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Optimization System in Networks using ACO

P. Cardoso!, M. Jesus? and A. Marquez?

Abstract

The Ant Colony Optimization Method (ACO) concept
is used as a support to the development of a system to
model/simulate network problems. Its goal is the capa-
bility to estimate solutions even when some dynamism
is inherent to problem.

The ACO system is based on an agent’s pop-
ulation with the goal of finding a suitable solution
(random-heuristic), considering the paths between ori-
gin and target nodes.

To improve the performance and the quality of the
solutions, the system must have a collection of capabil-
ities, namely:

¢ memory (to pass situations aiming the prevision
of future occurrences);

e global vision over the network (capability to recog-
nize critical points in the network and find solution
taking those in account)

e capability to communicate.

1 Introduction

The challenge of solving hard optimization prob-
lems, many times leads to the use of classical meth-
ods that often come across great difficulty to find
the optimal solution, although theoretically they
guarantee it.

Evolutionary and adaptive computing have
emerged in the last decades, taking advantage of
the advent of the computer age and furnishing us
the capability to solve some hard problems in a
large domain of fields [1, 8]. Many of this systems,
usually based on random-heuristic searches, can be
well described by analogy to various natural sys-
tems [1, 8, 9, 12] and proved to be very attractive
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since they can be adapted to a wide range of prob-
lems.

In this paper, the global optimization sys-
tem Ant Colony Optimization Algorithm (ACO)
was used to set up a system, capable of finding
the k shortest paths between two given nodes in
a network. The optimization process launches a
set of agents that, taking in account information
leaved by other agents (pheromone trail) and some
heurist (distance to the terminal node), randomly
constructs a path between those nodes. The best
k solutions from the ones constructed during the
search are kept.

In Section 2 we will describe the network
model used, the k Shortest Path Problem and the
ACO Algorithm. In Section 3 the formulated sys-
tem is explained along width some tests and results,
finishing with conclusions and further work.

2 Preliminares

2.1 Network Model and k-Shortest
Path

In this paper, let us consider a network as
N=WVE1D

where, NV is the set of nodes (points in the plane),
£ is the set of edges (each one defined by a pair of
nodes) and I : £ - R™ is a function such that, for
e € £, l(e) is the Euclidean distance between the
nodes that define e.

The k Shortest Path Problem consists on the
determination of a set {p1,p2,...,pr} of paths be-
tween a given pair of nodes, when the objective
function of Shortest Path Problem is considered.
The following classes of the shortest path are usu-
ally considered:

e the k£ Shortest Disjoint Paths (arc or node dis-
joint);
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e the k Shortest Elementary Paths (no node is
repeated);

e the General k Shortest Path Problem.

Deterministic algorithms to find the & shortest
paths are known with O(m +nlogn+ k) time for a
digraph with |V| = n nodes and |£| = m edges [6].

2.2 ACO Algorithms

In the evolutionary and adaptive algorithms one
of the most recent is the Ant Colony Optimiza-
tion (ACO) computational paradigm introduced by
Marco Dorigo [5]. As the name suggests, this algo-
rithms have been inspired in the real ant colonies
behavior, in particular by their pillager behavior,
meaning that when a good source of food near the
nest is found, the colony turn is attention to it,
until it’s exhaustion or a better one is found.

In this manner, the basic idea of the ACO ar-
tificial system, is to resemble the cooperative be-
havior of the colony using:

e a colony of agents called artificial ants;

e indirect communication between the ants, sup-
ported on artificial pheromone trails, that re-
flect the experience of past agents while solving
the problem;

e some heuristic to improve the search.

Algorithm 1 ACO - Ant Colony Optimization Al-
gorithm
1: Initialize the pheromone trail.
2: while stopping criterion not is not met do
3: for all ants do
4 Construct a new solution using the current
pheromone trail.
Evaluate the solutions constructed.
end for
Update the pheromone trail.
end while

The ACO algorithm (Algorithm 1) was first
introduced to solve the Traveling Salesman Prob-
lem (TSP)[4, 5]. The ACO-TSP comprises a set of
cycles. In each cycle, all the (artificial) ants try to
find a minimal length closed tour that visits each
city once. To do it, each ant, randomly placed in a

node, constructs the tour by the ordered addition
of feasible (i.e., not yet visited) nodes to the tour,
considering two measures:

¢ the closeness of all feasible nodes to the current
one (visibility);

e the (artificial) pheromone trail in the edge be-
tween the current node and all the feasible
nodes.

Mathematically, if the ant is in node u the
probability of moving to the feasible node v is:

@) ivgu
SEATA: e S
Duv = Zweu TSW(E:w )
0 otherwise

where / is the set of already visited nodes, 7y, is
the quantity if pheromone in the (u,v) edge, duy
is the Euclidean distance between nodes u and v
and a,f8 € IR(')*” are parameters that emphasis the
relative importance of the pheromone trail and the
heuristic (visibility), respectably.

After each cycle, i.e., after each ant has deter-
mined a tour, the pheromone trail is updated using
the founded solutions in the following way:

Tuv = PTuv T ATy (1)

with 0 < p < 1 the trail persistence (1 — p is trail
evaporation) and

ATuv = Z ATz’:U (2)
ke{ant,,ant.,....ant,.}

where A7k, is the contribution of the anty to the
pheromone trail between nodes u and v, Ary,.
Usually,

L% if (u,v) belongs to the
Atk = tour contructed by anty , (3)
0  otherwise

where ¢} is a constant related to the amount of
pheromone laid by ants and Lj the length of the
tour constructed by anty.

The ACO system allows solving other large
combinatorial problems like: the Vehicle Routing
Problem (VRP)[7, 3], the Quadratic Assignment
Problem (QAP) [5] and the Job-shop Scheduling
Problem (JSP) [5].
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In conclusion, some of the ACO main features
are: versatility, robustness and being population
based (which straightforwardly enables parallel im-
plementations) [5]. This desirable properties are
counterbalanced by the fact that, for some appli-
cations, the ACO can be outperformed by more
specialized algorithms.

3 k Shortest Path Problem us-
ing ACO

3.1 Applying ACO algorithm to the
k Shortest Path Problem

In this section we are going to considerer a network
R = (N,€,1) (as defined in Section 2.1). In the
ACO algorithm for the k& Shortest Path Problem
(ACO-KSPP), each cycle comprises the launching
of a set of ants from the starting node s. Each ant
constructs a path between that starting node and
a terminal node, t. This construction is guided by
the pheromone trail, left by past ants, and by a dis-
tance to the terminal node heuristic, i.e., being in a
node u and if (u,v) € £, the probability of moving
to node v, is computed considering the pheromone
in the (u,v) edge and the Euclidean distance from
v to the terminal node ¢. Mathematically, the prob-
ability is given by:

a 1 o
Tuv dot

X (ww) € £ Thw (#)B
weP

Puv = (4)

where, P is a ordered list containing the path be-
ing constructed, 7,, is the pheromone present in
the (u,v) edge, dy, is the Euclidean distance be-
tween the nodes u and v and o,8 € IRE)" are pa-
rameters which determine the relative influence of
the pheromone trail and the heuristic. After each
cycle, the pheromone in the edges is updated using
formulas (1) and (2) (in formula (3) L is consid-
ered as the length of the path constructed by anty,).

The algorithm for the ACO-KSPP is Algo-
rithm 2 and for the construction of the path by
the ants is Algorithm 3.

Algorithm 2 £ Shortest Path Problem using ACO

algorithm

Require: kpaths {number of short paths to calcu-
late},
N = (V,&,){network}
s, teV.

Ensure: k shortest paths between s and ¢.

1: Initialize the pheromone trail.

2: S = {set of calculated paths.}

3: npaths = 0 {number of calculated paths.}

4: while stopping criterion not met do

5:  for all ants do

6: Construct a new path, ps:, between nodes

s and t using algorithm 3.

7 if ps; € S then

8: if kpaths > npaths then

9: S=5U {psg}

10: else

11: Find g5 € S : ||gse]| = max,,es ||rse]]

12: if |lgst]| > ||pst|| then

13: S =(SU{pst}) — {gst} {replace g5
by ps in S}

14: end if

15: end if

16: end if

172 end for

18:  Update the pheromone trail using the paths
in S and the paths constructed by the ants.

19: end while

Algorithm 3 Ant Algorithm - Construction of a
path between nodes s and ¢
Require: Network A" = (V,&,1)
s, te V.
Ensure: P { path between s and t}.
1: P = {s} {initialization of the path (LIFO).}
2: r=a3.
3: while r # ¢t do
4. if exists g such that (r,q) € EAq g P then
5 randomly chose ¢ € A" N P according to

a _1
Trq Td
qt

the probability p,, = —
ZOQP/\(r,n)EE Tw?:?:

6: insert g in the top of P

7. else {impossible to continue from the current
node.}

8: removes de top element of the P.

9: set r as the top element of the P.

10: end if
11: end while
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3.2 Test & Results

In this subsection, we present some of the results
obtained with an implementation, in C++, of the
ACO-KSPP!. To exemplify the performance we
have selected three networks (Figure 1). Each net-
work has 100 nodes and unitary length edges.

For all combinations of the parameters p €
{0.25,0.5,0.75,1.0} (persistence of the trail) and
a,B € {1,5,10} (relative importance of the trail
and heuristic, respectibly) the program was run 10
times, with 100 cycles per run and 100 ants per
cycle. We also considered the problem of finding
the 10 shortest paths (k = 10), starting at the left-
downer node and terminating in the right-upper
node of the presented networks. Optimum was
found for all runs.

Network A Network C

Network B

Figure 1: Example Networks

The results obtained for Networks A, Band C
are in Tables 1, 2 and 3, respectively. Each table
entry has two elements: first element is the medium
number of cycles to reach optimum and second ele-
ment is the medium time took to run the 100 cycies
(for the 10 runs of the program).

Figures 2, 3 and 4 illustrate, respectively for
Networks A, B and C, the typical progress of the
medium length of the constructed paths over the

1This tests were run in a LINUX-PC with an AMD-K6-
350M hz processor and 64Mb of RAM.

100 cycles considering @« = 5, § = 10 and p €
{0.25,0.5,0.75,1} (from bottom line to upper line
we have p = 1, p = 0.75, p = 0.5 and p = 0.25
respectively).

40
35
30
25

20

20 40 60 80 100

Figure 2: Medium length (ordinates) per cycle
(abscissas) typical progress over the 100 cycles
for Network A with @« = 5, § = 10 and p €
{0.25,0.5,0.75,1} (from bottom line to upper line
we have p = 1, p = 0.75, p = 0.5 and p = 0.25

respectively).

p=0.25
B8 =1.00 B8 =5.00 | 8=10.00
a=1.00 (13.8,2.3) | (10.0,2.1) (9.0,2.1)
a = 5.00 (12.4,2.3) (9.7,2.2) (8.4,2.1)
a = 10.00 (12.4,2.3) | (10.2,2.2) (9.5,2.2)
p = 0.50
=100 | 5=5.00 | 8=10.00
a = 1.00 (7.2,2.2) | (5.6,2.0) (4.8,2.0)
a = 5.00 (7.0,2.2) | (6.2,2.0) (5.2, 2.0)
a = 10.00 (7.8,2.2) | (5.8,2.0) (5.8, 2.0)
p=0.75
=100 | =500 | 8=10.00
a=1.00 (4.1,1.9) | (3.9,1.7) (3.8,1.7)
a = 5.00 (4.4,1.9) | (3.9,1.7) (3.6,1.7)
a = 10.00 (4.3,1.9) | (3.7,1.7) (3.4,1.7)
p=1.00
B8=1.00 | 8=5.00 | 8=10.00
a = 1.00 (3.1,1.6) | (3.0,1.5) (3.0,1.4)
a = 5.00 (3.4,1.6) | (3.2,1.5) (2.8,1.4)
a = 10.00 (3.6,1.6) | (3.2,1.5) (2.9,14)

Table 1: Results obtained for Network A - table en-
tries: (medium number of cycles to reach optimum,
medium time to run 100 cycles).

For Networks A and B the best results (i.e.,
medium number of cycles to reach minimum and
best time) were obtained when p = 1 and 8 = 10.
By the other side, the number of runs don’t let us
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infer the optimum value for a.
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Figure 3: Medium length (ordinates) per cycle
(abscissas) typical progress over the 100 cycles
for Network B with @« = 5, 8 = 10 and p €
{0.25,0.5,0.75,1} (from bottom line to upper line
we have p = 1, p = 0.75, p = 0.5 and p = 0.25
respectively).

Figure 4: Medium length (ordinates) per cycle
(abscissas) typical progress over the 100 cycles
for Network C with @ = 5, 8 = 10 and p €
{0.25,0.5,0.75,1} (from bottom line to upper line
we have p =1, p = 0.75, p = 0.5 and p = 0.25
respectively).

p=0.25
8 =1.00 B8=5.00 | 8=10.00
a = 1.00 (10.1,2.1) | (10.2,2.1) (9.0,2.0)
a = 5.00 (9.7,2.0) (8.4,2.0) (9.6,2.0)
a = 10.00 (10.7,2.0) | (10.7,2.0) (8.7,2.0)
p = 0.50
B=1.00 | 5=5.00 | 3=10.00
a = 1.00 (6.8,1.9) (5.4,1.8) (4.8,1.8)
a =5.00 (6.5,1.9) (5.9,1.8) (5.4,1.8)
a = 10.00 (5.5,1.9) (5.2,1.8) (4.8,1.9)
p =075
£=1.00 | B3=5.00 | 8 =10.00
a=1.00 (4.0,1.6) | (4.2,1.6) (3.9,1.6)
a=5.00 (4.0,1.6) (3.9,1.6) (3.4,1.6)
a = 10.00 (3.9,1.6) (3.7,1.6) (3.7,1.6)
p=1.00
B8=1.00 | B=5.00 | B =10.00
a=1.00 || BL14) | GL14) | (3.0,1.0)
a = 5.00 (3.1,1.4) (3.1,1.4) (3.0,1.4)
a = 10.00 (3.1,1.4) (2.9,1.4) (3.0,1.4)

p=0.25
B =1.00 B =5.00 B = 10.00
a=1.00 (28.4,2.5) | (23.2,2.5) (28.8,2.5)
a = 5.00 (29.4,2.5) | (26.2,2.5) (18.9,2.5)
a = 10.00 (18.4,2.5) | (20.5,2.5) I (18.2,2.5)
p = 0.50
B =1.00 B =5.00 5 = 10.00
a = 1.00 (8.5,2.3) (11.4,2.3) (12.0,2.3)
a = 5.00 (8.9,2.3) (9.3,2.3) (18.1,2.3)
a = 10.00 (18.8,2.3) | (11.1,2.3) (10.0,2.3)
p=0.75
8 =100 | 8=5.00 | 8=10.00
a =1.00 (8.2,2.3) (9.6,2.3) (9.3,2.3)
a = 5.00 (8.9,2.2) (8.3,2.3) (7.4,2.3)
a = 10.00 (9.1,2.3) (9.0,2.3) (9.7,2.3)
p = 1.00
=100 | 3=5.00 | 8 =10.00
a = 1.00 (9.1,2.8) (9.0,2.8) (7.9,2.8)
a = 5.00 (8.6,2.8) (9.4,2.8) (8.3,2.8)
a = 10.00 (8.4,2.8) (8.7,2.8) (8.8,2.8)

Table 3: Results obtained for Network C - table en-

Table 2: Results obtained for Network B - table en-
tries: (medium number of cycles to reach optimum,
medium time to run 100 cycles).

For Network C the best results were similar
when p = 0.75 and p = 1, although for p = 0.75
better time were obtained. Here, considering 5 =
10 can be penalizing since, that would guide the
search straight forward to the terminal node.

In conclusion, setting a low evaporation of the
pheromone trail (higher values of p) seems to lead

tries: (medium number of cycles to reach optimum,
medium time to run 100 cycles).

to good results, although the premature conver-
gence to local optimums, will restrain the explo-
ration of the search space. To avoid this, a dynamic
evolution of the parameters, over and in the cycles,
seems a good idea. We can also conclude that, for
good sets of parameters, a small number of cycles
were needed to achieve optimum, with each cycle
taking few hundredths of second.
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3.3 Conclusions & Further Work

In this paper, we showed another application of
the ACO algorithms. The final objective wasn’t to
compete with the known determinist algorithms for
the k Shortest Path Problems but, to formulate a
support to solve the problem of model/simulate dy-
namic networks (as, for example, those from traffic
simulation problems). Here, the responses are im-
proved as system evolves, due to the establishment
of a memory (pheromone trails). That memory re-
sembles the memory of the real individuals that
usually travel in a network, which allows them to
dynamically make choices as they move from one
point to another, accordingly to the network con-
ditions (like the jamming of a given edge or the
time of the day).

Taking this in consideration there is a set of
factors to introduce or improve, namely:

e introduction of a origin/destiny flow matrix.

o develop and introduce in the algorithm a char-
acterization of the network, that allows a bet-
ter simulation. Some of this obvious charac-
teristics are:

— capacity and flows in the edges.

— capacity of individuals going through a
node.

— time slices.

e make a hybrid system by the introduction of
some local search.

¢ introduce distributed/parallel computation.
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