A Genetic Programming infrastructure profiting from public
computation resources

F. Chavez de la O. Manuel Rubio del Solar
Centro Universitario de Mérida CETA-CIEMAT
C/ Sta Teresa de Jornet 38 Paseo Ruiz de Mendoza 8
06800 mérida (spain) 10200 Trujillo (Spain)
fchavez@unex.es manuel.rubio@ciemat.es
J.L. Guisado Daniel Lombrafia Gonzalez
Centro Universitario de Mérida Centro Universitario de Mérida
C/ Sta Teresa de Jornet 38 C/ Sta Teresa de Jornet 38
06800 mérida (spain) 06800 mérida (spain)
jlguisado@unex.es daniellg@unex.es
Miguel Cardenas Montes F. Fernandez de Vega
CETA-CIEMAT Centro Universitario de Mérida
Paseo Ruiz de Mendoza 8 C/ Sta Teresa de Jornet 38
10200 Truijillo (Spain) 06800 Mérida (Spain)
miguel.cardenas@ciemat.es fcofdez@unex.es
Abstract

In this article an experience of the utilization of PRC (HalRtesource Computation) in
research projects that needs large quantities of CPU tinpreésented. We have developed
a distributed architecture based on middleware BOINC arl@Ri Genetic Programming
tool. In order to run LilGP applications under BOINC platfos, some core LilGP func-
tions has been adapted to BOINC requirements. We have usasisaodGP problem known
as the artificial ANT in Santa Fe Trail. Some computers frofaasroom were used acting
as clients, proving that they can be used for scientific cdatfmn in conjunction with their
primary uses.

1: Introduction

The success of the SETI@Home project [10] has obtained tkat#i recognition to
bloom multiple projects of Voluntary Computation. Thesejpcts possess a wide commu-
nity of voluntary users that give part of their resource cateps. In the area of Distributed
Computation we have a wide variety of strategies for bugdimese environments. From
stable infrastructures with a high complexity and strongureements derived from the
nature of the problems that they try to study, to lighter aggplons. A typical example
of these first infrastructures is the World LHC Computingd5(WLCG) [1] destined to

analyze the data provided by the experiments installed & CR] (European Organiza-

tion for Nuclear Research). Another example is the inftedtire that have born from the
EGEE project [3] (Enabling Grids for E-sciencE) and the tedasub-projects like EELA

[4] (E-infrastructure shared between Europe and Latin Atagr In the last both examples,
the middleware that is being used is gLite [5], which is basethe Globus Toolkit [6].

The Globus Toolkit is an Open Source software used for ugldbrid infrastructures.
The Globus Alliance and many other collaborators in the evare the developers (see
[7]).

In all previous cases, the ultimate aim and challenge is testtoct a Grid. Though
Grid’s concept stays out of the scope of this article, a ltedinition is provided: A Grid
is an infrastructure of computation that re-joins heteregris resources distributed geo-
graphically through some middleware that allows this mLintaraction. For the construc-
tion of Grids several approximations are possible [12]. Triestructures like WLCG,
EGEE or EELA could be interpreted as cluster of clusters, reftgeographically dis-
perse clusters are linked via advanced communication mksaand software infrastruc-
tures, thus permitting interoperability between them. B apposite site, in projects as
SETI@Home the construction is done in a completely diffeegproach.

The Grids constructed for the Voluntary Computation (VG 80INC [8, 11] (Berke-
ley Open Infrastructure for Network Computing) as the mesldire, being their levels of
commitments much slighter. This feature added to the soitplof operation and the
aptitude to coexist in the same computational resourcds otiter uses, have brought a
tremendous popularity to this technology. The projectsatintary Computation receive
diverse denominations in the scientific literature shucR28 Computing, Desktop Com-
puting or PRC.

The University of Extremadura and the CETA-CIEMAT proposedse this Grid plat-
form for providing computational resources to the regiomaearchers community. In
order to realize a proof of concept, we have used a test @pjplicconsisting of a Genectic
Problem developed under LilGP [9] tool.

This paper is structured as follows: Section 2 presentdIBa@P. Section 3 describes
the adaptation of the LilGP tool to enable it for use under BOlarchitecture. Section
4 deals about some planned future works. Finally in sectiogstlts and conclusions are
presented.

2: Parallel Genetic Programming

Genetic Programming (GP) [15] is a metaheuristic inspirgdnbtural evolution of
species. This technique uses programs —chromosomes—ithexalve through the time
—generations— trying to solve a given problem. The chrommesoare coded as trees and
each of them represent a specific program offering a diffevay of solving the problem.
Evolving and evaluating those trees is a heavy task thatllyseguires huge computa-
tional resources. Moreover, chromosomes tend to incréagesizes along the evaluations,
so more memory and computational resources will be needed.

An effective way of lightening this load is by using any kinflparallelism inside the
algorithm. There are different methods described in litea(see [13]) to parallelize the

Figure 1. Master Slave Model

‘ Client

‘ Client

‘ Client

‘ Client |

algorithm. Literature describes two main approaches:

¢ Individual Level. In this case the individuals will be evatad in different comput-
ers/nodes. This model uses an architecture of Master/@aeeig. 1). The Master
node will generate the random initial population and aftext it will send the new
offspring that have not been evaluated to the Slave nodeg Sldve nodes will
evaluate the individual and send back the fithess valuestM#ster node.

e Population Level. In this case we will have several semiaisal populations —
islands— distributed over different computers/nodess T@ghnique enables that each
island evolves in a totally different way because we will @avfferent copies of the
main algorithm in each computer or node. Additionally tieisitnique specifies a mi-
gration rate between islands (also known as “demes”). Bvepylation will select a
numbern of the best individuals and will send them to nearby popaoreti There are
different methods of setting up how and how many individwalsbe interchanged
between islands.

In this research we have used the Population Level, or thedsViodel approach. The
first approach will be the use of one island without migratibhis is equivalent to execute
the same experimenttimes in parallel and running the n-times experiments instme
machine.

As said before, LIIGP [12] tool is used. This tools addreskexreation of GP problems
by using some skeleton files and a set of given functions 1d the desired terminal, nodes
and fitness functions. The programs generated are readgeptagenetic parameters such
as generations, chromosome number, mutation rate, etc.eAsawe said before we have
used a well known framework for Genetic Programming prolsleniGP [12].

Some adjustments has been made to LiIGP core to run under ®@ibhitecture and
in this article that modifications are presented. So an effemtegration of LIIGP in the
BOINC architecture is showed.

3: BOINC Infrastructure

The paradigm of PRC is based on using a heterogeneous sehpiiters interconnected
across Internet: independent computers or belonging tataiic®rganization.

The computing unit under BOINC is called a project. Every ROlproject is identified
by an unique URL, which represent the user start point of gpi@ation. The volunteer
uses register to projects using that main URL, and get readyomtribute with it. An
important challenge for the researcher is to make the praperesting to get as many
volunteer users as possible.

Figure 2. BOINC Infrastructure

BOINC
DataBase
. —Applications
. B JE DataBase
BOINC Clients
(| . r— Stored Files

Other paradigm of use, such as the use of classrooms or atrativie PCs doesn’'t need
attract the volunteers because the exploitation of regsuix designated by an official
decision.

The BOINC infrastructure is composed both on a server anikatdide. The server
consists of several daemons: a work manager, a schedubedarf etc. That daemons can
be installed on a single server configuration or on a mulsgleer configuration. On the
other hand a set of clients are connected to the server.

The different components of the BOINC infrastructure arglitierrelationship between
them appear in the Fig. 2. The components in dark tone aredawas part of the system
BOINC, whereas the rest must be developed for the managéns application.

In the server side, BOINC database stores information ahewtifferent project compo-
nents:, which are used in the project: applications, ptat versions, workunits, results,
users, teams, etc. The server generates the work units add ak of them to the clients.
The task server handles the sending of the applicationsrgnd files to the clients, and
the reception of the results. The Web server provides tlegfade to the volunteer people.
It includes a standard set of pages plus the pages created byanagers. All components
in the server are controlled by BOINC software engine.

The client receives the works and input files from the seesarcutes the different works
and sends to the server the results. The BOINC client cansist little framework that
realises the mentioned tasks and an executable to perfermdiks. That executable must
be developed for the managers to realize the. The execuihtiie application communi-
cates with the framework BOINC using the BOINC API.

As it has been mentioned, all services can be placed phlysinghe same computer,
or can be dispersed in several computers. This fact is diraogrelated with the size and
maturity of projects. Usually the evolution of project fescthem to store and to handle
higher data volumes, to send a bigger number of tasks tatgjiand so on. In these cases,
the easier way to reach higher commitments is to split thetfanalities of server between
several computers.

Donors Web Interface

4: LilGP and BOINC

LiIGP it’s a classic tool used for developing Genetic Prognaing applications. With
the appropriate changes, it's possible to adapt it to theNEDpremises, being capable of
generating GP applications that could be executed in BOIMN{2pt.

LiIGP consists of a core that combines the generation afirpbpulations for a given
problem, together with the operations required for cragswer chromosomes, mutating
them, etc.; all of them proper of the Evolutionary AlgorittmThis tool is written in C
and was created originally to be compiled with gcc, nevée® the tools which will
serve the project BOINC must be written in C++ and compilethvg++. Due to the
difference of versions of the compiler used by LilGP and tiad which are compiled by
libraries BOINC, it is necessary to adapt the first one in ptidiat it could be compiled with
g++, using in turn BOINC's specific libraries. Once adaptd@P’s code under BOINC’s
premises, the new tool is ready to work employing BOINC tetbgy for solving GP
problems.

Other of the modifications over the LilGP core is related ® ll© operations required
for generating the LilGP result files. Due to BOINC'’s philpsy, several executions of
the same program take place on the same client; this may cawsnted over-writings
along the different executions of the same program. BOIN@@gches this problem by
generating unique random names for each file of each exeg¢stiaccidental writings are
avoided. The same method is applied for storing the restiisnated by different clients.
The execution of the GP application in a BOINC client geresdhe same result files as
an execution on a local machine. Our I/O treatment appliddI@P core deals with this
issue, using BOINC API to make correspondence between Lil@RBre file names and
unique random BOINC filenames.

In [14] an adjustment of GP’s classic problem is presentelde froblem adapted to
BOINC was the Artificial Ant on Santa Fe Trail. The source cofléhe previously men-
tioned problem was modified attending to the premises foliegtpns which will be ex-
ecuted in BOINC clients. The idea was also to measure thempeaince offered by the
new BOINC based tool when compared to traditional sequeexiecutions in a single
computer.

5: Experiments and results

The Ant Problem has been used with the experiments detadiedvb The experiments
have been made with a Pentium IV PC, 2.8 GHz and 512 MB actir§QisIC server.
The hardware specifications for the clients were the samex@&utions of the experiment
have been performed. That number assures certain qualibheaogsults because Genetic
Algorithms are a stochastic process, which needs a big nuaflexecutions in order to
offer statistic consistency for the values. Firstly, a wggxperiment with 5 executions
has been made in order to study the evolution when sendintaskeer client. Then, the
same experiment with 10 executions was made.

Tasks| Seq. time| BOINC | goINC

(n) (s) time acc

50 G,
2000 C 5 130s 307s| 0.0977
1000 G,
2000 C 25 650s 395s| 1.6456
1000 G,
1000 C 25 4250s| 1548s| 2.7455
2000 G,

1000 C 25 9200s| 2356s| 3.9049
Table 1. Results using 5 machine clients.

Tasks| Seq. time| BOINC | goINC

(n) (s) time acc
1000 G,
1000 C 25 4250s| 1033s| 4,1142
2000 G,

1000 C 25 9200s| 1623s| 5,6685
Table 2. Results using 10 machine clients.

The Table 1 shows the generation number (G) per task and dsame number (C)
per generation. The obtained results show the executiom itinsequential mode (t-sec)
against the execution time in BOINC architecture (t-BOINT)e obtained acceleration is
calculated by the formula

A = (t-sec)/(t-BOINC)

When only few generations is used, regardless of chromosamer, the obtained
results are worse when using BOINC computating face to se@lienode. When the
generation number grows, maintaining the chromosome nuaabpestant, the acceleration
number begins to arise. Table 2 shows an important growtmwie clients are added.

Launching the Ant Problem under BOINC architecture betsults are obtained than
using a sequential platform. In an experiment with 50 gerarg, 2000 chromosomes and
5 executions the acceleration is 0.0977. With 25 executibissacceleration is 1.6456.
With 1000 chromosomes, 25 executions and 1000 generatidirsti case, 2000 genera-
tions in second case, the acceleration grows significaoitigining values of 2.7455 and
3.9049 respectively. As was expected, light task with higimmunication costs makes the
sequential model more appropriated than the BOINC one. iesless, in big tasks with
a client number growing up, an important acceleration gngwéan be noticed: the last
experiment in table 2 shows an acceleration of 5.6.

6: Future Works

A new version of our LIIGP-BOINC is being implemented by théhors. The main
modification consists of implementing the island model witigration of individuals. To
make possible this modification we need a common point psadxs both by the BOINC
server and the LilGP core. The LilGP tool with the ant problesas adapted again for
emplying checkpoint files. These files allow to store thermtdiate state of the popu-

lation after computing a given generation, or the state eftbpulation at the end of the
execution instead.

As soon as the executions in the client finish, the infornmaisoreturned to the server,
where a process made in conjunction by the validator and skiendator will perform
the migration of the individuals between the different plagions sent to every client.
The next unit of work generated by the server will send toeeéient a new population,
composed by individuals of different populations, prewigucombined by the validator
and the assimilator.

The challenge of implementing migration between islandsoisplex because of the
nature of the BOINC architecture. That architecture, based server and a number of
clients communicating with it, doesn’t allow communicatibetween clients so we can
not transfer data from any given client to another one. htsteve have to simulate that
communication by processing the results in the server.

That processing consist of receiving the population filecf@ckpoint files) explained
in previous sections from the clients. Then, an intercharfigfee lines of these files is made
to perform migration. At the end of the interchange processmil have the resulting
population files for the next generation with their bestwndlials migrated. The next step
is to order the new files by fitness. Finally it's necessaryréate new BOINC workunits
using the new files as the input. The BOINC engine will send fites to the clients in
order to the genetic process can continue.

To perform this process authomatically we will use the BON&idator. The validator
is a BOINC component consisting on a daemon which acts whesuwdtifrom a client is
received and takes the action given by the programmer tcahte incoming results are
valid ones. The validator is proggramed in C code, so in aidib this checking we will
use it to launch the interchange process. Once interchatigedew population files are
the starting point for the next generations. In the final gathen, where no migration is
needed, the validator takes no action and the final reswdtstared by the assimilator and
becomes available for the scientist.

7: Conclusions

In this paper, an experience in using desktop grid compudtingesearch projects with
large runtime requirements has been presented. PRC hasi®eefor this approach. The
BOINC software platform for distributed computing has besed. The LIIGP Genetic
Programming tool has been modified to use the BOINC platf@ynusing this modified
version of LilGP, the developing of GP applications diaitdd on BOINC architecture is
quick and easier.

As a proof of concept, a typical Genetic Programming prob{dra Artificial Ant on
Santa Fe Trail) has been run on classroom computers usihg@f-BOINC framework.
That framework will be expanded to enable island model argtation. The experiments
made shows that applying the distributed benefits of the BOp\atform improves the
quality of the results The possibility of using existent garting resources from an orga-
nization for scientific computing with this kind of framevkpmwithout perturbing the main
usage of the computers, has been demonstrated.

References

[1] WLCG, (World LHC Computing Grid), http://lcg.web.ceah/LCG/.

[2] European Organization for Nuclear Research, http:#usern.ch/.

[3] Enabling Grids for E-Science, http://www.eu-egeelorg

[4] E-infrastructure shared between Europe and Latin Acaetittp://www.eu-eela.org/.
[5] gLite, http://glite.web.cern.ch/glite/.

[6] Globus Toolkit, http://www.globus.org/toolkit/.

[7] Globus Alliance, http://www.globus.org/.

[8] BOINC, (Berkeley Open Infrastructure for Network Conting),
http://boinc.berkeley.edu/.

[9] LilGP, http://garage.cse.msu.edu/software/lil-gp/

[10] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebgfsand Dan Werthimer.
Seti@home: an experiment in public-resource computwgnmun. ACM45(11):56—
61, 2002.

[11] D.P. Anderson. Boinc: a system for public-resource poting and storage. 1Grid
Computing, 2004. Proceedings. Fifth IEEE/ACM InternaéibiWorkshop onpages
4-10, 2004.

[12] Miron Livny Douglas Thain.The Grid 2 chapter 19, pages 285-318. Morgan Kauf-
mann, 2004.

[13] M. Tomassini.Spatially Structured Evolutionary AlgorithmSpringer, 2005.

[14] F.Chavez, J.L. Guisado, D. Lombrafia Gonzalez, la&®dez. Una Herramienta de
Programacion Genética Paralela que Aprovecha Recuidadg®s de Computacion.
In V Congreso Esp#l sobre Metahedusticas, Algoritmos Evolutivos y Bioinspirados
2007.

[15] J. R. Koza.Genetic Programming: On the Programming of Computers byrided#
Natural SelectionMIT Press, Cambridge, MA, USA, 1992.

https://www.researchgate.net/publication/250614958

