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Contractions of certain Lie algebras

José María Escobar • Juan Núñez • Pedro Pérez-Fernández

Abstract. This communication is focused on the study of contractions of certain
types of Lie algebras of low dimension, in order to address the implementation of
the results to certain physical concepts, such as the boundary process by which
quantum mechanics contracts to classical mechanics. To do this, we consider in
the �rst place the contractions of �liform Lie algebras, which were introduced by
M. Vergné in 1966, by using the psi and phi invariant functions, introduced in
2008 by Hrivnák and Novotny. These functions are also dealt with other types
of algebra, as Heisenberg algebras among others, and we study the existing
contractions between these algebras.

1. Introduction

At present, the study of certain physical concepts has signi�cantly increased
due to its signi�cance in limit processes which allow us to relate Lie algebras
between themselves. These processes were �rst investigated by Segal [5] in 1951
and two are the better known examples of them. The �rst of them involves
the connection between classical mechanic and relativistic mechanic, with their
respective Poincaré symmetry group and Galilean symmetry group. The second
one is the limit process by which quantum mechanic is contracted to classical
mechanic, when } → 0, which actually corresponds to a contraction of the
Heisenberg algebra to the abelian algebra of the same dimension.

For these reasons physical or mathematical contractions are of great interest
nowadays, not only for their applications but for the proper study of their alge-
braic properties. So, continuing with this research, the main goal of this paper is
to study the proper contractions of certain types of Lie algebras, mainly �liform,
although other types of Lie algebras of lower dimensions are also considered. To
do this, we use the invariant functions ψ and ϕ, introduced in 2007 by Hrivnák
and Novotný [4] as a tool.
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2. Preliminaries

We show in this section some preliminaries on �liform Lie algebras, invariant
functions in Lie algebras and proper contractions of Lie algebras. A complete
review on Lie algebras can be consulted in [3].

The lower central series of a Lie algebra g is de�ned as

g1 = g, g2 = [g1, g], . . . , gk = [gk−1, g], . . . (1)

If there exists m ∈ N such that gm ≡ 0, then g is called nilpotent.
The nilpotency index of g if the smallest integer c such that gc ≡ 0.
An n-dimensional nilpotent Lie algebra g is said to be �liform if it is veri�ed

that
dim gk = n− k, for all k ∈ {2, . . . , n}. (2)

The only n-dimensional �liform Lie algebra for n < 3 is the abelian.
For n ≥ 3, it is always possible to �nd a so-called adapted basis {e1, . . . , en}

of g such that [e1, e2] = 0, [e1, ej ] = ej−1, for all j ∈ {3, . . . , n}, [e2, ej ] =
[e3, ej ] = 0, for all j ∈ {3, . . . , n}. All these brackets are called brackets due to
�liformity.

If all the structure constants of a �liform Lie algebra, with the exception
of those corresponding to the brackets due to the �liformity of the algebra, are
zeros, then that �liform Lie algebra g is called model.

Now, we recall the de�nitions and main properties of invariant functions ψ
and ϕ, obtained by Hrivnák and Novotný [4] in 2007.

De�nition 2.1. Let g be a Lie algebra. An isomorphism d of g is called a
(α, β, γ)-derivation of g if there exist α, β, γ ∈ C such that

αd[X,Y ] = β [dX, Y ] + γ [X, dY ], ∀X,Y ∈ g

The set of (α, β, γ)-derivations of g is denoted by Der(α,β,γ)g.

De�nition 2.2. The function ψg : C 7→ {0, 1, 2, ..., (dim g)2} de�ned as

(ψg)(α) = dimDer(α,1,1)g

is called the ψg invariant function corresponding to the (α, β, γ)-derivations of
g.

A κ-twisted cocycle (simply κ-cocycle ) is any c ∈ Cq(g, V ), with q ∈ N,
verifying 0 =

∑q+1
i=1 (−1)i+1κiif(xi)c(x1, . . . , x̂i, . . . , xq+1) +

∑q+1
i,j=1,i<j(−1)i+j

κijc([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xq+1).
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De�nition 2.3. The ϕ invariant function corresponding to an n-dimensional
Lie algebra g is the mapping

ϕ : C 7→ {0, 1, . . . , n
2(n− 1)

2
} de�ned by (ϕg)(α) = dim coc(1,1,1,α,α,α)g.

De�nition 2.4. Let g = (V, [, ]) be an n-dimensional Lie algebra and U :
(0, 1] 7→ gl (V ) be an one-parameter mapping. If the limit

[X,Y ]0 = ĺım
ε→0+

U−1 (ε) [U(ε)X,U(ε)Y ]

exists for all X,Y ∈ g, we say that g0 = (V, [, ]0) is an one-parameter contraction
of the algebra g and we write g 7→ g0.

Finally, with respect to contractions of Lie algebras, let us recall

De�nition 2.5. Let g = (V, [, ]) be an n-dimensional Lie algebra and U :
(0, 1] 7→ gl (V ) be an one-parameter mapping. If the limit

[X,Y ]0 = ĺım
ε→0+

U−1 (ε) [U(ε)X,U(ε)Y ]

exists for all X,Y ∈ g, we say that g0 = (V, [, ]0) is an one-parameter contraction
of the algebra g and we write g 7→ g0.

The contraction g 7→ g0 is said to be proper if g is not isomorphic to g0.
The following results were shown in [3].

If g0 is a proper contraction of the complex Lie algebra g, then

1. dim Der (g) < dim Der (g0) .

2. ψg ≤ ψg0 and ψg(1) < ψg0(1).

3. ϕg ≤ ϕg0 and ϕ0g ≤ ϕ0g0.

Moreover, it is satis�ed that, in dimension 3, Condition 2 is a characterization
of proper contractions of g.

3. Extending the de�nitions of the previously de-

�ned invariant functions to the case of �liform

Lie algebras. New results obtained.

With the objective of extending the de�nitions of the invariant functions
ψ and ϕ introduced by Hrivnák and Novotný [4] to the case of �liform Lie
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algebras of lower dimensions, authors have obtained in a previous paper the
following values of these invariant functions for the case of �liform Lie algebras
of dimension 3, 4 and 5 (see [2])

The ψ invariant function for 3-dimensional �liform Lie algebras. According
to the notation used in [4], we have obtained that ψf3(α) = 6, for all α ∈ C.

The ϕ invariant function for 3-dimensional �liform Lie algebras. We have
obtained that ϕf3(λ) = 9, if λ = 0, and ϕf3(λ) = 8, if λ ∈ C \ {0}.

The invariant functions ψ for the 4-dimensional �liform Lie algebra f4.We
have obtained ψf4(α) = 7, for all α ∈ C.

The ϕ invariant functions for 4-dimensional �liform Lie algebra. We have
that ϕf4(α) = 16, if α = 0, and ϕf4(α) = 18, if λ ∈ C \ {0}.

Finally, in the case of the ψ invariant function for �liform Lie algebras of
dimension 5, we have found that ψf5(α) = 9, for all α ∈ C.

4. Some examples of proper contractions between

di�erent types of algebras

In this section we study proper contractions from �liform Lie algebras of
lower dimensions to di�erent types of algebras.

4.1. Proper contractions of 3-dimensional �liform Lie al-

gebras

Now, by using some results got by Novotný and Hrivnák in [3], we ha-
ve obtained the invariant function ψ for some particular Lie algebras. Indeed,
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g1: Abelian Lie algebra
α ∀α ∈ C

ψ3g1
(α) 9

g3,1: [e2, e3] = e1
α ∀α ∈ C

ψg3,1
(α) 6

g2,1 ⊕ g1 : [e1, e2] = e2
α ∀α ∈ C \ {0} 0

ψg2,1⊕g1
(α) 4 6

g3,2 : [e1, e3] = e1, [e1, e3] = e1 + e2
α 1 ∀α ∈ C \ {1}

ψg3,2
(α) 4 3

g3,3 : [e1, e3] = e1, [e2, e3] = e2
α 1 ∀α ∈ C \ {1}

ψg3,3
(α) 6 3

4.2. The invariant function ψH5

The computation of the invariant functions of �liform Lie algebras of dimen-
sion odd allows us to compare these algebras with Heisenberg algebras (which
are only de�ned for these dimensions).

With respect to the invariant function ψH5 we have obtained that ψH5(α) =
15, for all α ∈ C.

5. Conclusions

As ψf3 ≤ ψg1
and ψf3(1) < ψg1

(1), a previous result assures the existen-
ce of a proper contraction from f3 to g1. Analogously, the same occurs
between g3,2 and f3 since ψg3,2 ≤ ψf3 and ψg3,2(1) < ψf3(1).

Note that ψf3(1) = 6 and ψg3,1(1) = 6. Therefore, the same result assures
that there is not any proper contraction between g3,1 and f3. Similarly, the
same occurs between g3,3 and f3 due to that ψf3(1) = 6 and ψg3,3

(1) = 6.

We have also computed the invariant function ψ for the 5-dimensional
Heisenberg algebra and have proved that there is not a contraction from
the 5-dimensional �liform Lie algebra to the Heisenberg algebra of this
dimension.

Therefore, we can conclude that the 5-dimensional classical-mechanical
model built upon a 5-dimensional �liform Lie algebra cannot be obtai-
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ned as a limit process of a quantum-mechanical model based on a 5-
dimensional Heisenberg algebra.
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