
AER Filtering Using GLIDER: VHDL Cellular
Automata Description

A. Linares-Barranco1a, J.L. Sevillanoa, M. S. Obaidatc, Fellow, IEEE, N. Ferrandob, J. Cerdáb, D. Cascadoa,
G. Jimenez a and A. Civit a

a Dept. of Computer Architecture and Technology. Univ. of Seville. Spain. 1 alinares@atc.us.es
b Dept. of Electronic Engineering. Tech. University of Valencia, Spain.

c Computer Science Dept. Monmouth University, NJ, USA

Abstract—Cellular Automata (CA) is a bio-inspired processing
model for problem solving, initially proposed by Von Neumann.
This approach modularizes the processing by dividing the
solution into synchronous cells that change their states at the
same time in order to get the solution. The communication
between them is crucial to achieve the correct solution. On the
other hand, the Address-Event-Representation (AER) is a
neuromorphic communication protocol for transferring
asynchronous events between VLSI chips. These neuro-inspired
implementations have been used to design sensor chips (retina,
cochleas), processing chips (convolutions, filters) and learning
chips, which makes it possible to develop complex, multilayer,
multichip neuromorphic systems. This paper presents the fusion
of both bio-inspired solutions for implementing a vision filter
based on 3x3 convolutions. The GLIDER software tool for
developing CA has been used to implement the filter in VHDL
and synthesize it into the Spartan II 200 of the USB-AER.

I. INTRODUCTION

Cellular organization in biology has been an inspiration in
several fields, like the description and definition of automata.
Each cellule principal characteristic is the internal state,
defined by a set of information bits. Von Neumann suggests
the possibility of the evolution of the internal state into
discrete steps like a rudimentary automaton that knows just
one simple way to calculate the new internal state. The
evolution rule of the system should be the same for all the
cellules and a function of the actual internal state and the
actual internal state of the neighbourhood [1][2]. Like in
biology, the activity of the cellules occurs simultaneously: the
same clock signal marks the evolution of the cellules and the
internal state actualization in a synchronous way. Von
Neumann refers to this system as a Cellular Space and today is
know as Cellular Automata (CA) [1].

The first self-reproducing CA, proposed by von Neumann
was composed of 2D matrix of cells, and the self-reproducing
structure was composed of several hundreds of elemental
cells. Each of these cells presented 29 possible states [3]. The
evolution rule started from the actual state of each cell and the
four closer ones (up, down, right and left). Due to the high
complexity of the model, the von Neumann rule has never been
implemented in hardware, but some partial implementations
has been obtained [4].

Cellular automata are discrete models that consist of a
regular grid of cells. The cells have different states along time.
The grid dimension is variable. The state of a cell at time t is a
function of the states of a number of cells (called its
neighbourhood) at time (t – 1). These neighbors are a selection
of cells relative to the specified cell, and this selection does
not change. Every cell has the same rule for updating, based
on the values in this neighbourhood. Each time the rules are
applied to the whole grid a new generation is created.

Another bio-inspired approach is the Address-Event-
Representation (AER) that consists basically of multiplexing
in time the behaviour of the cells of a VLSI neuro-inspired
system.

AER was proposed by the Mead lab in 1991 [5] for
communicating between neuromorphic chips with spikes
(Figure 1). Each time a cell on a sender device generates a
spike, it communicates with the array periphery and a digital
word representing a code or address for that cell is placed on
the external inter-chip digital bus (the AER bus). Additional
handshaking lines (Acknowledge and Request) are used to
complete the asynchronous communication. In the receiver
chip, the spikes are guided to the cell whose code or address
was on the bus. In this way, cells with the same address in the

Figure 1. Rate-coded AER inter-chip communication scheme. REQ is the Request line, ACK is the Acknowledge
line and the bus Address hold the neuron code.

Arbiter
/Encoder

Neuron activity
ACTIVITY RECONSTRUCTION

Decoder
REQ

Address
ACK

AER bus

emitter and receiver chips are virtually connected by streams
of spikes. These spikes can be used to communicate analog
information using a rate code, but this is not a requirement.
More active cells access the bus more frequently than those
less active. Arbitration circuits usually ensure that cells do not
access the bus simultaneously. Usually, these AER circuits are
built using self-timed asynchronous logic such as the one in
Boahen [6].

Transmitting the cell addresses allows performing extra
operations on the events while they travel from one chip to
another. For example, the output of a silicon retina can be
easily translated, scaled, or rotated by simple mapping
operations on the emitted addresses. These mapping can either
be lookup-based (using, e.g. an EEPROM) or algorithmic.
Furthermore, the events transmitted by one chip can be
received by many receiver chips in parallel, by properly
handling the asynchronous communication protocol. There is
a growing community of AER protocol users for bio-inspired
applications in vision, audition systems and robot control, as
demonstrated by the success in the last years of the AER
group at the Neuromorphic Engineering Workshop series [7].
The goal of this community is to build large multi-chip and
multi-layer hierarchically structured systems capable of
performing massively-parallel data-driven processing in real
time [8].

The main purpose of this paper is to show that these
objectives may be covered by the use of CA with AER
intercommunication. As an example, a general purpose 2D
filter implementation is presented. This filter is based on a 3x3
kernel to implement AER based convolutions using Cellular
Automata VHDL descriptions by GLIDER Java application.

Next section describes a tool for designing CA graphically
over a specific CA description language proposed in [9][10].
Section III defines the AER interfaces necessaries to
implement this solution. Then in section IV, the proposed
AER filter is presented. Finally, section V presents the
conclusions.

II. GLIDER: CELLULAR AUTOMATA

GLIDER is a graphic interface that allows: (a) describing a
cellular automata composed of cellules and a cellular network,
(b) translating the graphical definition into a Cellular
Specification Description Language (CSDL) and (c)
translating CSDL into VHDL for hardware implementation of
the Cellular Automata [9][10].

GLIDER has been implemented in Java 1.5, which makes
it compatible with any platform and operating system. This
software has been developed by the department of Electronic
Engineering of the Technical University of Valencia.

A. Graphic Interface
There are three main descriptions that define Cellular

Automata: cellules, cellular network and resource layer.

1) Cellule:
The cellule definition consists of defining the set of
inputs and outputs, that could come from or go to other
cellules or could be common for all the cellules; and
defining the operations that cellule have to implement
with the inputs to generate the outputs. As the cellular
automata depend on the time for the state definition,
both sequential and combinational logic must be used
for a cellule.
A Cellular Automata could be formed by several
cellule definitions.

2) Cellular Network:
The connectivity of the cellules, the morphology of the
network and type of cellules used are the parameters
that define the Cellular Network.

3) Resource Layer:
This layer defines how a cellular network is connected
to another cellular network. It defines also the global
inputs and outputs, and the initialization of the cellules.

Figure 2 shows the GLIDER interface for the description
of a Cellular Automata.

Figure 2. GLIDER Java application. Cellule definition.

Figure 3 shows a block diagram of the GLIDER internal
operation. The graphics interface generates the CSDL files of
the Cellular Automata definition. The CSDL compiler is
invoked automatically from this Java application and the
VHDL files are generated. The console messages are
redirected to the application.

An interesting capability of GLIDER is that it keeps
continuously checking the consistency of the CSDL generated
from the graphics developed by the user. The error or warning
messages are reported to the user automatically and in real-
time.

Section IV describes a Cellular Automata using GLIDER
that is able to implement 3x3 kernel convolutions to filter the
AER information of a neuro-inspired system.

Figure 3. GLIDER Java application. Internal block diagram.

III. AER INTERFACING

The USB-AER tool [11] allows standalone operation and
has several functionalities, like hardware mapping and more.

This standalone operating mode requires to be able to load
the FPGA and the mapping RAM from some type of non
volatile storage that can be easily modified by the users, like
MMC/SD cards. However, USB input is also provided for
development stages.

Figure 4. USB-AER Board.

The USB-AER board, see Figure 4, includes a relatively
large FPGA (Spartan-II 200) that can be loaded from
MMC/SD or USB (through the C8051F320 microcontroller),
a large SRAM bank (512Kx32 12ns) and two AER ports.
Thus the board can be used as a sequencer, a monitor, or an
event processor of the AER bus. Due to the bandwidth
limitations of full speed USB (12Mbit/s), hardware based
event to frame conversion is essential in this board for high, or
even moderate event rates.

The board will act as a different device according to the
module that is loaded in the FPGA (through MMC/SD or
USB), for example, as Mapper, Generator or Sequencer,
Monitor or Framegrabber, Datalogger, Player, and Filter [11].

An input AER bus and a output AER bus connected
directly to the FPGA allow it to implement any hardware for
manipulating or processing AER information, like the AER
filter using CA approach described in the next section.

IV. IMAGE FILTERING

The CA described with GLIDER application and
implemented in the USB-AER tool consists of a 3x3 kernel
convolution filter for AER information.

Let us assume that the AER information transmitted by a
visual AER sensor, like an AER retina or a synthetic AER
generator from static frames [12], consists of a stream of pixel
addresses that identifies the gray level of a visual stimulus.
The number of events transmitted through the AER bus by a
pixel identifies the gray level of that pixel.

When a cell of the CA receives an event address, this
address is decoded and a spike is sent to the target cell of the
CA filter. Each cell of the filter is composed of a register and
some logic. When the spike arrives, several operations are
arranged to transform the state of the target cell and the
neighborhood. These are summarized below:

- The register is updated with an increment of the center of
the 3x3 kernel, and an ack signal is produced.

- Registers of the 8 neighbors are incremented by the
corresponding 3x3 kernel elements. Each neighbor cell
produces an ack signal.

- Once all the ack signals are received from the target cell
and the neighbor cells, a global ack signal is sent to
decoder to enable the acknowledgment to the AER
emitter.

Figure 5 shows the digital logic that implement a cell of
the CA to change its state when a spike arrives or when a
spike arrives to a neighbor cell and to stimulate the
neighborhood cells to change their states.

Figure 5. CA 3x3 kernel convolution filter cell logic.

GLIDER

Reports CAs data

GRAPHICS INTERFACE

CSDL Compiler Temp.csd VHDL Files

CSDL Files

The internal register is incremented when a spike arrives
or when a spike arrives to a neighbor cell. The amount to be
incremented or decremented depends on the value of the
kernel matrix that is completely visible for all the cells. This
implies a restriction in the system what makes the kernel sizes
to be small. Figure 6 shows the communication between a set
of nine neighbor cells when a spike is received.

The target cell is activated by a spike signal, called evi_req
in the Figure. This signal is produced by a decoder block that
receives the AER event, decodes it and sends the spike to the
target. The decoder waits for an acknowledgment signal of the
CA before starting the decode operation of the next event.

The spike signal produces in the target cell an increment
operation according to kernel matrix center (K(40:32)), and
simultaneously a spike is sent out to the 8 neighbors. Each
neighbor can receive a signal from any of the 8 adjacent cells.
Depending on which neighbor cell sends the spike, the
corresponding element of the kernel matrix is incremented in
that cell.

With this simple operation, for each spike, different
increment operations are calculated in the kernel size neighbor
of the target cell, according to the kernel values. As several
spikes are received by the same pixel address to quantify the
pixel gray level, the kernel matrix is incremented to the
neighbor of the target pixel as many times as the gray level,
implementing the multiplication of the convolution operation.

Figure 6. Communication scheme between neighbor cells when a spike is
received.

The output of each cell consists also of a stream of events.
An event is produced if the value accumulated in the internal
register of each cell is greater than a threshold value, that is
constant to all the cells, called “th” in Figure 6. When the

event is produced, the cell register is cleared. This behavior
corresponds to the Integrate and Fire neuron model.

V. CONCLUSIONS

Cellular Automation approach has been used to implement
an AER neuro-inspired filter for vision processing.

GLIDER covers all the functionalities of the CSDL
language and implements them graphically. This makes the
design of Cellular Automata fast, easy and intuitive.

An AER based filter based on 3x3 kernel convolutions has
been implemented into VHDL using the Cellular Automata
approach under the GLIDER software, plus a simple decoder
to redirect the input event and an arbiter to encode the output
event generated by each possible cellule or cell.

ACKNOWLEDGMENT
This work has been supported in part by the Andalusia

Council with the Brain-System project (P06-TIC-01417), and
by the Spanish project SAMANTA II (TEC2006-11730-C03-
02).

REFERENCES
[1] J. von Neumann, The Theory of Self-reproducing Automata, A. Burks,

ed., Univ. of Illinois Press, Urbana, IL, 1966.
[2] M. S. Obaidat, G. I. Papadimitriou and A. S. Pomportsis, ”Learning

Automata: Theory, Paradigms and Applications,” IEEE Transaction on
Systems, Man and Cybernetics-Part B, Vol. 32, No. 6, pp. 706-709,
December 2002.

[3] A. Burks (ed). Essays on Cellular Autómata. University Illinois Press.
1970.

[4] U. Pesavento. An implementation of von Neumann’s self-reproducing
machine. Artificial Life, Vol. 2, pp. 337-354, 1995.

[5] M. Sivilotti, “Wiring Considerations in analog VLSI Systems with
Application to Field-Programmable Networks”, Ph.D. Thesis,
California Institute of Technology, Pasadena CA, 1991.

[6] K. A. Boahen. “Communicating Neuronal Ensembles between
Neuromorphic Chips”. Neuromorphic Systems. Kluwer Academic
Publishers, Boston 1998.

[7] A. Cohen et al., Report to the National Science Foundation: Workshop
on Neuromorphic Engineering, Telluride, Colorado, USA, June-July
2006. [www.ine-web.org]

[8] M. Mahowald. “VLSI Analogs of Neuronal Visual Processing: A
Synthesis of Form and Function”. Ph.D. Thesis. California Institute of
Technology, Pasadena, California 1992.

[9] J. Cerdá, R. Gadea, V. Herrero, A. Sebastià. On the Implementation of
a Margolus Neighborhood Cellular Autómata on FPGA. En Field-
Programmable Logic and Applications. Lecture Notes in Computer
Science 2778, pp. 76-785, 2003.

[10] J. Cerdá. Arquitecturas VLSI de autómatas celulares para modelado
físico. (in Spanish). PhD Thesis. Universidad Politécnica de Valencia,
Valencia, Spain, 2004.

[11] F. Gomez-Rodriguez, R. Paz, A. Linares-Barranco, M. Rivas, L. Miró,
G. Jimenez, A. Civit. “AER tools for Communications and
Debugging”. Proceedings of the IEEE ISCAS 2006, Kos, Greece. May
2006.

[12] A. Linares-Barranco, G. Jimenez-Moreno, A. Civit-Ballcels, and B.
Linares-Barranco. “On Algorithmic Rate-Coded AER Generation”.
IEEE Transaction on Neural Network, Vol. 17, No. 3, pp. 771-788,
May, 2006.

