
533A PCI AER Co-Processor Evaluation Based on CPUs Performance Counters

A PCI AER Co-Processor Evaluation Based on CPUs Performance Counters
Manuel Domínguez-Morales, Alejandro Linares-Barranco, Pablo Iñigo-Blasco, Juan Luis Font, Daniel Cascado-Caballero, 

Gabriel Jimenez-Moreno, Fernando Díaz-del-Río, José Luis Sevillano
Department of Architecture and Technology of Computers, University of Seville, Spain

mdominguez@atc.us.es

Abstract

Image processing in digital computer systems usually 
considers the visual information as a sequence of frames. 
These frames are from cameras that capture reality for a 
short period of time. They are renewed and transmitted at 
a rate of 25-30 frames per second, in a typical real-time 
scenario. Digital video processing has to process each 
frame in order to obtain a filter result or detect a feature on 
the input. This processing is usually based on very complex 
and expensive (in resources) operations for an efficient 
real-time application. Brain can perform very complex 
visual processing in real-time using relatively simple cells, 
called neurons, which codify the information into spikes. 
Spike-based processing is a relatively new approach that 
implements the processing by manipulating spikes one by 
one at the time they are transmitted, like a human brain. The 
spike-based philosophy for visual information processing 
based on the neuro-inspired Address Event Representation 
(AER) is achieving nowadays very high performances. 
In this work we study the low level performance for real-
time scenarios of a spike-based co-processor connected to 
a conventional PC and implemented through a PCI board. 
These low level lacks are focused both in the software 
conversion of static frames into AER format and in the 
bottleneck of the PCI interface.

Keywords: Spiking neurons, Address-Event, PCI, FPGA, 
Synthetic AER generation.

1   Introduction

Digital vision systems process sequences of frames 
from conventional frame-based video sources, like 
cameras. For performing complex object recognition 
algorithms, sequences of computational operations must 
be performed for each frame. The computational power 
and speed required make it difficult to develop a real-time 
autonomous system. However, brain performs powerful 
and fast vision processing using millions of small and slow 
cells working in parallel in a totally different way. Primate 
brain is structured in neuron layers, in which the neurons 
in a layer connect to a very large number (~104) of neurons 
in the following layer [2]. Many times the connectivity 
includes paths between non-consecutive layers, and even 

feedback connections are present.
Vision sensing and object recognition in brain is not 

processed frame by frame; it is processed in a continuous 
way, spike by spike, at the brain-cortex. The visual cortex is 
composed by a set of layers [1-2], starting from the retina. 
The processing stage starts when the retina captures the 
information. In recent years, there have been significant 
progresses at the field of visual cortex processing. Many 
artificial systems that implement bio-inspired software 
models use biological-like processing that outperform 
more conventionally engineered machines [3-4][10]. 
However, these systems generally run at extremely low 
speeds because their models are implemented as software 
programs. For real-time solutions, a direct hardware 
implementation is required. A growing number of research 
groups world-wide are implementing some of these 
computational principles onto real-time spiking hardware 
through the development and exploitation of the so-called 
AER (Address Event Representation) technology. 

AER was proposed by the Mead lab in 1991 [5][7] 
for communications between neuromorphic chips using 
spikes. Every time a cell on a sender device generates a 
spike, it transmits a digital word representing a code or 
address for that pixel, using an external inter-chip digital 
bus (the AER bus). In the receiver the spikes are directed 
to the pixels whose code or address was on the bus. In 
this way, cells with the same address in the emitter and 
receiver chips are virtually connected by streams of spikes. 
Arbitration circuits ensure that cells do not access the bus 
simultaneously (see Figure 1). Usually, these AER circuits 
are built using self-timed asynchronous logic [6]. 

Several works are already present in the literature 
regarding the spike-based visual processing filters. Serrano 
et al. presented a chip-processor able to implement image 
convolution filters based on spikes that work at very high 
performance parameters (~3GOPS for 32 × 32 kernel size) 
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Figure 1 AER Inter-Chip Communication Scheme
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compared to traditional digital frame-based convolution 
processors [10-12]. 

There is a community of AER protocol users for bio-
inspired applications in vision and audition systems, as 
demonstrated by the success in the last years of the AER 
group at the Neuromorphic Engineering Workshop series 
[22]. One of the goals of this community is to build large 
multi-chip and multi-layer hierarchically structured systems 
capable of performing complicated array data processing 
in real time. The power of these systems can be used 
in computer based systems under co-processing. This 
purpose strongly depends on the availability of robust and 
efficient AER interfaces [9]. One such tool is a PCI-AER 
interface that allows not only reading an AER stream into 
a computer memory and displaying it on screen in real-
time, but also the opposite: from images available in the 
computer’s memory, generate a synthetic AER stream in 
a similar manner a dedicated VLSI AER emitter chip [6-
7] would do. This PCI-AER interface is able to reach up 
to 10Mevps (Mega events per second) bandwidth, which 
allows a frame-rate of 25 frps (frames per second) with an 
AER traffic load of 100% for 128 × 128 frames, and 25 fps 
with a typical 10% AER traffic load. 

In [19] we evaluated the performance of several frame-
to-AER conversion software methods for real-time video 
applications by measuring execution times in several 
processors. That work demonstrated that for low AER 
traffic loads any method in any CPU achieved real-time, 
but for high-bandwidth AER traffics, it depends on which 
method and CPU are selected in order to obtain real-time. 
In this work we focus on the best processor of that study 
and then we analyze the reasons that made some of the 
methods non real-time adequate. In this work we analyze 
the performance of a whole AER co-processor system for 
visual information processing. It is composed by a PC 
running a software application that converts frames to AER, 
a PCI-AER interface that sends the produced AER stream 
to an AER convolution processor that implements visual 
filtering on a Xilinx Virtex-5 FPGA.

Next section presents the complete architecture 
composed by (a) the software methods for converting 
digital frames into AER format in the computer’s memory; 
(b) the PCI-AER architecture and (c) the AER convolution 
processor. This section also discusses the performance lacks 
of the hardware components of the system (b and c). Then 
in Section 3 we focus on the performance limits of (a) using 
hardware internal counters of Intel processors. In Section 4 
we present the conclusions.

2   System Architecture

Figure 2 shows a block diagram of the architecture 
under performance evaluation. From left to right there is 

a computer executing the conversion routines from static 
images of a video source to a spikes stream into AER 
format, stored in the main memory of the computer. These 
streams of AER are moved to the internal FIFO of a PCI 
board using Direct Memory Access (DMA) with burst PCI 
bus cycles. Up to 10 Mevps sustained bandwidth has been 
reported in [22] as output AER rate. The last element of 
the architecture processes the input AER stream to extract 
features, like edges, shapes …. A sequence of events in the 
output of this AER processor represents the result of the 
programmed convolution for the input visual information. 
For example, for identifying an object in the visual 
information the output should be an event that corresponds 
with the location of the object in the space. 

2.1 Frame-to-AER Software Methods
Many software algorithms to transform a bitmap image 

(stored in a computer’s memory) into an AER stream 
of pixel addresses can be thought [8]. In all of them the 
address appearance frequency of a concrete pixel must be 
proportional to its intensity at the image. It is important 
to denote that the locations of the address pulses are not 
critical. The pulses can be slightly shifted from their 
nominal positions; the AER receivers will integrate them to 
recover the original pixel waveform.

Whatever algorithm is used, it will generate a vector 
of addresses that will be sent to an AER receiver chip via 
an AER bus. Let us call this vector the frame vector. The 
frame vector has a fixed number of time slots to be filled 
with event addresses: Tframe/Tpulse. The number of time 
slots depends on the time assigned to a frame (for example 
Tframe = 40 ms) and the time required to transmit a single 
event (for example Tpulse = 10 ns). If we have an image 
of N × M pixels and each pixel can have a grey level value 
from 0 to K, one possibility is to place each pixel address in 
the frame vector as many times as the value of its intensity, 
and distribute it at equidistant positions. If all pixels have 
the maximum value K, the frame vector would be filled with 
N × M × K addresses. This number should be equal to the 
total number of time slots in the frame vector. Depending 
on the total intensity of the image there will be more or 
less empty slots at the frame vector. Each algorithm would 
implement a particular way of distributing these address 
events, and will require a certain computational time. This 
time should be lower than 40 ms in order to warranty real-

Figure 2 Co-processor Architecture Block Diagram
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time processing. Once the frame vector is filled, it is sent 
to AER convolution processor by the PCI-AER interface. 
These two hardware components represent a second stage 
of a pipeline structure; the first one is the frame-to-AER 
selected method. Therefore, hardware components cannot 
consume more than 40ms for transferring the frame vector.

In [8], several methods for converting video frames 
into AER were presented. In this work we will focus on a 
set of them:

 y The Uniform method distributes equidistantly the events 
of one pixel along the frame vector. The image is scanned 
pixel by pixel only once. For each pixel, the generated 
pulses must be distributed equally along the vector. When 
the frame vector is getting filled, the algorithm will find 
collisions. A collision occurs when an event has to be 
placed at a time slot that is already occupied. In this case, 
the event is moved to the nearest empty slot of the frame 
vector.
 y The Random method distributes randomly the events 
of one pixel along the frame vector. The image is also 
scanned only once. For each pixel, a Linear Feedback 
Shift Register (LFSR) pseudo-random number generator 
is used in order to obtain the time slot position at the 
frame vector. The LFSR [18] mathematical properties 
ensure that no collision will appear for the whole image.
 y The Random-Square method distributes the events 
randomly but dividing the frame vector in K slices (one 
slice per gray level). A double LFSR is used. First one 
(LFSR-slice) is used to select a slice and the second one 
(LFSR-pixel) selects a time slot inside the slice. The slice 
and pixel addresses are joined to place an event at the 
frame vector. 
 y The Random Hardware method also distributes the events 
randomly at the frame vector. In this case the frame 
vector is filled in order, sequentially, with randomly 
selected events from the bitmap image. A LFSR of log(N) 
+ log(M) + log(K) bits size is used to select an image 
pixel address and a gray level to decide if an event is 
placed or not at the frame vector. The computational costs 
of this event are always the same because every time slot 
of the frame vector is processed.
 y The Exhaustive method divide the frame vector into K 
slices and pre-assigns a position for each pixel address at 
the slice. The events for a certain pixel address are placed 
at the frame vector using equidistant slices. These slices 
are calculated using modulus operations. The image is 
scanned only once.
 y The Scan method goes over the image row by row as 
many times as the maximum gray level. The frame vector 
is filled in order from the beginning. For each pixel, Scan 
method compares the gray level to zero. When the pixel 
value is greater than zero, an AER event is placed at the 

next time slot and the gray level of the present pixel is 
decremented by one. If the gray level is zero the next time 
slot is left empty.

2.2 Hardware PCI-AER Bridge
This hardware interface has to be able to send up 

to NxMxK events in 40 ms. Depending on the interface 
performance, N × M (image sizes) and K value (gray 
levels), this could be real or not.

The PCI bus [21] has several bandwidth versions 
depending on the bus clock frequency and the data bus 
width. Clock speed could be 33 MHz or 66 MHz, and the 
data bus length could be 32 bits or 64 bits. There is an 
improved version of the parallel PCI called PCI-X that can 
work up to 133 MHz. The shown interface uses the most 
common PCI bus, at a speed of 33MHz and 32 bits of bus 
size.

When we use 32 bits to represent one AER spike, 
the maximum theoretical peak rate of 33Mevps could be 
achieved. Nevertheless, since a PCI bus cycle spends some 
time for arbitration, and usually there are other PCI boards 
sharing the PCI bus in a standard computer, a real event 
rate over the PCI bus of 10 Mevps has been obtained and 
reported on [22]. 

Therefore, a minimum inter-spike-interval (ISI) of 100 
ns is present on the AER output of the PCI-AER bridge. 
So, in 40 ms, the AER bus can transmit a 400 K events rate 
maximum. If the methods described in the previous sub-
section are working with 128 × 128 images of 256 gray 
levels and these frame-to-AER methods uses as many 
events as the gray level, a maximum amount of 128 × 128 × 
255 ≈ 4,17Mevents can be produced for each frame (104,45 
Mevps is required). So, the PCI-AER interface reduces 
the real-time capabilities to those bitmap images or video 
information represented in AER that implies a 10% of AER 
traffic.

PCI-AER bridge consists (see Figure 3) into a 
specialized CORE that interacts with the PCI bus. A set of 
configuration registers are necessary for PCI protocol, like 
BAR (based address registers), …. Two independent First-
Input-First-Output (FIFO) memories works in parallel in 

Figure 3 PCI-AER Bridge Architecture Block Diagram
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order to allow the AER traffic to go in both ways (in and 
out) of the computer. AER-in-FSM component manages the 
input AER protocol and stores received events values and 
a time-stamp in the input-FIFO. Once the input-FIFO has 
enough events for initiating a PCI burst bus cycle, the PCI 
CORE sends to the computer’s main memory the received 
sequence of events.

In contrast, when there is a sequence of events in the 
computer’s memory ready to be sent to the AER system, a 
PCI burst transaction is initiated for transferring that event 
sequence to the output-FIFO of the PCI-AER bridge. Each 
stored event at the output FIFO has information about the 
event address to be transmitted and the wait time since last 
transmission (time-stamp).

This interface is completely based on a Spartan II 200 
FPGA using the 66 MHz clock inside the FPGA, obtained 
by multiplying by 2 the PCI clock.

2.3 AER Convolution Processor
This block processes AER information coming from 

a video source in order to extract features of the visual 
information like edges, noise reduction, objects detection, 
or any other feature that could be implemented using 
convolutions. 

The main advantage of spike-based processing is 
that the result of the operation is coming out only a few 
nanoseconds after the first incoming events. In contrast 
to digital frame based image filters, AER processors start 
calculating the output when the first event arrives, and they 
do not have to wait for the whole image or frame before 
start processing. 

A convolution operation applied to a bitmap image is 
defined mathematically as follows:

Where X is the input image; Y is the output image; K is the 
kernel; (i, j) represents a pixel position and (n, m) is the 
image dimension.

If the information is codified in spikes, the convolution 
can be processed by implementing each multiplication as 
a sequence of additions [10]. Every time an AER input 
is received, an amount is added to a neighborhood of 
the resulting image. This amount depends directly on 
the weights of a pre-programmed kernel. Next equation 
represents this behavior for a given input event (i, j):

This means that, for an input event, the convolution kernel 
is added to the neighbor’s pixels of the input address. When 

all the events have been received for a particular pixel, the 
resulting pixel is the accumulation of multiplication of the 
gray level of the neighbors and the kernel value.

Independently of that, if one pixel of the resulting 
image reaches a threshold, an output spike is generated 
and the pixel is reset. In this way those pixels that produce 
output events correspond to the result of the convolution 
performed in this processor.

Figure 4 presents the block diagram of the AER 
convolution processor. A Finite State Machine manages the 
input traffic, accesses the results memory and the kernel 
one, and generates output events in an output FIFO. A 
forgetting mechanism is implemented to reset those pixels 
with sporadic traffic.

Figure 4 FPGA AER Convolution Processor Block Diagram

Figure 5 shows an example. In the first row there 
are two different input images. The convolution kernel 
for extracting vertical edges is K. Middle row shows 
the convolution results using the MATLAB conv2() 
function. Last row shows the histograms of the output 
events obtained from the AER convolution processor with 
the kernel K. The input is an AER stream obtained by 
translating the first row images using the uniform method 
explained in Sub-section 2.1.

This convolution processor performance [10] depends 
directly on the kernel size of the convolution to be 
performed. For 3 × 3 convolution kernels, an input event 
rate of 3.85 Mevps is processed without introducing delays. 
But, for the maximum supported kernel size of 11 × 11, 
this processor can only support an input event rate of 1.35 
Mevps. 

For each input event, the kernel is processed row 
by row; so the bigger is the kernel, the worse is the 
performance of the processor. This can be improved 
applying parallel techniques for processing the whole 
kernel in parallel, or improving the technology in order to 
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increase the clock frequency of the system from 50MHz to 
other faster.

3   Frame-to-AER Performance Study

Presented co-processor system has several lacks in 
order to be competitive for real-time applications. Hardware 
components (PCI-AER bridge and AER convolution 
processors)  need architectural  and technological 
improvements for real-time capabilities.

On the other hand, the frame-to-AER software methods 
performance is the most critical issue, because, as presented 
in [19][23], using an Intel Core 2 Quad processor, several 
of the methods cannot reach a sustained rate of 25 frames 
conversions per second. 

In this section we present a performance study of 
these methods analyzing the internal performance counters 
available on Intel processors for measuring several 
parameters for identifying the lacks of each method. 
Internal performance counters can be pre-programmed to 
measure a particular parameter before the execution of a 
process or software. These parameters can be branch miss 
predictions, cache miss (both L1 and L2), cache store line 
blocks, etc.

The Intel Core 2 Quad processor consists of four blocks 
composed by a core processor and a L1 separate cache of 
2 × 32 KB, 8 ways and 64 bytes line and two L2 caches of 
4 MB, 16 ways and 64bytes line. Each one is shared by the 
two cores and L1s. This multi-core architecture presents 
coherence conflicts between L1 lines due to the possibility 
of having parallel processes working with the same L1 
data line in different cores. This requires hard penalties 
for updating shared lines between L1 caches using L2 as 
interchange mechanism.

If the frame-to-AER methods can be divided in 
parallel threads working with independent data, then 
synchronizations between L1 lines would not be needed 

and therefore, these cache penalties would not appear, 
improving execution times.

In order to analyze the penalties of these L1 and L2 
problems, and other possible problems, during the execution 
of the frame-to-AER methods we propose to use VTune. 
VTune [17] is an Intel application designed to measure the 
performance of a set of parameters of Intel processors by 
using internal hardware counters. There are two internal 
counters for measuring a set of parameters, so several 
executions are needed. These counters must be configured 
previously for analyzing two different parameters for 
each execution. VTune allows preparing a project for 
performance analysis in which several executions of the 
application under study are launched automatically. 

We have selected the following parameters [16]:
 y L2_LINES_IN.SELF.ANY (L2 cache misses): This 
event counts the number of cache lines allocated in the 
L2 cache. Cache lines are allocated in the L2 cache as a 
result of requests from the L1 data and instruction caches 
and the L2 hardware prefetchers to cache lines that are 
missing in the L2 cache. This event has been configured 
to count occurrences for all cores. 

Those methods that cannot be divided into parallel 
threads that are working in different parts of the array used 
to store the generated events will increase this parameter.

 y STORE_BLOCK.ORDER (L1 data cache and 
DTLB stall events): Intel processors maintain an in-
order writing of results in cache. Therefore, although 
instructions are executed following an out-of-order 
architecture (dynamic scheduling), results are re-ordered 
before their writing operations to cache or registers. This 
mechanism is supported by the Re-Order-Buffer that 
also solves miss-predictions in branches or interruptions. 
When results are written in cache by one core, this core 
writes without any synchronization respect to other cores. 
Therefore it is possible that a store executed in one core 
implies to write a line into L2 cache and this line is dirty 
because it is being used by another core L1 cache. This 
event counts the total duration, in number of cycles, 
which stores are waiting for a preceding stored cache 
line to be observed by other cores. In general, when 
increasing the number of threads working with the same 
part of the memory, this parameter should increase.
 y L1D_CACHE_LOCK.MESI (L1 data cacheable 
locked reads): This event counts the number of locked 
data reads from cacheable memory. In the Intel Core 2 
Quad, two cores share L2 cache. If these two cores are 
working with the same L2 cache line, each one of them 
has a copy on their own L1 caches. Therefore, if a core 
modifies its L1 line, the other core corresponding L1 line 
must be invalidated. This is the functionality of the MESI 
protocol [15]. When this occurs and the second core 

Figure 5 AER Convolution Processor Example
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needs to access its shared L1 line, it needs to reload the 
L1 line from the L2, but it is probable that L2 line has not 
been updated by first core L1, so the penalty is increased. 
These situations appear more frequently when threads 
of the same process are sharing memory, increasing the 
synchronization between threads, which occurs to the 
AER methods. 
 y L1D_CACHE_LOCK_DURATION (Duration of L1 
data cacheable locked operation): This event counts the 
number of cycles during which any cache line is locked 
by any locking instruction. Locking happens at retirement 
and therefore the event does not occur for instructions 
that are speculatively executed. Locking duration is 
shorter than locked instruction execution duration.
 y RESOURCE_STALLS.BR_MISS_CLEAR (Cycles 
stalled due to branch miss-prediction): This event 
counts the number of cycles after a branch miss-
prediction is detected at execution until the branch and all 
older micro-ops retire. During this time new micro-ops 
cannot enter the out-of-order pipeline.

In order to analyze the performance an executable file 
for each AER method and for each input image has been 
prepared. The test images set (TIS) selected is shown in 
Figure 6. All the images have been constructed randomly, 
with a Gaussian histogram and for producing different 
bandwidth of events in the AER bus (from 10% to 90% and 
95, 97, 99%)

Figure 7 shows graphically the results obtained when 
monitoring the events presented using the internal hardware 
counters of the Intel Core 2 Quad processor. 

For several methods, the more events are produced in 
the AER bus, the greater the number of L2 lines required 
(see L2_LINES_IN.SELF.ANY graph). These methods are 
Random, Random OMP, Uniform OMP and Exhaustive 
OMP. OMP means that OpenMP compilation techniques 
have been used. These OMP methods require around 24 
threads that require an increment of synchronization points 
between threads when producing AER events. These 
synchronization points increment imply a data replication 
between both the two L2 caches and the four L1 caches, 
because several threads are accessing same parts of the 
frame period.

The number of misses produced when accessing L2 
for storing results is higher for Random and Random OMP 
methods. This means that for these methods, no matter the 
number of threads, collisions in cache are produced for 
different cores more frequently than for the other methods. 
This effect is due to the fact of sharing not only the frame 
vector, but also the rand function used in software. This 
function must share a global variable because in other case 
it cannot be ensured the property of LFSR in producing all 
the positions randomly without repetition.

L1D_CACHE_LOCK.MESI measures the number 
of L1 lines invalidated by another core when lines are 
shared between several cores. This situation is also more 
accentuated in Random methods due to rand function 
sharing. 

Duration of L1D locks does not show significant 
differences between methods. 

Branches miss-prediction occurs more frequently for 
Random methods due to the difficulty in predicting the 
behavior of a random sequence. But this miss-predictions 
are also higher for OMP methods compared to not OMP 
ones. This is normal taking into account the difference in 
the number of threads, each of them requiring different 
BTB entries (Branch Target Buffer).

We have seen that the software methods using OMP 
techniques are not adequate for Intel Core 2 Quad, and 
that Random methods could be not feasible for real-time 
visual processing. They did not reach real-time capabilities 
because of the rand function sharing. 

The solution is to divide the image in as many parts 
as cores has the processor (N cores), and use N different 
and adapted rand functions for generating the sequence of 
events for each part of the image and then join all of them 
in the frame vector.

A new method called Random Quadrant divides the 
LFSR in four parts for the Intel Core 2 Quad.

Figure 8 shows execution times in the same Intel 
Core 2 Quad processor of the Random Quadrant method, 
compiled using Intel compiler, Random and Random 
Square without OMP techniques. 

Figure 6 TIS Generated Randomly to Have Gaussian Histogram. 
Resulting Images (10% Load Upper Left, 90% Load 
Lower Right)
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4   Conclusions

We can conclude with this performance study that 
hardware PCI-AER bridge and AER convolution processor 
needs architectural and/or technological improvements to 
achieve real-time (25 fps).

On the other hand, regarding the software, we 
have analyzed several internal CPU counters. We have 
demonstrated that random methods are not able to achieve 
real-time in multi-core processors.

Finally, we have proceeded to modify the random 
method to solve these inefficiencies, achieving a substantial 
performance improvement.
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