digital charge-coupled device camera 

(DFC350; Leica) and LAS AF software (Leica).   

 

  Leica filter  λ excitation  λ emission 

 DAPI  A4  360nm  470nm 

 Mitotracker orange  N3  546nm  600nm 

 GFP  L5  395nm  509nm 

 YFP  L5  514nm  527nm 

 mRFP  N3  584nm  607nm 

 

Table 4. Light excitation and emission conditions for fluorescence microscopy. 

 

10.1 Fixation of cells 

Cells were fixed in 2.5% formaldehyde and 0.1M potassium phosphate buffer pH6.4 for 10 min.  

Cells were then washed twice with 0.1M potassium phosphate buffer pH6.6 and resuspended 

in 0.1M potassium phosphate buffer pH7.4.  Fixed cells were stored at 4ºC.  For DAPI staining, 

cells were fixed in 3.7% formaldehyde and 0.1M potassium phosphate buffer pH6.4 for 10 min.  

Cells were then washed twice with 0.1M potassium phosphate buffer pH6.4 and resuspended 

in 0.1M potassium phosphate buffer pH6.4.  Cells were permeabilized using 1ml 80% ethanol 
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for 10 min, washed in 0.1M potassium phosphate buffer pH6.4 and incubated in 1μg/ml DAPI 

for 5 min in the dark.   

10.2 Classification of nuclear phenotypes 

For each sample, 600 previously fixed cells were counted from three independent experiments 

using Phase contrast (Ph) and the fraction of cells with no bud (G1), a small bud (smaller than 

one half of the yeast cell; S phase) or a large bud (equal or larger than one half of the yeast cell; 

G2) was noted. Nuclear segregation phenotypes for G2 cells were determined using DAPI 

fluorescent nuclear DNA stain.  

10.3 Quantification of Rad52-YFP foci 

Rad52-YFP foci formation was analysed by transforming cells with the plasmid pWJ1213 

(LEU2, Rodney Rothstein) or p316-RAD52-YFP (URA3, Marina Murillo/Félix Prado).  

Transformants were grown to exponential phase in SC-Leucine or SC-Uracil liquid cultures and 

foci formation was detected by fluorescence microscopy using a L5 filter.  Approximately 600 

cells derived from three independent transformation experiments were analysed for each 

strain.   

For time-course analysis of Rad52-YFP foci, cells expressing RAD52-YFP were synchronized 

with α-factor and released in the presence or absence of 10µg/ml CPT. Samples were retrieved 

at the specified time points following release (in minutes) and fixed with 2.5% formaldehyde. 

Approximately 600 cells derived from three independent colonies were analyzed for each 

condition.  Data are shown as the mean ± standard deviation. Differences between groups were 

examined by Student’s t-test. 

10.4 Determination of nucleolar Rad52-YFP foci co-localization  

For co-localization of Rad52-YFP foci with the nucleolar marker Nop1, cells were co-

transformed with the Rad52-YFP expressing plasmid and a plasmid expressing Nop1-mRFP 
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(331).  Transformants were grown to exponential phase in selective SC medium to maintain 

the plasmids, in the presence or absence of 10µg/ml CPT for 3 hrs, and fixed using 2.5% 

formaldehyde.  YFP and RFP fluorescence were detected by wide-field fluorescence 

microscopy using L5 and N3 filters.  The number of Rad52-YFP foci were counted and noted as 

co-localizing or not with the Nop1-mRFP signal.  Approximately 600 cells derived from three 

independent transformants were analyzed for each strain.  Data are shown as the mean ± 

standard deviation. Differences between groups were examined by Student’s t-test and were 

considered statistically significant for p-values<0.05.  Images were assembled in Photoshop 

(Adobe) with only linear adjustments.   

10.5 Analysis of Rebudding 

Cells were synchronized with α-factor and then released in the presence of 15µg/ml 

nocodazole with 1% DMSO.  Nocodazole was repeatedly added every 60 min.  1ml samples of 

cells were retrieved at the indicated time points and fixed with formaldehyde.  The percentage 

of G2 cells showing more than one bud was scored.  Images were assembled in Photoshop 

(Adobe) with only linear adjustments.   

10.6 Methylene blue staining of dead cells 

1ul of 10mM methylene blue was added per 500µl of fixed cells and incubated for 5 min.  Cells 

were analysed using bright field microscopy and the number of blue-stained cells was scored.   

11. IMMUNOFLUORESCENCE  

11.1 Cdc14 and α-tubulin staining 

Immunofluorescence analysis of 3HA-Cdc14 and tubulin was performed as described in (266).  

Briefly, cells were fixed overnight in 3.7% formaldehyde and 0.1 M potassium phosphate 

buffer, pH 6.4.  Cells were then washed twice with 0.1 M potassium phosphate buffer, pH 6.4 

and resuspended in sorbitol citrate (see Appendices for buffer compositions).  Fixed cells were 
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digested with 0.1 mg/ml zymolyase-100T (US Biological) and 1/10 volume of glusulase 

(PerkinElmer) at 30°C for 10 min.  Cells were washed then resuspended in sorbitol citrate.  

3HA-Cdc14 was detected using anti-HA antibody (HA.11; Covance) at 1:150 and anti–mouse 

Cy3 antibody (Jackson ImmunoResearch Laboratories, Inc.) at 1:1000.  Anti-tubulin (Abcam) 

and anti–rat FITC (Jackson ImmunoResearch Laboratories, Inc.) antibodies were used at 1:200.  

All antibodies were diluted in PBS with 1% BSA.  Microscope preparations were analyzed at 

25°C using a Leica DM-6000B equipped with a 100×/1.40 NA oil immersion objective lens.  

Images were taken with a digital charge-coupled device camera (DFC350; Leica) and LAS AF 

(Leica) software. 

11.2 RNA:DNA hybrid detection 

In order to analyse the formation of RNA:DNA hybrids, strains were first synchronized with α-

factor, before incubation with 1mM IAA for 30 minutes and release into fresh medium 

containing IAA.  Cells were fixed and immunofluorescence was performed as for 12.1 using the 

S9.6 antibody (ATCC) at 1:200 diluted in PBS with 1% BSA, and anti-mouse Alexa 546 

(Invitrogen) antibody at 1:500.  

 

12.  ANALYSIS OF ROS AND APOPTOSIS  

Intracellular reactive oxygen species (ROS) were detected and measured by flow cytometry 

using the ROS indicator H2DCF-DA (Life Technologies).  Upon cleavage of the acetate groups by 

oxidation, the non-fluorescent H2DCFCA is converted to the highly fluorescent 2´-7´-DCF. Cells 

were grown to exponential phase in YPAD. 1ml of cells were resuspended in 1 x PBS containing 

5µM H2DCF-DA (prepared directly before use) and incubated in the dark for 30 minutes before 

sonication.  Fluorescence intensity was measured in the fluorescein range (FL1 channel, 525-

550nm), and adjusted for autofluorescence from non-stained cells.    

Caspase activity was detected using FITC-VAD-FMK (Promega), which irreversibly binds to 

activated metacaspases. 1ml of exponentially growing cells were resuspended in 1 x PBS 
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containing 1µM FITC-VAD-FMK.  Samples were incubated in the dark for 10 minutes before 

sonication.  Emission signals were detected in the fluorescein range (FL1 channel, 525-

550nm), and fluorescent intensity was measured, with adjustment for autofluorescence from 

unstained cells.   

 

13.  PROTEIN ANALYSIS 

13.1 Protein extraction 

Yeast protein extracts were prepared from approximately 108 cells by trichloroacetic acid 

precipitation as described (332) with some modifications.  Cells were washed with water and 

resuspended in 200μl of 20% trichloroacetic acid at room temperature.  After addition of the 

same volume of glass beads (Sigma), cells were disrupted by vortexing 7-10 times for 30 

seconds at 4ºC with intervals of 1 min on ice.  After recovering the supernatant in a new tube, 

glass beads were washed with 600μl of 5% trichloroacetic acid, and the resulting extract was 

spun for 5 min at 13000 rpm.  The pellet was resuspended in 100μl of Laemmli buffer, 

neutralized by adding 50μl of 1M Tris base, boiled for 5 min, and finally clarified by 

centrifugation. 

13.2 Western blot analysis 

Protein extracts were separated by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) at 200V for 1-3 h in running buffer using 8% polyacrylamide 

(37.5:1) gel, unless otherwise specified.  ColorBurstTM Electrophoresis Marker (Sigma) was 

used as protein molecular weight marker.  Gels were transferred to a previously methanol-

activated PVDF membrane (Immobilon-P, Millipore) applying 30V for 12-16 hours at 4ºC and 

submerged in transfer buffer using the Mini Trans-Blot (BioRad).  After the transfer, 

membranes were washed with methanol and air-dried.  Transfer efficiency was checked by 

staining with Ponceau S. 
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Membranes were blocked at room temperature during 1h with gentle shaking in 5ml of TBS-

Tween-Milk (1% Tween-20, 5% milk powder), unless otherwise stated.  Membranes were then 

incubated with the corresponding primary and secondary antibodies as indicated.  Finally, 

membranes were washed three times with TBS-Tween and chemiluminescence was detected 

using the HRP substrate (Millipore) and exposition to photographic films (Kodak X-Omat LS 

film). 

13.3 Analysis of Clb2 levels 

The levels of Clb2 protein were followed during one cell cycle following release from a G1 

block with α-factor.  Cells were released into pheromone-free medium with or without CPT for 

60 minutes, when small buds were observed, at which point α-factor was re-added.  TCA-

extracted protein was separated on a 10% polyacrylamide (37.5:1) gel.  PVDF membrane was 

blocked with TBS-milk (5%) The rabbit α-Clb2 primary antibody (Santa Cruz Biotechnology) 

was incubated at 4ºC overnight at 1:2000 dilution, and the secondary donkey anti-rabbit ECL 

HRP-labelled antibody (Amersham) was incubated at 4ºC overnight at 1:10,000 dilution, both 

in TBS-Tween-Milk (0.03% Tween, 5% milk).   

Mouse α-PGK1 was used as loading control (Invitrogen), following block with PBS-Tween-Milk 

(0.1% Tween, 5% milk).  The primary antibody at 1:20,000 dilution and the secondary (α-HRP 

ECL anti-mouse (GE Healthcare) at 1:10,000 dilution, were both incubated at 4ºC overnight in 

PBS-Milk-BSA (1% milk, 1% BSA).  

13.4 Analysis of Sic1 levels 

The levels of Sic1 protein were followed during one cell cycle, with synchronization as 

described in 14.3.  TCA-extracted protein was separated on a 12% polyacrylamide (37.5:1) gel.  

PVDF membrane was blocked with TBS-Milk (5% milk).  The rabbit α-Sic1 primary antibody 

(Santa Cruz Biotechnology) was incubated at 4ºC overnight at 1:500 dilution, and the 

secondary donkey anti-rabbit ECL HRP-labelled antibody (Amersham) was incubated at 4ºC 
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overnight at 1:10,000 dilution, both in TBS-Tween-Milk (0.05% Tween, 5% milk).  Mouse α-

PGK1 was used as loading control as for 13.3. 

13.5 Analysis of Rad53 phosphorylation 

Phosphorylation of Rad53 protein was used as an indicator of checkpoint activation.  Yeast 

cells were grown in the presence or absence of 10ug/ml CPT.  WT cells were grown in the 

presence of 200mM hydroxyurea (HU) as a positive control for Rad53 hyper-phosphorylation.  

Phosphorylated forms of Rad53 were detected by incubation with anti-Rad53 (λC-19) primary 

antibody (Santa Cruz Biotechnology) at 1:500 dilution for 1-2 hrs.   

Protein extracts were run for the Rad53 in situ kinase assay and the auto-phosphorylation 

reaction was performed as described (257). 

13.6 Confirmation of AID-tagged protein depletion 

Yeast cells were grown in YPAD at 30ºC to exponential phase. Protein degradation was induced 

by the addition of 1.5mM IAA to the media, with incubation for 30 or 60 minutes.  Top1-9Myc 

protein levels were detected by incubation with the mouse anti-c-Myc primary antibody 

(Abcam) at 1:1000 dilution at 4ºC overnight, and goat anti-mouse IgG-HRP (Sigma) at 

1:10,000.  The truncated IAA17 peptide (AID*) (320) adds an extra 4.7kDa, approximately, to 

the size of the protein.  Mouse α-PGK1 was used as loading control as for 13.3. 
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Table 2.  Yeast strains used in this study. 

Strain Genotype Source 

YKL83 MATa ubr1Δ::GAL-UBR1::HIS3 ade2-1 trp1-1 ura3-1 his3-11,15 leu2-3,112  can1-

100 

(124) 

RS310 YKL83; rnh1Δ::hphMX4 This study 

RW027.17 YKL83; rnh201Δ::natMX4 This study 

RW025.C YKL83; rnh1Δ:: hphMX4 rnh201Δ::natMX4 This study 

RS072 MATα YKL83 This study 

RS075 MATα YKL83; rnh1Δ::HYG rnh201Δ::NAT This study 

RS153 YKL83; rad1Δ::HIS   This study 

RS154 YKL83; tdp1Δ::KAN     This study 

RS287 YKL83; rad1Δ::HIS tdp1Δ::KAN     This study 

RS130 YKL83; rad1Δ::HIS  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS129 YKL83; tdp1Δ::KAN  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS128 YKL83; rad1Δ::HIS tdp1Δ::KAN rnh1Δ::hphMX rnh201Δ::natMX4 This study 

BY4741 MATa  trp1-1 ura3 Δ0  leu2Δ0 his3Δ0 met15Δ0 Euroscarf 

YMR234W BY; rnh1Δ:: KAN   Euroscarf 

YNL072W BY; rnh201Δ:: KAN   Euroscarf 

RS171 BY; rnh1Δ:: KAN  rnh201Δ::natMX4 This study 

RS103 YKL83; leu2-k::URA3-ADE2::leu2-k This study 

RS105 rnh1Δ::hphMX4  leu2-k::URA3-ADE2::leu2-k This study 

RS108 rnh201Δ::natMX4  leu2-k::URA3-ADE2::leu2-k This study 

RS111 rnh1Δ:: hphMX4 rnh201Δ::natMX4  leu2-k::URA3-ADE2::leu2-k This study 

NGY203 YKL83; fob1Δ::kanMX4 This study 

RS179 YKL83; rrm3Δ::kanMX4 This study 

RS165 YKL83; fob1Δ::kanMX4  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS204 YKL83; rrm3Δ::kanMX4  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS182 YKL83;  fob1Δ::kanMX4  rrm3Δ::kanMX4 This study 

RS031 W303; bar1Δ  RAD5 This study 

RS149 YKL83;  rnh1Δ::hphMX  rnh201Δ::natMX4   bar1Δ This study 

RS364 TOP1
AID*-9myc

::KanMX  rnh1Δ::hphMX rnh201Δ::natMX4  bar1Δ URA3:: ADH1-

AtTIR1
9myc

 

This study 

RS284 YKL83; rpa190-3 This study 

RS230 YKL83;  rpa190-3   rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS266 YKL83; rrn3-8 This study 

RS267 YKL83; rrn3-8  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 
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RWY020.2 YKL83; rad27Δ::natMX4 This study 

TOI-1Bu W303;  top1Δ::hisG   A.Aguilera 

RS375 YKL83; hmo1Δ:: KAN   This study 

RS376 YKL83; hmo1Δ:: KAN    rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS377 YKL83; tof2Δ:: KAN   This study 

RS378 YKL83; tof2Δ:: KAN    rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS392 W303; nsr1Δ:: HIS   This study 

RS221 YKL83; nsr1Δ:: HIS  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS393 YKL83; rpa12Δ::LEU This study 

RS215 YKL83; rpa12Δ::LEU   rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS394 YKL83; rpa49Δ::KAN This study 

RS216 YKL83; rpa49Δ::KAN   rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS307 YKL83; uaf30Δ:: KAN   This study 

RS308 YKL83; uaf30Δ:: KAN   rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS379 YKL83; rif2Δ:: KAN   This study 

RS380 YKL83; rif2Δ:: KAN   rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

Pif1-m2 W303;  pif1-m2 (6) 

RS395 pif1-m2   rnh1Δ::hphMX  rnh201Δ::natMX4 

r 1Δr2Δ 

This study 

RS381 YKL83; rad16Δ:: KAN   This study 

RS382 YKL83; rad16Δ:: KAN   rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RM132-BBL rad3-2  ade2-1  Can
r
 his7 lys2-2 tyr1 leu1 trp5 met13-c cyh2r ura3   R.Malone 

RS383 YKL83; rad3-2  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS018 W303; rad9Δ::hphMX    This study 

RS214 YKL83; rad9Δ::hphMX  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS396 YKL83; chk1Δ:: KAN   This study 

RS213 YKL83; chk1Δ:: KAN  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS397 YKL83; tel1Δ:: KAN   This study 

RS398 YKL83;  tel1Δ:: KAN  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

DD379 W303;  rad24Δ::TRP1  (333) 

RS166 YKL83;  rad24Δ::TRP1  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS384 YKL83; dunl1Δ::KAN   This study 

RS385 YKL83; dun1Δ:: KAN   rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

YJT74 W303;  mec1Δ::LEU2  sml1Δ::URA3 This study 

RS399 YKL83;  mec1Δ::LEU2  sml1Δ::URA3  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

MCY012 YKL83; sml1Δ::URA3 This study 
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RS400 YKL83; sml1Δ::URA3  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS286 YKL83;  pol32Δ::hphMX    This study 

YH6120-8B W303;  rad18Δ::KAN  TRP1 A. Aguilera 

RS236 YKL83;  rad18Δ::KAN  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS386 YKL83;  shu1Δ:: KAN   This study 

RS387 YKL83;  shu1Δ:: KAN  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

WKU70-1B YKL83; yku70Δ::hphMX A. Aguilera 

RS184 YKL83; yku70Δ:: hphMX  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS028 W303;  lig4Δ::KAN   This study 

RS167 YKL83;  lig4Δ::KAN  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS285 YKL83; rad52Δ::klLEU  This study 

RS253 YKL83; rad51Δ:: KAN   This study 

RS254 YKL83; rad51Δ:: KAN  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS205 YKL83; exo1Δ:: KAN   This study 

NGY195 YKL83; exo1Δ:: KAN     rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS272 YKL83; rad59Δ::KAN This study 

RS244 YKL83; rad59Δ:: KAN  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS292 YKL83; mus81Δ::KAN This study 

RS124 YKL83; mus81Δ:: KAN  rnh1Δ::hphMX4  rnh201Δ::natMX4 This study 

RS021 W303; mre11Δ:: hphMX4 This study 

YNL250W BY; rad50Δ:: KAN   Euroscarf 

 YDR369C BY; xrs2Δ:: KAN   Euroscarf 

 RS152 YKL83; srs2Δ:: natMX4 This study 

RS237 YKL83; srs2Δ::natMX4  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS151 YKL83; sgs1Δ::natMX4 This study 

RS238 YKL83; sgs1Δ::natMX4   rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS388 YKL83; top3Δ::KAN This study 

RS389 YKL83; top3Δ:: KAN  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS160 YKL83; sae2Δ::KAN This study 

RS125 YKL83; sae2Δ:: KAN  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS390 YKL83; siz1Δ::KAN This study 

RS391 YKL83; siz1Δ:: KAN   rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS401 YKL83; sic1Δ::KAN This study 

NGY157 YKL83; clb5Δ: hphMX4 This study 

RS358 YKL83; clb5Δ::hphMX4  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 
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PP544 W303-1A; cdc7-4  RAD5 (334) 

RS321 YKL83;cdc7-4 rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RSY727 cdc7Δ::HIS3  mcm5-bob1 his6 leu2 ura3 lys2 cyh2 

 

 

R. Sclafani 

RS346 YKL83;  cdc7Δ::HIS3  mcm5-bob1  rnh1Δ::hphMX4 rnh201Δ::natMX4  This study 

NGY132 W303; swe1Δ::KAN This study 

RS122 YKL83; swe1Δ::KAN  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS161 YKL83; mad1Δ::HIS This study 

RS159 YKL83; mad1Δ::HIS   rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

P350 W303  mad1Δ::MAD1-YEGFP F. Monje 

RS264 YKL83; mrc1Δ::kanMX4 This study 

RS265 YKL83; mrc1Δ::kanMX4 rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS279 YKL83; mrc1
AQ

::HIS This study 

RS255 YKL83; mrc1-c14::KAN This study 

RS280 YKL83; mrc1AQ:: HIS  rnh1Δ::hphMX  rnh201Δ::natMX4 This study 

RS256 YKL83; mrc1-c14:: KAN  rnh1Δ::hphMX  rnh201Δ:natMX4 This study 

RS258 YKL83; csm3Δ::kanMX4 This study 

RS261 YKL83; tof1Δ::kanMX4 This study 

RS259 YKL83;  csm3Δ::kanMX4  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 

RS262 YKL83;  tof1Δ::kanMX4  rnh1Δ::hphMX4rnh201Δ::natMX4 This study 

F665 W303-1A; cdc14::3HA-CDC14   (335) 

RS325 cdc14::3HA-CDC14  rnh1Δ::hphMX4 rnh201Δ::natMX4 This study 
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Table 3.  List of plasmids used in this study. 

 

Plasmid Description  Reference 

pAG25-natMX4 DEL-MARKER-SET plasmid with nat1 gene that confers 

resistance to nourseothricin (NAT) 

Euroscarf 

pAG32-hphMX4 DEL-MARKER-SET plasmid with hph gene that confers 

resistance to hygromycin  B (HYG) 

Euroscarf 

pFA6a-kanMX6 DEL-MARKER-SET plasmid with the kanMX cassette that 

confers resistance to geneticin G418 (KAN) 

Euroscarf 

pFA6a-klLEU2MX6 DEL-MARKER-SET plasmid with the LEU2 gene that allows 

growth of yeast on selective medium lacking leucine 

Euroscarf 

pBJ6 CEN, URA3, RAD5  (336) 

pCM184- LAUR CEN, URA3,  tetp:: lacZ::URA3 (134) 

pDML5 CEN, URA3, GAL1p::RAD52  (337) 

pKan–AID*–9myc IAA17 (71–114)-9myc  kanMX4 in  pSM409 (320) 

pPL092 SSD1-v (JK9-3da allele) in pRS316 (URA3) (338) 

pPL093 SSD1-d (W303 allele) in pRS316  (URA3) (338) 

pRS314LB CEN6, TRP1, LEU2 coding sequence interrupted  by 31bp 

 

(326) 

pWJ1344 CEN, LEU2, RAD52::YFP R.Rothstein 

3317 CEN,  LEU2,   RPL25-GFP,  mRFP-Nop1   (331) 

p316-R52-YFP CEN,  URA3,  RAD52-YFP   F. Prado 
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8. ANNEXES 

 

ANNEX I - Drugs and Reagents  

 

Alpha factor (1mg/ml stock solution, dissolved in DMSO, Biomedal) was added to a final 

concentration of 1µg/ml for BAR1+ or 0.3µg/ml for bar1Δ strains.  The alpha factor pheromone 

arrests yeast in the G1 phase of the cell cycle.  

Ampicillin (Amp) (80mg/ml stock solution, dissolved in water, Sigma) was added to solid or 

liquid LB at a final concentration of 80 g/ml. The Beta-lactame antibiotic was used to select 

bacterial strains transformed with a plasmid of interest.  

Benomyl (10mg/ml stock solution, dissolved in DMSO, Sigma) was added to a final 

concentration of 5, 10 or 20µg/ml. The appropriate amount of stock solution was added to 

warm agar with constant stirring and gentle heating to aid dissolution. Benomyl binds to 

microtubules, acting as a spindle-depolymerizing drug. 

Calcofluor white (CFW) (1mg/ml stock solution, dissolved in water, Sigma; CFW sold as 

“Fluorescent Brightener 28”) was added to a final concentration of 5µg/ml. CFW binds to chitin 

in the yeast cell wall and negatively affects normal cell wall assembly.  

Camptothecin (CPT) (5mg/ml stock solution in 1% DMSO, Santa Cruz) was added to a final 

concentration of 5µg/ml for plates, or 10µg/ml for liquid cultures, unless otherwise stated.   

Canavanine sulphate (Can) (Sigma) was added to a final concentration of 60µg/ml, directly to 

warm agar.  Used to determine nuclear mutation rates. 

Ethidium bromide (EtBr) (10mg/ml stock solution dissolved in water, Sigma) was added to a 

final concentration of 0.4mg per 1 litre of agarose.  

FITC-VAD-FMK (5mM stock solution dissolved in DMSO, Promega) was used at a final 

concentration of 1µM.  Used as an indicator to detect activated caspases. 

5-fluororotic acid (FOA) (Melford) was added to a final concentration of 500mg/ml. 

G418 disulphate (GEN) (200mg/ml stock solution, Melford) was added to a final 

concentration of 200 g/ml. Used to select yeast that carry gene for resistance to 

kanamycin/geneticin.  
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H2DCFDA (5mM stock solution dissolved in DMSO, Life Technologies) was used at a final 

concentration of 5µM.  Used as an indicator to detect the generation of ROS in cells.     

Hydroxyurea (HU) (USBiological) was added to a final concentration of 100mM, directly to 

warm agar.    

Hygromycin (Hyg) (Applichem, 46KU/ml) was added to a final concentration of 0.3mg/ml. 

Used to select yeast that carry gene for resistance to hygromycin.  

Indole-3-acetic acid (IAA) (500mM stock solution dissolved in ethanol, Sigma) was added at a 

final concentration of 500µM. 

Methylene blue (10mM stock solution, diluted in water, Sigma) was added to a final 

concentration of 20µM. Used to determine the viability of yeast cells. 

Methyl methanesulphonate (MMS) (250M stock solution, Fluka) was added to a final 

concentration of 25mM or as specified, directly to warm agar.      

Nocodazole (Noc) (10mg/ml stock solution, dissolved in DMSO, Sigma) was added to a final 

concentration of 15 g/ml.  

Nourseotricine (NAT) (Werner BioAgents, Germany; NAT sold as “clonNAT”) was added to a 

final concentration of 100µg/ml. Used to select yeast that carry gene for resistance to NAT.   

Pronase (50mg/ml stock solution, dissolved in 50% glycerol, Sigma; pronase sold as “protease 

from Streptococcus griseus”) was added to a final concentration of 1 g/ml. Used to digest alpha 

factor, following G1 synchronization of bar1Δ yeast strains.  

Propidium iodide (5mg/ml stock solution, dissolved in water, Sigma) was added to a final 

concentration of 5 g/ml.  
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ANNEX II – Composition of buffers and solutions 

 

Cocktail gently buffer  50mM Tris-HCl pH8, 20mM EDTA pH8 

Coomassie stain  0.1% Coomassie Blue (w/w), 50% methanol, 1% acetic 

acid 

Coomassie destain   5% methanol, 7.5% acetic acid 

CPE  40mM citric acid pH6, 120mM sodium phosphate pH6, 

20mM EDTA-Na pH8 

CPES  40mM citric acid pH6, 120mM sodium phosphate pH6, 

20mM EDTA-Na pH8, 1.2M D-sorbitol, 1mg/ml 

zymolyase 20T 

CTAB II  1% w/v CTAB (cetyl-trimethyl-ammonium-bromide), 

50mM Tris-HCl pH 7.6, 10mM EDTA pH8 

CTAB III    1.4M NaCl, 10mM Tris-HCl pH7.6, 1mM EDTA pH8 

Denaturation buffer   1.5M NaCl, 0.5M NaOH 

G2 solution  800mM guanidine HCl, 30mM Tris-HCl pH8, 30mM 

EDTA pH8, 5% Tween-20, 0.5% Triton X-100 

Hybridization solution  0.25M Na2HPO4, 7% SDS, 1mM EDTA pH7.2 

Laemmli buffer 2x  4% SDS, 20% glycerol, 10% β-mercaptoethanol, 
0.004% bromophenol blue, 0.125 M Tris HCl  

Neutralization buffer  1M Tris-HCl, 1.5M NaCl, adjusted to pH7.5.   

PBS 10x  1,37 M NaCl, 27mM KCl, 81mM Na2HPO4, 14.7mM 

KH2PO4 

Ponceau    Ponceau S 0.1% w/v, 5% acetic acid 

Running buffer (Western)  50mM Tris Base, 192mM glycine pH8.3, 0.1% SDS 

Sorbitol-citrate    1.2 M sorbitol in 0.12 M K2HPO4, 0.033 M citric  

     acid, pH 5.9 

Spheroplasting buffer  1M sorbitol, 100mM EDTA pH8, 2mM Tris-HCl pH8, 

0.1% v/v β-mercaptoethanol, 15U zymolyase/ml 

Stripping solution (hybridization)0.1% SDS, 0.1X SSPE 

SSC 20x     3M NaCl, 0.3M trisodium citrate, adjusted to pH7 
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TAE 50x    2M Tris, 1M acetic acid, and 10mM EDTA. 

TBE 5x     0.45M Tris borate, 10mM EDTA-Na, adjusted to pH8 

TBS     20 mM Tris-HCl pH8, 0.13M NaCl 

TBS-Tween   20 mM Tris-HCl pH 8, 0.13M NaCl, 1% Tween-20, 5% 

milk powder 

TESP  10mM Tris-HCl pH8, 450mM EDTA-Na pH8, 1% SDS, 

with 1mg/ml freshly prepared proteinase K 

Transfer buffer (Western)  50mM Tris Base, 192mM glycine pH8.3, 0.01% SDS, 

20% methanol 

Wash solution (hybridization) 0.1X SSPE, 0.5mM EDTA, 0.5% SDS 
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ANNEX III – Published articles 

STUCKEY R, Díaz de la Loza MC and Wellinger RE.  

Cellular responses to mitochondrial DNA damage in yeast.  

In: Mitochondria: Structure, Functions and Dysfunctions; Pp: 709-729, Ed. Ed. O. Svensson,  

Nova Science Publishers NY; ISBN 978-1-61761-490-3 (2010). 
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