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Abstract

®

CrossMark

The analysis of the charge exchange measurements of helium is hindered by an additional

emission contributing to the spectra, the helium ‘plume’ emission (Fonck et al 1984 Phys. Rev.
A 29 3288), which complicates the interpretation of the measurements. The plume emission is
indistinguishable from the active charge exchange signal when standard analysis of the spectra is
applied and its intensity is of comparable magnitude for ASDEX Upgrade conditions, leading to
a significant overestimation of the He?" densities if not properly treated. Furthermore, the
spectral line shape of the plume emission is non-Gaussian and leads to wrong ion temperature
and flow measurements when not taken into account. A kinetic model for the helium plume
emission has been developed for ASDEX Upgrade. The model is benchmarked against
experimental measurements and is shown to capture the underlying physics mechanisms of the
plume effect, as it can reproduce the experimental spectra and provides consistent values for the

ion temperature, plasma rotation, and He*" density.

Keywords: helium density, helium plume emission, charge exchange recombination

spectroscopy, ASDEX Upgrade

(Some figures may appear in colour only in the online journal)

1. Introduction

The successful operation of ITER [1] and other future fusion
devices relies strongly on the understanding of helium
transport in the plasma as accumulation of helium ‘ash’ in the
plasma core would dilute the fusion fuel [2]. Significant
efforts have been made to understand the behaviour of the
helium density profile in fusion plasmas, of both experimental
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and theoretical nature [3, 4]. Helium in the plasma can be
diagnosed by means of active charge exchange recombination
spectroscopy on a neutral beam (or other neutral source), a
powerful diagnostic technique that provides spatially and
temporally resolved measurements of ion temperature, plasma
rotation and impurity density in the plasma. At ASDEX
Upgrade [5], the helium charge exchange measurements are
based, as is most commonly done, on the Hell line at
468.571 nm (transition n = 4 — 3), which can be performed
with standard optical instruments that operate in the visible
range. However, helium charge exchange measurements are
hindered by the so-called ‘plume’ effect [6], the additional
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emission due to electron collisional excitation of the He™ ions
produced by charge exchange reactions along the neutral
beam, which drift away from their birth location. This feature
has a strong impact on the measurement and cannot be dis-
tinguished via a standard analysis from the prompt charge
exchange signal or avoided using techniques such as beam
modulation. For accurate helium density profile measure-
ments, and subsequently accurate helium transport analyses,
the helium plume effect and the emission contributed to the
measured spectra have to be considered for each individual
line-of-sight (LOS) and diagnostic configuration and forward
models for its interpretation are required.

In the past, a number of studies have been conducted in
order to understand the helium plume effect and to model the
helium plume emission. The helium plume effect was first
described and named by Fonck et al in [6]. In that publication
the helium plume effect is identified as a significant dis-
turbance to the helium charge exchange spectra and a sim-
plified model for the evaluation of the plume emission is
proposed. The dependence of the plume emission on para-
meters such as the diagnostic observation geometry and the
beam energy is described. It is also noted that no accurate
toroidal rotation profiles can be obtained from the helium
charge exchange spectra if the plume effect is not taken into
account. Gerstel et al attempted in [7], to calculate both the
plume from the thermal helium content in the plasma, but also
the helium beam ‘plume’, as part of the analysis of helium
beams. Here a Monte Carlo approach was employed for
solving the transport equation of the hydrogenic plume ions.
Nevertheless, the helium plume emission is not shown to be
taken into account in the fitted helium spectra. In [8], it is
mentioned that the plume emission calculated from the model
in [7] is overestimated by a factor of 3 in intensity. The
helium plume emission was also studied at DIII-D [3] fol-
lowing a method similar to the one described in [6] as well as
considering a Maxwellian distribution to describe the plume
ions. The plume emission corrections were found to be
important only in terms of magnitude, but not significant in
terms of profile shapes. A further effort to model the helium
plume can be found in [9], where the method developed in [6]
is also followed.

These previous investigations and models of the helium
plume emission have resulted in significant progress in
understanding the helium plume emission and its impact on
the measurement. However, no model has been benchmarked
against experimental data or has been shown to accurately
reproduce the experimental spectra. In this work, a forward
model following a Monte Carlo approach is presented for
the charge exchange spectroscopy diagnostic at ASDEX
Upgrade. The benchmarking of the model against exper-
imental data, as well as its ability to reproduce the measured
helium charge exchange spectra are described.

The helium content in the plasma is measured routinely
at ASDEX Upgrade utilising a high étendue spectrometer
designed for core charge exchange measurements in ITER
[10]. This instrument measures three wavelength ranges
simultaneously, namely the carbon, helium and D, (beam
emission) spectra. In the helium spectra obtained at ASDEX

Upgrade, the existence of the helium plume emission can be
identified experimentally in two ways.

First, a comparison of the ion temperature (7;) and
toroidal rotation (v,) profiles derived from the helium charge
exchange measurements and those derived from measure-
ments on boron or carbon, which are routinely measured on
ASDEX Upgrade, reveals a disagreement between the two
sets of measurements. As will be explained in more detail in
this work, such a disagreement is due to the plume emission,
if there is a significant plume contribution in the measured
spectra. Second, the helium density profiles derived from
different diagnostic observation geometries (e.g. poloidal
and toroidal LOS) do not agree. This too is expected if
there is significant plume contribution to the spectra, as
will be discussed in section 3.2. Both of these indications
for the plume are observed at ASDEX Upgrade and will
be explained by means of the helium plume model pre-
sented here.

In section 2 the helium plume effect is presented and the
forward model implemented for ASDEX Upgrade is descri-
bed in section 3. In section 4, the helium plume model is
benchmarked against experimental data. Final comments are
given in the last section.

2. The helium plume emission

The following description of the plume applies to magneti-
cally confined hydrogen or deuterium plasmas into which a
hydrogen or deuterium neutral beam is injected for heating or
diagnostic purposes and in which, we assume, there is a trace
population of helium ions. The standard ASDEX Upgrade
operating conditions of deuterium plasmas and deuterium
neutral beams will be used for the discussion.

Following the charge exchange reactions between fully
ionised helium ions and deuterium neutrals, a population of
He™ ions is born in the neutral beam volume:

He2* + D — Het + D+. (1

These He' ions are eventually reionised to fully stripped
helium mostly due to electron impact. However, there is a
finite time before the reionisation takes place, equal to the
ionisation time Tion = (1. - g (Te, n.))~!, where g, is the
electron impact ionisation rate and n, and T, are the plasma
electron density and temperature, respectively. During this
time, the He™ ions can travel along the magnetic field lines
away from their birth locations. Along the way, there is a high
probability that they are excited by electron and ion impact. If
they are excited back up to the n = 4 state, then they can
decay into the n = 3 and emit additional photons at the same
wavelength as the active charge exchange signal (Hell line,
n =4 — 3), causing an additional contribution to the mea-
sured signal. This is the so-called helium plume emission [6].
The helium plume signal is superimposed on and of com-
parable magnitude to the active charge exchange (prompt)
signal. As such, it disturbs the measurements and leads to an
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overestimation of the He?" density as well as erroneous ion
temperature and velocity measurements.

The prompt charge exchange emission corresponding to
each diagnostic LOS depends on the local He*" density, as
well as the local neutral beam density, and the relevant charge
exchange cross-sections. The photon radiance ®cx due to the
charge exchange reactions can be written as:

1 4 2

Pex = _Z Z f UCX(UCOI) 'Ucol>l o’ i’n(l)nHe“(l)dl,
T i=1n=1
(2)

where [ is the coordinate along the LOS, (ocx (Ueol) * Ueol)™" 18
the effective rate coefficient for a charge exchange reaction
and subsequent emission of a photon for the observed trans-
ition, n,(J) is the local neutral beam density, ny.2+(/) the local

* density, and the integration is over the intersection of
the LOS through the neutral beam. The index i indicates the
different velocity components of the neutral beam (i = 1-3)
including the halo (i = 4) and the index n is the principle
quantum number. The halo neutral cloud is broader than the
neutral beam and its density can be comparable to or larger
than the neutral beam density. Only charge exchange reac-
tions with neutrals in the n = 1 and n = 2 have been taken
into account in this work.

On the other hand, the total radiance of the helium plume
emission observed is given by:

1
) m:—f
Flume 47 JLos

where QS is the effective electron impact excitation coeffi-
cient, as obtained from a collisional-radiative model [11]. For
typical ASDEX Upgrade plasmas, only electron impact
excitation is relevant. However, at higher temperatures, ion
impact excitation can become important. nyg- depends on the
source of He' ions, i.e. on all the charge exchange reactions
that lead to the production of He™ ions, as well as the
ionisation time.

Calculation of the helium plume emission, therefore,
requires knowledge of the He™ density along the LOS of the
diagnostic. To obtain this information, the He™ born in the
beam volume due to charge exchange reactions must be fol-
lowed along the magnetic field lines and the density of the
He™ ions at the intersection points of the magnetic field lines
and the LOS must be determined. Note that in order to
separate the prompt emission in the spectra and to obtain the
density of the fully stripped helium, knowledge of the He™
density is required, which in turn requires an initial assump-
tion on the He*" density.

As such, any attempt to model the helium plume emis-
sion entails the solution of the continuity equation for the
transport of He™ ions along the magnetic field lines. He™ ions
in the plasma can be produced through charge exchange of
fully stripped helium with deuterium and through electron
recombination of He*". The helium plume ions are produced
through the first reaction and the source of hydrogen-like

nyene Q;xch (3)

plume ions is given by:

4 2

Sue = Y > (ov) o nyamnm, 4)

i=1ln=1

where the total rates for charge exchange reactions from He?"
to He™ ((ov){X'*") have been used. The loss mechanism is the
ionisation process due to electron and ion impact:

Lug = 22, 5)
7—iOH

where T, is the ionisation time. Electron impact ionisation is
the most important process for ASDEX Upgrade relevant
parameters and the only one that has been taken into account
in this work. The complete set of atomic processes that
contribute to the loss of helium plume ions also includes ion
impact ionisation, which is relevant only at higher ion tem-
peratures. Charge exchange with hydrogen-like ions is neg-
ligible and charge exchange with fully stripped helium is not
considered as in practice no He™ ions are lost

Assuming steady state conditions, i.e. O _ = 0, and that

the plume ions are only allowed to move c0111s1onessly along
the magnetic field lines (along x) with a single velocity v, then:

8ne+(x> ! 0
vj—— ZZ vl

i=1n=1

. nyet (X
(g i () — 1)
Tion

(6)

where the source and loss terms can be identified on the right
hand side. Perpendicular transport is ignored as it is negligible
in comparison to the transport along the field lines. As the
gyroradius of thermal helium is much smaller than the density
and temperature gradient lengths in the plasma core, its effect
on the ionisation probability is very small.

However, one should consider the Maxwellian velocity
distribution of the source ions, and then the continuity
equation for the distribution of the He™ ions f(x, v) can be
written as:

~/ T Uth

_ 2
X exp(—(vlv—;mt)) — TL 7)
th ion

Once the density of the He" along the magnetic field
lines ny¢(x) is known, the density of the He' along each
diagnostic LOS can be evaluated. Subsequently, the plume
emission for each LOS can be derived from (3). However, to
enable the complete interpretation of the helium charge
exchange spectra and then the derivation of accurate T;, v,
and ny.2+ profiles, detailed information on the space and
velocity distribution of the plume ions is needed, i.e. the
correct v in the above equations is needed. This is discussed
in the following section.

Note that the plume effect is significant for He*", but
negligible for the visible CXRS lines of other impurities such as
B°", C°" and Li’*. The plume contribution to the charge
exchange spectra of helium and carbon can be compared by
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looking at the ionisation and excitation rates of He™ and C, for
typical plasma parameters. For example, for 1, = 8 x 10" m ™
and T, = T; = 3 keV, the electron impact ionisation rates for
helium are about 23 times higher than those of carbon. Defining
the ionisation length as \ign = vy (T}) - n, ! - Gion.e (Tos me) ™",
where vy, (7)) = /(2 - T;) /m; is the group thermal velocity of
the ions, the distance that the helium plume ions travel before
being ionised is approximately 0.07 times the distance that the
carbon plume ions travel. In other words, carbon plume ions
have the chance to spread along the field line, while the helium
plume ions tends to be centred near the source and have a higher
chance to be observed, if excited by electron impact. This also
means that for the same source rate there are more carbon than
helium plume ions. However, the dominant effect is that the
electron impact excitation rates for He™ are about 200 times
higher than those for C**, while the photon emission of the latter
is taking place mostly unseen.

3. A model for the helium plume emission
implemented at ASDEX Upgrade

As the helium plume emission is ‘in-phase’ with the prompt,
or direct active charge exchange signal, it always contributes
to the helium charge exchange spectra when there is an active
signal, in other words when the neutral beam is on. It cannot
be subtracted using techniques such as beam modulation. For
this reason, the helium plume emission has to be modelled in
order to evaluate the He* " charge exchange spectra correctly.

One could consider the ratio of plume to prompt emission
for each LOS as a first approximation to deduce correct ny 2+
profiles. The He*" density at a certain location in the plasma
calculated without taking into account the helium plume
effect can be corrected in the following way:

plume—corrected __

HeZ+ n no CO[TEC[IOH’ (8)

1 + R H

where R is the ratio of plume to prompt emission intensities
R = Ipume /Icx- An iterative scheme is, nevertheless, required
to deduce the He>" density, starting from an assumed input
He®" density profile and iterating the modelling until good
agreement is found with the measured spectra (as will be
discussed in section 4.2). However, for accurate interpretation
of the spectra and to deduce correct 7; and v profiles, more
detailed information on the combined spatial and velocity
distribution of the plume ions along the LOS is required.

At ASDEX Upgrade, a model for the helium plume
emission has been developed that deals with this issue. It
consists of the following steps:

(1) All of the background plasma profiles needed for the
calculation are collected from routine ASDEX Upgrade
diagnostics. The electron temperature and density
profiles are obtained routinely from the Integrated Data
Analysis procedure described in [12]. The ion temper-
ature and rotation profiles cannot be correctly deduced
from helium line before the plume emission is taken

into account. They are, therefore, obtained from a
charge exchange diagnostic that is measuring an
impurity other than helium, for example boron or
carbon. For these impurities the plume effect is
negligible, as already discussed. An initial assumption
for the He>" density is needed and as an initial guess it
is defined as ny.2+ = c¢ - n,, where ¢ is an initial
assumption for the helium concentration in the plasma,
or calculated from the measured charge exchange
intensity, without taking into account the plume.

(ii) The diagnostic LOS geometry and the neutral beam
geometry are used. The plasma equilibrium is used to
trace the magnetic field lines through the plasma, so that
the distribution of the plume ions along the field lines
can be determined. For each point along the LOS a
magnetic field line is traced around the torus.

(iii) The distribution of the neutral particles in the beam
volume is calculated. To this end, the forward-
modelling code FIDASIM, a Monte Carlo code that
models the density of the beam and beam halo neutrals
[13], can be used to calculate the neutral beam
attenuation. Information on the neutral beam density
can also be inferred from beam emission spectroscopy
[14]. Alternatively, a simpler model of the neutral beam
geometry and neutral attenuation, by means of a full
collisional radiative model, can be used.

(iv) The He™ ions that are born after charge exchange of
He®" ions with beam atoms are calculated along the
magnetic field lines that cross the beam volume.

(v) These He™ ions are followed along the magnetic field
lines and their loss through a number of atomic
processes, electron impact ionisation being the most
important loss mechanism for ASDEX Upgrade
relevant parameters, is evaluated. The modelling of the
He" distribution along the field lines and in velocity
space is discussed in section 3.1.

(vi) Some of the He" ions undergo electron impact
excitation in the LOS of the diagnostic, and the plume
photon flux and its wavelength distribution are derived
using the appropriate photon emission coefficients.

The emission along each LOS is integrated, providing the total
plume emission observed for each LOS. All atomic data needed
and used in this work are obtained from the ADAS database
[11]. The excitation rates from ADAS were expanded up to
20keV by running the GCR codes within ADAS, which were
also used earlier to derive the original data [15].

3.1. Space-velocity distribution of helium plume ions

The transport of helium plume ions along the magnetic field
lines is given by the continuity (transport) equation, assuming
steady state conditions. The determination of the parallel
velocity of the plume ions is non-trivial and has important
repercussions for the determined plume emission. There are
several approaches to determining vy. First, it can be assumed
that all plume ions move with a single velocity equal to the
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thermal velocity of the He?" ions, an assumption followed in
[6, 9]. Second, the plume ions can be assumed to be born with
and maintain a Maxwellian distribution of velocities equal to
that of the He?" in that location, as was done in [3]. Fur-
thermore, a Monte Carlo approach can be used to determine
the density and velocity of the He" ions along the magnetic
field line.

With the first assumption, the plume ions move along the
magnetic field line away from the birth location with a
velocity v = vy, in both the positive and negative directions.
Due to ionisation losses, the plume ion density is assumed to
attenuate exponentially along the magnetic field lines

according to nyps = c(x)exp(— ) where T, is the

Y| Tion
ionisation time. The ionisation time depends on n, and 7,
which are constant on a magnetic flux surface, and hence is a
constant of the magnetic field line. A similar assumption has
been applied in [6], where an attenuation factor for the helium
plume across the magnetic field line is defined.

However, the He?" ions in the plasma have a Maxwellian
velocity distribution, and it is far more realistic to assume that
the He" ions born from the charge exchange reactions retain
the same velocity distribution. If one assumes that all plume
ions have a single velocity, an error is inevitably introduced in
the prediction of the helium plume emission. Particles with
higher or lower velocities than the thermal velocity will be
distributed differently along the field lines and, consequently,
the probability that they are in the observation region when
they are excited is different.

For the case with a Maxwellian velocity distribution, the
solution to the continuity equation is again straightforward:
the He™ ions, despite being born with a Maxwellian dis-
tribution of velocities, can no longer be described by a
Maxwellian distribution once they are spread along the

Ax ), where Ax is the

| Tion

magnetic field lines. The factor exp | —

displacement along the magnetic field line, ‘distorts’ the
Maxwellian distribution. This factor depends, not only on the
location on the magnetic field line (Ax), but also on the local
plasma parameters, as the ionisation time is a function of the
electron temperature and density of the flux surface in which
the field line lies.

Non-Maxwellian effects arise because the plume particles
are not equilibrated via collisions with the background ions
(see also [16]), as the momentum exchange time is much
larger than the ionisation time (almost 3 to 4 orders of mag-
nitude larger in the plasma core). As a consequence, the faster
particles in the original Maxwellian velocity distribution leave
the observation volume, while the slower remain, leading to
smaller apparent ion temperatures and rotations. An illustra-
tion of this phenomenon can be seen in figure 1, where the
distribution of nye along a magnetic field line is shown in the
top plots, for a case with zero rotation and a case with a
rotation of 150 kms . The distribution is calculated using
the kinetic equation for the nys ions. Assuming a tangential
view to the magnetic field lines, the plume ions over three
different ranges in x are summed together and their velocity

distributions are shown in the bottom plots. If particles from
far away are included (total distance 7 m, red lines), the
velocity distribution is almost Gaussian. However, if the sum
is over a much narrower range along the field line (~60 cm),
as is the case in reality, a much narrower velocity distribution
is obtained, meaning a ‘colder’ and ‘slower’ emission line.

To deal with this, a Monte Carlo approach has been used
to describe the distribution of the plume ions along the
magnetic field lines (also for the illustrations in figure 1). In
this case, a large number of Monte Carlo particles starts at a
certain location on the field line, for example the intersection
of the central beam axis with the flux surface. Then each of
these particles is randomly assigned a velocity from a Max-
wellian velocity distribution corresponding to the temperature
and velocity of the background plasma at the birth location.
The particle is then followed along the magnetic field line
until its ionisation. The particle travels the distance from its
birth location to the ionisation location with a fixed parallel
velocity. On its way it is assigned to all locations along the
magnetic field line grid according to its time of presence and
classified in a velocity grid. The resulting normalised dis-
tribution of Monte Carlo particles along the field line and in
velocity space is convoluted with the plume ion source in
order to provide the plume ion distribution. As such, the
Monte Carlo modelling provides not only the spread of
the plume ions, but also their velocities. In other words, the
kinetic effects of the plume and an accurate description of the
plume ions in velocity space are obtained.

In figure 2, the distribution of the He™ ions along the
magnetic field line is illustrated. The He™ ions are born from
charge exchange reactions between He® " and a neutral beam
with a Gaussian source profile. In this case, the half width at
half maximum of the beam is equal to the decay length of the
ionisation (for ions with vy,) divided by 7. A Mach number of
M = 0.2 is selected for the mean parallel velocity in the
positive x direction, so that the Maxwellian distribution is
shifted with vy = 0.2vg,. Three density distributions of
the He™ ions along the magnetic field lines are shown: (a) the
kinetic description, as described above, in green, (b) the
distribution assuming two equally weighted populations with
constant velocity v = (M + 1)vy and (c) the distribution
assuming two equally weighted populations with constant
velocity v = (M + 0.44)vy,, which results into the same
maximum density as the kinetic description. The two popu-
lations moving in the positive and negative directions are
shown with dashed lines.

Comparing the distributions of plume ions assuming
single velocities with the kinetic description, one sees that the
assumption of a constant velocity v = (M £ 1)vg, (red line)
leads to underestimation of the amount of plume ions in and
close to the beam volume, which is where most of the plume
emission comes from. The case with v = (M £ 0.44)vy,
(blue line), results in similar values as the kinetic description,
nevertheless, the shape of the distribution is not the same,
which will be problematic when one attempts to reproduce the
spectral emission line. Also, with the Monte Carlo approach,
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Figure 1. Distribution of plume ions along a magnetic field line (top plots) for zero rotation (left) or v, = 150 kms™' (right). In the bottom,
the corresponding velocity distributions of plume ions summed over the ranges indicated in the top plots (red, blue and green lines),

normalised over the maximum value of the red curve.
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Figure 2. The distribution of He" ions along the magnetic field line
for a Gaussian source profile (black), for two equally weighted
populations with constant velocity of (M % 1)vy, (red) and

(M =£ 0.44)vy, (blue). The distributions of the two populations
moving in the positive and negative directions are shown with
dashed lines. The kinetic description of the plume ion distribution is
shown in green.

the distribution in real and velocity space is obtained,
allowing for an accurate reconstruction of the plume spectral
emission.

3.2. Dependencies of the helium plume

The helium plume emission is given by a complicated inter-
play between the diagnostic observation geometry, the
magnetic equilibrium as well as the local plasma parameters
including electron density, electron and ion temperature,

plasma rotation, He*" density and the neutral beam char-
acteristics (beam voltage and halo). The dependence of the
plume emission on each of these parameters has been
examined in detail using the described Monte Carlo model.
Here we summarise the most important parameters for the
ASDEX Upgrade case.

The observation geometry of the diagnostic defines how
much the helium plume emission pollutes the spectra. Diag-
nostic LOS that are parallel or almost parallel to the magnetic
field lines, i.e. with toroidal observation geometry, will
observe higher levels of plume emission than LOS viewing
the neutral beam perpendicularly to the magnetic field lines,
i.e. with purely poloidal observation geometry, assuming that
the LOS are focussed to the axis of the neutral beam.
Nevertheless, as the plume emission is localised close to the
actual measurement location (in and close to the neutral beam
volume), even purely poloidal observation geometries have to
deal with a significant amount of plume emission in the
spectra. Furthermore, the effect on the measured ion temp-
erature and rotation will be different, as they measure even
fewer of the plume ions with higher velocities. The plume
intensity depends on the path of the LOS through the plume
ion cloud. Looking at figure 3, the path of a poloidal LOS
through the plume cloud is not negligible. The poloidal
observation geometries are certainly much less hindered by
the plume effect in comparison to predominantly toroidal
views. Even so, the plume emission contributing to the
spectra is not negligible and should be taken into account.

The plume emission depends on the electron density (see
equation in section 2), as both the source and the loss of the
plume ions depend on n,, and so do the electron impact
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Figure 3. Top: the beam neutrals of NBI #3 injected into the plasma are shown in a top-down and a poloidal view of ASDEX Upgrade together
with a LOS of the diagnostic, for #29083 at t =2.575 s (T,(0) = 3.0keV, n,(0) = 6 x 10" m~3, T,(0) = 2.5 keV, v4(0) = 95 kms ). The
intersection of the LOS with the beam injected neutrals shows where the measured signal from the charge exchange reactions between neutral
deuterium and He?" ions come from. The He " ions are born in the volume of the neutral beam. In the bottom, the spatial distribution of these
plume ions as they spread along the field lines is depicted. Note that the LOS intersects with this extended volume and, therefore, collects plume
emission that originates in many different radial positions. For this figure, the full Monte Carlo model described here was used.

excitation and ionisation coefficients. Most importantly, as
the correlation of the He*™ density profile with the electron
density gradient is an important part of helium transport
studies, it is interesting to investigate how big the mistake in
the helium density and density gradient would be if the plume
effect is ignored. The difference in the magnitude (which, for
reference, is about a factor of almost 2 for the ASDEX
Upgrade CXRS system) is the main factor. Also, the shape of
the electron density profile can play an important role and
lead to a significant difference between the gradient of
the apparent helium density profile (calculated without taking
the plume into account) and that of the real profile. For the
ASDEX Upgrade system examined here, not taking into

account the plume emission in the spectra can make the
helium density profiles appear more hollow or more flat than
they actually are. The difference is, however, usually within
the uncertainty of the calculated gradient. Significant differ-
ence can, nevertheless, be observed in some cases, for
example with very peaked or very flat electron density pro-
files. It is, therefore, important to examine the helium emis-
sion in detail for the given diagnostic system before drawing
conclusions on the helium density profile peaking.

The concentration of He*" in the plasma is not expected
to alter the expected plume-to-prompt intensity ratio, as both
the plume and prompt emissions will scale together in the
same way. However, the shape of the He*" density profile
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(flat, hollow or peaked) plays an important role in the plume
emission that is observed at each radial location. For toroidal
LOS and a radially constant electron density profile, hollow
He”" density profiles would appear less hollow and flat He*"
density profiles would appear peaked. Additionally, the effect
on the apparent helium density profile depends also on the
shape of the electron density profile in comparison to that of
fully stripped helium. It is, therefore, clear that the helium
plume effect should be taken into account when evaluating
helium density profiles and it is not simple to estimate the
effect of the plume on the gradient without a proper
calculation.

The plasma rotation influences the spread of the plume
ion cloud along the magnetic field (see figure 1). Therefore,
it strongly influences, indirectly, the probability that they are
excited to the n = 4 state while still in the region of the
LOS. The toroidal rotation affects the distribution of the
helium plume ions along the magnetic field lines and along
the LOS. Considering the plasma rotation is important
for correctly reproducing the spectra and hence deriving
correct ion temperature and rotation profiles from the helium
spectra.

Furthermore, the charge exchange rates are lower for
lower beam energy (for energies below the maximum in the
rates). The partial charge exchange rates for the Hell
n =4 — 3 transition, however, fall more rapidly with the
decrease in beam energy than the total charge exchange rates
do. Consequently, as mentioned also in [6], the plume-to-
prompt intensity ratio will be higher for lower beam energies.
The voltage reduction affects the intensity of the prompt
emission more strongly than that of the plume emission.

Finally, taking into account the neutral beam halo is very
important for determining correct helium density profiles as it
plays an important role in interpreting the prompt signal, but
it is almost unimportant for the plume analysis. The thermal
charge exchange is not sensitively influencing the total charge
exchange rates, but it does influence the charge exchange
rates into n = 4 and thus the charge exchange photon emis-
sion. Nevertheless, in this work, the beam halo is always
taken into account.

4. Model benchmarking against experimental
measurements

4.1. Derivation of helium density profiles using different
observation geometries

The ASDEX Upgrade plasma discharge #29083 was speci-
fically designed to benchmark the helium plume model pre-
sented here. The time traces of the most relevant plasma
parameters during the discharge are shown in figure 4. In this
discharge, the helium spectra were measured using the high
étendue spectrometer described in [10]. The spectrometer was
connected to two optical heads: one with predominantly tor-
oidal LOS [17] and one with more poloidal LOS [13], both
focussed on neutral beam source #3 (see figure 5). The
plume-to-prompt intensity ratio is expected to be different for
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Figure 4. Time traces of the relevant parameters for discharge
#29083: (a) injected NBI (red) and ECRH (green) power, radiated
power (purple) and plasma stored energy (cyan), (b) details of the
NBI replacement scheme, (c) line integrated electron density,

(d) core (ppor ~ 0.2) and edge (ppo1 ~ 0.8) electron and ion
temperature (lines and dots, respectively) and (e) toroidal rotation.

these two observation geometries, as their paths through the
plume ion cloud are different, while the path lengths through
the beam are similar.

The experimental discharge was planned to have stable
plasma conditions and a very specific neutral beam injection
scheme. The neutral beam source (#3) on which the helium
and boron charge exchange measurements were performed
was modulated such that the passive emission could be
subtracted using the off-beam frames. The input power was
kept constant by supplementing #3 with a source (#5) on
the other side of the torus. It should be noted here that no
plume ions originating at sources injected at the other side of
the torus (namely sources #5-8) are expected to reach the
spectrometer LOS. As an additional check, NBI source #3
was replaced by NBI source #1, for several phases of the
plasma discharge. NBI #1 (also shown in figure 5) is more
radial than NBI #3 and is situated below the toroidal LOS,
hence less active emission from this source will be seen by
the LOS and the ratio of plume to prompt signal will be
different.

In the left plot of figure 6, the He*" density profiles
derived without taking into account the plume effect are
shown for both sets of LOS. It is observed that the exper-
imental density profiles measured by the poloidal and the
toroidal LOS do not agree. This is expected as the LOS have
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Figure 5. Top down and poloidal view of ASDEX Upgrade, with the geometry of the two sets of LOS and the two beam sources used in the

experiment.

#29083, t=2.565s, 2.965s

12 N ' He?* d'ensity
[m] .
10 2 poloidal LOS ]
“ %‘ A NpI#1
— 8 A% A Ag toroidal LOS
;E A A A A . %A NI:|Bl #:
= A
‘9 6 _A % 4 4 A A 2AA -1
% toroidal LOS A
Fal w0 NBi#3 ]
poloidalLos @ o _ °
2F NBI #3 b
O 1 1 1 1
00 02 04 06 08 1.0
ppol

#29083, t=2.565s, 2.965s
He?* density
plume corrected

—
(o] o
T T
1

nHez+ [-I 017 m-3]
)]

4r .2 2 -
i +‘ £ o4, aals
o or gt
2r " a .
O 1 1 1 1 -
00 02 04 06 08 1.0
ppol

Figure 6. He> " density profiles obtained from CX measurements for the ASDEX Upgrade discharge #29083 at 2.565 s (NBI #3 on) and at
2.975 s (NBI #1 on) without the plume effect taken into account (open symbols) and the corrected profiles after the plume effect has been
modelled (filled symbols), for the toroidal and poloidal viewing geometry. Squares correspond to measurements with the poloidal LOS, while
triangles correspond to the toroidal LOS. Red and black symbols correspond to measurements on NBI #3, blue and green symbols to

NBI #1.

different geometries in relation to the magnetic field lines and
the neutral beam and are therefore affected by the plume
differently. The plume-to-prompt ratio for the toroidal LOS
when NBI #3 is on is higher than the corresponding ratio for
the poloidal LOS, as the path of the poloidal LOS through the
plume cloud is smaller than for the toroidal ones (see also
figure 7). In figure 8, the predicted prompt and plume emis-
sions collected along a LOS are compared. The plume
emission collected from a poloidal LOS is more localised and
originates from the same volume as the prompt emission. The
toroidal LOS, however, traverses a longer path through the
plume and, therefore, plume emission is collected from an
extended region.

Furthermore, the apparent helium density profiles mea-
sured on NBI #3 and NBI #1 are also different, despite the
fact that the plasma parameters are very similar. The toroidal
LOS are above the centre of NBI #1 and only view the edge
of this source. As such, the prompt CX signal is lower by
approximately a factor of 3 in the core. However, they still
measure plume ions produced by NBI #1 which have fol-
lowed the magnetic field lines into the LOS. In this case, the
plume-to-prompt ratio in the core is almost a factor of 2
higher than for NBI #3. The poloidal LOS on the other hand
barely intersect NBI #1 and measure almost exclusively the
plume originating from NBI #1. The calculated plume-to-
prompt ratio is indeed approximately 10 times higher in
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Figure 7. The plume-to-prompt intensity ratios calculated for the
helium density measurements shown in figure 6. The values for the
poloidal LOS looking on NBI #1 are divided by a factor of 10.

comparison to the ratio for the NBI #3 time point (shown
divided by 10 in figure 7).

In the right plot of figure 6, the He*" density profiles
corrected with the plume emission model presented here are
shown. The corrected densities are obtained by multiplying
the densities in the left plot with a factor of 1/(1 + R), where
R is the ratio of plume emission signal integrated along each
LOS to the active CX signal, shown in figure 7, calculated
using the full Monte-Carlo model. The corrected density
profiles from the toroidal and the poloidal LOS are now in
much better agreement, within the experimental uncertainties
(note the error bars in the right plot in figure 6). The uncer-
tainties on the impurity density profiles include the uncer-
tainty of the measured intensity (intensity calibration) and the
fitting of the spectra, as well as the uncertainties on the
calculation of the neutral beam attenuation. The model also
successfully reproduces the same impurity density profiles
when evaluating the data from the #1 phase. Part of the
remaining discrepancies can be attributed to intensity cali-
bration uncertainties between the two optical heads. The
ultimate test of the plume model is whether the line shape of
the spectral plume emission can be predicted as well as cor-
rectly reproducing the 7; and v, profiles.

4.2. Modelling of the charge exchange spectrum including the
plume emission component

The model for the helium plume emission described here
provides not only a spatial distribution of the plume ions, but
complete information about the distribution function of He™
at each position in the plasma. It is, therefore, possible to
reconstruct the plume emission spectral line.

The measured helium spectra without the passive emis-
sion, shown in green in figure 9, have a non-Gaussian shape.
They consist of the prompt and the plume emission, which
have different shapes: the prompt emission line has a Gaus-
sian shape, while the spectral radiance of the plume emission

10

can only be calculated after the distribution function of the
plume ions is modelled. An additional passive contribution
from the plasma edge, driven mainly by electron impact
excitation of He" and by charge exchange of He’" with
thermal neutrals, complicates the analysis. For this reason, all
investigations here have been performed with beam mod-
ulation in order to unambiguously remove the passive emis-
sion line. The total subtracted emission in the case presented
here, is approximately half of the sum of the active and plume
emissions. However, considerable care has to be taken when
the neutral beam modulation technique is applied, so that the
plasma conditions remain as constant as possible across the
on- and off-beam frames. For this reason, the neutral beam on
which the He CX spectra are measured is replaced by a
neutral beam at the other side of the torus (see section 4.1).

As already discussed, it has been observed at ASDEX
Upgrade, where charge exchange measurements on more than
one impurity are routinely performed, that the ion temperature
and rotation profiles derived from the Hell line differ from
those measured on the BV (transition n=7 — 6 at
494.467 nm) or CVI (transition n = 8 — 7 at 529.059 nm)
lines if the plume emission line is not taken into account.
Assuming that both the passive emission line and the plume
emission line are correctly subtracted from the measured
spectra, the remaining spectral shape, which is the isolated
active charge exchange emission line, should yield ion
temperature and rotation profiles that compare well with the
boron or carbon measurements. The passive emission line is
removed by means of subtracting passive frames during
which the neutral beam is switched off, while the plume
emission line shape is modelled.

The helium plume model provides the active (prompt)
line and the plume emission lines, the sum of which can be
compared with the measurements. The prompt emission line
for each measurement location is represented by a single
Gaussian shape, with a line shift A and a line width o:

TP ks

B
AN = Hot0087Y !

c

Ao, €))

g =

mc
where ) is the natural wavelength (468.571 nm) and +y is the
angle between the LOS and the toroidal direction. The
superscript B denotes that boron measurements are used for
the T; and v values at this location. The normalised Gaussian
is multiplied with the total charge exchange radiance from
equation (2) to obtain the spectral radiance.

The plume emission line, on the other hand, can not be
described by a single Gaussian, due to the non-Maxwellian
effects described in section 3. Additionally, the emission
comes from many locations along the LOS, which are char-
acterised by different 7; and vy values. The spectral radiance
of the plume is given by:

1
PPlume Efne(l) Qg'xc(l)ffng @, v, v1)

x 5[A - )\0(1 + L cosy+ L sin 7)]dv|dwdl,
C C (10)
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Figure 9. Reconstruction of helium charge exchange spectra for the toroidal viewing geometry, for discharge #29083, t = 2.575 s using the
Monte Carlo method, for a core (left) and an edge LOS (right). Very good agreement is found between the sum of the reconstructed prompt
and plume emission lines and the measured spectra, from which the passive emission has been subtracted.

where [ gives the coordinate along the LOS, ~ is the angle
between LOS and the magnetlc field line, v is the ve1001ty

parallel to the magnetlc field B and v, is perpendicular to B in

the plane defined by B and the direction of the LOS. As dis-
cussed, the helium plume ions are described by the distribution
function fiye (/, U) obtained by the Monte Carlo simulation
which allows the reconstruction of the plume spectrum.

To extract accurate He* " density profiles, the modelling of
the helium plume line and the comparison of the modelled
emission lines with the spectra has to be iterated. As already
described in section 3.2, the plume emission depends on the
shape of the He*" density profile. Since this is an input to the
modelling, comparison of the output modelled emission lines
with the spectra is required and more iterations might be
necessary. In simple words, an assumed He?" density profile is
used as input to the model: either the He*" densities calculated
ignoring the contribution of the plume or He*" density profiles
that follow the shape of the electron density profile can be
used. The plume and prompt emission lines are reconstructed
and compared to the measured spectra for all the LOS covering
the plasma. A scaling factor is applied to the modelled emis-
sion lines to match the measurement, same for both emission
lines, but possibly different between the different LOS. If
the normalised residuals between the modelled and the mea-
sured spectrum are not satisfactory, the model is iterated once
more, taking into account the scaling factors, which leads to a
modification of the He®>" density profile as input to the plume
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model. The process can be repeated as many times as required
to minimise the difference between the modelled and the
measured spectrum. Good agreement is typically found within
two to three iterations, within the error bars of the measured
spectrum and the He*™ density profiles.

In figure 9, the reconstructed plume and prompt emission
spectra are shown for a core and an edge LOS, in blue and red
respectively. Their sum is compared to the measured spectra,
from which the passive emission has been subtracted, using
the passive spectra obtained right after the neutral beam is
switched off. Very good agreement is found between the
modelled and measured spectra.

In figure 10, measured ion temperature and rotation
profiles of boron and helium are shown. The helium spectra,
before being treated for the plume emission, fitted with a
single Gaussian (passive subtracted using beam modulation)
are shown in red. In blue, the profiles obtained from boron
measurements and used as input to the modelling, are plotted.
Additionally, the modelled plume emission line is subtracted
from the helium spectra, which are subsequently fitted with a
Gaussian, resulting in the profiles shown in magenta. Very
good agreement is found with the boron measurements. Part
of the remaining discrepancies are attributed to the method of
the passive emission line subtraction. Ultimately this means
that the plume model describes the involved physics to a high
degree of accuracy, because not only the relative size of
plume to prompt emission is described, but also the
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Figure 10. Reconstructed ion temperature and rotation profiles for the toroidal viewing geometry, for discharge #29083, at t = 2.565 s with
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measurements are shown in blue and the ones derived from helium measurements, without correcting for the plume are shown in red
(apparent). The profiles derived from helium measurements after correcting for the plume are shown in magenta (modelled).

distribution of the plume in velocity space is matched. Thus,
the observed differences in the He®" density encountered in
figure 6 are probably given by uncertainties in the intensity
calibrations rather than by the plume model.

The final result of the model is subjected to the uncer-
tainties of the input parameters and the diagnostic measure-
ments. The measurement locations of the CXRS system are well
characterised (radial resolution on the order of +1.5cm). The
absolute intensity calibration of the system, which is particularly
important for the derivation of impurity densities, is associated
with an error of 10%—15%. Furthermore, the uncertainties on
the input plasma profiles (n,, T,, T;, v4) also contribute to the
modelling uncertainty. However, the uncertainties on the atomic
data are not explicitly known. Finally, the magnetic equilibrium
reconstruction, on which the tracing of the field lines relies,
becomes increasingly less accurate the further into the plasma
core. Even with these uncertainties on the input parameters, the
model manages to reproduce the shape of the measured helium
charge exchange spectra within the measurement uncertainty,
which in the case presented is smaller than 7%.

5. Summary and outlook

In this work, the plume effect has been confirmed to be a
significant contribution in the helium charge exchange spectra
measured at ASDEX Upgrade. The plume emission contrib-
ution in the spectrum is complicated and depends on a number
of plasma parameters, as well as on the diagnostic geometry,
and needs to be treated appropriately. Accurate He*" density
profiles can be derived only if the plume emission is modelled
and subtracted from the measured spectra.

Furthermore, it should be noted that the helium plume
effect is important across the whole plasma radius, including
the plasma edge. However, as the plume emission line has an
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apparent lower temperature and velocity than the active
charge exchange line, it can easily be mixed with the passive
emission line depending, of course, on the viewing geometry
and edge plasma parameters. Furthermore, the helium plume
effect can be minimised with the use of poloidal views, but
still not avoided completely.

For the first time the non-Maxwellian features of the
plume emission have been implemented in a model. This
resulted in the breakthrough for the modelling of not only the
helium plume-to-prompt ratio but also the modelling of the
detailed charge exchange spectra including both the plume
and prompt components.

This became possible through the consideration of the
velocity space. This shows that the plume particles do not
equilibrate with the background plasma, because the
momentum exchange time is much longer than the ionisation
time. Each plume particle, born with a Maxwellian velocity
distribution, keeps their original parallel velocity along the
magnetic field lines. The larger its parallel velocity the further
the plume particle manages to travel. As such, the hot, fast
particles streaming far away from the beam volume are not
seen by the LOS, while the cold, slow plume ions which are
centred near the beam volume, dominate the plume emission
seen by the diagnostic. Finally, the ionisation time is short in
comparison to the transition time around the torus and even
the hot ions are lost before they reach again the observed
volume. The modelling of this behaviour showed that the
physics of the plume emission is captured correctly, as the
experimental spectra can be reproduced.

The helium plume model is being developed further:
starting from the measured helium charge exchange spectra and
the derived T; and v, values, which as described are affected by
the helium plume emission, an iterative modelling process
allows to converge to accurate 7; and v, profiles. This would
allow for standalone charge exchange measurements based on
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the Hell line, without the need for input from other impurity
measurements for the modelling of the plume emission.
However, in most cases the accuracy of the process is low.

Looking ahead at future fusion machines, for example
ITER, the helium plume effect must be taken into account as
charge exchange spectroscopy is expected to provide measure-
ments of the helium ‘ash’. Both the electron impact excitation
rates and the electron impact ionisation rates will be lower at the
higher electron temperatures of ITER, meaning in general lower
plume emission intensities with increasing electron temperature.
The higher electron densities mean shorter ionisation lengths for
the He™ ions and more plume ions centred near the source. Yet
the electron impact excitation rates drop with increasing density,
resulting again into smaller contributions from the plume. In
ITER conditions, however, ion impact ionisation and excitation
will also become important. The LOS of the charge exchange
diagnostic on ITER are designed to view the neutral beam
polloidally with angles almost perpendicular to the magnetic
field lines, in order to minimise the helium plume contribution
[18]. Nevertheless, it is certain that the helium plume effect will
be important for the thermal helium charge exchange mea-
surements on ITER, and the magnitude of this effect can be
estimated with the technique presented above.

To conclude, it should be stressed that the the helium
plume is always present in the measured helium charge
exchange spectra. It is of utmost importance to assess this
emission at each fusion device, for each specific diagnostic
geometry and plasma conditions. Furthermore, if ion temp-
erature and rotation profiles are deduced from the helium
charge exchange measurements, a spectral modelling of the
helium plume is the most straightforward and reliable way.
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