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Abstract 

This paper reports on the accuracy of the integral methods used for the kinetic analysis 

of degradation and crystallization of polymers. Integral methods are preferred by many 

authors over the differential ones because often the experimental data obtained, such as 

thermal degradation studied by thermogravimetry, are integral and the differentiation of 

the integral data usually produces an unwilling increase of the noise. A problem of the 

integral methods is the fact that Arrhenius integral function does not have an exact 

analytical solution. Thus, several approximated equations have been proposed in 

literature. Some of these approximations lead to a linear relation between the logarithm 

of g(α) and a predetermined function of T, in such a way that the activation energy can 

be determined from the slope of the plot of ln g(α) versus the predetermined T function. 

The most popular approximations to the Arrhenius integral in polymer science are those 

of Van Krevelen et al, Horowitz and Metzger, and Coats and Redfern. Although these 

three approaches where proposed fifty years ago, they are extensively used nowadays 

and several hundreds of citations to the original papers can be found in recent polymer 

science publications. Despite their popularity, there are cast doubts on the accuracy of 

these approximations, because they provide significant deviations in the determination 

of the actual values of the Arrhenius integral when used for simulating α-T plots. 

Nevertheless, a comprehensive study of the systematic errors in the activation energy 

calculated from these integral methods is still missing. In this paper a comparative study 

of the accuracy of the different integral methods is performed. The calculated errors are 

tested with simulated and experimental results. 
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1. INTRODUCTION 

Studies of thermal degradation of polymers are a matter of major interest for 

determining the thermal stability of the polymers.  Thermogravimetry (TG) has been 

extensively used for such studies. Experiments are usually performed under linear 

heating rate program. Under these conditions, the temperature varies in a wide range of 

values and the thermal behaviour of the sample can be recorded in a single experiment. 

In the TG experiment, the recorded magnitude, i.e. mass, is proportional to the extent of 

the reaction (). The TG data can be used for obtaining the kinetic parameters of the 

thermal degradation of the polymer sample. To perform the kinetic study of the integral 

curve (mass loss versus temperature) directly obtained from thermogravimetric analysis, 

it is necessary to use an integral analysis method.  A limitation of the integral methods 

of kinetic analysis is that the temperature integral does not have an exact analytical 

solution for linear heating rate program [1]. In literature, different approaches have been 

reported for this integral, such as rational approximations that allow accuracies better 

than 10-8% in the estimation of the  temperature integral [2]. Other approximations to 

the temperature integral lead to linear correlations between the logarithm of the integral 

function describing the mechanism of the process and a function of temperature, in such 

a way that the activation energy is obtained from the slope.  Among these latter 

approximations, the most commonly used in studies of thermal degradation of polymers 

(see for example references [3-6] for some recent papers) are those of Van Krevelen et 

al. [7], Horowitz and Metzger [8], and Coats and Redfern [9, 10]. In fact, for the 

original papers of Coats and Redfern [9, 10], Horowitz and Metzger [8], and Van 

Krevelen et al. [7] we have found about 400 citations in polymer papers published only 

in the last five years (from 1999 to nowadays, this information was obtained from ISI 
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Web of Science data base). Nevertheless, there are still some doubts about their 

accuracy for determining the kinetic parameters [1, 11-14] because their lack of 

accuracy in the estimation of the temperature integral. However, the most common 

application of these approximations is the determination of the activation energy and 

not the computation of the temperature integral. In this paper we intend to perform a 

comparative study of the accuracy of such approximation to the temperature integral for 

the determination of the activation energy. The calculated errors are checked with 

simulated and experimental curves. 
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2. THEORY  

The general equation that describes the reaction rate for the thermal degradation 

of polymers can be written as follows: 
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where t is the reaction time,  is the extent of reaction, A the preexponential factor of 

Arrhenius, E the activation energy, R the gas constant, and f() is a function depending 

on the reaction mechanism.  

Eqn. 1 is a constitutive equation that must be accomplished whatever would be 

the thermal pathway used for achieving a particular value of T- α- dα/dt [15-18].Thus, 

the activation energy of a degradation reaction recorded under linear heating rate would 

be obtained from the plot of the left hand side of Eq. (2) as a function of 1/T. 

  Eq. (1) cannot be directly integrated under rising temperature conditions unless 

the the temperature were a known function of the time. If the degradation of polymers is 

recorded under a linear heating rate β = dT/dt,   Eq. (1) would also be written in the 
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where I stands for the integral of the Arrhenius equation. Eqs. (3a) and (3b) allow the 

direct analysis of the experimental data obtained from the measurement of the evolution 

of an integral magnitude, such as the mass loss recorded in a thermobalance as a 

function of the temperature under a linear heating program.  

The integral of the Arrhenius equation does not have an exact solution and 

therefore this expression cannot be expressed in a closed form. Several approaches have 

been proposed in literature for the integral of the Arrhenius equation in order to 

determine the activation energy from experimental integer data. As it was mentioned 

above, in polymer science, the most commonly used approaches are those of Van 

Krevelen et al [7], Horowitz and Metzger [8], and Coats and Redfern [9, 10]; the 

corresponding approximated  Arrhenius integral functions, Ia, are included in Table 1. 

The use of these approximations implies using the following equation: 

  aI
A

g


 )(                  (4), 

instead of the exact  Eq. (3b) for calculating the activation energy. 

 In general, the approximations to the temperature integral have been chosen in 

such a way that the plot of the logarithm of the corresponding g() function versus a 

function of temperature (f(T)) lead to a straight line from whose slope is determined the 

activation energy: 
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The corresponding f(T) and f(Ea) functions listed in Table 1 depend on the considered 

approximation to the Arrhenius integral and the subindex a stands for approximated.  

The relative error ε of the activation energy (Ea) calculated by the different 

approximated equations can be defined by the following equation: 
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By differentiating Eq. (3b) with regards to f(T) we get  
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By combining eq. (5) and (7) results  
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By introducing the variable x = E/RT, it is shown that the derivative of f(T) is connected 

with the derivative of  x through the expression: 
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Thus, from Eqs. (8) and (9), we get 
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The value of Ea/E as a function of x and dxId /ln  can be directly obtained from 

Eq. (10) after the substitution of the f(Ea) and f’(T) corresponding to the different 

approximated equations tabulated in Table 1. Finally, after substituting the expressions 

for Ea/E into Eq. (6), the errors functions included in Table 2 were obtained for the Van 

Krevelen et al [7], Horowitz and Metzger [8] and Coats and Redfern,[9, 10] approaches, 

respectively.  

The error expressions shown in Table 2 indicate that the errors in the activation 

energy depend on the values of x=E/RT for the three approximated equations here 

analysed. The values of % tabulated in Table 3 for the different approaches have been 

calculated as a function of E/RT after calculating the corresponding values of dxId /ln  
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by numerical methods using the MathCad software with a tolerance better than 10-9. It is 

clear from this table than the errors significantly change as a function of x. Thus, the 

larger the value of x, the smaller the error; in the limit, for x=, the error is zero. The 

approximation of Coats and Redfern is the one that leads to the smallest errors in the 

determination of the activation energy, followed by that of Van Krevelen et al., while 

that of Horowitz and Metzger is the lest accurate one in terms of determining activation 

energies.  

 

3. EXPERIMENTAL 

 A commercial polytetrafluoroethylene (Teflon) sample supplied by Aldrich 

was used. Thermogravimetric experiments were performed under linear heating rate 

conditions (=5 K min-1) and flow of helium (100 cm3 min-1) in a Stanton Redcroft  

TG-770 thermobalance. 

 

4. CHECK OF THE ERRORS WITH SYMULATED AND EXPERIMENTAL 

CURVES 

 To check the values of the errors tabulated in Table 3, a set of two curves (Fig. 

1) have been simulated for linear heating rate conditions (heating rate  = 10 K min-1), 

F1 kinetic model and the kinetic parameters included in the figure caption. The 

simulations have been performed by solving eq. (1) by the Runge-Kutta method using 

the Mathcad software and a tolerance (precision in the calculus) of 10-9 The values of 

the activation energies (Ea) and errors (ε%) obtained of the analysis of the simulated 

curves included in Figs 1a and 1b by means of the different integral methods are 

included in Table 4. The resulting values of ε% are consistent with those tabulated in 

Table 3. The small deviations observed are due to the fact that the errors tabulated in 
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Table 3 have been calculated for determined values of x, while for the simulated curves 

T varies during the experiment and the values of x are not constant along the entire 

simulated curve. On the other hand, it is noteworthy to point out that the activation 

energies obtained from the Van Krevelen et al. and Horowitz and Metzger methods 

would be very sensitive to the selected reference temperature. 

Figure 2 shows the thermal decomposition of the Teflon sample under linear 

heating rate conditions. This curve has been analyzed by means of the differential and 

integral methods by assuming an F1 kinetic model. For the integral analysis, the three 

different approaches analyzed here have been used. Table 5 includes the resulting 

values of the activation energy, correlation coefficient and errors in the activation 

energy, as calculated by assuming the value of E obtained from the differential method 

as the correct one because no approximation is used for deriving Eqns. (1) and (2). 

Using the kinetic parameter obtained of the differential method, the Teflon 

decomposition curve has been reconstructed (line in Fig 2). The agreement between the 

experimental (circles) and simulated (line) curve in Fig. 2 is excellent. For the different 

kinetic analysis methods included in Table 5, the correlation coefficients are very high, 

while the values of the corresponding activation energy slightly differ. The errors in the 

values of Ea are consistent with those expected for a value of x  40 and tabulated in 

Table 3.  

Although it is not common to find in literature papers where the thermal 

degradation of polymers is analyzed simultaneously by the different integral equations 

analyzed here, we have found some recent papers published in Polymer where the same 

experimental results are systematically analyzed by a series of different integral method. 

Thus, in the paper by Nuñez et al. [3], the authors report on the decomposition of the 

epoxy system BADGE(n=0)/1,2 DCH, and perform an exhaustive  kinetic analysis 
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using the different kinetic integral approaches. Thus, for the 5-15 K min-1 experiments, 

data are fitted by an A4 kinetic model. The resulting values of the activation energy 

obtained using the Coats and Redfern method range from 142.1 to 144.4 kJ mol-1, while 

those Ea obtained using the Van Krevelen et al. and Horowitz and Metzger methods 

range from 148.8 to 151.4 kJ mol-1 and from 154.3 to 157.7 kJ mol-1, respectively. 

These values clearly indicate that the Ea values obtained from the different approaches 

slightly differ. Considering that the value of x for this reaction is about 44, the Ea 

obtained by the Coats and Redfern method should have an insignificant error (Table 3) 

while the Ea obtained by the other two methods should have a positive error larger than 

2%. Thus, the differences observed for the activation energies obtained by Nuñez et al. 

are consistent with the errors in the activation energy included in Table 3. In another 

paper, Chang et al. [5] report on the kinetics of the dehydration and decomposition of 

the copolymer PMPS-PVI. These authors use the Van Krevelen et al and Coats-Redfern 

methods. The calculated values of activation energy for both processes are presented in 

a chart where it is clear that the values obtained by the Van Krevelen et al method are in 

both cases higher than those obtained by the Coats and Redfern method, as would be 

expected from Table 3, where it is shown that the Ea obtained by the Coats-Redfern 

method has a small negative error while that obtained by the Van Krevelen et al method 

is subjected to a larger positive error.  

In conclusion, it has been observed that the different approximations to the 

Arrhenius integral lead to systematic errors in the values of the activation energy 

determined by means of these equations. The errors are tabulated in Table 3. 

Nevertheless, the resulting errors are only significant for values of E/RT relatively 

small, while for large values of E/RT these errors are very small and in the range of the 

expected experimental errors. It have been also observed that the Coats and Redfern 
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approach is preferred over those of Van Krevelen et al. and Horowitz and Metzger 

because the resulting errors are much smaller for the entire range of E/RT. Moreover, 

the error in the activation energy obtained from the methods of Van Krevelen et al. and 

Horowitz and Metzger would be influenced by the value of the reference temperature. 

The values of the errors have been checked by analyzing by the different methods 

simulated and experimental curves, showing an excellent agreement. Finally, the 

differences reported in some recent publications for the activation energy values 

obtained by the different integral methods have been explained in terms of the 

systematic errors of the integral methods. 
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TABLE  1. Ia  functions corresponding to the approaches of  Van Krevelen, Horowitz and 

Metzger, and Coats and Redfern to the integral of the Arrhenius equation and their 

related functions f(T), f’(T) and f(Ea) as defined by Eq. (5).  

 

Approximation Ia f(T) f’(T) f(Ea) 
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TABLE 2. Expressions for the relative errors of the activation energy as calculated 

from the different approximation of the Arrhenius integral.  
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TABLE  3. Values of the relative error (ε%) for the activation energy calculated by 

means of the Van Krevelen, Horowitz and Metzger, and Coats and Redfern equation as 

a function of the parameter x= (E/RT). 

x Van Krevelen Horowitz Metzger Coats Redfern 
2 30.28 80.28 -19.72 
5 15.23 35.23 -4.76 

10 8.53 18.53 -1.47 
20 4.58 9.58 -0.42 
30 3.13 6.47 -0.20 
50 1.92 3.92 -0.07 

100 0.98 1.98 -0.02 
 0 0 0 
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TABLE  4. Values of the activation energies (Ea) and errors (ε%) obtained of the 

analysis of the simulated curves included in Figs 1a and 1b by means of different 

integral methods  

 
 Simulated curve Fig. 1a 

(x5)*
Simulated curve Fig. 1b  

(x20)* 
Ea (kJ mol-1) ε% Ea (kJ mol-1) ε% 

Van Krevelen et al. 29.9 19.9 106.9 6.9 
Horowitz Metzger 35.7 42.9 114.3 14.3 
Coats Redfern 24.0 -4.0 99.6 -0.4 
 

*The value of x corresponds to the temperature at which =0.5 (x=Ea/RT0.5). 
 

 

 

 

Table 5. Results of the kinetic analysis of the thermal decomposition curve for the 

Teflon sample by different methods. The relative errors (%) in the activation energy 

calculated by means of the approximated integral methods are also included. 

 
 r Ea (kJ.mol-1) % 

Differential 0.999 310.8 - 
Coats Redfern 0.999 309.9             -0.3 

Horowitz Metzger 0.999 326.1 5.2 
Van Krevelen 0.999 319.3 2.8 
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Figure Captions 

Fig. 1. Simulated curves under linear heating rate conditions (β= 10 K min-1), F1 kinetic 

model: (a) E=20 kJ mol-1 and A=12 min-1; and (b) E=100 kJ mol-1 and A=108 min-1 

 

Fig.2. Experimental curve () for the thermal decomposition of Teflon under linear 

heating rate conditions (=5 K min-1) and flow of helium (100 cm3 min-1). The solid 

line represents the curve simulated for an F1 kinetic model and the activation energy 

obtained from the analysis of the experimental curve by means of the differential 

method (Table 5).   
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