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Abstract 

The spatial variability of remotely sensed image values provides important information about the arrangement of 
objects and their spatial relationships within the image. The characterisation of spatial variability in such images, for 
example, to measure of texture, is of great utility for the discrimination of land cover classes. To this end, the 
variogram, a function commonly applied in geostatistics, has been used widely to extract image texture for remotely 
sensed data classification. 

The aim of this study was to assess the increase in accuracy that can be achieved by incorporating univariate and 
multivariate textural measures of Landsat TM imagery in classification models applied to large heterogeneous 
landscapes. Such landscapes which difficult to classify due to the large number of land cover categories and low 
inter-class separability. Madogram, rodogram and direct variogram for the univariate case, and cross- and pseudo-
cross variograms for the multivariate one, together with multi-seasonal spectral information were used in a Random 
Forest classifier to map land cover types.  

The addition of spatial variability into multi-seasonal Random Forest models leads to an increase in the overall 
accuracy of 8%, and to an increase in the Kappa index of 9%, respectively.  The increase in per categories Kappa for 
the textural Random Forest model reached 30% for certain categories. This study demonstrates that the use of 
information on spatial variability produces a fundamental increase in per class classification accuracy of complex 
land-cover categories. 
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1. Introduction 

The characterisation of spatial variability in remotely sensed images, through textural measures, 
provides important information about the arrangement of objects and their spatial relationships within the 
image. Many studies on land cover and land use mapping have demonstrated that including textural 
variables may provide additional information to the classification process and improve the discrimination 
of land-use/land-cover categories yielding an increase in the mapping accuracy [1-5].  

Texture, in a geostatistical sense, may be analyzed in terms of the two essential characteristics of 
digital values: local or global variability and spatial autocorrelation. The first characteristic is closely 
related to the statistical dispersion, which is frequently analyzed by calculating the variance. The second 
characteristic, spatial correlation, assumes that digital values are not completely randomly distributed 
within an image and, consequently, that there exists a spatial variability or dependence structure 
associated with each land-cover class. In this sense, Lark [6] showed that the amount of variability 
between pairs of pixels depends on their spatial relations and it can be used as a textural descriptor. This 
result leads directly the use of the goestatistical approach for texture analysis, because it offers the 
advantage that variability and spatial autocorrelation are jointly analyzed. 

The inclusion of multiple textural variables in remote sensing studies implies a large increment in the 
dimensionality of the data sets being used in image classification. This high volume of data can exceed the 
ability of classifiers to deal with it. The problem with dimensionality of the data space can be adressed 
from the selection of a robust classifier. Ensemble learning algorithms have received increasing interest 
because they are more accurate and robust to noise than single classifiers [7]. Among classifier ensembles 
we have chosen a relatively new classifier called Random Forest which presents the the following 
advantages [8]: 

• It is unexcelled in accuracy among current algorithms.  
• It runs efficiently on large data bases.  
• It can handle thousands of input variables without variable deletion. 
• It is relatively robust to outliers and noise. 
• It is computationally lighter than other tree ensemble methods (e.g., Boosting). 

The aim of this study was to investigate the utility of combining various geostatistical texture measures 
with spectral data for the classification of Mediterranean land cover on a per-pixel basis. The basic 
methodology used in this paper involved computing several texture images to improve land-cover 
classification using Random Forest.  

2. Study Area and Data 

The study area for this project is province of Granada, located in the south of Spain, by the 
Mediterranean Sea. Spring and summer images have been used for the land-cover classification. To this 
end, two Landsat Thematic Mapper 5 scenes of the same area in Spanish southeast were acquired. The 
images were acquired on 18 August and 4 April 2004. Scenes location corresponds with Path 200 Row 34 
of Landsat Worldwide Reference System (WRS), with coordinates centre 0030822.7343W 
372400.0054N WGS-84. 
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The imagery was then processed with the Tasseled Cap or Kauth Thomas linear transformation before 
being used in classification. This transformation produced six features: summer brightness, summer 
greenness, summer wetness, spring brightness, and both spring greenness and wetness. 

Relief complexity and high anthropic influence make it possible to distinguish 14 different thematic 
categories of the study area (Table 1). In order to train and validate the classification models, a total 
number of 2050 areas were identified from pre-existing land-cover maps, and each of them was verified 
by using diverse high-resolution digital true-colour orthophotographs (1:10000) acquired during 2004. 
The ground reference dataset were randomly divided into 75% and 25% for training and testing, 
respectively. The number of the training sites per class was kept roughly equal (i.e., approximately 100 
training sites and 50 testing sites per category). 

Table . Land-cover classification scheme 

Class ID Class name Class ID Class name 

1 Urban 8 Quercus sp. 

2 Poplar Grove 9 Herbaceous Irrigated 

3 Conifers 10 Ligneous Irrigated 

4 Greenhouses 11 Herbaceous Dry 

5 Shrublands 12 Bare soils 

6 Olive Trees 13 Tropical Crops 

7 Grasslands 14 Water 

3. Methods 

3.1. Geostatistical texture 

To introduce texture information into the image classification process we have calculated a set of texture 
measures: variogram, rodogram, madogram, cross variogram and pseudo-cross variogram [4, 5]. These 
entire textural features haven been calculated from the multispectral bands (band 1 to 5 and 7) of the 
Landsat TM5 spring and summer images. To account for the different spatial variability patterns of the 
land-cover categories of the study area, the textural measures have been computed over three different 
window sizes: 5x5, 15x15 and 31x31. The computation of geostatistical texture has been carried out from 
omnidirectional variogram derived measures, considering the first lag, the second lag and the slope 
between the first and the second lag. 

3.2. Random Forest 

Random Forest (RF) is an ensemble of classification trees, where each tree contributes with a single 
vote for the assignation of the most frequent class to the input data [8]. RF uses the best split of a random 
subset of input features or predictive variables in the division of every node, instead of using the best split 
variables, which reduces the generalization error. Additionally, in order to increase the diversity of the 
trees, RF uses bagging or bootstrap aggregating to make them grow from different training data subsets. 
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Bagging is a technique used for training data creation by randomly resampling the original dataset with 
replacement, i.e., with no deletion of the data selected from the input sample for generating the next 
subset. Thus, each subset selected using bagging to make each individual th-tree grow contains a certain 
proportion of the calibration dataset. The samples which are not present in the calibration subset are 
included as part of another subset called out-of-bag (OOB). Note that a different OOB subset is formed 
for every th-tree of the ensemble, from the non-selected elements by the bootstraping process. These 
OOB elements, which are not considered for the trainining of the th-tree, can be classified by the th-tree 
to evaluate his performance.  

4. Results and Discusion 

The geostatistical measurements were used in RF classification directly together with the spectral data 
(multi-seasonal Kauth-Thomas bands; MKT). The first column of Table 2 shows the results of the RF 
classification using MKT features only. Table 2 shows that the highest classification accuracies were 
achieved when geostatistical measurements at a 1-pixel lag were used in combination with the MKT 
bands, probably because the variability computation at one lag is more stable and less affected by class 
variation [3]. The second lag led to slightly lower accuracies and the results obtained from the slope 
between the first and the second lag did not result in a significant increase in accuracy. The slope 
parameter did not make any significant contribution to the differentiation of categories as, for lags close 
to the origin, there is a proportional effect between the variograms of each category and, hence, the slope 
is very similar. Therefore, GT measurements at first lag were selected for the present analysis. 

Table 2. Random Forest parameters and best classification accuracy (% and Kappa) for the GT models at different 
lags. MKT refers to the multi-seasonal Kauth Thomas model. GT, GT5, GT15 and GT31 refer to the multi-scale 

textural model and to the models at 5x5, 15x15 and 31x31 window sizes, respectively. 
Lag 1 Lag 2 Slp. lag 1 and 2

MKT GT GT5 GT15 GT31 GT GT5 GT15 GT31 GT GT5 GT15 GT31
O. acc. 0.85 0.92 0.89 0.91 0.91 0.90 0.88 0.89 0.91 0.87 0.84 0.87 0.88
Kappa 0.84 0.92 0.88 0.90 0.91 0.90 0.87 0.88 0.91 0.86 0.83 0.86 0.87

Table 3 shows an increasing trend of accuracy by adding geostatistical textural features to multi-seasonal 
RF models. The overall accuracies for the multi-scale geostatistical model (GT), and for the models of 
window sizes 5x5 (GT5), 15x15 (GT15) and 31X31 (GT31) were, 0.92, 0.89, 0.91 and 0.91, respectively, 
with Kappa statistics of 0.92, 0.88, 0.90 and 0.91. The inclusion of the geostatistical textural bands in RF 
models meant an increase of 8.04%, 4.36%, 6.87% and 7.04% in the overall accuracy and of 8.78%, 
4.75%, 7.50% and 7.68% in the Kappa index for GT, GT5, GT15 and GT31, respectively (Table 3). 

Table . Random Forest parameters, classification accuracy and increments in accuracy (% and Kappa) produced from 
MKT and textural models. MKT refers to the multi-seasonal Kauth Thomas model. GT, GT5, GT15 and GT31 refer 

to the multi-scale textural model and to the models at 5x5, 15x15 and 31x31 window sizes, respectively.
MKT GT GT5 GT15 GT31

O. Acc. 0.85 0.92 0.89 0.91 0.91

Kappa 0.84 0.92 0.88 0.90 0.91

Inc. in O. Acc.
(%)

8.04 4.36 6.87 7.04

Inc. in Kappa
(%)

8.78 4.75 7.50 7.68
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Table 4 shows the per-category Kappa index and the Kappa increase pattern for the geostatistical models, 
respectively. Textural models increased inter-class separability between the most miss-classified 
categories with respect to the MKT models. Multi-scale models presented the highest increase in overall 
inter-class separability, while the textural features at single-scale window sizes produced a more moderate 
increase of the mapping accuracy. The ranking of increases in Kappa for each of the categories varied 
depending on the window sizes used. The ligneous irrigated crops, urban and bare soils, were the 
categories which experienced the highest increases in Kappa for the multi-scale models, with increments 
of 30.53%, 20.21% and 21.19% for GT, respectively. In the case of models for 5x5 window sizes, the 
most heterogeneous categories, with a greater spatial variability, bare soils and urban, experienced the 
highest increments (21.19% and 20.21% for GT5, respectively). Other heterogeneous categories such as 
ligneous irrigated and urban were also well distinguished at 31x31 window size, with increments equal to 
33.60% and 23.06% for GT31, respectively. It may be reported from Table 4 that considering the textural 
features did not affect the classification of the shrubland and water classes for which the summer Kauth-
Thomas bands were sufficient.  

Table 4. Per class Kappa values of MKT and geostatistical textural RF classifiers and increments in kappa of textural 
models over MKT model. MKT refers to the multi-seasonal Kauth Thomas model. GT, GT5, GT15 and GT31 refer 
to the multi-scale textural model and to the models at 5x5, 15x15 and 31x31 window sizes, respectively. 

Class nº MKT GTO GT5 GT15 GT31 
Inc. in Kappa 

GTO 

Inc. in Kappa 

GT5

Inc. in Kappa 

GT15 

Inc. in Kappa 

GT31 

1 0.74 0.94 0.89 0.94 0.91 25.94 20.21 25.94 23.06 

2 0.94 1.00 0.91 0.96 0.98 6.87 -2.29 2.28 4.57 

3 0.76 0.83 0.85 0.83 0.83 8.49 11.18 8.42 8.38 

4 0.98 1.00 1.00 1.00 0.98 2.20 2.20 2.20 0.00 

5 0.85 0.83 0.83 0.83 0.83 -2.59 -2.63 -2.69 -2.66 

6 0.91 1.00 0.96 0.98 0.94 9.44 4.69 7.07 2.36 

7 0.81 0.81 0.81 0.83 0.85 0.11 0.07 2.67 5.28 

8 0.76 0.85 0.74 0.78 0.83 11.83 -2.09 3.42 9.02 

9 0.89 0.91 0.91 0.91 0.94 2.41 2.39 2.41 4.76 

10 0.70 0.91 0.81 0.87 0.94 30.53 15.28 24.40 33.60 

11 0.94 1.00 0.98 1.00 1.00 6.94 4.62 6.94 6.94 

12 0.72 0.85 0.87 0.79 0.79 18.31 21.19 9.53 9.58 

13 0.78 0.91 0.80 0.98 0.89 16.49 2.56 24.74 13.73 

14 1.00 0.98 0.98 0.98 1.00 -2.15 -2.15 -2.15 0.00 
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5. Conclusions 

This study aimed to evaluate the potential of geostatistical textural measures together with the RF 
algorithm to classify the land-cover of a complex Mediterranean environment. RF performed well in the 
context of classifications of fourteen categories using a high dimensional feature space composed by 
spectral and textural variables.  

Geostatistical textural models achieved a more reliable classification of the most heterogeneous 
categories, which are the most difficult to classify, e.g., ligneous irrigated crops, urban and bare soils, 
which were better mapped by GT than by MKT. Moreover, considering textural features did not affect the 
classification of the shrubland and water class. The bare soil category experienced the highest increments 
at window sizes of 5x5, while other categories like ligneous irrigated and urban were better distinguished 
at 31x31 window size. 
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