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Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays
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A wideband equivalent circuit is proposed for the accurate analysis of scattering from a set of stacked slit
gratings illuminated by a plane wave with transverse magnetic or electric polarization that impinges normally or
obliquely along one of the principal planes of the structure. The slit gratings are printed on dielectric slabs of
arbitrary thickness, including the case of closely spaced gratings that interact by higher-order modes. A I1-circuit
topology is obtained for a pair of coupled arrays, with fully analytical expressions for all the circuit elements.
This equivalent IT circuit is employed as the basis to derive the equivalent circuit of finite stacks with any given
number of gratings. Analytical expressions for the Brillouin diagram and the Bloch impedance are also obtained

for infinite periodic stacks.
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I. INTRODUCTION

The features of the scattering of electromagnetic waves by
periodic structures made of dielectric or metallic materials
have been studied for a long time at frequencies ranging
from the optical [1-5] to the microwave [6-9] regime. The
interest in these structures lies in their ability to control
the polarization, reflection, transmission, and absorption of
electromagnetic waves. Although fully dielectric implementa-
tions are advisable at optical frequencies [10] and feasible
at microwave frequencies [11], many of the applications
found in the range from microwave to terahertz frequencies
involve metallic patterns printed on dielectric slabs. These
patterns are periodic distributions of strips or patches or,
alternatively, periodic distributions of slits or slots etched on
metal films coating dielectric slabs. Structures of this kind have
been commonly used as frequency-selective surfaces [12,13],
polarizers [14,15], or high-impedance surfaces [16,17], to
mention a few relevant examples.

The interest in these periodic structures was likewise
raised by the discovery of the so-called optical extraordinary
transmission [18], which was first associated with the char-
acteristics of wave propagation at optical frequencies [18,19],
although soon it was found and measured at millimeter wave
bands [20,21]. In parallel with the previous works, some
researchers have proposed an alternative point of view based
on classical concepts of microwave circuit theory [6-9,22,23].
This point of view was also implicitly adopted in some early
papers on extraordinary transmission [24,25] and explicitly
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employed in studies dealing with enhanced transmission
through small diaphragms inside closed waveguides [26-28].
The possibilities of this perspective to provide a simple
and accurate explanation of the extraordinary transmission
behavior and other exotic effects was initially employed by
some of the authors in papers that reported equivalent-circuit
models to accurately obtain the transmission properties of
periodic arrays of holes [29] or slits [30] made in thin or
thick metal screens.

In most circuit-model-oriented papers, after the unit cell of
the periodic structure is defined, the problem is reduced to the
solution of a typical waveguide-discontinuity problem, which,
in general, can be substituted by an equivalent-circuit network
that accurately reproduces the transmission and reflection
behavior of the original structure. Moreover, the corresponding
network topology provides good physical insight into the
involved electromagnetic phenomena and helps to predict
other potentially interesting behaviors of the structure when
any structural parameter is varied. Another apparent advantage
of the analytical equivalent-circuit approach is the short CPU
time required to achieve numerical results (usually in the
range of milliseconds), in contrast to the great computational
effort demanded by commercial electromagnetic full-wave
simulators (ranging from several minutes to hours). In the
equivalent-circuit approach, the propagating fields are mod-
eled by transmission lines, while the reactive fields around
the discontinuities are accounted for by lumped capacitance
or inductance elements, which are a good approximation
for electrically short discontinuity elements at the operating
wavelength [6,8]. Many equivalent-circuit proposals found in
the literature do not give analytical expressions for the lumped
elements, but instead their values are usually extracted from
intensive external full-wave simulations. In other instances
[17,22,31-34] some analytical formulas are provided, but
they have a limited range of applications that typically
does not extend beyond the onset of the first grating lobe
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(diffraction regime) or are valid only in the subwavelength
regime. Further extension into the diffraction regime requires
more sophisticated models, usually requiring that some of
the circuit parameters are frequency dependent. In this way,
some proposals [35-39] account for the diffraction orders
as different modes of the equivalent waveguide, whose
modal impedances provide the explicit closed-form frequency
dependence of such circuit parameters. A further step was
given in [40], where, using a multimodal analysis, fully
analytical expressions for all the circuit elements are provided
(both lumped and distributed). In that work, self-consistent
models for single metallic one-dimensional (1D) strip or slit
arrays printed on dielectric layers were obtained by a rigorous
method, and these models were extended to other periodic
configurations such as T-shaped 1D periodic structures [41]
and 2D arbitrarily shaped periodic structures [42]. Using
a similar multimodal analysis, diffractive effects were also
considered in [38] for periodic distributions of slits made
in thick metal screens. Another type of multimodal circuit
models was derived, for instance, in [43]. A nice example of
how circuit models can predict interesting physical effects is
given in [44], where the anomalous extraordinary transmission
is explained as a consequence of the behavior of the circuit
model associated with a 1D grating excited by transverse
electric (TE)-polarized waves. It should be mentioned here,
to give proper credit to alternative paths to obtain highly
efficient solutions for this kind of problem, that analytical or
quasianalytical solutions to the strip-like scattering problem
are available not just in the form of equivalent circuits. A
number of elegant and sophisticated mathematical tools based
on Wiener-Hopf and Riemann-Hilbert techniques as well as
a variety of regularization methods to solve singular integral
equations have been proposed, leading to extremely fast and
accurate computer codes (a few examples of this type of work
can be found in [45]-[53]). Equivalent circuits are usually less
accurate but they have the advantage of being significantly
simpler than the above-mentioned approaches.

In all the above-mentioned models, the structure under
analysis involved a single grating surface, leaving aside
those situations where coupled gratings are of great interest
[7,9,25,54-59]. The latter structures have been proposed
for design of artificial materials, filters, and polarizers, and
very recently they have been employed to simulate materials
with a high permittivity (artificial dielectrics) over a wide
terahertz frequency range [60,61]. Some of the authors of the
present work have already dealt [40,57] with a single pair of
coupled identical strip-like gratings by using an even or odd
excitation analysis [62] (this allows us to reduce the original
coupled-array problem to two subproblems with a single
grating surface and with an electric or magnetic wall in the
corresponding symmetry plane), and a strategy similar to the
one followed in this paper has very recently been implemented
to approximately model fishnet structures [63]. Experimental
studies of this type of structure can also be found for other 1D
[54] and 2D [64] configurations.

As the obtaining of analytical solutions for stacked gratings
is a subject of considerable interest, the purpose of this work
is first to present a systematic method to derive a wideband
equivalent IT circuit for a pair of 1D slit coupled arrays such
as that shown in Fig. 1 under normal or oblique transverse
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FIG. 1. Cross section of a pair of periodic coupled slit arrays
under TM or TE normal incidence. The metal strips are infinitely
thin and infinitely long along the x direction. Parameters: period of
the arrays, p; slit width, w; distance between gratings (or dielectric
thickness), d;; relative permittivity of the dielectric slab, ¢{V; and
relative permittivity of the external medium, £©.

magnetic (TM) or transverse electric (TE) incidence and then
to use this IT circuit as the basis to obtain the equivalent
circuit for the stacked structure. Fully analytical expressions
for all the circuit elements are rigorously derived following
the guidelines of our previous work on this topic [40,57]. This
circuit model can also be used to study infinite periodic stacks
of 1D gratings. The dispersion relation of a Bloch mode and
the Bloch impedance of the structure is easily calculated from
the unit-cell equivalent circuit.

II. CIRCUIT MODEL FOR TWO COUPLED SLIT ARRAYS
UNDER NORMAL INCIDENCE

In this section the equivalent Il circuit for a pair of
identical periodic 1D coupled slit gratings is derived. The
starting point is given in [40], where fully analytical circuit
models were derived for single slit gratings with an electric or
magnetic wall placed at a certain distance from the slit array.
These problems actually correspond to the odd-even excitation
half-problems [62] of the symmetrical coupled grating. This
fact is illustrated in Fig. 2, where the rightmost drawing
shows a transmission line (representing the fundamental mode
propagating in the external region) loaded with appropriate
equivalent admittances. These admittances correspond to the
input admittances of the slit array printed on a dielectric slab
of thickness d;/2 terminated with a magnetic (open-circuit;
Yg,) or an electric (short-circuit; Yg,) wall. The superscripts
“e” and “0” stand for even and odd excitations, respectively.

magnetic/electric

slit gratings wall
co | €1 ] co o0 i61§
] (0) e/o
| = | L= Y Yo
H dl H HEn

di/2

FIG. 2. Even-odd excitation analysis using magnetic or electric
walls in the symmetry plane and its circuit representation according
to Ref. [40]. The superscript “e” stands for even excitation; the
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superscript “0,” for odd excitation.
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According to [40], Y, and Y, are given by the infinite sum of
modal admittances,

o0 o
R DR LEE) SR L N

n=1 n=0
o o0
Yo =2 A =iy AX Vot (BVd/2), (@)
n=1 n=0
where
JO2 (kyw/2), TM incidence,
A, =Q2-3, 2 . 3
( 0) X [2%’%2)] , TE incidence, )
; 1 eDky/BY, TM incidence
YO = — x iy -~ ’ @)
" no D) / ko, TE incidence,
B = ek — k2, (5)
w 2nn
ko=—, ky=—, (6)
¢ p

where §;; is the Kronecker delta, J;(-) the Bessel function of the
first kind and ith order, ny = +/o/€&o the intrinsic impedance
of free space, w the angular frequency, c¢ the speed of light
in free space, k, the cutoff wave number of the nth mode
supported by the parallel-plate waveguide associated with the
unit cell, and B the corresponding longitudinal wave number
of the nth mode in medium (i). The A, coefficient is the
nth Fourier coefficient of the normalized electric-field profile
assumed at the slit aperture (y € [—w/2,w/2], with w being
the width of the slit), which is taken as

2 [1—(Qy/w)*1"/2, TM incidence,
21— Qy/w)]'2,

(note that this approximation accounts for the correct edge
behavior of the aperture field in both the TM and the TE
cases).

Starting from the basic circuit models for the even- and
odd-excitation-half problems shown in Fig. 2, our first goal in
Sec. IT A is to find an equivalent circuit for the pair of coupled
gratings in the form of an equivalent I'T network. Then Sec. II B
presents a detailed study of the elements in the IT circuit,
leading to a further decomposition into different elements
that allows for their efficient computation and provides an
insightful physical interpretation. Finally, Sec. IIC presents
the strategy proposed for the computation of the IT-circuit
elements according to the discussion in Sec. II B, and Sec. IID
presents various numerical results that serve to illustrate and
support the previous discussion as well as to demonstrate the
quantitative performance of the IT-network circuit model.

Eqi(y) = { (N

TE incidence

A. Derivation of the equivalent IT network for coupled gratings

In order to find the equivalent IT network that describes
the behavior of the coupled screens [see Fig. 3(a)], an even-
odd excitation analysis is also applied to this IT circuit by
placing open- or short-circuit terminations in the middle plane
[Fig. 3(b)]. As a result, the half-problem circuits shown in
Figs. 3(c) and 3(d) are obtained. Identifying the latter two
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FIG. 3. (a) Equivalent IT circuit for a pair of coupled gratings.
(b) The same circuit as in (a), showing the middle symmetry plane.
(c, d) The circuits that result from applying open or short circuit
terminations (corresponding to even or odd excitations) at the middle
symmetry plane.

circuits with the one in Fig. 2, it is clear that the parallel and
series admittances (Y, and Y) can readily be obtained from
the even and odd equivalent admittances as

Y, = 1[Ye — Y], (8)

_ ye
YP_Y eq eq

eq’
and therefore, from (1) and (2),

[o¢] [o¢]
Yo=Y 4,50 +i) A ¥Vtan (8Vd1/2), 9

n=1 n=0

oo
Yo=—j Y A YVesc(BVd)). (10)
n=0

It should be noted [57] that the first summation in Y,
o
v = ZAnY,EO), (11)
n=1

only accounts for the external field, whereas the second
summation is associated with the field in region (1):

o0
Y =j Z A, YV tan (BVdy /2). (12)
n=0

This fact is key in Sec. I1I to obtaining the equivalent circuit for
stacked structures involving an arbitrary number of gratings.

B. Interpretation of the admittances deduced for the II circuit

The analytical expressions found in previous sections for
the circuit elements of the IT network have been derived as
infinite series, and certainly, these formal expressions are not
well suited for a qualitative understanding of the behavior
of the fields, nor are they convenient from a computational
perspective. However, it will be shown that they can be easily
manipulated and rewritten in a more insightful and suitable
form. First, it is convenient [40,43] to split the infinite series in
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(10), (11), and (12) into two separate contributions. The first
contribution comprises the low-order terms, which correspond
to propagating modes at the highest frequency of interest. It is
also advisable to add the first evanescent mode to this low-order
group. The second contribution is formed by an infinite series
of evanescent modes whose cutoff frequencies are far above
the working frequency, namely, high-order (“ho”) evanescent
modes. Expressions in (10), (11), and (12) are thus regrouped
as

oo
Y = ZAHY(O)+ > ax®, (13)

n=N+1
————

0)
Yo ho

N
YV =j Z A, YV tan (B"d, /2)
n=0

o0
+j Y AxVtan (8d/2). (14)

n=N+1

(1)
Yp ho

N
Yo=—]j Z A YV ese (BVd,)

n=0

— Z A YV ese (BVd)) . (15)

n=N+1

ys, ho

where N is the number of low-order (“lo”) terms. According
to the above-mentioned criterion, N will be given by

P ] (16)

)\O,min

N = ’7\/ €r,max

where [-] represents the smallest following integer (ceiling
function), &;max is the greater of the two surrounding permit-
tivities, and Ao min is the minimum vacuum wavelength value
of interest. Since the modes that contribute to the erflio and Y po
high-order admittances are far below their cutoff frequencies,
the following approximation can be used:
Buno ~ ~ikn

Ky >/ Pk, (i=0,1). (17

The expressions for the TM and TE characteristic admittances
of these modes then reduce to

80851)

Y, & jo——" p = jwC%, TM case, (18)
1 k, 1

v, ~ ——=—. TEcase, (19)
Jo e  JjoL,

whose frequency dependence is readily recognized as standard
reactive lumped elements (inductors and capacitors). Depend-
ing on the polarization of the impinging wave, a lumped
n-order capacitor C¥) or n-order inductance L, is defined
for the nth-order mode (note that L, does not depend on
the permittivity of the medium, as expected for a standard
inductance).
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For TM polarization, introducing (18) in Yéi) and Y, we
obtain

o0
Y =jo Y ACP =juc?, (20)
n=N+1
o0
Y, =jo Y ACPtanh(k,di/2) =joC", (21

n=N+1

oo
Yono =jo . AuCPesch(kyd) = joCs,  (22)

n=N+1

where C{! and C; are capacitors that account for the global
effect of all the higher-order evanescent modes.

Similarly, for TE polarization the following equivalent
inductances associated with the effect of all the higher-order
modes are obtained:

- 1
Y(O)0 = — A, /L, = ——, (23)
P Jw nXN;rl J L(O)
1
Y;Rm - Z (An/Ly) tanh(kyd1 /2) = —75,  (24)
‘] n= N+l L
Yiho = — Z (An/Ly) csch(kydy) = (25)
n N+1 8

The circuit models in the form obtained thus far are depicted
in Fig. 4, with the high-order capacitances and inductances
explicitly shown. For simplicity, in these drawings it is
assumed that N = 0; i.e., the frequently encountered situation
in which only the fundamental zero-order term contributes
to the low-order admittances that appear in the internal IT
network. All the higher-order modes are then included in the
lumped elements.

As pointed out for the single-grating problem [40], a
more specific physical interpretation of these lumped reactive
elements can be found after noting that they represent the

(0) _‘ }C_S CI()O)

v (

[
J

}_
}_

W il BT
Cp()l) Cp()l)
(@
i
Ly P Ly
v Gl EMBE v
Ly Ly

(b)

FIG. 4. (a) Equivalent circuit showing separately the contribution
of the fundamental mode (IT network) and the higher-order modes
(lumped capacitors and inductors). (a) TM polarization; (b) TE
polarization.
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reactive field excited in the vicinity of the slit aperture (since
they account for the evanescent modes). This interpretation
can directly be translated to the external high-order element
(C}(jo) or Lg))), which represents the reactive near field around
the slit in the external region. For the internal region it is also
desirable to find an interpretation for both the series and the
parallel reactive lumped elements. For the series element in
(22) or (25), the exponential behavior of the csch(-) function
for large arguments makes this series admittance decrease
exponentially as the two coupled screens are separated, which
clearly suggests that the series element is basically related to
the coupling between both screens through evanescent fields.
From (22) or (25) it is apparent that only the evanescent
modes that reach the other screen will contribute significantly
to the series element, with the contribution of the remaining
modes being negligible. On the contrary, the parallel element
in (21) or (24) does not vanish for distant screens, since
the tanh(-) function approaches unity instead. Therefore, for
coupled screens sufficiently separated (so that the reactive
field around the slits does not reach the other screen), the
parallel lumped element approaches its single-grating value.
This suggests further splitting the parallel element as

o0 o0
cV= > ACP— > A,CPl — tanh(k,di /2)].

n=N+1 n=N+1

(1)

C
p. single p. coup

(26)
The first term, Cl()’llingle, represents the value of the reactive
element in the absence of coupling with a second screen
(single-grating value). The second one, Cp coup, is @ coupling
term that accounts for the modification of the single-screen
capacitance due to the presence of the other screen. The
fact that this term is subtracted from Cl(),llingle indicates
that the overall parallel capacitance tends to decrease as a
consequence of the coupling, and this can be interpreted as a
parallel connection between the single-screen capacitance and
anegative capacitance, —Cp coup- A similar decomposition can
be made for the parallel inductance in the TE case as

oo o0

/LY = Y Ay/Ly— Y Ay/Ly[l — tanh(k,d, /2)].

n=N+1 n=N+1

]/Lp, sing]e:I/L(pO) Lp, coup

(27
As found for the series coupling elements in (22) and (25),
only those higher-order modes whose evanescent field reaches
the other screen need to be included in the parallel coupling
elements (26) and (27). A convenient criterion to determine
the highest-order mode, M, to be considered in the Cs, L,
Cp coups and Ly coup Summations in (22), (25), (26), and (27) is
found to be

L p

kvdi 1 = M=|_——|. 28

Ml Lol e

This criterion has been satisfactorily checked in situations in

which coupling through evanescent modes play a significant
role.

Finally, in Fig. 4 the contribution of the zero-order mode

is accounted for by the internal IT circuit formed by the
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I'l
_Cp,coup Il _(Cp,coup
(0) Lo AL vo
Y, Y, Y,
~IT - TT
Csingle dl Csingle
(a)

Csingle

FIG. 5. Circuit models for (a) TM and (b) TE polarizations
considering the fundamental mode as the single distributed element
(transmission line of admittance Yé” ). The higher-order-mode con-
tribution is included in the lumped elements. (¢) Circuit model for
the case of two distributed modes (only the TM polarization case).

Y;’% and Y; ¢ admittances. After some manipulations (see the
Appendix), it can be shown that such a low-order IT circuit
is equivalent to a transmission-line section with characteristic
admittance Yél) and length d;.

The above ideas are illustrated in the circuits shown
in Fig. 5, with the aim of gaining a graphical insightful
interpretation (it is again assumed that the zero-order mode
is the only low-order term; N = 0). The internal transmission
line with admittance Yél) accounts for the coupling between
the screens through the propagating zero-order wave. The
reactive elements labeled “single” represent the reactive field
around the slits for a single grating (i.e., in the absence
of coupling through evanescent fields). For TM polarization
this element is obtained as the sum (parallel connection) of
C in (20) and C}, . in (26) (for TE polarization it is
given by the parallel connection between the corresponding
inductances). If the two coupled screens are distant enough
so that there is not significant coupling through evanescent
modes (namely, if M = 0 for the cases in Figs. 5(a) and 5(b)
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or M < N in general), then the reactive coupling elements
can be neglected. This situation, with only one propagating
mode and no reactive coupling, is obtained when the period is
electrically small and the dielectric slab is electrically thick. In
the literature, many authors restrict themselves to the analysis
of such a situation. However, closely spaced gratings are
important for many practical cases of interest, and in such
cases, the coupling through evanescent fields should actually
be taken into account, which can conveniently be carried out
by introducing the series and parallel coupling capacitors
or inductors. Furthermore, in order to extend the range of
applications of the model to higher frequencies where one
or more higher-order modes become propagating in the slab
between the gratings, the full dynamic frequency dependence
of their modal admittances and propagation wave numbers has
to be considered. As N > 0, these higher-order modes must
contribute to the low-order sums in (13), (14), and (15) and its
respective effect can similarly be separated from the high-order
elements to form another IT circuit, which is again equivalent
to another transmission line with its corresponding admittance
YV and length ;. This fact is sketched in Fig. 5(c) for N = 1
and TM polarization. The appearance of transformers of turn
ratio Ai/ ? placed at both ends of the transmission line is
noteworthy.

C. Strategy for the computation of the IT-circuit admittances

Taking into account the ideas discussed above, we now
discuss the systematic strategy followed in this work to
compute the Yp(o), Yp(l), and Y; admittances that make up the
[T circuit. First, given the structural parameters and frequency
range of interest, the value of N is computed following the
criterion proposed in (16). Using this value of N, the C*’ and

Cr(’lgmgle lumped elements in (20) and (26) are computed as
— [okyw/2)1
C(O) — (©) n , 29
weoe” D T w2 29
n= N+1
cH — C(O) (30)
p,single (0)

Similarly, for the TE case, the L(O) and L. elements in

p.single
(23) and (27) are obtained from

1 1 16 K [Jiltkw/2)]?
TOTSm T Z [ 15(1111)0//2)] : (1)
LP Lp single Ko n=N+1 n
Next, the value of M is obtained from the criterion in (28). If
M > N, then the coupling reactive elements are computed as

[Jotkaw/2)]?

Chpcoup = WEQ sm Z — 1
n=N+1 knw/2

— tanh(k,d,/2)],

(32)

M 2
Co=weoe? Y I ety 39

2
n=N+1 knw
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or
M
1 16 Ty (kyw /2)T2
- M[l — tanh(k,d; /2)],
Lp,coup w o NN+ knw/2
(34
1 16 & [Niw/2))

- 3 1 sch(k,dy).  (35)

Ly wio | S k,w/2

If M < N, these coupling elements are ignored. Once all of the
above lumped elements are known, the high-order admittances
in (13)—(15) are given by

Y0, = joC, (36)

()] : 1
Yp ho — Jw(cp single CP,COUP) ’ (37
Ys,ho = ijSv (38)

and the corresponding expressions for the TE case are obtained
by replacing jwC with 1/jwL. It is important to note that
none of the above lumped elements depends on frequency.
Hence, they have to be evaluated only once when performing
a frequency sweep. Furthermore, the elements with infinite
summations in (29)—(31) do not depend on d; either, and
therefore it is not necessary to recalculate them when varying
the distance between the gratings, provided the period p or the
slit width w is not modified. If so desired, diverse techniques
can be applied to find closed-form expressions for the involved
series [23]. More specifically, all the numerical series required
in this paper, which involve Bessel functions in their general
term, have been computed in closed form in the frame of the
analysis of the so-called boxed microstrip line [65,66]. Thus,
the results in [65] and [66] can be directly employed to speed
up the computation of the series in the present work. Finally,
for each value of frequency, the admittances in the IT circuit
are obtained as

Yéo) _ XN: A YO+ er(ffo, 39)
N n=1
YO =3 A4, Oan (B0di/2) + ¥, 40)
"
Y, = —j ZAnYrgl)csc (,Bfll)dl) + Y5, ho- 41
n=0

D. Results and discussion

Some numerical results are next presented in order to check
the validity and accuracy of the equivalent-circuit approach
for a pair of coupled gratings and to illustrate the previous
discussion. Figure 6 shows the transmission coefficient of a
pair of coupled gratings printed on either side of a dielectric
slab, for two values of the slab thickness d; (separation
between the gratings).

For comparison purposes, we have developed an in-house
numerical code based on the method of moments (MoM)
solution of the integral equation for the aperture field. This
MoM implementation, which uses several basis functions to
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1S24l
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1S21l
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Normalized frequency p/Ag

(b)

FIG. 6. Magnitude of the transmission coefficient (|S,;|) for two
coupled gratings versus the normalized frequency for TM incidence
and for different thicknesses (d;) of the dielectric slab between the
gratings (i.e., for different values of the separation between the
gratings). Parameters: w = 0.1p, ¢© =1, ¢V = 4. (a) Relatively
distant gratings: d; = p/2.5 = 4w. (b) Closely spaced gratings:
dy = p/50 =w/5.

reproduce the aperture field, has been carefully checked and
the numerical results it provides can be considered virtually
exact for our purposes.

In the first case shown in Fig. 6(a), the separation between
the metallic screens is relatively large (the slab thickness is
2.5 times smaller than the periodicity of the slit gratings).
Indeed, the value of the ratio p/(2rd;) is quite low (~0.4),
and consequently, the coupling through evanescent fields is not
expected to be relevant. Hence, the Cp,coup and Cg capacitors
do not have to be considered in the circuit model [in other
words, M = 0 is taken for the circuit-model results shown
in Fig. 6(a), although M =1 could be taken according to
our more conservative general criterion given in (28)]. It is
shown in the figure that the circuit-model results obtained
with N = 0 reproduce accurately the transmission spectrum
at low frequencies, but they tend to deviate as the frequency
increases until they become qualitatively wrong. The reason
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is that the first higher-order mode becomes propagating in the
dielectric slab at p/Xo = 0.5. Thus, the N = 0 results start
to deviate at lower frequencies (p/A¢ = 0.2) where the n = 1
evanescent mode is no longer far below its cutoff frequency and
its increasingly dynamic behavior starts to have an effect on the
transmission spectrum. The circuit model can accommodate
this situation simply by setting N = 1, i.e., by incorporating
the corresponding IT network for the n = 1 mode (together
with that for the fundamental n = 0 wave, which is always
present). This is confirmed by the N = 1 results in Fig. 6(a),
which show a very good agreement with the MoM curve up to
/Ao 2 0.6. For higher frequencies, these results show some
deviation with respect to the MoM data, although they are
still able to reproduce the main features of the spectrum. Once
again, this deviation is due to the fact that the next-higher-order
mode (n = 2) is approaching its cutoff frequency inside the
dielectric slab (p/X¢ = 1). The circuit model with N = 2 does
provide very accurate results over the whole frequency range.

Next, Fig. 6(b) shows the transmission spectrum for the
same two coupled slit gratings as in Fig. 6(a), but now with
a much thinner dielectric slab (d; = p/50), and hence, the
gratings are tightly coupled. Two total transmission peaks
are observed, each one followed by a transmission zero. If
only the zero-order wave is considered as distributed element
in the model through its corresponding IT network (curve
labeled N = 0), the resulting equivalent circuit is not able
to reproduce the transmission behavior at all. When the first
higher-order mode is considered a “low-order” mode and thus
its dynamic distributed nature is taken into account through the
corresponding ITnetwork (N = 1 curve), the first transmission
peak and zero are captured by the circuit model, though slightly
blue-shifted. The inclusion of the second higher-order mode
(N = 2) mostly corrects this frequency shift and makes the
proposed circuit model able to reproduce the second peak
and zero. However, even with N = 2 the results are not
satisfactory, since a significant difference in the transmission
level with respect to MoM results is observed throughout the
considered frequency range. The reason is that the circuit used
to compute the N = 0, N = 1, and N = 2 curves in Fig. 6(b)
does not include the Cp, coup and C; coupling capacitors, which
implies that the coupling through evanescent modes is being
neglected. As the gratings are now very close to one another,
this coupling is expected to be significant. Indeed, for the
present configuration and according to our criterion in (28),
M should be set to 8. This means that, for the circuit model
with N = 2, higher-order evanescent modes from n =3 to
n = 8 should contribute to the Cp, coup and C; capacitors. When
these capacitors are also introduced in the circuit model (curve
labeled N = 2, M = 8), the agreement with the MoM results
is very good over the whole frequency range shown. At this
point, it is also worth highlighting the computational efficiency
of the proposed equivalent-circuit method. Even in this quite
stringent case (with three distributed modes and up to eight
modes contributing to the evanescent coupling), the CPU time
needed for the computation of the ~1000 values represented
in Fig. 6(b) is almost negligible (it takes about 100 ms in a
modest personal computer).

A second example is given in Fig. 7, which shows a compar-
ison between our equivalent-circuit results and experimental
results reported in Ref. [54]. The transmissivity coefficient
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FIG. 7. Comparison of our circuit approach data with experi-
mental results [54] for the transmissivity coefficient (|S5;]?) of a
pair of tightly coupled 1D gratings when a TM-polarized normally
incident plane wave impinges on the structure. Parameters: p =
10.02 mm, w = 0.29 mm, d; = 0.356 mm, 0 =1, ¢ =4.17,
tan(s) = 0.0167.

is plotted versus the frequency when a normally incident
TM plane wave impinges on a pair of coupled arrays. The
gratings are printed on the two sides of an electrically very
thin and lossy FR4 substrate. It should be pointed out that
losses in the substrate can be straightforwardly incorporated
in the circuit model through the admittances, (4), and wave
numbers, (5), just by replacing the lossless real value of
permittivity, £, with its complex value for lossy substrates,
e"(1 — jtan §?). According to our general criteria in (16) and
(28), the circuit-model results in Fig. 7 are computed with
N =2, M =5. As can be observed, the agreement with the
experimental results is remarkably good.

The case of TE incidence is studied in Fig. 8, which
shows the frequency behavior of the transmission coefficient
when a normally incident plane wave impinges on a pair

MoM
— — —Circuit Model

0.8}
0.7}
0.6
0.5}
0.4+
0.3}
0.2} b

| . J ‘ ‘

0 0.2 0.4 0.6 0.8 1
Normalized frequency p/A,

S2l

FIG. 8. Transmission coefficient (magnitude) versus frequency
for TE incidence. Parameters: w = 0.2 p,d; = 0.5 p,e® = 1,¢V) =
9.8.
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of coupled gratings. For this polarization the interaction of
the incident wave with the slits is weaker than for the TM
case and an electrically thick medium is needed to observe
transmission peaks, which are extremely frequency selective.
Four low-order terms were taken as distributed elements
(N = 4) because of the high permittivity of the substrate.
These terms are associated with propagating modes in the
dielectric region since the interaction through evanescent
modes is almost negligible because the screens are far enough
to be affected by them (M = 0). Once again, the accuracy
shown by the circuit model compared with the numerical MoM
data is very good.

Concerning the validity limits of the approach, it is
the assumption of a frequency-independent field profile
at the slits, (7), that constitutes the fundamental limitation
in the application of the model. Therefore, the model is
valid for relatively narrow slits; i.e., the results provided by
the equivalent circuit will start to deteriorate for frequencies
at which the slits are not electrically small. In order to
qualitatively estimate the limits of validity, we have carried out
extensive numerical experiments for different configurations
under both polarizations. For TM polarization, the model is
found to provide reliable results for w/Agie; S 0.4, where Agiel
is the wavelength inside the highest-permittivity dielectric
involved. Under TE polarization, the numerical experiments
showed that the validity limit can be estimated as w/Aer <
0.75, where A is the wavelength inside an effective medium
with relative permittivity geg = (850) + 89)) /2.

III. STACKED ARRAYS

The previous section presented the derivation of the IT-
circuit model for a pair of coupled slit gratings, together with
a detailed in-depth physical interpretation of its elements.
All the previous derivations and discussions will be found
to be very pertinent for the study of stacked arrays since its
corresponding equivalent circuit will be systematically built
up from the IT-circuit model for a pair of coupled slit gratings.
As already pointed out in Sec. II A, the key fact is that the
Y, admittance in the IT network is given by the sum (parallel
connection) of the external, Yéo), and internal, Yél), parallel
admittances. Since these admittances independently account
for the field in medium (0) (external medium) and medium
(1) (internal medium), an “internal” IT block associated with
medium (1), characterized by Yg” and Y, can be defined as
shown in Fig. 9. This internal IT circuit can be employed
as a “building block” to build up the equivalent circuit of a
series of stacked arrays, as shown in Fig. 10. The stacked
structure amenable to analysis using this procedure may have

YO(O)

building block

FIG. 9. Topology of the equivalent circuit defining the internal IT
circuit (building block) and the external part.
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FIG. 10. (a) Stacked structure with different dielectric slabs.
(b) Equivalent circuit made by cascading IT building blocks.

dielectric layers of different thickness and permittivity, but
the slit arrays must be identical and aligned among them to
preserve the periodicity in the transverse direction. It should be
noted that the employed strategy is applicable to finite stacked
structures thanks to the initial “aperture” formulation of the
problem, which made it possible to define two independent
subproblems at both sides of the apertures (slits).

The above rationale can also be employed to study an
infinite set of periodically stacked slit gratings. In this case,
the equivalent network of this longitudinally periodic structure
is formed by the periodic repetition of the corresponding
IT building block (the “unit cell” of the structure along
the longitudinal z direction), as illustrated in Fig. 11. As
the elements of this IT building block are known in closed
form, the dispersion relation of the Bloch modes of the infinite

0]

I
o1, |
|

|

4

(@

longitudinal
unit cell

1 (1 1

111111
Hﬂﬁ!ﬁé ﬂﬂﬂ

FIG. 11. (a) Infinite periodic stack of slit gratings. (b) Equivalent
circuit consisting of an infinite cascade of IT building blocks.
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FIG. 12. Magnitude of the transmission coefficient (| S,;]) versus
the normalized frequency for four stacked slit arrays under normal
TM incidence. Parameters: w = 0.1 p,d, = 0.4 p,d, = 0.3 p,d; =
02p,e® =160 =226@ =45 =3,

periodic stack is readily obtained as [62]

Yp
cosh(yd)) =1+ 7 (42)

N

where y =« 4+ jB is the complex propagation constant of
the Bloch mode, with § being the phase constant and o« the
attenuation constant. The Bloch admittance at the longitudinal
unit cell terminals is also derived immediately as [62]

Ys = VY,(Y, + 2Y5). (43)

A. Results and discussion

As a first example to check the validity of the equivalent-
circuit approach for stacked arrays, the transmission coefficient
of a set of four cascaded arrays printed on three dielectric
slabs under normal TM incidence is plotted in Fig. 12. A high
reflection behavior is observed at the center of the plot, from
0.25p /1o upto about 0.7 p/Xg. Atlow frequencies, a high level
of transmission is expected because the slit gratings interact
weakly with the incident wave. Additional transmission peaks
are also found between 0.7p /Ao and 0.9 p/A¢. For comparison
purposes, the results provided by the commercial simulator
Ansys HFSS [67] (based on the finite-element method in the
frequency domain) are also shown. An excellent agreement is
found between the two sets of data.

Next, the case of an infinite periodic stack of identical
gratings is studied in Fig. 13. The Brillouin diagram for the
Bloch mode of this periodic structure obtained from (42) is
plotted in Fig. 13(a), which shows four passbands separated
by three stopbands. It is interesting to note that the slope of the
dispersion relation is positive in the first two passbands (often
called forward passbands), whereas it is negative in the two
higher-frequency bands (backward passbands). Since no losses
are assumed in any element of the present structure, the second
member of (42) is always real, providing two possibilities for
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FIG. 13. (a) Brillouin diagram of an infinite stacked structure.
(b) Transmission coefficient (dB) versus normalized frequency for
a truncated version (10 stacked gratings). (c) Bloch impedance of
the Bloch mode represented in (a). The parameters of the unit cell
are w=20.15p, d, =03p, ¢? =1, &) = 4. Frequency regions
labeled SB 1, SB 2, and SB 3 denote stopbands.

the propagation constant:

o Y,
y =jp if |:1+7j|e[—l,l], 44)

S

|0 . Y,
y=a+]{nd if [1+7}¢[—1,1]. (45)
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Clearly, passbands occur when « = 0 (y = jB), and stopbands
when o # 0 and B = 0 or wd. The existence of a passband is
then subject to the following two conditions: (i) the reactive
nature (capacitive/inductive) of Y and Y}, has to be different in
order to satisfy Y/ Ys < 0, and (ii) |Y,| < 2|Y|. For instance,
these conditions are satisfied if the IT network has a relatively
small capacitance as a parallel element (close to an open
circuit) and a low inductance as a series element (close to
a short circuit), which allows the power to pass through the
structure, thus obtaining a forward band [62]. On the other
hand, the above two conditions can also be satisfied if Y is
capacitive and Y, inductive; for instance, a IT network with a
high capacitance as a series element and a high inductance as
the parallel element. This would also allow the power to travel
along the stacked structure, but now the passband would be of
a backward nature.

If a finite (truncated) version of the previous longitudinally
periodic structure is now considered, a clear correspondence
is expected between the Brillouin diagram and the behavior
of the transmission coefficient of the finite stack. This fact
is illustrated in Fig. 13(b), which shows the transmission
coefficient through a finite stack with 10 gratings. The presence
of successive passbands or stopbands that perfectly correlate
with the associated Brillouin diagram in Fig. 13(a) can be
observed. The circuit-model results (solid lines) are compared
with those provided by the Ansys HFSS (circles), showing
an excellent agreement. Another feature of this transmission
behavior worthy of mention is the high level of ripple observed
in the passbands. This is due to impedance mismatching
between the impinging wave (whose characteristic impedance
is the intrinsic impedance of the free space, ng &~ 377 2) and
the Bloch mode of the stack. Figure 13(c) shows the real
and imaginary parts of the Bloch impedance (Zg = 1/Y5)
obtained from (43). Since the considered structure is lossless,
Zp isreal-valued at passband and purely imaginary at stopband
frequencies. For the most part of the first three passbands,
the Zg value is much lower than the free-space impedance,
although it tends to grow within each band, which is consistent
with the decreasing trend of the ripples. Also, Zg is higher in
the first (low-frequency) passband, and hence the ripples in this
band are smaller than in the next two passbands. Finally, the
last passband (at the higher frequencies) is the one showing by
far the highest mismatching, due to the particularly low value
of Zp at these frequencies.

As the last example, in Fig. 14(a) a lossy stack with the
space between the gratings filled with resistive silicon slabs
is studied. The complex effective permittivity of the slabs is
given by e = goe!) — jo/w, where o is the dc conductivity
of the layers. Figure 14(a) shows the power absorbed in a
finite stack (normalized to the incident power), whereas the
Bloch impedance of the corresponding infinite stack is plotted
in Fig. 14(b). Since the structure is lossy, the Bloch impedance
takes complex values at any frequency. The most interesting
feature is the high-absorption band at high frequencies, with
a fractional bandwidth of 4.5% for a central frequency of
22.5 GHz. As shown in Fig. 14(b), this absorption band can
be related to a Bloch impedance with a relatively constant
real part that is close to the free-space impedance and with a
relatively small imaginary part in the same frequency range.
This behavior of the Bloch impedance has been obtained by
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FIG. 14. (a) Power absorbed in a lossy system formed by eight
stacked arrays separated by seven resistive (ohmic) dielectric slabs
(o = 0.2 S/m). (b) Bloch impedance versus frequency. Parameters:
p=5mm,w=14mm,d =22mm,e? =1,V =11.9.

properly adjusting the geometrical parameters and the value
of the slab conductivity. Note that, for frequencies between
approximately 17 and 20 GHz, Zg is mostly real-valued as
well. However, its small value implies a strong mismatch with
the incident wave that causes most of the incident power to be
reflected rather than absorbed in the resistive silicon slabs.

IV. CIRCUIT MODEL FOR OBLIQUE INCIDENCE

The extension of the circuit model to the case of a plane
wave that impinges obliquely with an incident angle 0 is
straightforward. Assuming that the incidence is in the yz plane
(see Fig. 1), the corresponding incident wave vector is given

by
k = 8§0) ko(cos 8 Z + sin6 y). (46)

The parallel and series admittances obtained in Sec. II are
defined in terms of an infinite sum of modes. For oblique

PHYSICAL REVIEW E 93, 013306 (2016)

incidence, the transverse boundary conditions of the unit cell
are no longer electric or magnetic walls but periodic walls,
which implies that the series of modes now become series
of Floquet spatial harmonics. Thus, the series and parallel
admittances in Fig. 9 can be written as

Ylg(’) = Z A YO 47)
n = —0oo
n#0
vV = 3" A7 tan (d/2). (43)
n=—00
oo
Y, = Z A, YV ese (BVd,), (49)
n=—00
where
B = R — o + k2 (50
ke =/ & ko sin(8), (51)

with k, being the transverse (to z) wave number. For the
definition of the A, coefficients, the same field profiles as in
(7) are considered, and therefore their expressions are similar
to those in (3) but now incorporate the phase shift imposed by
the incident plane wave:

[Jo((k,, + kt)w/Z)]2, TM incidence;

Iy (k+hk)w/2) 2 . (52)
[ZW] , TE incidence.

Regarding the criterion for the number of low-order
harmonics, we now define N as the number of propagative
negative harmonics (n < 0) plus 1 (the first evanescent
one) inside the highest-permittivity medium at the highest
frequency of interest, namely,

p
A_—‘ (53)

0, min

N = ’7(«/8r,max + 850) sin 9)

(for positive angles of incidence the number of propagative
positive harmonics is at most equal to the number of prop-
agative negative harmonics). All the harmonics with |n| < N
are thus considered low-order harmonics whose contribution to
the above sums is taken rigorously without any approximation.
The harmonics with |n| > N + 1 are all far below the cutoff
in the frequency range of interest, and thus we can use the
following approximation:

kn + ki = kn, (54)

ﬂn ~ _jk\n\a (55)

which implies that, once again, their global contribution to
the equivalent circuit can be accounted for by frequency-
independent capacitances or inductances. Taking into account
(55), the same criterion for M in (28) can be applied here, and
only those high-order harmonics with |n| < M are considered
in the elements that represent coupling through evanescent
fields.
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FIG. 15. Transmission coefficient (magnitude) versus normalized
frequency for a four-slit-array stacked structure under oblique TM
incidence (0 = 20°). Parameters: w = 0.1 p,d, = 0.4 p,d, = 0.3 p,
d;=02p, 0 =1, =226 =4,¢® =3,

As an example of application, Fig. 15 shows the reflection
coefficient versus frequency for the case of four stacked
slit arrays under oblique TM incidence with 8 = 20°. As in
previous comparisons, the agreement with the results from
HFESS is very good.

Finally, it should be mentioned that the range of application
of the model is more reduced for oblique incidence than for
normal incidence, as expected. As reasonable estimates of
the validity limits, we have found that the model is valid for
frequencies up to w/Agier < 0.2 for oblique TM incidence and
w/Aer < 0.5 for oblique TE incidence.

V. CONCLUSIONS

A wideband equivalent IT circuit has been derived for a
pair of coupled slit arrays illuminated by TM or TE normally
incident plane waves. Fully analytical expressions are derived
for the I1-circuit elements, which are valid both for slightly
and for tightly coupled gratings. The numerical series defining
the circuit components are physically interpreted in terms of
distributed (low-order-mode) and lumped (high-order-mode)
contributions, in such a way that explicit networks can
be obtained for each specific configuration and maximum
operation frequency. The deduced II-circuit model shows
separate contributions of the internal and external fields to the
parallel elements, which allows for a straightforward extension
of the circuit model to the case of stacked structures with
an arbitrary number of slit gratings separated by dielectric
slabs. Specifically, the equivalent circuit is obtained just by
cascading the elementary internal IT building blocks. The
model can also be used for the dispersion analysis of the
Bloch modes of infinitely long periodic stacks. The extension
of the formulation to oblique incidence is straightforward. The
validity of the derived circuit models has been systematically
verified by proper comparison with numerical data generated
by the MoM, by the commercial simulator HFSS, and also by
some available experimental results.
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APPENDIX: TRANSMISSION LINE EQUIVALENT
TO A I CIRCUIT

The role of the low-order modes associated with the internal
IT topology in Sec. II B can be treated as individual n-order
IT circuits. The n-order modal parallel and series admittances
are given by

v =AYV tan (8d)/2), (A1)

Yon = —jA,Y" esc (B"d)). (A2)

Using the transmission matrix formulation [62], the ABC D
parameters associated with a IT topology are given by

|4 Lo :

Ysn Ysn

[ABCD], = ( oy
p.n

2+ 1+

7 (A3)

Substituting (A1) and (A2) into (A3), it is found after some
manipulations that

YD cos (BDd))  jLu sin (BDd
[ABCD]n=|:n (n l) 7 (n l) . (Ad)

j%) sin (BVdy) YV cos (B{Vd)

which can be decomposed as the following matrix product:

A0
[ABCD], =| 1
F
YV cos (BVd1) i sin (B"d1)
iYWsin (BVd;) YL cos (BVd,)

i
0
72
x | An 2 |
0 Ay

This cascade of transmission matrices actually represents
a transmission-line section of length d; and characteristic
admittance YV terminated by transformers of the turn ratio

AL on both sides [62]. Note that forn = 0, Ay = 1 for either
TE or TM polarization, and thus (A5) reduces to

Yé:l))cos( éll)dl) Jﬁl” sin( (()ll)dl) ’ (A6)
ivsVsin (B dy)  Y§" cos (B dy)

(A5)

which represents a transmission-line section of length d; and
characteristic admittance Yél).
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