
A Genetic Programming infrastructure profiting from public
computation resources

F. Chávez de la O.
Centro Universitario de Mérida

C/ Sta Teresa de Jornet 38
06800 mérida (spain)

fchavez@unex.es

Manuel Rubio del Solar
CETA-CIEMAT

Paseo Ruiz de Mendoza 8
10200 Trujillo (Spain)

manuel.rubio@ciemat.es

J.L. Guisado
Centro Universitario de Mérida

C/ Sta Teresa de Jornet 38
06800 mérida (spain)
jlguisado@unex.es

Daniel Lombraña González
Centro Universitario de Mérida

C/ Sta Teresa de Jornet 38
06800 mérida (spain)

daniellg@unex.es

Miguel Cárdenas Montes
CETA-CIEMAT

Paseo Ruiz de Mendoza 8
10200 Trujillo (Spain)

miguel.cardenas@ciemat.es

F. Fernández de Vega
Centro Universitario de Mérida

C/ Sta Teresa de Jornet 38
06800 Mérida (Spain)

fcofdez@unex.es

Abstract

In this article an experience of the utilization of PRC (Public Resource Computation) in
research projects that needs large quantities of CPU time ispresented. We have developed
a distributed architecture based on middleware BOINC and LilGP Genetic Programming
tool. In order to run LilGP applications under BOINC platforms, some core LilGP func-
tions has been adapted to BOINC requirements. We have used a classic GP problem known
as the artificial ANT in Santa Fe Trail. Some computers from a classroom were used acting
as clients, proving that they can be used for scientific computation in conjunction with their
primary uses.

1: Introduction

The success of the SETI@Home project [10] has obtained the scientific recognition to
bloom multiple projects of Voluntary Computation. These projects possess a wide commu-
nity of voluntary users that give part of their resource computers. In the area of Distributed
Computation we have a wide variety of strategies for building these environments. From
stable infrastructures with a high complexity and strong requirements derived from the
nature of the problems that they try to study, to lighter applications. A typical example
of these first infrastructures is the World LHC Computing Grid (WLCG) [1] destined to



analyze the data provided by the experiments installed at CERN [2] (European Organiza-
tion for Nuclear Research). Another example is the infrastructure that have born from the
EGEE project [3] (Enabling Grids for E-sciencE) and the related sub-projects like EELA
[4] (E-infrastructure shared between Europe and Latin America). In the last both examples,
the middleware that is being used is gLite [5], which is basedon the Globus Toolkit [6].

The Globus Toolkit is an Open Source software used for building Grid infrastructures.
The Globus Alliance and many other collaborators in the world are the developers (see
[7]).

In all previous cases, the ultimate aim and challenge is to construct a Grid. Though
Grid’s concept stays out of the scope of this article, a briefdefinition is provided: A Grid
is an infrastructure of computation that re-joins heterogeneous resources distributed geo-
graphically through some middleware that allows this mutual interaction. For the construc-
tion of Grids several approximations are possible [12]. Theinfrastructures like WLCG,
EGEE or EELA could be interpreted as cluster of clusters, where geographically dis-
perse clusters are linked via advanced communication networks and software infrastruc-
tures, thus permitting interoperability between them. On the opposite site, in projects as
SETI@Home the construction is done in a completely different approach.

The Grids constructed for the Voluntary Computation (VC) use BOINC [8, 11] (Berke-
ley Open Infrastructure for Network Computing) as the middleware, being their levels of
commitments much slighter. This feature added to the simplicity of operation and the
aptitude to coexist in the same computational resources with other uses, have brought a
tremendous popularity to this technology. The projects of Voluntary Computation receive
diverse denominations in the scientific literature shuch asP2P Computing, Desktop Com-
puting or PRC.

The University of Extremadura and the CETA-CIEMAT proposedto use this Grid plat-
form for providing computational resources to the regionalresearchers community. In
order to realize a proof of concept, we have used a test application consisting of a Genectic
Problem developed under LilGP [9] tool.

This paper is structured as follows: Section 2 presents Parallel GP. Section 3 describes
the adaptation of the LilGP tool to enable it for use under BOINC architecture. Section
4 deals about some planned future works. Finally in section 5results and conclusions are
presented.

2: Parallel Genetic Programming

Genetic Programming (GP) [15] is a metaheuristic inspired by natural evolution of
species. This technique uses programs –chromosomes– that will evolve through the time
–generations– trying to solve a given problem. The chromosomes are coded as trees and
each of them represent a specific program offering a different way of solving the problem.
Evolving and evaluating those trees is a heavy task that usually requires huge computa-
tional resources. Moreover, chromosomes tend to increase their sizes along the evaluations,
so more memory and computational resources will be needed.

An effective way of lightening this load is by using any kind of parallelism inside the
algorithm. There are different methods described in literature (see [13]) to parallelize the



Figure 1. Master Slave Model

algorithm. Literature describes two main approaches:

• Individual Level. In this case the individuals will be evaluated in different comput-
ers/nodes. This model uses an architecture of Master/Slave(see Fig. 1). The Master
node will generate the random initial population and after that it will send the new
offspring that have not been evaluated to the Slave nodes. The Slave nodes will
evaluate the individual and send back the fitness values to the Master node.

• Population Level. In this case we will have several semi-isolated populations –
islands– distributed over different computers/nodes. This technique enables that each
island evolves in a totally different way because we will have different copies of the
main algorithm in each computer or node. Additionally this technique specifies a mi-
gration rate between islands (also known as “demes”). Everypopulation will select a
numbern of the best individuals and will send them to nearby populations. There are
different methods of setting up how and how many individualswill be interchanged
between islands.

In this research we have used the Population Level, or the Island Model approach. The
first approach will be the use of one island without migration. This is equivalent to execute
the same experimentn times in parallel and running the n-times experiments in thesame
machine.

As said before, LilGP [12] tool is used. This tools addressesthe creation of GP problems
by using some skeleton files and a set of given functions to build the desired terminal, nodes
and fitness functions. The programs generated are ready to accept genetic parameters such
as generations, chromosome number, mutation rate, etc. As we have said before we have
used a well known framework for Genetic Programming problems, LilGP [12].

Some adjustments has been made to LilGP core to run under BOINC architecture and
in this article that modifications are presented. So an effective integration of LilGP in the
BOINC architecture is showed.

3: BOINC Infrastructure

The paradigm of PRC is based on using a heterogeneous set of computers interconnected
across Internet: independent computers or belonging to a certain organization.

The computing unit under BOINC is called a project. Every BOINC project is identified
by an unique URL, which represent the user start point of the application. The volunteer
uses register to projects using that main URL, and get ready to contribute with it. An
important challenge for the researcher is to make the project interesting to get as many
volunteer users as possible.



Figure 2. BOINC Infrastructure

Other paradigm of use, such as the use of classrooms or administrative PCs doesn’t need
attract the volunteers because the exploitation of resources is designated by an official
decision.

The BOINC infrastructure is composed both on a server and a client side. The server
consists of several daemons: a work manager, a scheduler, a feeder, etc. That daemons can
be installed on a single server configuration or on a multipleserver configuration. On the
other hand a set of clients are connected to the server.

The different components of the BOINC infrastructure and the interrelationship between
them appear in the Fig. 2. The components in dark tone are provided as part of the system
BOINC, whereas the rest must be developed for the managers ofthe application.

In the server side, BOINC database stores information aboutthe different project compo-
nents:, which are used in the project: applications, platforms, versions, workunits, results,
users, teams, etc. The server generates the work units and sends all of them to the clients.
The task server handles the sending of the applications and input files to the clients, and
the reception of the results. The Web server provides the interface to the volunteer people.
It includes a standard set of pages plus the pages created by the managers. All components
in the server are controlled by BOINC software engine.

The client receives the works and input files from the server,executes the different works
and sends to the server the results. The BOINC client consists on a little framework that
realises the mentioned tasks and an executable to perform the works. That executable must
be developed for the managers to realize the. The executableof the application communi-
cates with the framework BOINC using the BOINC API.

As it has been mentioned, all services can be placed physically in the same computer,
or can be dispersed in several computers. This fact is strongly correlated with the size and
maturity of projects. Usually the evolution of project forces them to store and to handle
higher data volumes, to send a bigger number of tasks to clients, and so on. In these cases,
the easier way to reach higher commitments is to split the functionalities of server between
several computers.



4: LilGP and BOINC

LilGP it’s a classic tool used for developing Genetic Programming applications. With
the appropriate changes, it’s possible to adapt it to the BOINC premises, being capable of
generating GP applications that could be executed in BOINC project.

LilGP consists of a core that combines the generation of initial populations for a given
problem, together with the operations required for crossing over chromosomes, mutating
them, etc.; all of them proper of the Evolutionary Algorithms. This tool is written in C
and was created originally to be compiled with gcc, nevertheless, the tools which will
serve the project BOINC must be written in C++ and compiled with g++. Due to the
difference of versions of the compiler used by LilGP and the tools which are compiled by
libraries BOINC, it is necessary to adapt the first one in order that it could be compiled with
g++, using in turn BOINC’s specific libraries. Once adapted LilGP’s code under BOINC’s
premises, the new tool is ready to work employing BOINC technology for solving GP
problems.

Other of the modifications over the LilGP core is related to the I/O operations required
for generating the LilGP result files. Due to BOINC’s philosophy, several executions of
the same program take place on the same client; this may causeunwanted over-writings
along the different executions of the same program. BOINC approaches this problem by
generating unique random names for each file of each execution, so accidental writings are
avoided. The same method is applied for storing the results originated by different clients.
The execution of the GP application in a BOINC client generates the same result files as
an execution on a local machine. Our I/O treatment applied toLilGP core deals with this
issue, using BOINC API to make correspondence between LilGPnature file names and
unique random BOINC filenames.

In [14] an adjustment of GP’s classic problem is presented. The problem adapted to
BOINC was the Artificial Ant on Santa Fe Trail. The source codeof the previously men-
tioned problem was modified attending to the premises for applications which will be ex-
ecuted in BOINC clients. The idea was also to measure the performance offered by the
new BOINC based tool when compared to traditional sequential executions in a single
computer.

5: Experiments and results

The Ant Problem has been used with the experiments detailed below. The experiments
have been made with a Pentium IV PC, 2.8 GHz and 512 MB acting asBOINC server.
The hardware specifications for the clients were the same. 25executions of the experiment
have been performed. That number assures certain quality ofthe results because Genetic
Algorithms are a stochastic process, which needs a big number of executions in order to
offer statistic consistency for the values. Firstly, a unique experiment with 5 executions
has been made in order to study the evolution when sending onetask per client. Then, the
same experiment with 10 executions was made.



Tasks
(n)

Seq. time
(s)

BOINC
time

BOINC
acc

50 G,
2000 C 5 130s 307s 0.0977

1000 G,
2000 C 25 650s 395s 1.6456

1000 G,
1000 C 25 4250s 1548s 2.7455

2000 G,
1000 C 25 9200s 2356s 3.9049

Table 1. Results using 5 machine clients.

Tasks
(n)

Seq. time
(s)

BOINC
time

BOINC
acc

1000 G,
1000 C 25 4250s 1033s 4,1142

2000 G,
1000 C 25 9200s 1623s 5,6685

Table 2. Results using 10 machine clients.

The Table 1 shows the generation number (G) per task and chromosome number (C)
per generation. The obtained results show the execution time in sequential mode (t-sec)
against the execution time in BOINC architecture (t-BOINC). The obtained acceleration is
calculated by the formula

A = (t-sec)/(t-BOINC)
When only few generations is used, regardless of chromosomenumber, the obtained

results are worse when using BOINC computating face to sequential mode. When the
generation number grows, maintaining the chromosome number constant, the acceleration
number begins to arise. Table 2 shows an important growth when more clients are added.

Launching the Ant Problem under BOINC architecture better results are obtained than
using a sequential platform. In an experiment with 50 generations, 2000 chromosomes and
5 executions the acceleration is 0.0977. With 25 executionsthis acceleration is 1.6456.
With 1000 chromosomes, 25 executions and 1000 generations in first case, 2000 genera-
tions in second case, the acceleration grows significantly,obtaining values of 2.7455 and
3.9049 respectively. As was expected, light task with high communication costs makes the
sequential model more appropriated than the BOINC one. Nevertheless, in big tasks with
a client number growing up, an important acceleration growing can be noticed: the last
experiment in table 2 shows an acceleration of 5.6.

6: Future Works

A new version of our LilGP-BOINC is being implemented by the authors. The main
modification consists of implementing the island model withmigration of individuals. To
make possible this modification we need a common point processable both by the BOINC
server and the LilGP core. The LilGP tool with the ant problemwas adapted again for
emplying checkpoint files. These files allow to store the intermediate state of the popu-



lation after computing a given generation, or the state of the population at the end of the
execution instead.

As soon as the executions in the client finish, the information is returned to the server,
where a process made in conjunction by the validator and the assimilator will perform
the migration of the individuals between the different populations sent to every client.
The next unit of work generated by the server will send to every client a new population,
composed by individuals of different populations, previously combined by the validator
and the assimilator.

The challenge of implementing migration between islands iscomplex because of the
nature of the BOINC architecture. That architecture, basedon a server and a number of
clients communicating with it, doesn’t allow communication between clients so we can
not transfer data from any given client to another one. Instead, we have to simulate that
communication by processing the results in the server.

That processing consist of receiving the population files (or checkpoint files) explained
in previous sections from the clients. Then, an interchangeof the lines of these files is made
to perform migration. At the end of the interchange process we will have the resulting
population files for the next generation with their best individuals migrated. The next step
is to order the new files by fitness. Finally it’s necessary to create new BOINC workunits
using the new files as the input. The BOINC engine will send that files to the clients in
order to the genetic process can continue.

To perform this process authomatically we will use the BOINCvalidator. The validator
is a BOINC component consisting on a daemon which acts when a result from a client is
received and takes the action given by the programmer to check if the incoming results are
valid ones. The validator is proggramed in C code, so in addition to this checking we will
use it to launch the interchange process. Once interchanged, the new population files are
the starting point for the next generations. In the final generation, where no migration is
needed, the validator takes no action and the final results are stored by the assimilator and
becomes available for the scientist.

7: Conclusions

In this paper, an experience in using desktop grid computingfor research projects with
large runtime requirements has been presented. PRC has beenused for this approach. The
BOINC software platform for distributed computing has beenused. The LilGP Genetic
Programming tool has been modified to use the BOINC platform.By using this modified
version of LilGP, the developing of GP applications distributed on BOINC architecture is
quick and easier.

As a proof of concept, a typical Genetic Programming problem(the Artificial Ant on
Santa Fe Trail) has been run on classroom computers using theLilGP-BOINC framework.
That framework will be expanded to enable island model and migration. The experiments
made shows that applying the distributed benefits of the BOINC platform improves the
quality of the results The possibility of using existent computing resources from an orga-
nization for scientific computing with this kind of framework, without perturbing the main
usage of the computers, has been demonstrated.



References

[1] WLCG, (World LHC Computing Grid), http://lcg.web.cern.ch/LCG/.

[2] European Organization for Nuclear Research, http://www.cern.ch/.

[3] Enabling Grids for E-Science, http://www.eu-egee.org/.

[4] E-infrastructure shared between Europe and Latin America, http://www.eu-eela.org/.

[5] gLite, http://glite.web.cern.ch/glite/.

[6] Globus Toolkit, http://www.globus.org/toolkit/.

[7] Globus Alliance, http://www.globus.org/.

[8] BOINC, (Berkeley Open Infrastructure for Network Computing),
http://boinc.berkeley.edu/.

[9] LilGP, http://garage.cse.msu.edu/software/lil-gp/.

[10] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
Seti@home: an experiment in public-resource computing.Commun. ACM, 45(11):56–
61, 2002.

[11] D.P. Anderson. Boinc: a system for public-resource computing and storage. InGrid
Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on, pages
4–10, 2004.

[12] Miron Livny Douglas Thain.The Grid 2, chapter 19, pages 285–318. Morgan Kauf-
mann, 2004.

[13] M. Tomassini.Spatially Structured Evolutionary Algorithms. Springer, 2005.

[14] F.Chávez, J.L. Guisado, D. Lombraña González, F. Fernández. Una Herramienta de
Programación Genética Paralela que Aprovecha Recursos Públicos de Computación.
In V Congreso Espãnol sobre Metaheurı́sticas, Algoritmos Evolutivos y Bioinspirados,
2007.

[15] J. R. Koza.Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

View publication statsView publication stats

https://www.researchgate.net/publication/250614958



