
533A PCI AER Co-Processor Evaluation Based on CPUs Performance Counters

A PCI AER Co-Processor Evaluation Based on CPUs Performance Counters
Manuel Domínguez-Morales, Alejandro Linares-Barranco, Pablo Iñigo-Blasco, Juan Luis Font, Daniel Cascado-Caballero,

Gabriel Jimenez-Moreno, Fernando Díaz-del-Río, José Luis Sevillano
Department of Architecture and Technology of Computers, University of Seville, Spain

mdominguez@atc.us.es

Abstract

Image processing in digital computer systems usually
considers the visual information as a sequence of frames.
These frames are from cameras that capture reality for a
short period of time. They are renewed and transmitted at
a rate of 25-30 frames per second, in a typical real-time
scenario. Digital video processing has to process each
frame in order to obtain a filter result or detect a feature on
the input. This processing is usually based on very complex
and expensive (in resources) operations for an efficient
real-time application. Brain can perform very complex
visual processing in real-time using relatively simple cells,
called neurons, which codify the information into spikes.
Spike-based processing is a relatively new approach that
implements the processing by manipulating spikes one by
one at the time they are transmitted, like a human brain. The
spike-based philosophy for visual information processing
based on the neuro-inspired Address Event Representation
(AER) is achieving nowadays very high performances.
In this work we study the low level performance for real-
time scenarios of a spike-based co-processor connected to
a conventional PC and implemented through a PCI board.
These low level lacks are focused both in the software
conversion of static frames into AER format and in the
bottleneck of the PCI interface.

Keywords: Spiking neurons, Address-Event, PCI, FPGA,
Synthetic AER generation.

1 Introduction

Digital vision systems process sequences of frames
from conventional frame-based video sources, like
cameras. For performing complex object recognition
algorithms, sequences of computational operations must
be performed for each frame. The computational power
and speed required make it difficult to develop a real-time
autonomous system. However, brain performs powerful
and fast vision processing using millions of small and slow
cells working in parallel in a totally different way. Primate
brain is structured in neuron layers, in which the neurons
in a layer connect to a very large number (~104) of neurons
in the following layer [2]. Many times the connectivity
includes paths between non-consecutive layers, and even

feedback connections are present.
Vision sensing and object recognition in brain is not

processed frame by frame; it is processed in a continuous
way, spike by spike, at the brain-cortex. The visual cortex is
composed by a set of layers [1-2], starting from the retina.
The processing stage starts when the retina captures the
information. In recent years, there have been significant
progresses at the field of visual cortex processing. Many
artificial systems that implement bio-inspired software
models use biological-like processing that outperform
more conventionally engineered machines [3-4][10].
However, these systems generally run at extremely low
speeds because their models are implemented as software
programs. For real-time solutions, a direct hardware
implementation is required. A growing number of research
groups world-wide are implementing some of these
computational principles onto real-time spiking hardware
through the development and exploitation of the so-called
AER (Address Event Representation) technology.

AER was proposed by the Mead lab in 1991 [5][7]
for communications between neuromorphic chips using
spikes. Every time a cell on a sender device generates a
spike, it transmits a digital word representing a code or
address for that pixel, using an external inter-chip digital
bus (the AER bus). In the receiver the spikes are directed
to the pixels whose code or address was on the bus. In
this way, cells with the same address in the emitter and
receiver chips are virtually connected by streams of spikes.
Arbitration circuits ensure that cells do not access the bus
simultaneously (see Figure 1). Usually, these AER circuits
are built using self-timed asynchronous logic [6].

Several works are already present in the literature
regarding the spike-based visual processing filters. Serrano
et al. presented a chip-processor able to implement image
convolution filters based on spikes that work at very high
performance parameters (~3GOPS for 32 × 32 kernel size)

*Corresponding author: Manuel Domínguez-Morales; E-mail: mdominguez@atc.us.es

Figure 1 AER Inter-Chip Communication Scheme

00-Invited paper.indd 533 2012/7/22 下午 02:57:30

chaohuangyu
螢光標示

Journal of Internet Technology Volume 13 (2012) No.4534

compared to traditional digital frame-based convolution
processors [10-12].

There is a community of AER protocol users for bio-
inspired applications in vision and audition systems, as
demonstrated by the success in the last years of the AER
group at the Neuromorphic Engineering Workshop series
[22]. One of the goals of this community is to build large
multi-chip and multi-layer hierarchically structured systems
capable of performing complicated array data processing
in real time. The power of these systems can be used
in computer based systems under co-processing. This
purpose strongly depends on the availability of robust and
efficient AER interfaces [9]. One such tool is a PCI-AER
interface that allows not only reading an AER stream into
a computer memory and displaying it on screen in real-
time, but also the opposite: from images available in the
computer’s memory, generate a synthetic AER stream in
a similar manner a dedicated VLSI AER emitter chip [6-
7] would do. This PCI-AER interface is able to reach up
to 10Mevps (Mega events per second) bandwidth, which
allows a frame-rate of 25 frps (frames per second) with an
AER traffic load of 100% for 128 × 128 frames, and 25 fps
with a typical 10% AER traffic load.

In [19] we evaluated the performance of several frame-
to-AER conversion software methods for real-time video
applications by measuring execution times in several
processors. That work demonstrated that for low AER
traffic loads any method in any CPU achieved real-time,
but for high-bandwidth AER traffics, it depends on which
method and CPU are selected in order to obtain real-time.
In this work we focus on the best processor of that study
and then we analyze the reasons that made some of the
methods non real-time adequate. In this work we analyze
the performance of a whole AER co-processor system for
visual information processing. It is composed by a PC
running a software application that converts frames to AER,
a PCI-AER interface that sends the produced AER stream
to an AER convolution processor that implements visual
filtering on a Xilinx Virtex-5 FPGA.

Next section presents the complete architecture
composed by (a) the software methods for converting
digital frames into AER format in the computer’s memory;
(b) the PCI-AER architecture and (c) the AER convolution
processor. This section also discusses the performance lacks
of the hardware components of the system (b and c). Then
in Section 3 we focus on the performance limits of (a) using
hardware internal counters of Intel processors. In Section 4
we present the conclusions.

2 System Architecture

Figure 2 shows a block diagram of the architecture
under performance evaluation. From left to right there is

a computer executing the conversion routines from static
images of a video source to a spikes stream into AER
format, stored in the main memory of the computer. These
streams of AER are moved to the internal FIFO of a PCI
board using Direct Memory Access (DMA) with burst PCI
bus cycles. Up to 10 Mevps sustained bandwidth has been
reported in [22] as output AER rate. The last element of
the architecture processes the input AER stream to extract
features, like edges, shapes …. A sequence of events in the
output of this AER processor represents the result of the
programmed convolution for the input visual information.
For example, for identifying an object in the visual
information the output should be an event that corresponds
with the location of the object in the space.

2.1 Frame-to-AER Software Methods
Many software algorithms to transform a bitmap image

(stored in a computer’s memory) into an AER stream
of pixel addresses can be thought [8]. In all of them the
address appearance frequency of a concrete pixel must be
proportional to its intensity at the image. It is important
to denote that the locations of the address pulses are not
critical. The pulses can be slightly shifted from their
nominal positions; the AER receivers will integrate them to
recover the original pixel waveform.

Whatever algorithm is used, it will generate a vector
of addresses that will be sent to an AER receiver chip via
an AER bus. Let us call this vector the frame vector. The
frame vector has a fixed number of time slots to be filled
with event addresses: Tframe/Tpulse. The number of time
slots depends on the time assigned to a frame (for example
Tframe = 40 ms) and the time required to transmit a single
event (for example Tpulse = 10 ns). If we have an image
of N × M pixels and each pixel can have a grey level value
from 0 to K, one possibility is to place each pixel address in
the frame vector as many times as the value of its intensity,
and distribute it at equidistant positions. If all pixels have
the maximum value K, the frame vector would be filled with
N × M × K addresses. This number should be equal to the
total number of time slots in the frame vector. Depending
on the total intensity of the image there will be more or
less empty slots at the frame vector. Each algorithm would
implement a particular way of distributing these address
events, and will require a certain computational time. This
time should be lower than 40 ms in order to warranty real-

Figure 2 Co-processor Architecture Block Diagram

00-Invited paper.indd 534 2012/7/22 下午 02:57:30

chaohuangyu
螢光標示

535A PCI AER Co-Processor Evaluation Based on CPUs Performance Counters

time processing. Once the frame vector is filled, it is sent
to AER convolution processor by the PCI-AER interface.
These two hardware components represent a second stage
of a pipeline structure; the first one is the frame-to-AER
selected method. Therefore, hardware components cannot
consume more than 40ms for transferring the frame vector.

In [8], several methods for converting video frames
into AER were presented. In this work we will focus on a
set of them:

 y The Uniform method distributes equidistantly the events
of one pixel along the frame vector. The image is scanned
pixel by pixel only once. For each pixel, the generated
pulses must be distributed equally along the vector. When
the frame vector is getting filled, the algorithm will find
collisions. A collision occurs when an event has to be
placed at a time slot that is already occupied. In this case,
the event is moved to the nearest empty slot of the frame
vector.
 y The Random method distributes randomly the events
of one pixel along the frame vector. The image is also
scanned only once. For each pixel, a Linear Feedback
Shift Register (LFSR) pseudo-random number generator
is used in order to obtain the time slot position at the
frame vector. The LFSR [18] mathematical properties
ensure that no collision will appear for the whole image.
 y The Random-Square method distributes the events
randomly but dividing the frame vector in K slices (one
slice per gray level). A double LFSR is used. First one
(LFSR-slice) is used to select a slice and the second one
(LFSR-pixel) selects a time slot inside the slice. The slice
and pixel addresses are joined to place an event at the
frame vector.
 y The Random Hardware method also distributes the events
randomly at the frame vector. In this case the frame
vector is filled in order, sequentially, with randomly
selected events from the bitmap image. A LFSR of log(N)
+ log(M) + log(K) bits size is used to select an image
pixel address and a gray level to decide if an event is
placed or not at the frame vector. The computational costs
of this event are always the same because every time slot
of the frame vector is processed.
 y The Exhaustive method divide the frame vector into K
slices and pre-assigns a position for each pixel address at
the slice. The events for a certain pixel address are placed
at the frame vector using equidistant slices. These slices
are calculated using modulus operations. The image is
scanned only once.
 y The Scan method goes over the image row by row as
many times as the maximum gray level. The frame vector
is filled in order from the beginning. For each pixel, Scan
method compares the gray level to zero. When the pixel
value is greater than zero, an AER event is placed at the

next time slot and the gray level of the present pixel is
decremented by one. If the gray level is zero the next time
slot is left empty.

2.2 Hardware PCI-AER Bridge
This hardware interface has to be able to send up

to NxMxK events in 40 ms. Depending on the interface
performance, N × M (image sizes) and K value (gray
levels), this could be real or not.

The PCI bus [21] has several bandwidth versions
depending on the bus clock frequency and the data bus
width. Clock speed could be 33 MHz or 66 MHz, and the
data bus length could be 32 bits or 64 bits. There is an
improved version of the parallel PCI called PCI-X that can
work up to 133 MHz. The shown interface uses the most
common PCI bus, at a speed of 33MHz and 32 bits of bus
size.

When we use 32 bits to represent one AER spike,
the maximum theoretical peak rate of 33Mevps could be
achieved. Nevertheless, since a PCI bus cycle spends some
time for arbitration, and usually there are other PCI boards
sharing the PCI bus in a standard computer, a real event
rate over the PCI bus of 10 Mevps has been obtained and
reported on [22].

Therefore, a minimum inter-spike-interval (ISI) of 100
ns is present on the AER output of the PCI-AER bridge.
So, in 40 ms, the AER bus can transmit a 400 K events rate
maximum. If the methods described in the previous sub-
section are working with 128 × 128 images of 256 gray
levels and these frame-to-AER methods uses as many
events as the gray level, a maximum amount of 128 × 128 ×
255 ≈ 4,17Mevents can be produced for each frame (104,45
Mevps is required). So, the PCI-AER interface reduces
the real-time capabilities to those bitmap images or video
information represented in AER that implies a 10% of AER
traffic.

PCI-AER bridge consists (see Figure 3) into a
specialized CORE that interacts with the PCI bus. A set of
configuration registers are necessary for PCI protocol, like
BAR (based address registers), …. Two independent First-
Input-First-Output (FIFO) memories works in parallel in

Figure 3 PCI-AER Bridge Architecture Block Diagram

00-Invited paper.indd 535 2012/7/22 下午 02:57:30

Journal of Internet Technology Volume 13 (2012) No.4536

order to allow the AER traffic to go in both ways (in and
out) of the computer. AER-in-FSM component manages the
input AER protocol and stores received events values and
a time-stamp in the input-FIFO. Once the input-FIFO has
enough events for initiating a PCI burst bus cycle, the PCI
CORE sends to the computer’s main memory the received
sequence of events.

In contrast, when there is a sequence of events in the
computer’s memory ready to be sent to the AER system, a
PCI burst transaction is initiated for transferring that event
sequence to the output-FIFO of the PCI-AER bridge. Each
stored event at the output FIFO has information about the
event address to be transmitted and the wait time since last
transmission (time-stamp).

This interface is completely based on a Spartan II 200
FPGA using the 66 MHz clock inside the FPGA, obtained
by multiplying by 2 the PCI clock.

2.3 AER Convolution Processor
This block processes AER information coming from

a video source in order to extract features of the visual
information like edges, noise reduction, objects detection,
or any other feature that could be implemented using
convolutions.

The main advantage of spike-based processing is
that the result of the operation is coming out only a few
nanoseconds after the first incoming events. In contrast
to digital frame based image filters, AER processors start
calculating the output when the first event arrives, and they
do not have to wait for the whole image or frame before
start processing.

A convolution operation applied to a bitmap image is
defined mathematically as follows:

Where X is the input image; Y is the output image; K is the
kernel; (i, j) represents a pixel position and (n, m) is the
image dimension.

If the information is codified in spikes, the convolution
can be processed by implementing each multiplication as
a sequence of additions [10]. Every time an AER input
is received, an amount is added to a neighborhood of
the resulting image. This amount depends directly on
the weights of a pre-programmed kernel. Next equation
represents this behavior for a given input event (i, j):

This means that, for an input event, the convolution kernel
is added to the neighbor’s pixels of the input address. When

all the events have been received for a particular pixel, the
resulting pixel is the accumulation of multiplication of the
gray level of the neighbors and the kernel value.

Independently of that, if one pixel of the resulting
image reaches a threshold, an output spike is generated
and the pixel is reset. In this way those pixels that produce
output events correspond to the result of the convolution
performed in this processor.

Figure 4 presents the block diagram of the AER
convolution processor. A Finite State Machine manages the
input traffic, accesses the results memory and the kernel
one, and generates output events in an output FIFO. A
forgetting mechanism is implemented to reset those pixels
with sporadic traffic.

Figure 4 FPGA AER Convolution Processor Block Diagram

Figure 5 shows an example. In the first row there
are two different input images. The convolution kernel
for extracting vertical edges is K. Middle row shows
the convolution results using the MATLAB conv2()
function. Last row shows the histograms of the output
events obtained from the AER convolution processor with
the kernel K. The input is an AER stream obtained by
translating the first row images using the uniform method
explained in Sub-section 2.1.

This convolution processor performance [10] depends
directly on the kernel size of the convolution to be
performed. For 3 × 3 convolution kernels, an input event
rate of 3.85 Mevps is processed without introducing delays.
But, for the maximum supported kernel size of 11 × 11,
this processor can only support an input event rate of 1.35
Mevps.

For each input event, the kernel is processed row
by row; so the bigger is the kernel, the worse is the
performance of the processor. This can be improved
applying parallel techniques for processing the whole
kernel in parallel, or improving the technology in order to

00-Invited paper.indd 536 2012/7/22 下午 02:57:30

chaohuangyu
螢光標示

chaohuangyu
螢光標示

537A PCI AER Co-Processor Evaluation Based on CPUs Performance Counters

increase the clock frequency of the system from 50MHz to
other faster.

3 Frame-to-AER Performance Study

Presented co-processor system has several lacks in
order to be competitive for real-time applications. Hardware
components (PCI-AER bridge and AER convolution
processors) need architectural and technological
improvements for real-time capabilities.

On the other hand, the frame-to-AER software methods
performance is the most critical issue, because, as presented
in [19][23], using an Intel Core 2 Quad processor, several
of the methods cannot reach a sustained rate of 25 frames
conversions per second.

In this section we present a performance study of
these methods analyzing the internal performance counters
available on Intel processors for measuring several
parameters for identifying the lacks of each method.
Internal performance counters can be pre-programmed to
measure a particular parameter before the execution of a
process or software. These parameters can be branch miss
predictions, cache miss (both L1 and L2), cache store line
blocks, etc.

The Intel Core 2 Quad processor consists of four blocks
composed by a core processor and a L1 separate cache of
2 × 32 KB, 8 ways and 64 bytes line and two L2 caches of
4 MB, 16 ways and 64bytes line. Each one is shared by the
two cores and L1s. This multi-core architecture presents
coherence conflicts between L1 lines due to the possibility
of having parallel processes working with the same L1
data line in different cores. This requires hard penalties
for updating shared lines between L1 caches using L2 as
interchange mechanism.

If the frame-to-AER methods can be divided in
parallel threads working with independent data, then
synchronizations between L1 lines would not be needed

and therefore, these cache penalties would not appear,
improving execution times.

In order to analyze the penalties of these L1 and L2
problems, and other possible problems, during the execution
of the frame-to-AER methods we propose to use VTune.
VTune [17] is an Intel application designed to measure the
performance of a set of parameters of Intel processors by
using internal hardware counters. There are two internal
counters for measuring a set of parameters, so several
executions are needed. These counters must be configured
previously for analyzing two different parameters for
each execution. VTune allows preparing a project for
performance analysis in which several executions of the
application under study are launched automatically.

We have selected the following parameters [16]:
 y L2_LINES_IN.SELF.ANY (L2 cache misses): This
event counts the number of cache lines allocated in the
L2 cache. Cache lines are allocated in the L2 cache as a
result of requests from the L1 data and instruction caches
and the L2 hardware prefetchers to cache lines that are
missing in the L2 cache. This event has been configured
to count occurrences for all cores.

Those methods that cannot be divided into parallel
threads that are working in different parts of the array used
to store the generated events will increase this parameter.

 y STORE_BLOCK.ORDER (L1 data cache and
DTLB stall events): Intel processors maintain an in-
order writing of results in cache. Therefore, although
instructions are executed following an out-of-order
architecture (dynamic scheduling), results are re-ordered
before their writing operations to cache or registers. This
mechanism is supported by the Re-Order-Buffer that
also solves miss-predictions in branches or interruptions.
When results are written in cache by one core, this core
writes without any synchronization respect to other cores.
Therefore it is possible that a store executed in one core
implies to write a line into L2 cache and this line is dirty
because it is being used by another core L1 cache. This
event counts the total duration, in number of cycles,
which stores are waiting for a preceding stored cache
line to be observed by other cores. In general, when
increasing the number of threads working with the same
part of the memory, this parameter should increase.
 y L1D_CACHE_LOCK.MESI (L1 data cacheable
locked reads): This event counts the number of locked
data reads from cacheable memory. In the Intel Core 2
Quad, two cores share L2 cache. If these two cores are
working with the same L2 cache line, each one of them
has a copy on their own L1 caches. Therefore, if a core
modifies its L1 line, the other core corresponding L1 line
must be invalidated. This is the functionality of the MESI
protocol [15]. When this occurs and the second core

Figure 5 AER Convolution Processor Example

00-Invited paper.indd 537 2012/7/22 下午 02:57:31

Journal of Internet Technology Volume 13 (2012) No.4538

needs to access its shared L1 line, it needs to reload the
L1 line from the L2, but it is probable that L2 line has not
been updated by first core L1, so the penalty is increased.
These situations appear more frequently when threads
of the same process are sharing memory, increasing the
synchronization between threads, which occurs to the
AER methods.
 y L1D_CACHE_LOCK_DURATION (Duration of L1
data cacheable locked operation): This event counts the
number of cycles during which any cache line is locked
by any locking instruction. Locking happens at retirement
and therefore the event does not occur for instructions
that are speculatively executed. Locking duration is
shorter than locked instruction execution duration.
 y RESOURCE_STALLS.BR_MISS_CLEAR (Cycles
stalled due to branch miss-prediction): This event
counts the number of cycles after a branch miss-
prediction is detected at execution until the branch and all
older micro-ops retire. During this time new micro-ops
cannot enter the out-of-order pipeline.

In order to analyze the performance an executable file
for each AER method and for each input image has been
prepared. The test images set (TIS) selected is shown in
Figure 6. All the images have been constructed randomly,
with a Gaussian histogram and for producing different
bandwidth of events in the AER bus (from 10% to 90% and
95, 97, 99%)

Figure 7 shows graphically the results obtained when
monitoring the events presented using the internal hardware
counters of the Intel Core 2 Quad processor.

For several methods, the more events are produced in
the AER bus, the greater the number of L2 lines required
(see L2_LINES_IN.SELF.ANY graph). These methods are
Random, Random OMP, Uniform OMP and Exhaustive
OMP. OMP means that OpenMP compilation techniques
have been used. These OMP methods require around 24
threads that require an increment of synchronization points
between threads when producing AER events. These
synchronization points increment imply a data replication
between both the two L2 caches and the four L1 caches,
because several threads are accessing same parts of the
frame period.

The number of misses produced when accessing L2
for storing results is higher for Random and Random OMP
methods. This means that for these methods, no matter the
number of threads, collisions in cache are produced for
different cores more frequently than for the other methods.
This effect is due to the fact of sharing not only the frame
vector, but also the rand function used in software. This
function must share a global variable because in other case
it cannot be ensured the property of LFSR in producing all
the positions randomly without repetition.

L1D_CACHE_LOCK.MESI measures the number
of L1 lines invalidated by another core when lines are
shared between several cores. This situation is also more
accentuated in Random methods due to rand function
sharing.

Duration of L1D locks does not show significant
differences between methods.

Branches miss-prediction occurs more frequently for
Random methods due to the difficulty in predicting the
behavior of a random sequence. But this miss-predictions
are also higher for OMP methods compared to not OMP
ones. This is normal taking into account the difference in
the number of threads, each of them requiring different
BTB entries (Branch Target Buffer).

We have seen that the software methods using OMP
techniques are not adequate for Intel Core 2 Quad, and
that Random methods could be not feasible for real-time
visual processing. They did not reach real-time capabilities
because of the rand function sharing.

The solution is to divide the image in as many parts
as cores has the processor (N cores), and use N different
and adapted rand functions for generating the sequence of
events for each part of the image and then join all of them
in the frame vector.

A new method called Random Quadrant divides the
LFSR in four parts for the Intel Core 2 Quad.

Figure 8 shows execution times in the same Intel
Core 2 Quad processor of the Random Quadrant method,
compiled using Intel compiler, Random and Random
Square without OMP techniques.

Figure 6 TIS Generated Randomly to Have Gaussian Histogram.
Resulting Images (10% Load Upper Left, 90% Load
Lower Right)

00-Invited paper.indd 538 2012/7/22 下午 02:57:31

chaohuangyu
螢光標示

539A PCI AER Co-Processor Evaluation Based on CPUs Performance Counters

4 Conclusions

We can conclude with this performance study that
hardware PCI-AER bridge and AER convolution processor
needs architectural and/or technological improvements to
achieve real-time (25 fps).

On the other hand, regarding the software, we
have analyzed several internal CPU counters. We have
demonstrated that random methods are not able to achieve
real-time in multi-core processors.

Finally, we have proceeded to modify the random
method to solve these inefficiencies, achieving a substantial
performance improvement.

References

[1] Daniel Drubach, The Brain Explained, Prentice Hall,
Englewood Cliffs, NJ, 2000.

[2] Gordon M. Shepherd, The Synaptic Organization of
the Brain (3rd ed.), Oxford University Press, New
York, 1990.

[3] J. S. Lee, A Simple Speckle Smoothing Algorithm for
Synthetic Aperture Radar Images, IEEE Trans. on
Systems, Man and Cybernetics, Vol.13, No.1, 1983,
pp.85-89.

[4] Thomas R. Crimmins, Geometric Filter for Speckle
Reduction, Applied Optics, Vol.24, No.10, 1985,
pp.1438-1443.

[5] Massimo Antonio Sivilotti, Wiring Considerations
in Analog VLSI Systems with Application to Field-
Programmable Networks, Ph.D. Thesis, California
Institute of Technology, Pasadena, CA, 1991.

[6] Kwabena A. Boahen, Communicating Neuronal
Ensembles between Neuromorphic Chips, in T. S.
Lande (Ed.), Neuromorphic Systems Engineering,
Kluwer Academic, Boston, 1998, pp.229-259.

Figure 7 Intel Core 2 Quad Internal Events Performance Values for Executions of Frame-to-AER Methods Using TIS Images (10-99%
AER Bus Occupation)

Figure 8 Intel Core 2 Quad Execution Times for Random,
Random Square and Random Quadrant Method for TIS
Images

00-Invited paper.indd 539 2012/7/22 下午 02:57:31

Journal of Internet Technology Volume 13 (2012) No.4540

[7] Misha Mahowald, VLSI Analogs of Neuronal Visual
Processing: A Synthesis of Form and Function, Ph.D.
Thesis, California Institute of Technology, Pasadena,
CA, 1992.

[8] A. Linares-Barranco, G. Jimenez-Moreno, A. Civit-
Ballcels and B. Linares-Barranco, On Algorithmic
Rate-Coded AER Generation, IEEE Transactions on
Neural Networks, Vol.17, No.3, 2006, pp.771-788.

[9] R. Paz, F. Gómez-Rodriguez, M. A. Rodriduez, A.
Linares-Barranco, G. Jimenez and A. Civit, Test
Infrastructure for Address-Event-Representation
Communications, Proc. IWANN 2005, Barcelona,
Spain, June, 2005, pp.518-526.

[10] A. Linares-Barranco, R. Paz-Vicente, F. Gómez-
Rodriguez, A. Jiménes, M. Rivas, G. Jiménes and A.
Civit, On the AER Convolution Processors for FPGA,
Proc. ISCAS 2010, Paris, May, 2010, pp.4237-4240.

[11] Ben Cope, Implementation of 2D Convolution on
FPGA, GPU and CPU, http://cas.ee.ic.ac.uk/people/
btc00/index_files/Convolution_filter.pdf

[12] Ben Cope, P. Y. K. Cheung, W. Luk and S. Witt, Have
GPUs made FPGAs redundant in the field of video
processing?, Proc. FPT 2005, Singapore, Singapore,
December, 2005, pp.111-118.

[13] C. Farabet et al., CNP: An FPGA-based Processor for
Convolutional Networks, FPL 2009, Prague, Czech
Republic, August, 2009, pp.32-37.

[14] N. Farriga et al., Design of a Real-Time Face
Detection Parallel Architecture Using High-
Level Synthesis, Hindawi Publishing Corporation.
EURASIP Journal on Embedded Systems, Vol.2008,
doi:10.1155/2008/938256.

[15] Intel® 64 and IA-32 Architectures Optimization
Reference Manual, 2008, http://www.intel.com/
content/www/us/en/architecture-and-technology/64-
ia-32-architectures-optimization-manual.html

[16] Intel Architecture Software Developer’s Manual.
Volume 3: System Programming, 1999, http://
www.scribd.com/doc/5510805/Intel-Architecture-
Software-Developers-Manuals-Volume-3-System-
Programming-

[17] James Reinders, VTuneTM Performance Analyzer
Essentials: Measurement and Tuning Techniques for
Software Developers, Intel Press, Santa Clara, CA,
2005.

[18] Xilinx Inc., Linear Feedback Shift Register V2.0,
2001, http://www.xilinx.com/ipcenter

[19] Manuel Domínguez-Morales, Pablo Iñigo-Blasco, et
al., Performance study of synthetic AER generation
on CPUs for Real-Time Video based on Spikes, Proc.
SPECTS 2009, Istambul, Turkey, July, 2009, pp.57-
64.

[20] Barbara Chapman et al., Using OpenMP. Portable
Shared Memory Parallel Programming, The MIT
Press, 2007.

[21] Conventional PCI 3.0 -- An Evolution of the
Conventional PCI Local Bus Specification, 2012,
http://www.pcisig.com/specifications/conventional/
pci_30/

[22] Avis Cohen et al., Report on the 2006 Workshop on
Neuromorphic Engineering, 2006, http://www.ine-
news.org/view.php?article=pdf_20071107060101

[23] Manuel Domínguez-Morales et al., Frames-to-
AER Efficiency Study Based on CPUs Performance
Counters, Proc. SPECTS 2010, Otawa, Canada, July,
2010, pp.141-148.

00-Invited paper.indd 540 2012/7/22 下午 02:57:31

chaohuangyu
螢光標示

chaohuangyu
螢光標示

chaohuangyu
螢光標示

chaohuangyu
螢光標示

chaohuangyu
螢光標示

chaohuangyu
螢光標示

chaohuangyu
螢光標示

