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ABSTRACT 

The stress shielding and the poor osseointegration in titanium implants are still 

problems to be resolved. In this context, this work proposes a balanced solution. 

Titanium samples were fabricated, with a porosity of 100-200 µm of pore size 

employing space-holder technique (50 vol. % NH4HCO3, 800 MPa at 1250 ºC during 2h 

under high vacuum conditions), obtaining a good equilibrium between stiffness and 

mechanical resistance. The porous titanium substrates were coated with hydroxyapatite, 

obtained by sol-gel technique: immersion, dried at 80ºC and heat treatment at 450ºC 

during 5h under vacuum conditions. Phases, surface morphology and interfacial 

microstructure of the transverse section were analyzed by Micro-Computed 

Tomography, SEM and confocal laser, as well as the infiltration capability of the 

coating into the metallic substrate pores. The FTIR and XRD showed the crystallinity of 

the phases and the chemical composition homogeneity of the coating. The size and 

interconnected pores obtained allow the infiltration of hydroxyapatite (HA), possible 

bone ingrowth and osseointegration. The scratch resistance of the coating corroborated 

a good adherence to the porous metallic substrate. The coated titanium samples have a 

biomechanical and biofunctional equilibrium, as well as a potential use in biomedical 

applications (partial substitution of bone tissue).  

Keywords: Space-holder; hydroxyapatite; porous titanium; sol-gel: stress shielding; 

osseointegration,  

* Corresponding author: echicardi@us.es 
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1. INTRODUCTION 

Bone tissues are affected by the aging of people and diseases. Commercial pure 

Titanium (c.p. Ti) and the alloy Ti6Al4V are well known biomaterials and clinically 

accepted thanks to their good mechanical properties and corrosion resistance in 

physiological fluids [1, 2]. Nevertheless, they still exhibit some problems which have to 

be resolved: the biomechanical (stress-shielding phenomenon) [3] and the biofunctional 

(poor osseointegration) [4]. The stiffness discrepancy between the implant and the bone 

tissue can be addressed by making porous materials. In addition, the generated pores 

could improve bone ingrowth towards the interior of the implant (with an optimal pore 

size) [2, 5] and the enhancement of the osseointegration thanks to the roughness [6] 

within the pore [7]. On the other hand, the surface of the implant must be modified to 

improve the osseointegration capacity and avoid the micro movements at the implant-

bone interface [2]. The use of bioactive HA coatings promotes the bone formation, the 

adhesion and the fixation of the metallic substrates [2, 8]. In the literature, different 

deposition techniques are reported not only for bioactive HA, but also for other 

coatings: sol-gel, electrochemical, electrophoretic, micro-arc, plasma spraying, sputter, 

hot isostatic pressing, pulsed laser, magnetron sputtering, chemical vapor deposition 

(CVD), biomimetic, among others [9-13]. The sol-gel technique allows a thin HA film 

on porous Ti substrates to be obtained [14-16], achieving a good chemical homogeneity. 

Within this framework, this work proposes the production of porous titanium substrates 

coated with HA as a potential solution for obtaining the desired biomechanical and 

biofunctional balance. 
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2. MATERIALS AND EXPERIMENTAL PROCEDURE 

Porous titanium substrates (grade IV) were fabricated by space-holder technique 

[17, 18], employing ammonium hydrogen carbonate, NH4HCO3 as space-holder (50 

vol. % and a particle size range of 100-200 µm). The content employed was chosen 

according to the previous works of the authors [19]. The powders were mixed by using 

a Turbula® T2C for 40 mins to achieve a good homogenization. The blend was pressed 

to 800 MPa using an Instron 5505 universal testing machine. The space holder was then 

removed in a furnace in two steps of 12h each (at 60°C and 110°C, both under low 

vacuum conditions of ~10-2 mbar). Finally, the green compacts were sintered in a 

Carbolyte® STF 15/75/450 ceramic furnace, with a horizontal tube at 1250°C for 2h 

using high vacuum (~10-5 mbar). The protocol used for the HA coating is a variant of 

one procedure shown in the literature [20-23]. The precursor was triethyl phosphite, 

hydrolyzed during 24h with distilled water under vigorous stirring. The required 

stoichiometric amount of calcium nitrate (Aldrich) solution was then added to the 

hydrolyzed solution. The mixture was additionally stirred and allowed to rest for 24h. 

The metallic substrate was then coated by dip-coating and drying at 80°C overnight. 

The coating adherence was improved by submitting the substrates to a thermal 

treatment at 450 ºC for 5h under vacuum conditions. 

The interconnected (Pi) and total porosity (PT) of porous titanium substrate were 

obtained by Archimedes’ method (ASTM C373-14). Image analysis (IA) was employed 

to determine the equivalent diameter of the pores, using a Nikon Epiphot optical 

microscope coupled with a Jenoptik Progres C3 camera and Image-Pro Plus 6.2 analysis 

software [24].  
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Also, X-ray computed tomography (M-CT) was used to compare the porosity 

values and the equivalent porous diameter obtained by Archimedes’ and Image 

Analysis, respectively. For this purpose, a micro focus X-ray source L8121–01, 

operating at 100 kV, 100 mA, 5 mm of spot size and a flat panel detector C7943 (120 

mm × 120 mm, 2400 2240 × 2400 2368 pixel), both from Hamamatsu Photonics K.K. 

(Japan), were employed. Through this methodology, a qualitative and quantitative study 

was carried out of the interior structure of the porous Ti sample used as substrate before 

HA deposition. A maximum spatial resolution of 6.4 microns per pixel was reached at 

7.8x magnification. Concretely, a porous Ti disc substrate was studied and a 3D image 

for this specimen was obtained by the acquisitions of a high number of X-ray 

projections during 360º sample rotation in 1000 steps. The reconstructed complete 

volume of the porous Ti disc was subjected to image analysis, including a series of 

filtering, separation and segmentation steps. After reconstruction, the commercial 

software VGStudioMax 1.2.1 (Volume Graphics, Heidelberg, Germany) was used to 

extract 2D and 3D sections of the foam. Also, the software MAVI 1.3.1 (Fraunhofer 

ITWM, Kaiserslautern, Germany) was used for volume image analysis of the 

tomographic data sets [25]. 

The mechanical behavior was measured by ultrasound technique (dynamic 

Young’s modulus employing a KRAUTKRAMER USM 35 equipment) [26, 27] and 

uniaxial compression testing (stiffness and yield strength, performed by Instron 5505 

universal testing machine) [28, 29]. Confocal microscopy (MC, Sensofar S Neox) and 

scanning electron microscopy (SEM, Tescan Vega TS 5130SB) were employed to 

analyze the topography roughness of the coating surface [30], and associated energy 

dispersive spectroscopy (EDS-Oxford Inca) was used to determine the elemental 

composition of the HA coating. Furthermore, Fourier Transform Infrared Spectroscopy 
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(FTIR-ABB Bomem Inc., MB series) with a reflectance stage, recorded in the range of 

400–4000 cm-1, and X-ray diffraction (XRD - D8, Focus, Brucker), performed with 

CuKα radiation (30 kV, 50 mA) were employed to characterize the HA coating. Finally, 

the scratch test was performed by a MICROTEST commercial device (MTR3/50-50/NI, 

Rockwell diamond tip with a diameter of 200 µm, applied load from 0 to 25 N, speed 

0.5 mm/min and 5 mm of groove, according to ASTM C1624-05). 
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3. RESULTS AND DISCUSSION 

The interconnected porosity value obtained (43%) was close to that of the total 

porosity (45%). The equivalent diameter by IA (161 µm) is in the size range of the 

chosen spacer particles (100-200 µm), as expected (Fig. 1a). Total pore fraction, mean 

size and the high degree of interconnectivity ensure the bone ingrowth and the 

infiltration of HA [31].  

The dynamic Young’s modulus (Ed = 20.8 GPa) and compression test behavior 

(Ec = 26.0 GPa and y = 127 MPa) of porous titanium substrate ensure a reduction of 

the mismatch between the properties of cortical bone (20-25 GPa and 150-180 MPa) 

and the implant. The micro-hardness values after Vickers micro indentation of HV0.3 

and HV1 were 401 and 167 respectively. In addition, the roughness within the pores 

(Fig. 1) improves the osseointegration, as cellular adhesion was demonstrated in 

previous works of the authors [19, 32]. 

A total volumetric porosity value of 49.8 %, and an equivalent porous diameter 

(Deq) of 173 m, were obtained by X-ray computed tomography (M-CT). Both 

characteristic parameters are in the range of the expected nominal values (50% volume 

fraction and Deq of spacer particle size between 100-200 µm). Thus, the spacer-holder 

technique was successfully employed to maintain the designed porosity parameters.  

These values were very close to those obtained by Archimedes’ (45% of total 

volumetric porosity and 161µm of Deq). Therefore, both techniques are valid to 

adequately determine both microstructural parameters. 

Figure 2a shows the distribution of roughness volume percentage (relative 

roughness, forward), determined as described by Yin et al [33, 34], based on the relation 

of the pore volume to the eroded, smoothed volume of the same pore analyzed 
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quantitatively from the tomographies in the reconstructed 3D image of the studied 

porous Ti disc substrate. Common values for the roughness volume percentage between 

10-15 % can be observed. However, the dispersion detected in this Fig. 2a is much 

higher, finding particles with roughness volume percentage from 5 % to more than 60 

%. This could be due to high porosity dispersion. The higher values could even be 

attributable to micropores, inherent to the sintering process.  

In turn, Fig. 2b shows the corresponding roughness volume percentage with the 

equivalent diameter pore size. The relative volume roughness increases with decreasing 

equivalent diameter. Obviously, the smaller pores show a much larger surface 

roughness and, consequently, higher relative roughness. However, the exponential 

behavior suggests another effect, based on the more reactive sintering of samples with 

smaller pores, and thus, higher relative roughness.  

Finally, it is important to note that the higher pore equivalent diameter, the larger 

is the scattering of the roughness volume percentage. This fact again suggests the more 

reactive sintering of smaller pores, giving a higher but narrow relative roughness.  

Fig. 3 shows the morphology of the HA coating by SEM. The formation of 

polycrystalline aggregates of hydroxyapatite nanoparticles (HA nanocrystallites) was 

observed [35]. The coating presents homogenous morphology, with no presence of 

cracks and/or discontinuities. Apparently, the surface area shows potential nucleation 

sites for the precipitation of apatite in the presence of biologic fluids, due to its 

morphology, roughness and the existence of pores. This implies a greater bonding 

adherence between the bone and the implant [36].  

By other hand, it was detected and quantified by EDX the three majority 

elements expected in HA, i.e., Ca (43 ± 3), P (11 ± 2) and O (46 ± 3), determined all of 
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them in weight %. In addition, the absence of peaks in the EDXs corresponding to waste 

elements or to metallic substrates confirms the coating homogeneity and continuity. 

By other hand, regarding the FTIR spectra (Fig. 4a), the reflections of ν4PO4
3-

, 

ν1PO4
3-

 and ν3PO4
3-

 show the polyhedrons of PO4
3-

 reordering in the crystal structure, as 

a result of the HA transformation from an amorphous to a crystalline phase. Also, the 

XRD pattern is shown in Fig. 4b. A high crystallinity is achieved after heat treatment at 

450ºC, being lower in the results reported in the literature at lower temperatures [7]. The 

peaks found are characteristic of the HA phase (according to the map library 

PCPDFWIN v. 2.4 # 09-0432 o JCPDS 9-432); calcium phosphate peaks are not 

detected. Again, it is observable that the HA coating changes form an amorphous to a 

crystalline state [37]. In addition, good HA infiltration into the pores and adhesion of 

the coating is very important in achieving the osseointegration. 

Fig. 5 shows the surface topography by laser confocal microscopy. The 

roughness increases once the substrate is coated as a result of heterogeneity coating 

(thickness variation of HA layer, presence of a micro porous coating and small amounts 

of debris associated with chipping in some areas). 

The penetration resistance during scratching of HA-coated titanium substrates is 

shown in Fig. 6. This behavior depends on applied load and coating-substrate system 

(coating adhesion grade, micro-hardness and micro-porosity of the coating, as well as 

the pore size and stiffness of the substrate). 
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4. CONCLUSIONS 

The feasibility of the fabrication of porous titanium substrates by the space-

holder technique was validated. The sol-gel route in HA formation was verified, it being 

possible to obtain HA porous thin films on porous titanium substrates employing a new 

heat treatment at 450 ºC. The crystalline structure of HA was confirmed by XRD and 

FTIR. A good attachment between the HA coatings and Ti substrates was observed, 

thanks to mechanical interlocking and possible chemical bonding. The HA coatings 

imply the prevention of the release of metal ions (more resistance to corrosion) and the 

metal surface being made bioactive. The proposed coating-porous substrate system 

allows a biofunctional (formation and growth of bone tissue over the surface and within 

the pores) and biomechanical (porous substrate properties: Ed = 21 GPa and y = 127 

MPa, close to those of cortical bone) balance. 
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FIGURE CAPTIONS 

Figure 1. a) Optical microscopy image of the porous substrate. The 100-200 m 

exposed value corresponds to the size range of the NH4HCO3 (ammonium hydrogen 

carbonate) spacer used; b) Confocal image; c) SEM micrographs of the porous titanium 

substrate; d) pore surface micro-roughness. 

Figure 2. a) Microtomography 3D reconstruction image and distribution of porous 

roughness of titanium substrates for 100-200 µm NH4HCO3 particle size. Different 

colors show the segmented and separated pores. The Ti matrix is transparent. b) 

Distribution of roughness volume percentage in function of the porosity size, quantified 

as equivalent porosity diameter. An individual porous Ti disc substrate obtained by 

tomography is shown in the inset.  

Figure 3. SEM micrographs of the obtained coating. Surface (a) and cross-sectional (b) 

views for 100-200 µm NH4HCO3 particle size used. 

Figure 4. a) FTIR spectrum and b) XRD pattern of HA coating on porous titanium 

substrates for 100-200 µm NH4HCO3 particle size. 

Figure 5. Confocal images for uncoated (a) and coated (b) titanium substrates. 

Figure 6. Scratch test with increasing load in HA coating on porous titanium substrates 

for 100-200 µm NH4HCO3 particle size. 
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a) Uncoated Ti substrate 

b) Coated Ti substrate 

Figure 5 
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Figure 6 
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Highlights 
· Porous Ti substrates were coated with hydroxyapatite by the sol-gel technique. 

· A HA porous thin films onto the porous titanium substrates was obtained. 

· The HA - porous Ti showed good mechanical interlocking and chemical bonding. 

· The HA coatings can prevent the corrosion of Ti substrate and make it bioactive.  

· The proposed HA coating on porous Ti allows a biofunctional and mechanical 

balance. 
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