Comunicaciones

15

On dynamic programming with underlying Monge
path-decomposable array

Alfredo Garcia, Pedro Jodrs, Javier Tejel!

Abstract

In this paper, we present an on-line algorithm to
solve the dynamic programming recurrence Eli] =
ming,, i, mini45i1 {E[Z4 — 1] + w(il,iQ,is,i4)}, for i3 =
1,...,n1, where E[0] is given and W = {w(i1,i2,43,44)}
is an n1 X n2 X n3 x n1 weight Monge path-decomposa-
ble array. Our algorithm extends to multidimensional
arrays the algorithm given by Garcia et al. [5] for on-
line searching of minima in Monge path-decomposable
three-dimensional arrays.

Keywords: Monge arrays; Dynamic program-
ming; Computational complexity

1 Introduction

1.1 Totally monotone arrays

A two-dimensional n x m array W = {w(i, k)} is
called monotone if the minimum entry in its i-th
row lies below or to the right of the minimum entry
in its (¢ —1)-st row. W is called totally monotone if
w(i, k) > w(i, k') implies w(i’, k) > w(@’, k'), for all
i < i and k < k’. In other words, every 2 x 2 sub-
array is monotone. Let k(i) be the smallest column
index where the minimum entry in its i-th row is
found. The main property of a totally monotone
array is that k(1) < k(2) < ... < k(n), and this
property is also satisfied by the row minima of any
subarray.

Totally monotone arrays were introduced by
Aggarwal et al. in the seminal paper [1], where they
showed how a wide variety of problems in computa-
tional geometry could be reduced to the problem of
finding the row minima in two-dimensional totally
monotone arrays. Aggarwal et al. [1] described a
O(n +m) algorithm to compute the row minima in

1Dpto. Métodos Estadisticos. Universidad de Zaragoza.
E-mail: {olaverri,pjodra,jtejel }@posta.unizar.es

n X m totally monotone arrays, provided that any
entry can be computed in constant time. We shall
refer to their algorithm as the SMAWK algorithm.

It is not hard to see that the SMAWK algo-
rithm also computes linearly the row minima in a
lower triangular totally monotone array. Annxm
array W is said to be lower triangular if there are
integer constants 1 < ¢; < ... < ¢, < m such
that w(i, k) is defined for k¥ < ¢; and undefined
otherwise. A lower triangular array is called to-
tally monotone if the total moiiotonicity condition
holds for any four defined entries of W which form
a rectangular subarray.

Monge arrays are an important subclass of
totally monotone arrays. An n x m array W =
{w(i,k)} is called Monge if w(i, k) + w(i’, k') <
w(i, k') + w(i',k), for 1 <4 < ¢ < nand1 <
k < k' < m. Although the total monotonicity con-
dition is more restrictive than the Monge condi-
tion, in practical applications the most usual case
of totally monotone arrays is that of Monge arrays.
Especially in geometric settings, the Monge condi-
tion is closely related to the quadrangle inequality
for convex quadrangles (the sum of the diagonals is
greater than the sum of opposite sides, in any con-
vex quadrilateral). A review on Monge properties
and applications can be found in [4].

Aggarwal and Park (2] extended the notion of
two-dimensional totally monotone arrays to multi-
dimensional arrays and gave sequential algorithms
for searching minima in such arrays. These au-
thors defined two important subclasses of multi-
dimensional totally monotone arrays called Monge
path- and cycle-decomposable arrays. For d > 3,
an np X ng X ... X ng d-dimensional array W =
{w(iy,...,iq)} is called Monge path-decomposable
if each of its entries satisfies

Wi, ,5q) = whD (i, 40) + w® (ig,45) + ...
+ w(dnl’d)(id—laid)y

16 Terceras Jornadas de Matemdtica Discreta y Algoritmica

where for all j < k, the n; x ny array Wk =
{w*) (i;,ix)} is a two-dimensional Monge array.
On the other hand, W = {w(:1,...,14)} is called
Monge cycle-decomposable if each of its entries sa-
tisfies

w(it, ..., iq) = wD(ig,d2)+. . +w@ 1D (i5_; 44)

+ w(d’l)(ida il)a

where for all j < k, the ny x n; array WU% =
{w¥*)} is Monge as above, and the ng x n, array
W@ = L@ (44,4,)} is Monge.

Let W = {w(41,...,iq)} be an ny x ... x ng
d-dimensional array. Henceforth each (d — 1)-
dimensional subarray of W corresponding to a
fixed value of 4; will be called a plane. Let
k2(i1),...,kq(i1) be the second through d-th in-
dices of the minimum entry in the plane i; of W,
ie.,

min {w(i17i27"'7id)}'
<ij<ny
j=2....d

w(il,kg(il) .. -,kd(il)) =

If a plane contains multiple minima, we chose the
first of the minima in the lexicographical order by
the second through d-th indices. The n; x ... x ng
d-dimensional Monge path- or cycle-decomposable
arrays satisfy the property &;(1) < ... < k;(n,), for
all j = 2,...,d. Moreover, this property is fulfills
by the minimum of any plane.

One problem that arises in connection with
d-dimensional Monge path- and cycle-decomposa-
ble arrays is the plane minima problem, in which
we wish to compute the minimum entry for each
value of its first index i;. Aggarwal and Park [2]
showed that the plane minima problem for an n; x

. X ng d-dimensional array W can be solved in
@(Z?=l n;) time if W is Monge path-decomposa-
ble, and in O((}:?zz n;)logn,) time if W is Monge
cycle-decomposable. We shall call AGPARK their
algorithm. Aggarwal and Park applied these results
to improve algorithms for some important problems
described in 2, 3|, such as the economic lot-sizing
problem with backlogging, a well-known problem
in operations research and management science.

Finally, it should be observed that the array-
searching problems considered in [1, 2] are off-line
problems. An off-line problem is a problem where
each input is available at all times, while a pro-
blem where each input is available only after certain

outputs have been computed is called an on-line
problem.

1.2 Speeding up dynamic program-
ming

Dynamic programming is an important technique
that has been used widely in many disciplines, in-
cluding operations research and computer science.
In applying this technique, one tries to take ad-
vantage of certain properties of the problem under
consideration to speed up the algorithm. It turns
out that dynamic programming algorithms can of-
ten be speeded up if the underlying weight-array
satisfy a total monotonicity property.

In {7], Larmore and Schieber considered the
following one-dimensional dynamic programming
recurrence
min {F[k] +w(i,k)}, i=1,...,n, (1)
under the following assumptions: (i) W = {w(i, k)}
is an n x m weight array and each entry w(i, k)
can be computed in constant time, (ii) the inte-
ger constants cy,...,c, are given and satisfy 1 <
aa < ... £ ¢y £ m, (iii) the values Fk], for
k =1,...,c1, are given and (iv) the values F[k],
for k = c¢i-1,...,c;, can be computed from E[i — 1]
in constant time.

Recurrence (1) can be viewed as an on-line
searching of the row minima in an n x m lower trian-
gular array A = {a(i,k)}, with entries {a(i, k) =
Flk]+w(i, k)} defined for 1 < k < ¢;. Since the de-
fined entries of columns ¢;_1 +1,. .., ¢; are available
only after the minimum entry in row i — 1 has been
found, the problem of searching the row minima
in A is an on-line problem, hence the SMAWK al-
gorithm cannot be applied. Larmore and Schieber
(7] developed a complicated ©(n + m) algorithm to
compute recurrence (1), provided that A is a totally
monotone array, in particular when W is a Monge
array. We shall refer to their on-line algorithm as
the LARSH algorithm.

Some shortest paths problems on the plane
were reformulated by Garcia et al. {5] in terms
of the following recurrence

Elij= min min {F[k] +b(3,5) + (G, k)},

j=1,...,n2 1_<_kSCi

i=1,...

2)

y 1,

Comunicaciones

17

under the following assumptions: (i) the integer
constants ¢j,...,c,, are given and satisfy 1 <
a1 < ...cny, < ng, (i) the values F[k] are given,
for £ = 1,...,c1, and (iii) the values F[k], for
k=ci-1,...,ci, can be computed from E[i — 1] in
constant time, for i = 2,...,n, (iv) B = {b(i,5)}
and C = {c(j, k)} are Monge weight-arrays of size
n) X ny and ng X ng, respectively, and their entries
can be computed in constant time. In [5], Garcia
et al. provided a linear algorithm to solve dynamic
programming equation (2), which we shall refer to
as the MINIMA algorithm. This result allowed us
to derive linear algorithms for problems such as the
travelling salesman problem for points on a convex
polygon and a segment line inside it [5], and the
minimum latency problem for points on a line [6].

In this paper, we deal with the problem of
speeding up a dynamic programming scheme ex-
tending recurrence (2) when the underlying weight-
array is d-dimensional, with d > 4, and satisfy the
Monge path-decomposable condition. In particu-
lar, we are concerned with a one-dimensional dy-
namic programming equation of the form

Eli))= min min{Efg— 1]+ w(iy,... i)},
12,--0td—1 ta<i1
i1=1,.”,n1, (3)

where it is assumed that:

1. The value of E[0] is given to begin the recu-
rrence.

2. W={w(iy,...,iqg)}isanny x...xng_; xn; d-
dimensional Monge path-decomposable array
and each entry w(i1,...,74) can be computed
in constant time.

For the sake of clarity, only the case d = 4
will be considered. The computational complexity
of the on-line algorithm we describe is O(n; + (ng +
n3)logn,) in time, speeding up the O(n? x ny x n3)
time obvious algorithm. Moreover, the algorithm is
linear in space.

2 The on-line dynamic pro-
gramming algorithm

Let W7 = {w(ij,i;41)} be an nj x nj4; two-di-
mensional Monge array, for 7 = 1,2.3. We con-

sider the problem of computing the following one-
dimensional dynamic programming recurrence

Ly . N 1.
Eliy] = lsrglsnn2 15%121'1 Elig — 1] + w' (41, i2)
1<i3<ng

+ wz(iQ,i3)+w3(i3,i4)], i1=1,...,n1, (4)

where E[0] is given and w7 (ij,7;41) can be com-
puted in constant time at all times, for all j. Since
the constraint iy < ¢, we have ng = n;.

In order to solve (4), we shall need the follo-
wing definitions. Let A = {a(41,12,i3,44)} be the
Ny X ng X ng X n; array given by {a(i1, is,43,14) =
wl(il,ig) + wz(i27i3) -+ ws(ig,i4) + E[i4 — 1]} de-
fined when ¢4 < i;. Observe that for fixed ig4, the
on-line assumption implies the entries in the plane
iq of A are available only after the minimum en-
try in the plane iy = i4 — 1 of A has been found.
Therefore, the problem of computing the dynamic
programming recurrence considered here is equiva-
lent to on-line searching of the minimum entry in
each plane i; of the array A.

Furthermore, we consider the following arrays.
Let C = {€(i2,13,14)} be the ny xn3 xn,; array with
{E(i27i3,i4) = wz(ig,ig)f}- w3(z'3,z'4) + E[24 - 1]}
For ’il = 1, .., let At = {a“ (i27i3,i4)} be the
T2 X ng X t1 array defined as follows

at (ig,i37i4) = ’wl(’il,ig) +E(i2,i3,i4).

Observe that C and A%, for i; = 1,...,n,, defined
above are Monge path-decomposable arrays.

Clearly, Efi;] is the global minimum in A%.
We shall denote by (I5(i1),I3(i1), I4(i1)) the tu-
ple (i2,43,14), where Eli;] is achieved, i.e., Efi1] =
a"((I2(31), I3(i1),14(i;)). We shall show that
we need only O(n; + ng + n3) candidate tuples
(42,13,14) to compute (I2(i1), I3(31), Ia(4y)), for all
27.

Let D = {d(i1,%2,73)} be the n; X ny x nz ar-
ray defined as {d(i1, %2, i3) = w (i1, i2) +w? (is,43)+
w3(i3,41)}. Let (da(41),d3(i1)) be the pair (z,13),
where the minimum entry in each plane i; of D
is found, for i; = 1,...,n;. D is a Monge cycle-
decomposable array and its entries are available
at all times. Thus, we can compute the pairs
(d2(i1),d3(i1)), for iy = 1,...,n, by applying
the off-line AGPARK algorithm over D. Since

18

Terceras Jornadas de Matemadtica Discreta y Algoritmica

D is a Monge cycle-decomposable array, we have
dg(il) <do(iy+1),fori; =1,...,n; — 1.

The indices do(i1), for iy = 1,...,n1, play a
key role in the reduction of the candidate tuples
(42,13,14) where all the minima E[7;] can be found.
The following lemma gives some properties of these
tuples.

Lemma 1 For i, =1,...,ng,

(1) L) <1y,

(2) da(I4(ir)) < I2(ir) < d2(in),

(3) ds(Ls(in)) < Is(i1) < ds(in). O

Given 41, the previous lemma implies that
(I2(41),13(31),14(41)) is a tuple in the set R;, de-
fined as follows

Ri, = {(i2,i5,42) 1 1<iq <41, 1 <i3<mg}.

In order to reduce the set of candidate tuples
in Ry, we define the following arrays.

Let C = {Z'(32,i3,i4)} be the subarray of C
given by {El(ig,ig,i4) = E(’ig,ig,i4)}, for dz(l) <
ig _<_ dz(nl), 1 S i4 S Ti2, and 1 S i3 S n3.

Let G = {g(i4,3)} be the n; xn3 array defined
by

g(z'4, i3) = w? (d2(i4), i3) -+ w3(i3, i4),
for1§i4§n1,and1§i3§n3.

Let H = {h(iy,i3,i4)} be the subarray of C
defined as follows

h(i2, i3,44) = w? (39, 43) + w(43,44) + Elig — 1],

for i2 = dz(l) + 1,...,d2(’l’l1), 1 < i3 < ns, and
1 < i4 S Tin—1, where Tiy = max{i4 : d2(24) S ig},
for ip = da(1),...,d2(n1) (note that 7, < 74,41,
for all ig = dg(l), . ,dg(nl) - 1).

Figure 1 represents the tuples (i2, i3,74) in Ry,
from which we define the arrays H and G, respec-
tively. Grey points in Figure 1 correspond to the
indices do(i1), for i3 = 1,...,n;.

It is not hard to see that G is a two-
dimensional Monge array. Moreover, G becomes
available after the indices dg(i1), fori; =1,...,n;,
have been computed. Then the minimum entry in
each row of G can be computed in linear time by
using the off-line SMAWK algorithm. Let g(i4)
be the smallest index i3 where the minimum en-
try in row i4 of G is found, for iy = 1,...,n;.
Since G is a two-dimensional Monge array, we have
glia) < glig+1),foriy=1,...,n; — 1.

dx(ny) elole

i
Figure 1: Arrays G and H from R,,.

The plane minima problem for H can also be
solved linearly. This problem is equivalent to com-
pute the following dynamic programming equation

H[is] = min min

2. . 3. .
1<iz<ng 1Si4£ri2_1{w (2,i3) + w (33,14)

+E[7’4—1]}3 12=d2(1)+1’7d2(n1)

Therefore, the minima H[is], for 4o da(1) +
1,...,d2(n1), can be found linearly by using the
on-line MINIMA algorithm. Let (ia, % (i2), 54 (i2))
be the tuple (i2,13,44) where the minimum H{is] is
achieved, for i = d2(1) + 1,...,d2(n,), that is,

Hlig] = w (g, 5 (i2)) + w (if (32), ¥ (32))
+ E[if (iy) — 1].

From the indices g(i4), for ¢4 = 1,...,7n1, and
da(i1), for iy = 1,...,nq, the following lemma as-
serts the only candidate tuples in R,, where all the
minima E[;] can be found.

Lemma 2 Fori; =1,...,n,, either
(1) I3(ia) = 4§ (I2(i1)) and Is(i1) = i (Ia(1)), or
(2) Iz(il) = dz(L;(’Ll)) and Ig(il) = g(14(21)) D

Lemma 2 implies that E[1], ..., E[n;] are
found in some of the following tuples (io,3,i4) in
Ry, : either in tuples of the form (i, i (42), 14 (i2)),
for io = da(1) + 1,...,d2(ny), or in tuples of the
form (da(i4),9(i4),44), for 44 = 1,...,n;. Let
£(i1) be the total number of these tuples in R;,,

Comunicaciones

19

for iy = 1,...,n1, and let m’ be the total num-
ber in R, , i.e.,, m' = £(ny). Since the planes i,
of C are two-dimensional Monge arrays, we have
Z?(Zz) S g(T‘h), for i2 = dg(l) + 1,...,d2(n1).
We enumerate these m’ tuples from 1 to m’ be-
ginning with i, = d»(1), and for fixed i, we enu-
merate them in the lexicographical order by their
3-th through 4-th indices. If (ig,i3,44) is a given
tuple with number p, 1 < p < m’, we denote its

indices by 42(p) = 42, i3(p) = i3 and is(p) = i4.
Therefore
Bli = _min T 0,10(9)) + w2(iz(p), (o)

]

+ w(ig(p),ia(p)) + Elia(p) = 1] ', i1 = 1,...,my.

Let A" = {a/(¢1,p)} be the ny x m’ array with
entries defined as

w! (iy,42(p)) + w2 (i2(p), i3(p))
+ w(is(p),is(p)) + Elia(p) — 1],

a’(ilvp) =

for 1 < p < £(iy). It is clear that

Ela) = min {a'(i1,p)},

1<p<e(ia)

il =1,...,77.1.

Also, we can verify the following property.
Lemma 3 Theny x m’ array A’ is Monge. O

Finally, we are in a position to solve recurrence
(4). First, we solve the plane minima problem for
the array D. Since the array G becomes available,
we can compute the minimum entry in each row of
G. Then, we compute on-line the minimum FE[i]
in each row of A’ by interleaving its computations
with the computation of the minimum H i) in each
plane of H. Our algorithm involves communication
between two recursive processes of searching mini-
ma over the arrays H and A’. Both processes are
active and intermediate values are communicated
between them. A similar technique is used in [7, 5].

In step 41, the values E[1], ..., Eli; — 1], and
H{(is), for io = d2(1) + 1,...,d2(4; — 1), have been
computed. Hence, the planes of C' and H corres-
ponding to i4, for iy < i1, become available. On
the one hand. if d2(i; — 1) < da(i1), we can obtain
i3 (i2) and i (i), for ip = da (i1 — 1)+ 1,...,da(iy),
by applying the MINIMA algorithm over H. Then

the first £(i;) columns of A’ are defined. On the
other hand, if da(éy — 1) = da(7;), the first £(4;)
columns of A’ are also available, because we have
computed g(i;) previously. Therefore, the 7;-th row
of A’ is defined and we can activate the LARSCH
algorithm over A’ to obtain E[i;]. The pseudocode
in Figure 2 shows a way of making these computa-
tions. We shall call GMINIMA the algorithm des-
cribed in this section.

Algorithm GMINIMA
begin
comment: A, C, D, H, G and A’ defined above.
comment: E[0] is given.
activate AGPARK over D to report dz(41), for i, =
1, sy,
comment: 7;,, for iz = d2(1),...,d2(n1), are availa-
ble.
activate SMAWK over G to report g(is), for 44 =
1, .., N,
inicialize p = 0; d2(0) = d2(1);
for i; from 1 to n; do
comment: Plane i4 of C, is available, for i4 =
1,..., 0.
if d2(i1 — 1) < d2(41) then
comment: Plane i; of H is available, for iz =
dz(il - 1) +1,... ,dz(il).
for iz from dz(é1 — 1) + 1 to dz2(i1) do
activate MINIMA over H to report
(i (i2), i¥ (i2)).
p=p+1
i2(p) = 12; is(p) = i§' (i2); 4a(p) = 6§ (i);
end for
end if
p=p+1
i2(p) = d2(i1); i3(p) = g(41), ia(p) = i1; £(i1) = p;
comment: The row i1 of A’ is available.
comment: The first £(;) columns of A’ arc availa-
ble.
activate LARSCH over A’ to compute Eli1].
end for
end

Figure 2: The GMINIMA algorithm.

Theorem 1 The GMINIMA algorithm runs in
O(n1 + (n2 + n3)logni) time and requires linear
space.

20 Terceras Jornadas de Matemadtica Discreta v Algoritmica

Proof. The AGPARK algorithm is applied over
D to obtain dy(iy), for iy = 1,...,n;. Then, the
array G becomes available and the SMAWK algo-
rithm can be applied over G to obtain g(i4), for
all iy = 1,...,ny. D is an ny X na X nz Monge
cycle-decomposable array and the plane minima
problem for D can be solved in O((n2 + n3)logn,)
time and ©(n; + ny + n3) space. G is an n; x n3
Monge array and the row minima can be found in
©(n1 + n3). The MINIMA algorithm is activated
over H and the LARSCH algorithm is activated
over A’ by interleaving the computations in both
arrays. The size of H is at most no xngxn;. Hence,
the plane minima problem for H can be solved in
O(n1 +ne +n3). A is an ny x m’ Monge array
with m/ = ni +i2(n1) - 12(1) <n3+ny~—1. Thus,
we can compute E[1], ..., E[n;] in O(n; +n,). As
each entry of D, G, H and A’ can be computed in
constant time, the computational complexity of the
algorithm is proved. O

From the discussion above we therefore con-
clude the following.

Corollary 1 Dynamic programming recurrence
(4) can be computed in O(n; + (ny + n3)logn;)
time and ©(n; + na + ng) space. [

3 Concluding remarks

We have presented an O(n; + (ng + ng)logn) time
algorithm for computing the dynamic programming
recurrence (4). We point out that the complexi-
ty would become ©(n; + ny + n3) if a linear time
algorithm was proved for off-line searching of mi-
nima in d-dimensional Monge cycle-decomposable
arrays. However, it is not clear how to obtain an
improvement of the algorithm described by Aggar-
wal and Park [2].

Generalizations of the on-line searching tech-
nique described in this paper allow us compute re-
currence (3) when d > 4, but there are many other
modifications of this recurrence that require further
research.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P.
Shor and R. Wilber. Geometric applications

of a matrix-searching algorithm. Algorithmica
2 (1987), 195-208.

A. Aggarwal and J.K. Park. Notes on search-
ing in multidimensional monotone arrays. Pro-
ceedings of the 29th IEEE Symp. on Founda-
tions of Computer Science, October 1988, 497-
512.

A. Aggarwal and J.K. Park. Improved algo-
rithms for economic lot size problems. Opera-
tion Research Society of America 41 (1993),
549-571.

R.E. Burkard, B. Klinz and R. Rudolf. Pers-
pectives of Monge properties in optimization.
Discrete Applied Mathematics 70 (1996), 95-
161.

A. Garcia, P. Jodrd and J. Tejel. An effi-
cient algorithm for on-line searching of mini-
ma in Monge path-decomposable tridimen-
sional arrays. Information Processing Letters
68 (1998), 3-9.

A. Garcia, P. Jodrd and J. Tejel. Un algo-
ritmo 6ptimo para el calculo del circuito de
latencia minima en un grafo camino con pe-
sos. XXV Congreso Nacional de Estadistica e
Investigacion Operativa, Abril 2000, 755-756.

L.L. Larmore and B. Schieber. On-line dy-
namic programming with applications to the
prediction of RNA secondary structure. Jour-
nal of Algorithms 12 (1991), 490-515.

