
An experimental evaluation of server performance

in Networked Virtual Environments
Juan Luis Font, José Luis Sevillano, Daniel Cascado Department of Computer Technology and Architecture,

University of Seville, Spain

{juanlu, sevi, danic}@atc.us.es

Abstract—Several works in the literature have recently ad-
dressed the study of different Networked Virtual Environments
(NVE) due to their increasing popularity and widespread use in
fields ranging from entertainment to e-Health. Open Wonderland
is one of these NVEs which has been the subject of several studies
mainly focused on the client side. This paper aims to cover the
server-side performance issues to provide complementary results
that can be useful for properly sizing Open Wonderland systems
according to the number of expected users. An experimental
testbed is used, which provides real data that shows that CPU
and outgoing bandwidth are the most critical parameters when
the number of clients increase.

Index Terms—Open Wonderland, Networked Virtual Environ-
ment, server performance, monitoring, profiling, testbed.

I. INTRODUCTION

Open Wonderland (OWL) falls into the so-called Networked

Virtual Environments (NVE), applications that provide virtual

world experience based on a distributed simulation. OWL has

been used as basis for the “persuasive system” Virtual Valley

[1], an application aimed to motivate healthy lifestyle habits.

Some of the OWL key features supporting this decision were:

its GPL v2 license, its status as 100% Java project [2], which

ensures a high degree of portability, and a design that allows

any organisation or particular to deploy an instance in their

own network infrastructure.

The latest version of this client-server architecture is Project

Wonderland 0.5, which architecture is shown in Figure 1 [2].

Open Wonderland is subdivided into several independent sub-

projects comprising its core client and server code, modules

providing extra functionality, support for third party appli-

cations embedded into OWL scenarios, MTGame Graphic

Engine and jVoiceBridge, a pure-java audio platform provid-

ing services such as real-time immersive audio or software

phone. Open wonderland also relies on other open-source

technologies such as Darkstar, a Java platform for scalable

communication and persistence games; Glassfish, a scalable,

open source pure-Java application server, and jMonkeyEngine,

a Java 3D game engine

In the context of NVE, an avatar is a 3D graphic rep-

resentation of an user within the Open Wonderland virtual

world. The movement of the avatars plus the sounds picked

up by their microphones are the two of the main sources of

traffic generation within the Open Wonderland context. The

third main traffic source is due to the embedded third party

applications.

���������� 	��
�� ���������� �����


�������

	��
�����

�
�
���

������ �������� ������

������������� �������� ���

�� ����� ��������� 	��
��

!����
�� 	��
��

����������

����� 	
�
�
�������

�� " ���� ���������


���
��
#$�����
���

����
�
� ���#��
���
���
���

	����� �������
��� 	��
��

%&����'����� �����#��(��

Fig. 1. Open Wonderland Architecture

This paper focuses on defining and configuring a testbed

composed by an OWL server and several clients. Several

testing sessions were performed over this testbed, increasing

the number of concurrent clients in each session. This inducted

workload was measured and monitored through several pa-

rameters such as CPU and memory usage on the OWL server.

Starting from these monitoring results, the potential system

bottlenecks were identified, providing an useful information

for future OWL systems sizing.

The paper is structured as follows: Section II lists previous

work in this area, Section III describes the configuration of

the testbed, detailing hardware, software and testing session

aspects. Section IV shows the monitoring results obtained

for the testing sessions and discusses the evolution of server

resource consumption. Finally, Section V summarises the

conclusions and proposes related future work.

II. PREVIOUS WORK

Recent years have witnessed the proliferation of literature

and work related to performance evaluation of gaming appli-

cations based on Virtual World experiences. Widespread and

popular gaming genres such as First Person Shooter (FPS)

or Real-Time Strategy (RTS) have attracted most academic

attention as evidenced by [3], [4], [5], [6], [7], [8] or [9].

In comparison, socially-oriented Virtual World applications

have received a less degree of attention, specially in network

performance analysis and modelling matters. Recently, several



studies about network performance have been published fol-

lowing this line of work [10], some of them are specifically

focused on Open Wonderland, a social-oriented Networked

Virtual Environment (NVE). Thus, [11] performs a study of the

OWL network traffic and proposes several models for packet

inter-arrival time and packet size following a micro-scale

description approach. [12] uses these models to implement

a simulation tool that generates network traffic following the

same generation patterns observed in the previous study.

OWL client resource requirements are easily met by

reasonable-cost up-to-date hardware [13], in this case network

becomes the potential bottleneck. Network congestion may

lead to a drop in the NVE performance and spoil the overall

user experience. The study detailed in [11] revealed that

traffic originated by avatar movement was not constant over

time, however, it was distributed following an exponential

distribution. On the other hand, audio traffic proved to follow

periodic generation patterns that could be affected by the

underlying operating system and applications.

Previous work studied in detail the elements with great

impact over performance on the client-side, so the perfor-

mance on the server-side must to be studied to complete a

performance evaluation of an OWL environment. Due to the

different nature of OWL clients and server, the performance

evaluation of the later will require a different approach from

previous related work.

III. TESTBED AND METHODOLOGY DETAILS

A testbed was deployed to study the resource consumption

and workload evaluation on the OWL server-side in relation

to the number of concurrent users.

A. Hardware

The testbed was composed by personal computers with

identical hardware resources. Both server and clients machines

were equipped with up-to-date hardware according to current

standards. Each machine comprised a 4-core Intel i5 750

2.66GHz processor, 4096 MB of physical DDR3 RAM, a

dedicated AMD Ati HD 4350 1GB DDR3 RAM GPU and

7200 RPM hard disk.

The client hardware configuration does not respond to any

specific requirement beyond the minimum specifications to

run the OWL Java client smoothly and displaying the virtual

world 3D graphics properly. Clients have the same hardware

configuration as the server for convenience, due to the fact

that all machines belonged to the same computer room. This

hardware configuration was powerful enough to successfully

run an OWL server instance according to the OWL Project

recommendations [13]. These hardware resources also exceed

the recommendations for OWL clients both in computing

power and graphic performance.

Gigabit Ethernet technology has been used to interconnect

all the machines. They all are connected to a Gigabit Ethernet

switch so they share a common collision domain.

B. Software

The OWL server instance ran over GNU/Linux, an Ubuntu

10.04 distribution compiled for 64-bit architecture (amd64).

Although the Java platform guarantees OWL to run on any

supported architecture, GNU/Linux and other Unix-like oper-

ating systems are a common choice for OWL servers due to

their maintenance and administration facilities. This operating

system family provides mature technologies and tools for

remote administration and task automation. The server had the

Sun JDK 1.6.0-26 compiled for 64-bit architecture. The Open

Wonderland binary deployed on the server was v0.5 nightly-

build from 20th February 2012.

On the other hand, Microsoft Windows XP Professional

SP3(32-bit) was used in the OWL clients. Windows XP-

based clients were extensively studied in previous work [11]

so their network behaviour and server interaction are well-

known. Moreover, Windows XP still represents a significant

percentage of the domestic operating system market so its use

on the client-side of the testbed is a realistic assumption. The

default Windows Firewall was activated for each client and

configured to not block the OWL network traffic. All Windows

clients had the Sun JRE 1.6.0-30 for 32-bit systems. AMD

Ati GPU drivers were also present to ensure a proper graphic

performance.

C. Testing sessions

Several gaming sessions have been performed to determine

the evolution of resource consumption on the server-side.

The study aims to reproduce gaming sessions that maximise

user activity and data exchange between clients and server,

generating the worst-case server workload. This scenario is

induced by constantly generating avatar movements and audio

transmission, avoiding any traffic due to third party embedded

applications.

All the sessions took place in the same OWL “world”,

a predefined scenario shared by all the clients where they

could move freely. For simplicity, the chosen scenario was

minimalistic to make client movement automation easier. The

number of concurrent players in each gaming session ranged

from 1 to 15. Although more densely populated sessions

such as auditorium-like scenarios with only one speaker and

numerous listeners are possible, they do not fit with our

description of “highly active” session, where all the users

transmit audio and interact constantly. Further users represents

a situation that is out of our scope, a regular OWL session

can only host a specific number of user actively interacting

between them without overwhelming their perception and this

kind of session is the situation we want to reproduce.

Each gaming session lasted 10 minutes plus a 1 minute of

warm-up to ensure stationary state monitoring only. Due to

the simplicity of the scenarios, this stationary state of user

activity was quickly reached and it remained constant, so

longer sessions are not necessary to get feasible data.

Each testing session consisted in a new OWL session where

all the users logged one by one until reaching the desired

number of players. Once the initial virtual world instance was



transmitted from the server to each client, the session was

ready to start the monitoring and traffic capture.

D. Client activity generation

This study contemplates two main sources of activity to

induce workload on the OWL server: avatar movement and

audio transmission.

On the one hand, movement of a client’s avatar within

the virtual world requires to send information about speed

and direction to the server. Then, it has to update the avatar

position within its instance of the virtual world and propagate

the changes to the rest of clients to update and synchronise

their respective views of the world. All this process comes at

a certain resource cost. On the other hand, the server receives

all the audio data sent by clients, mixing, processing and

forwarding it to the rest of clients. Considering that audio is a

steady flow of data with a significant associated bandwidth, its

transmission and processing also requires resources in terms

of network, computing and memory.

A number of concurrent OWL clients ranging from 1 to 15

were deployed for the testing sessions, so it was necessary to

automate avatar movements to keep them performing at high

activity rates without the intervention of a human operator be-

hind each avatar providing navigation keystrokes and speaking

to a microphone to generate audio traffic.

Human interaction on the keyboard was replaced by Visual

Basic Script (VBScript) piece of code capable of activating

the OWL client window and continuously sending navigation

keystrokes. VBScript interpreter is shipped with Windows XP

by default and allows to create run scripts that use operating

system functionalities and API such as the SendKey function

[14].

Avoiding human interaction to provide audio feedback

required the use of “Stereo Mix”, a feature present in the

Windows XP audio mixer and related to the system soundcard

and audio drivers. This feature allows to redirect the output

audio signal to the microphone input channel, so a media

player can be used as audio source.

E. Monitoring

Resource monitoring tasks were performed using System

Activity Reporter (SAR), a Solaris-derived system monitoring

tool ported to GNU/Linux and available in Ubuntu within the

sysstat package. SAR allows to monitor several system re-

source parameters such as overall CPU and memory usage, I/O

operations, network traffic, etc; with a minimum impact over

the system performance. Monitoring frequency and duration is

also configurable as well as the output files to store resulting

logs.

The SAR tool was invoked for each testing session with a

monitoring frequency of 1s during the whole 11 minute gam-

ing session, fetching data for all the available load parameters

for later study. The resulting log for each session was stored

in separate files. SAR is characterised by its minimum impact

over the monitored system, it generates monitoring data at a

rate below 10KB/s,

Network traffic has also been captured during testing ses-

sions using tshark, a command line version of the packet

analyser Wireshark. The impact due to this tool is discussed

later. The present paper only deals with the total bandwidth

generated and consumed during the testing sessions, the cap-

tured traces will be the subject of further study in future

papers.

IV. RESULTS

This paper focuses on a subset of all the resource parameters

that can be monitored by SAR. Specifically the figures for

Percentage of CPU Usage, Percentage of Memory Usage,

Percentage of CPU time spent in I/O operations and network

bandwidth have been studied. After discarding the warm-

up values, a total of 600 measurements have been used per

parameter and session.

A. CPU Usage

The OWL server was equipped with a 4-core processor,

allowing 4 concurrent threads. The Java Virtual Machine

instance of the OWL server automatically balanced the CPU

load between the system cores so the Percentage of CPU

Usage addressed in this section corresponds to the mean

load of the four cores. No frequency scaling policies were

enabled during the testing sessions, so all the CPU percentages

correspond to the processor working at nominal capacity.

Mean % CPU load value for each session ranged from 10%

for 1 single client to near 90% for the 15-client case while

the standard deviation remains stable. The evolution of the

CPU usage is approximately linear over the number of players.

The CPU requirements for the 15-client session are near the

maximum CPU capacity of the testing OWL server, so further

sessions increasing the number of players would have lead to

a performance drop due CPU overload in this server. Table I

shows the % CPU usage mean (µcpu column) and standard

deviation (σcpu) figures for the testing sessions.

TABLE I
TOTAL % CPU USAGE STATISTICS OVER SESSIONS

N. Client µcpu σcpu N.Client µcpu σcpu

1 9.17 0.97 9 67.63 3.46

2 18.55 1.33 10 71.93 2.51

3 28.06 2.00 11 74.80 3.58

4 36.26 2.68 12 75.26 3.28

5 43.44 3.27 13 81.90 3.66

6 47.15 2.82 14 85.61 2.88

7 52.31 2.47 15 88.09 3.60

8 59.35 2.84

Figure 2 shows the evolution of mean Total % CPU Usage

in relation to the number of clients per session. Should be

note that a small part of the overall CPU usage is due to I/O

operations, also detailed in Figure 2. The % CPU excluding

I/O represents the CPU time used by processes not including

I/O operations (%CPU for I/O). These and other resource

parameters will be discussed later. CPU time consumption

increased faster than the rest of studied parameters, arising

as the limiting factor in the testbed server.



2 4 6 8 10 12 14

0
2
0

4
0

6
0

8
0

1
0
0

Server Workload

N. Clients

%
 U

s
a
g
e

Total % CPU

Total % Memory

% CPU for I/O

% CPU excluding I/O

Fig. 2. Server % CPU, Memory and I/O usage per session

B. Memory usage

Total available memory considered by the monitoring tool is

not equal to the total physical memory installed on the server,

since the memory used by the Linux kernel and some devices

is not counted as available. Thus, the total available memory

for user space processes on the OWL server was of 3894 MB.

This total was used as basis for calculating the Percentage of

Memory Usage.

Although GNU/Linux systems tends to use all the available

memory for performance reasons, only a fraction of the used

memory is really allocated as process memory, the rest is used

as buffer and cache memory, which are used by the kernel to

speed up I/O operations. Thus, the used memory figures do

not include the buffer or cache.

The increase of server memory in use per each new OWL

client is relatively moderate, the overall server memory usage,

also including process not related to OWL, ranges from 36.5%

for the 1-client session to 51.8% for the 15-client session,

being the mean increase of 1.1% which translates in a memory

usage from 1421 MB to 2017 MB for 1 and 15-client sessions

respectively with a mean increment of 42 MB per new client.

Table II shows the % Memory Usage (µmem column) and

standard deviation (σmem) for each testing session. Regarding

these figures and other SAR measurements, server did not use

swap memory during any of the testing sessions so it was

able to host all the concurrent clients while still having an

important percentage of free memory. Figure 2 shows that

the memory usage is approximately linear in relation to the

number of clients, although with a very low slope, that is, with

an increase much less pronounced than the CPU usage.

TABLE II
% MEMORY USAGE STATISTICS OVER SESSIONS

N. Client µmem σmem N.Client µmem σmem

1 36.50 0.10 9 46.00 1.40

2 37.68 0.21 10 48.10 0.32

3 38.36 0.17 11 48.81 0.52

4 39.18 0.16 12 48.83 0.45

5 39.61 0.23 13 50.28 0.34

6 39.70 0.21 14 50.70 0.59

7 39.83 0.29 15 51.86 0.46

8 41.76 0.65

C. I/O

The % CPU usage for I/O indicates the total percentage

of CPU time spent on I/O operations. Although mean values

are provided, CPU load for I/O has not a stable value over

time. Instead, CPU load due to I/O (µi/o) is periodically

concentrated in short intervals of time separated by idle

periods, which explains the values for the standard deviation

shown in Table III (σi/o). Figure 2 shows a plot of these values

along the evolution of the overall CPU usage and memory

usage. The Total % CPU usage breaks down into % CPU for

I/O and % CPU excluding I/O. Virtual world information is

loaded in each client at the beginning of the gaming session.

Then, the I/O activity in the server is relatively low. The CPU

time spent on I/O operations is negligible for a small number

or users and its increase is explained by the packet capture

process performed in the server during the testing sessions.

The greater the number of users, the greater the size of the

captured traces, which translates in a higher CPU activity due

to I/O operations. The data rate during the traffic captures

ranges from 116 KB/s for 1-client session to a maximum of 7.6

MB/s for 15-client session. After ignoring the I/O operations

due to trace capturing, it can be stated that OWL itself is not

an I/O intensive application once their users have logged.

TABLE III
% CPU USAGE FOR I/O OP. STATISTICS OVER SESSIONS

N. Client µi/o σi/o N.Client µi/o σi/o

1 0.02 0.06 9 3.73 12.69

2 0.10 0.37 10 4.98 15.01

3 0.29 1.28 11 6.21 15.76

4 0.58 2.62 12 6.69 17.61

5 0.88 2.93 13 9.00 18.90

6 1.33 5.51 14 10.70 22.13

7 1.64 6.89 15 12.19 21.99

8 2.30 8.51

D. Network Bandwidth

The main network traffic sources on the OWL testbed were

the avatar movement and audio transmission. Clients send their

update requests to the server and it processes and forwards

these synchronisation packets to the rest of clients to update

their virtual world view. The server also receives audio from



clients, mixing and sending the correspondent environmental

audio to each client.

Table IV shows bandwidth figures in KB/s for both outgoing

and incoming server traffic. Incoming traffic (BWIN column)

increases linearly in relation to the number of clients from 84

KB/s to 1395 KB/s, depending on the number of clients. The

mean incoming traffic increase per client is 93.8 KB/s with

a standard deviation of 27.2. The overall standard deviation

(σIN ) is also shown. On the other hand, outgoing server traffic

(µOUT column) experienced a greater increase compared to

incoming traffic. The outgoing traffic increased quadratically

in relation to the number of clients within the testing sessions.

TABLE IV
BANDWIDTH (KB/S) STATISTICS OVER SESSIONS

N. Client BWIN σIN BWOUT σOUT

1 84.02 1.34 23.00 0.71

2 168.02 1.65 194.36 46.04

3 256.57 1.93 377.32 54.84

4 342.21 2.82 604.45 21.52

5 432.76 2.71 878.65 7.90

6 523.34 2.66 1183.51 11.29

7 614.43 2.79 1535.20 39.84

8 709.40 3.86 1929.83 25.34

9 802.96 3.69 2363.09 83.39

10 835.37 4.27 2852.32 105.50

11 993.65 23.04 3297.85 227.72

12 1070.06 7.45 3675.15 206.11

13 1196.96 9.66 4545.05 294.46

14 1298.53 7.89 5219.82 219.47

15 1395.87 11.03 5739.21 343.51

This asymmetry between incoming and outgoing traffic is

explained by the duplication and forwarding of part of the

OWL traffic, corresponding to client update request. Each up-

date request received by the OWL server has to be forwarded

to the rest of n-1 clients within the gaming session, thereby

increasing the outgoing traffic over the incoming one. Figure

3 shows the difference between incoming and outgoing traffic,

which is accentuated with the increasing number of clients.

V. CONCLUSIONS AND FUTURE WORK

This paper focused on studying the resource consumption

on the server-side of a Networked Virtual Environment (NVE)

based on Open Wonderland (OWL). For this purpose an OWL

testbed was defined and configured,using up-to-date hardware

for both clients and server, all of them connected by a Gigabit

Local Area Network. Server ran Ubuntu GNU/Linux while all

the clients shared the same software configuration based on

Windows XP Professional. In order to avoid human interaction

on each client during testing sessions, the movement and audio

generation were automated.

The study of server monitoring logs generated by SAR

identified the CPU usage as the system bottleneck, becoming

by far the limiting factor in the proposed testbed. Its incre-

ment over the testing sessions was greater than the rest of

studied parameters, the server processor working at almost

full capacity for the more populated sessions. Adding new

2 4 6 8 10 12 14

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

Server Bandwidth

N. clients

B
W

 (
K

B
/s

)

Outgoing traffic (KB/s)

Incoming traffic (KB/s)

Fig. 3. Incoming and Outgoing Server Traffic over Sessions

clients had not a great impact over memory usage, which

increased smoothly between sessions while CPU usage for

I/O operations became only noticeable for higher number

of concurrent clients. Finally, it was observed an asymmetry

between the incoming and outgoing server traffic due to the

inner OWL communication mechanisms used to propagate

object updates between clients.

Summing up, CPU computing power defines the OWL

server capacity in terms of concurrent clients. Outgoing server

traffic also deserves special attention since its bandwidth

requirements increase quadratically in relation to the number

of clients.

Future work includes further studies on the nature of the

network traffic as well as determining the resources required

to avoid penalisation of the user experience when hosting a

higher number of clients.

ACKNOWLEDGEMENT

This work was partially supported by the project

PROCUR@ - IPT-2011-1038-900000, funded by the program

INNPACTO of the Spanish Ministry of Science and Innovation

and FEDER funds; project Vulcano: TEC2009-10639-C04-02;

and by the Telefonica Chair “Intelligence in Networks” of the

University of Seville, Spain.

Special thanks to the Computing Centre and staff of Escuela

Técnica Superior de Ingenierı́a Informática, University of

Seville, for their assistance and collaboration.

REFERENCES

[1] D. Cascado, S. Romero, S. Hors, A. Brasero, L. Fernandez-Luque, and
J. Sevillano, “Virtual worlds to enhance ambient-assisted living,” in
Engineering in Medicine and Biology Society (EMBC), 2010 Annual

International Conference of the IEEE, 31 2010-sept. 4 2010, pp. 212
–215.



[2] O. W. Project, Open Wonderland Project, accessed March 15
th 2011.

[Online]. Available: http://www.openwonderland.org/
[3] W. Feng, F. Chang, and J. Walpole, “Provisioning on-line games: a

traffic analysis of a busy counter-strike server,” in Proceedings of the

2nd ACM SIGCOMM Workshop on Internet measurment. ACM, 2002,
pp. 151–156.

[4] G. Armitage, “An experimental estimation of latency sensitivity in
multiplayer Quake 3,” in Networks, 2003. ICON2003. The 11th IEEE

International Conference on. IEEE, 2003, pp. 137–141.
[5] M. Claypool, D. LaPoint, and J. Winslow, “Network analysis of counter-

strike and starcraft,” in Performance, Computing, and Communications

Conference, 2003. Conference Proceedings of the 2003 IEEE Interna-

tional. IEEE, 2003, pp. 261–268.
[6] J. Färber, “Traffic Modelling for Fast Action Network Games,” Multi-

media Tools and Applications, vol. 23, no. 1, pp. 31–46, May 2004.
[7] P. Branch and G. Armitage, “Towards a general model of first person

shooter game traffic,” Swinburne University of Technology, Tech. Rep.

050928A, pp. 1–11, 2005.
[8] A. Cricenti and P. Branch, “ARMA(1,1) modeling of Quake4 Server to

client game traffic,” Proceedings of the 6th ACM SIGCOMM workshop

on Network and system support for games - NetGames ’07, pp. 70–74,
2007.

[9] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu, “The effect
of latency on user performance in Warcraft III,” in Proceedings of the

2nd workshop on Network and system support for games. ACM, 2003,
pp. 3–14.

[10] H. Liu and M. Bowman, “Scale virtual worlds through dynamic load
balancing,” in 2010 IEEE/ACM 14th International Symposium on Dis-

tributed Simulation and Real Time Applications (DS-RT). IEEE, Oct.
2010, pp. 43–52.

[11] J. ”Font, D. Cascado, J. Sevillano, F. Dı́az-del Rı́o, and G. Jiménez,
“Network traffic analysis and evaluation of a multi-user virtual environ-
ment,” Jan. 2012, accepted for publication in SIMPAT.

[12] J. ”Font, D. Cascado, and J. Sevillano, “Design, Implementation and
Validation of a Simulation Tool for Networked Virtual Environments,”
Jan. 2012, accepted for publication in CITS 2012, Amman, Jordan.

[13] “FAQ | open wonderland,” http://openwonderland.org/about/faq.
[Online]. Available: http://openwonderland.org/about/faq

[14] “VBScript - SendKeys method - Tech-
Net articles - home - TechNet wiki,”
https://social.technet.microsoft.com/wiki/contents/articles/5169.aspx.
[Online]. Available: https://social.technet.microsoft.com/wiki/contents/
articles/5169.aspx


