
https://doi.org/10.1177/1176934318767889

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 14: 1–16
© The Author(s) 2018
Reprints and permissions: 
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934318767889

Introduction
The understanding of gene regulatory networks (GRNs)1,2 is 
one of the main current challenges in biology. A crucial 
problem is the determination of laws that govern the tempo-
ral dynamics of a biologic system from a particular state to a 
later one, through activating and repressing actions of some 
genes or their products (proteins) over other ones in tran-
scription and translation processes. The identification of 
these actions is very important for developmental biology, for 
determination of the causes of certain diseases, and for the 
signaling of therapeutic targets. The set of genes and their 
interactions, which determine a particular behavior, can be 
represented by a directed network in which the nodes are 
genes/proteins and the links represent the activating and 
repressing actions of some genes over other ones. Based on 
experimental data from 2 different network states, the 
dynamical processes that transform from one state into 
another through evolution rules can be inferred and their 
characteristic parameters can be evaluated.3,4 As experimen-
tal data are often unclear or incomplete, this information can 

also help experimentalists in the search for new interactions 
or in the discard of false positives.

One of the most used inference method consists in using 
Boolean rules, characterizing node states by 2 binary values 
(activated/not activated) that can be marked as 1 and 0, and 
links associated to actions by activator/repressor do not exist 
(which can be marked as +1, –1, and 0). A set of possible simple 
rules can be established, which determines the state of a node 
at any given time by the nature of the incoming links to that 
node at a previous time. The state of the network nodes can be 
refreshed synchronously or asynchronously. Given an initial 
and a final state, the objective is to determine which rules and 
interactions are applicable to each node, with a particular con-
figuration of links, to reach the final state (or a state very close 
to it) in a number of time steps, starting from the initial state. 
In other words, we would like to find the network links and the 
evolution rules of the network nodes. In the case that the result 
is not unique, the results can be interpreted with biologic crite-
ria or by experiments that confirm one option against the other 

Graphics Processing Unit–Enhanced Genetic Algorithms 
for Solving the Temporal Dynamics of Gene Regulatory 
Networks

Raúl García-Calvo1, JL Guisado1, Fernando Diaz-del-Rio1,  
Antonio Córdoba2 and Francisco Jiménez-Morales2

1Department of Computer Architecture and Technology, University of Seville, Seville, Spain. 
2Department of Condensed Matter Physics, University of Seville, Seville, Spain.

ABSTRACT: Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that 
purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The 
huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding 
optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network 
sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the 
fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An 
exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various 
individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources 
are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness 
perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors 
for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively 
frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In 
addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application 
on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class 
GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to 
researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to 
apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).

KEywoRDS: Gene regulatory networks, evolutionary computing, parallel genetic algorithms, GPU

RECEIVED: November 23, 2017. ACCEPTED: February 28, 2018.

TyPE: Original Research

FUNDING: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This work was supported by the 
following research projects of the Ministerio de Economía, Industria y Competitividad 
(MINECO), and the “Agencia Estatal de Investigación (AEI)” of Spain, co-financed by 
FEDER funds (EU): MABICAP (Bio-inspired machines on High Performance Computing 
platforms:a multidisciplinary approach, TIN2017-89842P), COFNET (Event-based 
Cognitive Visual and Auditory Sensory Fusion, TEC2016-77785-P) and TOP4COG 

(Topological Recognition of 4D Digital Images via HSF model, MTM2016-81030-P (AEI/
FEDER,UE)).

DEClARATIoN oF CoNFlICTING INTERESTS: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CoRRESPoNDING AUTHoR: José Luis Guisado, Department of Computer Architecture 
and Technology, University of Seville, E.T.S. Ingeniería Informática, Avda. Reina Mercedes 
s/n, 41012 Sevilla, Spain.  Email: jlguisado@us.es

767889 EVB0010.1177/1176934318767889Evolutionary BioinformaticsGarcía-Calvo et al
review-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:jlguisado@us.es


2 Evolutionary Bioinformatics 

ones. To find the structure of the network and its evolution 
rules, a heuristic optimization method is applied. A fitness 
function is calculated by comparing the reached state with the 
preestablished final state. The most frequently applied meth-
ods are evolutionary algorithms,5,6 a family of optimization 
methods that are inspired by the principles of natural evolution 
to find solutions to hard optimization problems. The method 
introduced in Aguilar-Hidalgo et al3 can infer the dynamics of 
GRNs between known initial and ending network states by 
simple acting rules, using a genetic algorithm (GA). The 
method was also reviewed and its applicability to real biologic 
problems was further discussed in Aguilar-Hidalgo et  al.4 
However, in those works, only a simply sequential version of 
the algorithm was used, thus needing several hours for a small 
testing GRN. Even for our optimized sequential implementa-
tion using a compiled language like C++ with all the optimiza-
tions enabled (used for comparison with a parallel version in 
this article), a runtime of the order of 30 min is needed, for 
example, to run a single-threaded version of the algorithm for 
a GRN including 32 genes with a GA population of 30 000 
individuals on a high-end Intel i7 CPU. Moreover, this run-
time increases rapidly with the number of genes of the GRN.

Therefore, it is very convenient to design and implement 
efficient parallel algorithms for this task. Genetic algorithms 
have an inherently parallel nature that makes them well suited 
to implementation in massively parallel hardware like graphics 
processing units (GPUs), but they have several sequential 
parts that are difficult to deal with, like the crossover or the 
selection procedure. Thus, it is important to fine-tune the par-
allel implementation to benefit from all the potential compu-
tational power of the GPU. To allow the practical application 
of this method to real-life problems (often involving large 
GRNs), we present in this work a comprehensive study on 
how to develop efficient parallel implementations of this 
method for the fine-grained parallel architecture of GPUs. To 
this end, we evaluate both performance and effectiveness for a 
wide range of possible elections for parallel GA schemes 
(master-slave, island, cellular, and hybrid models) and selec-
tion methods (roulette, elitist), and we suggest procedures to 
optimize the use of the GPU’s resources.

Main contributions

Because of the intricacy of the GRN dynamics, we have pro-
ceeded in a systematic manner to unveil what the most promis-
ing GA and the most efficient GPU configurations may be. All 
along the article, our conclusions are described and justified with 
experimental data. As a summary, which can be a guide for prac-
titioners and experimentalists to solve the temporal dynamics of 
GRNs, the working flow of our experiments was as follows:

1. Studying the transformation rules that can be applied to 
each network state and finding a universal encoding for 
them.

2. Defining a proper fitness function based on the number 
of differences in network node and network link values, 
between the current population individual and the target 
solution.

3. Implementing and testing most of the parallel versions of 
GAs, bearing in mind 2 main groups: nonstructured 
master-slave models and parallel structured GA models 
(island, cellular, and hybrid).

4. Confronting the behavior of 2 dissimilar selection meth-
ods: roulette and elitist.

5. Studying in depth the best model found. In particular, we 
have discovered a large variation in the results for the 
island model when varying the migration frequency 
(number of generations between each migration) and the 
migration rate (number of individuals migrated).

6. Determining whether the found fitness is near to the 
optimal or not. In fact, we have found the minimum pos-
sible fitness along our experiments.

Although there is much general advice when programming 
for GPGPUs (General-Purpose Computing on Graphics 
Processing Units), for the specific case of achieving maximum 
performance in the study of GA for GRN some important 
aspects have been unveiled all along this work. Several key points 
to achieve maximum performance have been found accordingly. 
In particular, we have determined a different thread pairing for 
each genetic operator as a parallelization strategy that GAs may 
benefit from. The complete list of those key points is as follows:

1. First, the proper selection of the number, type, and size of 
the data objects for the GPGPU is of essential priority.

2. Determination of the best thread pairing for each genetic 
operator (or any other computation). The most extended 
and intuitive thread selection in the current literature 
(pairing individuals with threads) does not usually pro-
duce the better results.

3. Reorganization of memory accesses to favor coalescence 
in the memory access patterns.

4. Careful estimate of GPU shared memory consumption 
so as the maximum number of threads could fit in it. This 
estimation usually determines the maximum number of 
individuals for some models of the GA, such as the cel-
lular model.

5. Management of any type of bifurcation (branch, loops, 
etc.). On the whole, we have found that it is especially 
important to avoid thread divergence when applying the 
GRN rules.

The execution time of the algorithm has been reduced by 
applying development techniques which optimize the use of 
resources of the GPU with compute unified device archit 
(CUDA). A comparative study of the performance obtained by 
the different versions of the parallel implementation on GPU 
against a sequential implementation on a CPU has been made. 



García-Calvo et al 3

The proposed parallel algorithm has been implemented into 
the software cuEVOGENET and is available online at https://
github.com/rxp90/cuEVOGENET.

Related Work
Evolutionary algorithms are based on creating a population of 
possible solutions of a problem and applying procedures that 
mimic natural evolution to find good candidate solutions 
within that population: creation of diversity, mechanism of 
selection, and genetic inheritance. Thus, evolutionary algo-
rithms explore the search space to locate good solutions of the 
problem. Genetic algorithms7,8 are a class of evolutionary 
algorithms in which a candidate solution to a given problem is 
encoded as a bit string, called individual or chromosome. A 
population of such strings is chosen at random and evolves 
over a number of generations under procedures inspired in 
natural evolution to find good candidate solutions: selection 
according to a fitness function, crossover to produce new off-
spring, and random mutation to increase diversity. Genetic 
algorithms and other types of evolutionary algorithms have 
been successfully applied to various bioinformatics problems, 
such as inferring GRNs from gene expression profile data,9,10 
identifying motifs in DNA sequences,11,12 or generating DNA 
strands for DNA computing.13

Many of the GA operations can be executed in parallel in 
different processors or processing elements with a high compu-
tation to communication ratio. Therefore, GAs are good candi-
dates to be executed in parallel and distributed computers with 
good speedup respect to sequential executions. This paralleliza-
tion is very often necessary to obtain solutions of good quality 
in a reasonable time. Even though GAs are based on simple 
mechanisms, parallel GAs are complex nonlinear algorithms 
controlled by many parameters, so that it is difficult to preview 
which are the best choices for a good efficiency. Different mod-
els of parallelization of GA have been studied. A good early 
overview of techniques employed to implement GAs in parallel 
is the work by Alba and Troya.14 Cantú-Paz15 also presented a 
classification of parallel GAs and made a systematic study of 
how the different parameter values affect to the quality of solu-
tions and to the efficiency of the parallel implementation. A 
recent survey of the state of the art in distributed evolutionary 
algorithms (including and up-to-date references) is offered by 
Gong et al.16 Moreover, this work analyzes in detail the differ-
ent models of parallel evolutionary algorithms and their char-
acteristics. In addition to the runtime reduction, another 
advantage of the parallel implementation of evolutionary algo-
rithms is that it can add intrinsic fault-tolerance mechanisms 
to the optimization algorithm, as shown by González et al17 for 
the master-slave model and by Hidalgo et al18 for the island 
model.

Parallel GAs have been implemented on GPU for many 
test problems using various parallelization models, demon-
strating that good results can be obtained specially for large 
populations. Some examples are Luo and Liu,19 who employed 

a cellular model; Li et  al,20 who used a master-slave model; 
and Luong et  al,21 where island model was preferred. Some 
GPU implementations of GAs are also reported for real-life 
biologic problems. For instance, Ben-Shalom et  al22 used a 
master-slave model for a computational neuroscience problem 
consisting in tuning the parameters of kinetics models for 
voltage-dependent ion channels of neurons, obtaining a con-
siderable speedup for that problem as compared with a small 
Linux cluster. At last, a good review paper about parallel 
implementation of evolutionary algorithms is the work by 
Arenas et  al,23 which introduces the questions posed by the 
implementation of this kind of algorithms on GPU and pre-
sents a survey of solutions found in the literature.

In recent years, increasing attention has been paid to evolv-
ing GRNs. In consonance, a special issue of the journal 
BioSystems was devoted to this topic in 2009,24 identifying the 
3 areas that have been more studied since then. The first area is 
synthesis of GRNs using evolutionary algorithms. Esmaeili 
and Jacob25 employed evolutionary algorithms to discover reg-
ulatory networks that optimize multiple stability indicators, 
including network sensitivity, cyclic length of the attractors, 
and number of attractors. Nicolau and Schoenauer26 used evo-
lution to find regulatory networks with specific patterns of 
connectivity, such as scale-free networks. In the same line and 
most recently, Noman et al27 employed an evolutionary algo-
rithm to find GRNs that include robust network modules, 
using a Monte Carlo method to quantify topologic robustness. 
They verified their algorithm by identifying GRNs showing 2 
classic behaviors: oscillation and bistability. The second area is 
not related to this work (the reconstruction of biologic genetic 
networks using computational gene regulatory models and 
experimental data), so these references are not included here.

Finally, the third area is the application of gene regulatory 
models and artificial development to solving engineering prob-
lems and to build artificial simulated organisms intended to 
study the working principles of natural systems. In the last dec-
ades, artificial GRNs, which are dynamical systems inspired in 
their natural counterparts, have been employed with those pur-
poses. Evolutionary algorithms play a crucial role in finding 
good solutions of these artificial GRNs. Eggenberger28 proposed 
an artificial evolutionary system to evolve 3-dimensional shapes 
of simulated multicellular organisms. Banzhaf29 introduced an 
artificial regulatory network and showed that it can reproduce 
phenomena found in natural ones, such as heterochrony (a vari-
ation in timing of expression) or different dynamical behaviors 
on protein concentration, ruled by changes in the genome. Knabe 
et al30 proposed an artificial GRN to model biologic clocks and 
showed that it captures many of their characteristic properties. 
Guo et al31 proposed a GRN-based algorithm to make an arbi-
trary number of robots to self-organize into different predefined 
shapes and even to self-reorganize adaptively under dynamic 
environments without the need of a centralized control. They 
employed a multiobjective GA to tune the parameters in the 
regulatory model to simultaneously minimize 2 objectives: the 

https://github.com/rxp90/cuEVOGENET
https://github.com/rxp90/cuEVOGENET


4 Evolutionary Bioinformatics 

total traveling distance of all the agents and the system conver-
gence time. Joachimczak and Wróbel32 used artificial GRNs 
evolved by a GA to generate or process signals in which infor-
mation is encoded in chemical pulses, showing their capability to 
perform tasks such as doubling the frequency or pulse length of 
the input signal, acting as a low pass frequency filter, or doubling 
the number of input pulses. More recently, Cussat-Blanc et al33 
employed a special type of GA (with augmenting topologies) to 
evolve artificial GRNs that were used to control agents perform-
ing different problem domain tasks.

GA for the Temporal Dynamics of GRNs
In this section, we present a description of the GA that we have 
employed. A pure sequential, elementary implementation of it 
was introduced by Aguilar-Hidalgo et al.3 We refer the reader to 
this reference for more details on the basics of the algorithm. 
Although this previous work suggested a modelization for this 
kind of GRN, it did not give an insight in the most efficient GA 
model nor in reaching the best solution for this network. Maybe 
this was due to its elevated computing times (several hours for a 
trial), which made prohibitive the testing of the different possi-
bilities: GA models, parameter adjusting, best number of indi-
viduals, mutation probabilities, and so on. Thanks to the 
chromosome encoding and the GPU-oriented parallelization 
methods employed here, we verify that the proposed GRN tem-
poral dynamics model provides complete efficiency for the solu-
tion of this kind of problem. Indeed, we investigate all of these 
possibilities and find the implementation that produces better 
results (both from the performance and the GA fitness perspec-
tives). An important result of our exhaustive study is that a mod-
erate population size is enough to get to very good fitness values. 
This allows us to compute many of the GA possibilities in less 
than a minute and finally to find a minimal fitness value. Indeed, 
we have demonstrated that this value corresponds to the best 
solution for the analyzed GRN, impossible to diminish.

Gene regulatory networks

A GRN is modeled, using a Boolean network model,34 as a 
directed graph G V E= ( , ) , where V  is the set of vertices or 
nodes, which represent genes or proteins, and E  is the set of 
edges on V , which represent regulatory interactions between 
genes/proteins. An edge between Vi  and V j  symbolizes a 
dependence between them. The state of a node can be described 
by a Boolean variable expressing that it is active (1) or inactive 
(0), and thus that its products are present or absent. The graph 
will be annotated so as to reflect the nature of the dependencies 
(eg, activator, repressor).

GRN temporal dynamics model

The time evolution of a GRN starts from an initial state A  
and reaches a final state B . It is expected that the transforma-
tion dynamics that turns network state A  into state B  will be 

ruled by a certain rule set. The objective of the GA is to find a 
rule set (1 rule for each network node) that, applied to an initial 
state ′A  which is close to A  and differs from it on a number 
of links, transforms it into a final state ( B* ) that is close to the 
desired final state B , as shown in Figure 1.

Each chromosome represents a candidate solution of our 
problem, including the set of links of state B*  and a set of 
rules. ′A  is the state formed by the same node configuration as 
A  and the same set of rules as B*. The application of this set 

of rules to state ′A  (1 rule for each network node) transforms 
it into a network state corresponding to B* .

A pseudocode of the GA is shown in Figure 2. At the start, 
a population of solutions is generated. Each individual is evalu-
ated according to a fitness function. After the generation of the 
initial population, evolution is allowed to proceed in an itera-
tive manner. In each iteration or generation, following the bio-
logic evolution analogy, several genetic variation operators 
(crossover, mutation) are applied to introduce diversity in the 
population. Each resulting population individual is evaluated 
according to the fitness function. Then a selection procedure is 
applied, in which the population for the next generation is 
formed by a combination of some individuals of the previous 
generation and the offsprings resulting from the application of 
the variation operators. The procedure is iterated until some 
stop condition is fulfilled: a predefined number of generations 
is completed or the fitness value of some individual surpasses a 
predefined value.

Initial population

The initial population is composed of individuals whose links 
part is generated by making random permutations of the origi-
nal network links, that is, by permuting a number of link ele-
ments randomly chosen. In this way, a new individual with 

Figure 1. Evolutive transformation dynamics of the GRN. The objective 

of the genetic algorithm is to find a set of transformation rules that brings 

from ′A (which is close to the initial state A  and differs from it only on a 

number of links) to a final state B*  close to the known final state B .



García-Calvo et al 5

different links is obtained, but the connectivity of the network 
number of links of the individual is maintained. The rules part 
of each individual is generated randomly.

Solution encoding

The GA chromosome, which represents a possible solution of 
the problem, is formed by the model parameters whose con-
figuration is to be investigated: the links among the nodes and 
the rules applied to each node. The chromosome used in our 
study is composed of 32 nodes, but for clarity we have shown 
in Figure 3 the chromosome of an individual with only 3 nodes. 
The first part is composed of the links that each node has, and 
the second part includes the rules applied to each of the 3 
nodes. The possible values of a link can be +1 (if the link is an 
activator), –1 (if the link is a repressor), or 0 (if there is no link). 
A numeric value represents the rule to be applied to each node 
(see next section).

Transformation rules

The possible rules that can be applied to each network state are 
as follows:

1. Rule of the most: the final state of the node is deter-
mined by the action of most links directed to it. If most 
of them are activators it will be activated; if most of them 
are repressors, it will be deactivated. If the number of 
activators is equal to the number of repressors, the state 
of the node will remain the same.

2. Absolute repressor: the presence of just 1 repressor link is 
enough to deactivate the node.

3. Joint action of 2 activators: the node will be activated 
only if, at least, 2 input links are activators.

4. Joint action of 2 repressors: the node will be deactivated 
only if, at least, 2 input links are repressors.

The set of rules is the specification of which one of these 
rules is applied to each particular network state in the GRN. 
Only links coming from active nodes are considered.

Solution evaluation

Each individual of the population is evaluated, and a score value 
is associated to it according to a fitness function, based on the 
number of differences in the values of the network nodes and the 
network links between the population individual ( B ) and the 
target solution ( B* ). Hence, the fitness function φ  is defined as,

φ λ λ λ=
( , )

( , )
1

( , )

( , )
, 0 1

d B B
d B B

d L L
d L L

*

*

*

*max max




+ −( )







≤ ≤  (1)

where d B B( , )*  is the distance between the values of the nodes 
in network states B  and B* , and d L L( , )*  is the distance 
between the values of the links for B  and B* , considered both 
distances as the number of differences between the nodes (or 
links) values. The better the individual, the lower its numerical 
fitness value. Here, λ  is a regulatory parameter that deter-
mines the relative importance of each term (nodes or links) in 
the global calculation of the evaluation. As in the article where 
the model was introduced,3 the following value for the λ  
parameter has been chosen:

λ = 0.9  (2)

The reason for using a high λ  value is that the amount of 
link variability found in these kinds of biologic problems is 
usually much higher than that of nodes.

Genetic operators

Crossover. In each iteration of the GA, just the best 2 individuals 
from the previous generation are kept, that is, elitism is applied. 
The rest of the individuals of the population are generated by 
applying crossover to couples of the remaining individuals. To 
select the parent individuals of each crossover operation, the rou-
lette method is applied: all the individuals are capable of being 
selected as parents with a probability that is directly proportional 
to the normalized fitness value of the individual. Thus, individuals 
with a higher fitness value have a higher probability of generating 
new individuals and keeping part of their genetic information in 
the population. As a result, the fitness value of the average indi-
vidual should increase with the number of generations. However, 
the crossover operations also introduce some variability so that the 
capability of exploring the search space is increased.

As the chromosome is formed by 2 parts, rules and links, it 
is necessary to determine 2 related crossover points for each 
crossover operation. The links crossover point is determined 
randomly and the rules crossover point is determined accord-
ing to the former election following the expression:

Figure 2. Pseudocode of the sequential version of the genetic algorithm.

Figure 3. Chromosome example representing a particular possible 

solution of the problem.



6 Evolutionary Bioinformatics 

K int l
N

= 1








+  (3)

where K  is the rules crossover point, l  is the links crossover 
point, and N  is the number of nodes in the network. In this 
way, we calculate how many nodes are involved (ie, with all of 
their inputs being crossed) in the crossover and select also the 
rules attached to them.

A low connectivity is frequently observed in biologic net-
works.35 Thus, to keep the connectivity of the network within 
low values, each new individual generated by crossover has to 
pass a connectivity test before being accepted as part of the new 
population. Only the individuals with a number of inputs per 
node smaller or equal to 7 are accepted. Otherwise, the individ-
ual is rejected and a new individual is generated by crossover.

Mutation. After a new individual has been generated by cross-
over, it undergoes a mutation process in a probabilistic manner. 
There is a mutation probability for each one of the parts of a 
chromosome: µ1, the mutation probability for the links portion 
of the chromosome; and µ1, the mutation probability for the 
rules portion of the chromosome. Mutation is individually 
applied to each element of the chromosome according to its 
probability value. In the case that mutation has to be applied 
for an element, a new value for it is randomly chosen. All the 
possible final values after mutation have the same weight in 
this random choice: 1/2 for links (changing to 1 of the 2 
remaining possibilities) and 1/3 for rules (changing to 1 of the 
3 remaining possibilities).

Selection/replacement. The population of generation t +1  is 
formed by the best 2 individuals from generation t  and the 
individuals obtained by applying the crossover and mutation 
operators to the remaining individuals from generation t . 
Thus, the total number of individuals in the population is 
unchanged.

GPU Architecture and Parallel Programming
During the last decade, several reasons have pushed up GPGPUs 
as an excellent platform to conduct heavy tasks with a high 
degree of parallelism. One of the reasons for their success is its 
inherent general-purpose manycore-based implementation, in 
contrast to other less flexible architectures like Application-
Specific Integrated Circuit (ASICs) or Field-Programmable 
Gate Array (FPGAs). Moreover, several additional advantages 
have thrusted their success for an ample set of scientific applica-
tions. First, the very low cost per processing unit, which is sup-
posed to persist, since data center and PC graphics markets 
subsidize GPUs. Second, the annual growth of performance 
and memory bandwidth is predicted to remain very high.36 For 
example, many existing GPUs, with around 3000 floating-point 
arithmetic cores, can achieve a performance above 5 Tera 
FLoating point OPerations per Second (TFLOPS) and around 

300 GB/s within 1 chip. One of the consequences of this advan-
tage with respect to its competitors is that many top leading 
supercomputers are GPU-based machines.37 Besides, with the 
advent of new architecture capabilities of GPGPUs, and the 
expansion of tools, libraries, and hardware abstraction mecha-
nisms, GPU software development is not now a tricky and 
bizarre programming task like it was in its former stages.38 
Debugging and profiling tools like those from CUDA39 are 
more and more reliable. Previous reasons have pushed the scien-
tific community to incorporate GPUs in several disciplines, and 
it seems that this tendency will continue for the next decade. 
Compute unified device architecture is the NVIDIA program-
ming platform that has been chosen to implement current work.

A GPGPU39 includes an array of streaming multiprocessors 
(SMs). Nowadays, each SM consists of 8, 16, or 32 floating-
point Scalar Processors (SPs); 1, 2, or 4 Special Function Units; 
1 or 2 multithreaded instruction units; and several pieces of 
memory. Each memory type is intended for a different use; thus, 
if the programmer were conscious of memory management, it 
could extract any drop of performance. Each GPGPU has now-
adays 1 or 2 warp schedulers that select at any cycle several groups 
of threads for execution on each SM in a round-robin fashion. 
A warp is simply a group of 32 hardware-managed threads. As 
the number and types of threads are enormous, a 5-dimension 
organization is supported by CUDA, with 2 important levels: a 
grid contains blocks that must not be very coupled while every 
block contains a relatively short number of threads (usually 512 
or 1024), which can cooperate deeper (eg, by sharing data 
through on-chip shared memory and fast synchronization 
primitives). If a thread in a warp issues a costly operation (like 
an external memory access), then the warp scheduler switches 
to a new warp, to hide the latency of the other thread. To effec-
tively use the GPGPU resources, each thread should operate on 
different scalar data, with a certain memory access pattern.

Implementation of the GRN Temporal Dynamics on 
GPUs
Parallel-oriented GA models

We have implemented different parallel versions of the GA: a 
nonstructured master-slave model and 3 parallel structured GA 
models—island, cellular, and hybrid model (Figure 4). In a 
nonstructured model, the GA uses a single population, and the 
GA procedures or operators (selection, crossover, mutation) 
are applied on them as a whole. In particular, all individuals 
can undergo crossover with one another (panmixia). In con-
trast, in a structured model, the population is divided in groups 
so that each individual can only interact with individuals 
within its group.

Master-slave model. In this model, the GA is composed of a 
single monolithic (panmictic) population. To use the huge par-
allelism of the GPU, different operations of the algorithm  
can be executed independently for each individual of the 



García-Calvo et al 7

population on different processing elements of the GPU (see 
section “Optimizations for GPUs”). It is worth to mention that 
the implementation of the elitist selection has been targeted to 
reduce the GPU memory bandwidth consumption. Given the 
fitness values of an initial population (see Figure 5), sorting 
results are collected over their indexes. These indexes are then 
sorted by fitness values, so that adjacent couples are selected. 
The fourth row of Figure 5 shows an example of this selection, 
whereas its last row indicates which individuals (represented by 
their fitness values) are actually to be mated according to this 
criterion.

Parallel island model. In the island model, also called “coarse-
grained” or “distributed” GA model,15,40 the population is par-
titioned into a set of subpopulations or islands. An isolated GA 
is executed in each island and a number of individuals are cop-
ied to another island (migrations) periodically, as shown in 
Figure 4. This strategy has 2 advantages. First, a performance 
improvement can be obtained on a parallel computer. If we can 
execute each island concurrently on a different processor, the 
computing time of the algorithm can potentially be decreased 
substantially. Second, the presence of parallel populations and 
their interaction introduce a new dynamics that improve the 
numerical behavior and execution time of the algorithm by 
obtaining a higher genetic differentiation and a better sam-
pling of the search space.

A pseudocode of our parallel version of the GA for GRN 
temporal dynamics using the island model is shown in Figure 6.

Different choices or parameter values are involved in the 
design of a parallel island GA: size and number of islands, 
migration topology (topology that interconnects the islands, 
for example, ring, star, or fully connected), migration frequency 
(number of generations between each migration), migration 
rate (number of individuals to migrate), and migration policy 
(selection of those individuals to migrate and those to be 
replaced in the destination island). As will be discussed in the 
section “Experimental results,” the choice of parameter values 
can affect the efficiency of the parallel algorithm.

The methodology to implement migrations in the parallel 
island model is described in Figure 7. Information on islands 
was stored in the GPU memory. An elitist selection was carried 
out in each island. Then, the crossover operator is applied. To 
save computing time, the population was not sorted again after 
crossover: it is assumed that the crossing of good individuals 
will give rise also to good individuals. After that, the best n  
elements of each island are migrated to the destination island 
(being all the islands arranged in a ring topology).

Parallel cellular model. In a cellular model (Figure 4), the whole 
population is arranged in a grid with a certain topology, and 
each individual can only mate and compete with other indi-
viduals included in its neighborhood. The neighborhoods 
overlap, so that individuals with good fitness value can propa-
gate through the entire population. A cellular model is thus 
fine-grained and spatially structured.

Figure 4. The 3 different models of parallel structured genetic algorithm that have been studied.

Figure 5. Elitist selection implementation for the master-slave model. 

From top to bottom: fitness values of an initial population, increasing 

indexes, fitness sorting results expressed over the indexes, adjacent 

couples to be mated, and individuals to be mated according to this 

criterion. Figure 6. Pseudocode of the parallel version of the genetic algorithm 

following the island model.



8 Evolutionary Bioinformatics 

We have implemented a cellular parallel model in which 
elitist selection is used: each element is crossed with its best 
fitness neighbor as shown in Figure 8.

Hybrid model. A hybrid model is composed of islands that 
include a cellular model inside each one (Figure 4). Hybrid 
models have not yet been used as frequently as island or cellular 
ones, because they involve a higher level of complexity, both in 
programming and in choosing the right values of the parame-
ters of its more complex topologic structure. However, they can 
be good candidates to extract the potential power of parallel 
architectures with a highly hierarchical memory, such as GPUs.

Optimizations for GPUs

On the whole, GAs, as most bioinspired algorithms, are paral-
lel in nature, which might make them good candidates for 
massively parallel hardware like GPUs.23,41,42 However, there 
are several sequential parts that are difficult to deal with (like 
the selection procedure). Hints about GPU optimization of 
these parts are unveiled in this section.

One of the most important aspects that reduces time com-
putation is executing everything directly at the GPU, thus 
avoiding transfer times between CPU and GPU. With current 
GPU architecture capabilities and software tools (mainly the 
all-purpose cuRAND, cuBLAS, and Thrust), this is perfectly 
possible and this policy has been followed all along this work.

Some authors have even published an ordered points check-
list for maximizing GPUs’ efficiency.43 In this respect, out-
standing soft computing methods and excellent researchers 
meet with a profound challenge when trying to program in 
highly parallel platforms.44 On the other side, it can be easily 
understood that tuning GAs to be highly parallel and efficient 
over GPU platforms leads to implementations that are difficult 
to implement into other architectures.

Although previous studies serve to depict a first scene of the 
main optimizations and challenges that a GA designer must face 
to when programming for GPGPUs, for the specific case of 
GRN other important aspects have been unveiled in this work. A 
lot of preliminary tests were carried out to discover the impact on 
performance of several programming decisions. In some occa-
sions, we have detected that the most proper choice depends even 
on the GA model. During this evaluation, monitoring internal 

GPU performance through the Compute Visual Profiler45 for 
NVIDIA technology was used. Through the use of this tool, we 
have found several key points to achieve maximum performance.

First, the proper selection of the number, type, and size of the 
data objects for the GPGPU is essential. In our case, GRNs con-
tain lots of state information that consists on binary variables in 
most occasions. Although compressing this information in binary 
format would have supposed a reduction of total amount of con-
sumed memory, a set of initial test did advise us that this com-
pression was not beneficial from the performance point of view. 
The implementation of bit management operations was the main 
cause of this. As a consequence, we comprised most of the indi-
vidual information, but each state value was stored in a byte.

Special caution has been taken with shared memory con-
sumption. The total amount of shared memory for the differ-
ent parts of the GA has been carefully measured so as the 
maximum number of threads could fit in the 48 kB of the 
tested GPU (see section “Experimental results”).

The second important decision is the proper launching of 
thousands or millions of very light threads. The most intuitive 
thread selection is pairing individuals with threads (all cited ref-
erences here except one follow this method). Nevertheless, as 
some authors have pointed out, other possibilities can produce 
better results. For example, in Jaros,46 the author used a per-warp 
assignment, because in this case (solving the knapsack problem) 
warp granularity did not limit the size of individual (using 
appropriate mapping). In our case, we have stretched out a little 
more the thread assignment, mainly with the aim of avoiding 
GDRAM accesses by fitting the used memory with that of 
shared memory. This implies a different thread pairing for each 
genetic operator or other computations:

•• Crossover. Each block crosses only 2 individuals. A reduc-
tion process is applied to the 512 threads of a block to 
compute if the connectivity of successors preserves the 
correct number of links according to GRN hypothesis.

•• Mutation. A thread-individual pairing is preferred 
because mutation rules do not need individual 
communication.

•• Selection/replacement. The pairing for this step must be 
carefully decided for each genetic model. Our results 
clearly reveal some pairings for each model, which can be 
extended for other GAs. Briefly, we can state that (a) if 
roulette is chosen, each individual has no relation with 
the others, and only a GDRAM access to the random 
numbers is necessary; thus, a thread per individual selec-
tion pairing is preferred; and (b) for elitist selection, 
CUDA libraries (like Thrust47) propose a sorting by key 
with a reduced number of threads.

Moving pointers instead of moving the complete structure 
of individuals reduces the precious memory bandwidth, which 
yields to important benefit on CPU, which is even larger for 
GPU times.

Figure 7. Description of the migration methodology used in the parallel 

island model.



García-Calvo et al 9

•• Rule application. A node is paired with a thread. As the 
number of nodes of the analyzed GRN is 32, a warp con-
tains an individual. For each node (thread), only that use-
ful information (connected links and their state) is 
uploaded to the shared memory, thus reducing memory 
transferences.

•• Fitness computation. Same pairing as rule application 
because similar reasons apply.

Previous thread assignment and data partitioning to fit on-
chip shared memory reduce considerably main memory 
accesses. However, if this assignment wants to be preserved to 
keep previous benefits, some consequences on the maximum 
number of individuals appear for some GA models. Section 
“Study of fitness of cellular parallel model” gives details for this 
circumstance.

The next decisive factor on performance is the management 
of any type of bifurcation (branch, loops, etc.). On the whole, 
thread divergence must be avoided for most cases, meanwhile 
coalesce memory accesses should be reinforced to maximize 
GPU utilization. There are several conditional structures in 
GRN dynamics where CUDA compiler is not able to intro-
duce predication. These were detected using the NVIDIA 
Visual Profiler45 and considered of high priority by this tool. 
The most evident example is the choice of one of the 4 rules for 
each node (see section “Transformation rules”), when the rules 
are iterated 5 times for each individual. Other example is the 
selection of a random value after a mutation. These have been 
rewritten using lookup tables and logic bitwise operations, 
which introduce an important speedup.

Another issue that must receive attention is the pattern 
memory access. The CUDA manual39 provides detailed algo-
rithms to identify types of coalesced/uncoalesced memory 
accesses. Some reorganization of memory accesses was intro-
duced in our codes to favor coalescing. Crossing operation 
requires memory accesses that may have a variable stride if not 
enough attention is paid. In our case, instead of taking the most 
evident decision, which is that any thread copies 2 consecutive 
nodes, the code was rewritten so that a thread copies 1 node 

and other with a distance of 512. This allows a stride equal to 1 
between threads.

At any piece of code, some speedup can be achieved. A 
simple test with 1 kernel shows different speedups for a 
block when evaluating 1024 individuals (using elitist model). 
Avoiding thread divergence when applying rules can achieve 
a 1.44× speedup, an acceleration of 1.66× is obtained when 
vectorizing loads when accessing individuals (using casting 
operators to read 1 int4 elements at once instead of 16 inde-
pendent bytes), and finally, the vectorization of node link 
accesses when computing fitness values decreases time by a 
factor of 1.26.

It is worth to mention that previous optimizations can be 
used in other parts of a GA, thus obtaining additional speed-
ups. A relevant case occurred for migration of individuals when 
the island model is used (see section “Study of fitness of parallel 
island model”). Timing may vary significantly depending on 
the pairing between threads and individual information to be 
transferred. A comparison for 512 individuals (with a rate 
migration of 16 individuals each 16 generations) between 2 
cases can give us an idea of the importance of this issue. In a 
first test, a thread was in charge of transmitting 4 bytes (1 int). 
In a second test, transferring was vectorized, so each thread 
transfers 16 bytes (1 int4). Because the resultant bandwidth is 
10 times higher for the vectorized case, the execution is speeded 
up 3.5 times.

Experimental Results
A thorough study of various parallel implementations for the 
temporal dynamics of GRNs was carried out with a twofold 
aim: corroborating that GPUs are an excellent choice due to 
the huge achieved speedup with respect to a sequential CPU 
and selecting the best GA model (from fitness values evolution, 
scalability, and performance points of view). To achieve this 
goal, we have analyzed different parallel implementations for 
the GA which is the base of the studied algorithm: master-
slave, island, cellular, and hybrid models. Moreover, we tested 
for GPUs the behavior of 2 different individual selection meth-
ods: roulette and elitist.

Figure 8. An example showing how the best fitness neighboring element is chosen for each element in a 9-individual cellular population. Top: from left to 

right, first we depict the fitness value of 9 individuals arranged as a cellular model. On the next 3 diagrams, the Moore neighbors (considering a torus 

topology) for the individuals situated at (1, 1), (0, 0), and (2, 2) are marked with shadows. Bottom: left, coordinates of the best neighbors for the 9 

individuals; right, a possible result after the crossover operation.



10 Evolutionary Bioinformatics 

The tests were conducted for 2 GPUs shipped with a dif-
ference of around 5 years and 2 PCs with a similar age dis-
parity. Speedup comparisons were done for machines of the 
same period, which allows confirming that achieved GPU 
speedup is being not only maintained but also improved 
with much modern GPUs. PC processors were Intel Core 
i7-4712MQ running at 3.3 GHz and Intel Core 2 Quad 
Q6600 at 2.40 GHz (2 GB RAM DDR2). The 2 GPUs 
were an NVIDIA GeForce 820M equipped with 96 CUDA 
Cores and an NVIDIA GeForce GTX 660 with 960 CUDA 
Cores. Five trials were executed for each experiment, and the 
mean fitness values are shown in the graphs of this article. 
Nevertheless, the differences between the several trials were 
minimal. The GA was applied to the GRNs of the eye of the 
mouse (Mus musculus) during the embryonic stages of days 9 
and 10.5 after the fertilization. These stages are called E9 
and E10.5, respectively, and are described in Aguilar-
Hidalgo et al.3

Study of master-slave (panmictic) model and 
selection method

Apart from the parallelization and optimization for CUDA 
architecture explained in section “Optimizations for GPUs,” 
other important decisions were taken in relation with the 
memory allocation and the random number selection. For 
both selection methods, elitist and roulette, memory manage-
ment was the same. To reduce the memory-based operations, 
we generated a population-length array with the indices of 
each individual within the population and we applied the 
selection method to this array (instead of applying to the 
whole data of total population). More specifically in the rou-
lette method, and with the aim of saving memory accesses, we 
employed an empty array whose positions were filled with the 
index of the individuals selected by a roulette wheel algo-
rithm. Some important considerations of each selection fol-
low. In the case of the elitist method, a Thrust function 
sort_by_key() was used, so we obtained a sorted array of indi-
ces corresponding to the current position of the individuals 
that they point to. For the roulette selection, we tested all the 
possibilities offered by the curand_init() function, which is 
included in the cuRAND library, to generate high-quality 
pseudorandom numbers in a simple and efficient manner.48 
The key to prevent slow random number initializations is set-
ting cuRAND states initially with a different seed per each 
thread. Instead of initializing all the threads with a same seed 
(which preserves a very good distribution uniformity), we 
assign the current clock time plus the thread identifier (modi-
fied by a hash function) as a unique seed per thread (Figure 9). 
This allows a fast parallel initialization of all the random 
number states, whereas it prevents the use of the best quality 
random numbers. Although the number distribution is not as 
uniform for our approach as for the other one, in our case GA 

executions do not suffer from noticeable fitness variations 
(along 5000 generations). Meanwhile, performance disparity 
grows in a huge manner. Specifically, our tests reveal that the 
second case is more than 200 times faster for 256 individuals 
and more than 3000 times for 1024 individuals.

When comparing the performance of selection methods for 
sequential processors, it is obvious that the roulette wheel 
selection requires less time than the elitist one, because the first 
one does not need to sort any indices. Of course, things are very 
different for multithreaded-oriented architecture thanks to the 
parallel processing ability of CUDA systems. Time complexity 
order of parallel GPU implementation (using many processors 
and additional scratch memory space) being proportional to 
the logarithm of the amount of numbers to be ordered implies 
that, for a relative small number of individuals (around 6000), 
the overhead time injected by the sorting is less than that of the 
random function calls (see Table 1).

When representing the speedup of the parallel GPU versus 
the sequential CPU version for both selection methods (Figure 
10), it is discovered that GPUs can yield speedups with respect 
to CPUs. Comparing modern medium class CPUs with GPUs 
(both shipped around the same year), we can reach speedups of 
up to 13 times (for the elitist method with a population of 
20 480 individuals; being a little inferior when using the rou-
lette method).

In addition, multiple tests were launched to address the 
question of determining some reliable values for link and rule 
mutation probabilities. After this study, we concluded that 
excellent results can be obtained using low values for elitist 
selection (we chose .001 for both link and rule mutation prob-
ability values across this work). On the contrary, these values 
for roulette selection are not so clear (maybe because of the 
randomness introduced by the selection algorithm). The muta-
tion probabilities that were chosen for roulette selection in our 
study were .001 for links and .06 for rules.

In spite of all the above performance reasons, the most 
important issue that confirms the superior behavior of elitist 
selection is the evolution of the fitness. In Figure 11, elitist 

Figure 9. Two manners of generating random numbers via curand_init() 

function.



García-Calvo et al 11

and roulette fitness values are represented versus the number 
of generations and for 2 different populations. It is patent 
that in a few generations, elitist method reaches fitness values 
that surpass even the minimum ones that roulette selection 
can achieve for many generations. Moreover, this figure also 
allows one to draw another important conclusion: a moderate 
number of individuals (a few thousands) is enough to get to 
minimal fitness values in a modest number of generations. To 
sum up, in this section we can ensure that a few thousands of 
individuals using elitist selection produce good results (from 
the performance, scalability, and GA fitness perspectives) for 
emulating the temporal dynamics of GRNs using parallel 
GAs. In the rest of the article, this selection method and 
number of individuals are to be employed with the aim of 
determining the best parallelization scheme. In fact, tests of 
the next sections are going to corroborate that this number is 
enough, yielding in some cases to the optimal fitness value 
(see section “Solution found”).

Study of f itness of parallel island model

The design of an island parallel GA involves various choices: 
size and number of islands, migration topology, migration fre-
quency (number of generations between each migration), 
migration rate (number of individuals migrated), and migra-
tion policy (which individuals migrate and which are replaced 
in the receiving island). The choice of values for those param-
eters is important and intricate, because each parameter can 
affect the quality of the search and the efficiency of the algo-
rithm in nonlinear ways.15,40 As shown theoretically and exper-
imentally for one particular problem in Lässig and Sudholt,49 
migrations can make populations to gain information by com-
munication, leading to a better fitness value, and periods of 
independent evolution can cause information to be lost, lead-
ing to an increase in diversity. Thus, the values of the parame-
ters of the parallel island model can lead to important 
differences in the efficiency of the algorithm. Therefore, we 

Table 1. Times required (in seconds) for the elitist and roulette wheel selection methods for the 2 tested architectures.

POPULATION SEqUENTIAL I7. 
ELITIST SELECTION

SEqUENTIAL I7. ROULETTE 
wHEEL SELECTION

GTX660. ELITIST 
SELECTION

GTX660. ROULETTE 
wHEEL SELECTION

100 6.2 3.1 19.1 13

200 11.3 6.3 19.7 13.4

500 29.3 16.5 19.9 18.7

1024 60.3 32.4 21.6 17.3

2000 114.7 64.3 26.2 21.1

5000 298.7 190 34.5 31.1

7000 404.3 308.3 40.8 40.9

10 240 550.5 470.1 51.1 58.5

20 480 1078.7 1260.9 82.8 105.5

30 720 1619.7 2430.3 144.9 229.7

Figure 10. Speedup of sequential version running on an Intel i7 CPU 

versus parallel master-slave compute unified device architecture (CUDA) 

version running on a Nvidia GTX660 (without island or cellular model) 

using elitist or roulette selection.

Figure 11. Evolution of best fitness values for different selections and 

populations. Each value represents population selection. Best fitness is 

here the mean of the minimum fitness values of 5 trials.



12 Evolutionary Bioinformatics 

have carried out an experimental study to study the effect of 
the values of the most important parameters in the efficiency of 
our problem and to find the right elections for them.

Cantú-Paz15 shows that fully connected topologies may 
be the best choice when the number of available processors is 
small, because they offer more potential sources of informa-
tion leading to a better fitness value. This is not a restriction 
in our study, because GPUs are equiped with a large number 
of processors. Also, in a systematic study carried out by 
Muelas et  al,50 they found that topologies have minimal 
influence in the algorithm performance. Therefore, to sim-
plify our study, we have considered a simple ring topology. 
Our results corroborate that this is a good choice for our 
algorithm on GPU.

We have made a systematic study to determine experi-
mentally the best choices for the size and number of islands, 
the migration frequency, and the migration rate. In Figure 
12, we can see a contour plot of the fitness values obtained by 
2 islands of 512 individuals by modifying the migration fre-
quency and the migration rate. The same is studied in Figure 

13 for 16 islands with a population of 64 individuals in each 
of them. It must be taken into account that a low number of 
generations between migration implies a high coupling, 
whereas a high number implies a low coupling. We can notice 
that there is a relationship between the number of individu-
als to migrate and the migration frequency, especially for a 
small number of islands: for frequent migrations, a better 
result is obtained by migrating few individuals, but for more 
infrequent migrations, it is necessary to migrate more indi-
viduals. Based on our tests, we chose 2 couples of values of 
migration frequency and migration rate that are opposed 
with respect to these parameters and offer in general excel-
lent results for our model. These values are to be used in 
subsequent experiments:

•• Migrating 2 elements every 4 generations.
•• Migrating 16 elements every 16 generations.

The fitness value evolution for the parallel island model 
using those parameters is shown in Figure 14, and the number 
of generations needed to reach the optimal solution (see sec-
tion “Solution found”) for each case is presented in Table 2. We 
can notice that the efficiency of this implementation is very 
good, reaching the optimal solutions for all the studied cases by 
using a moderate number of individuals (around a few thou-
sands) and a fairly small number of generations (from a few 
thousand to a few tens of thousand generations).

Study of f itness of cellular parallel model

We can notice that during the first generations, the master-slave 
model is able to find individuals with better fitness values. This 
is probably due to the strength of the global elitist selection for 
the total population used in this model, whereas cellular model 
uses a local selection strategy. However, after some hundreds of 
generations, the global strategy of the master-slave model begins 
to saturate, and hence, the cellular model with only 256 individu-
als (Figure 15) is able to obtain the same fitness value as the 

Figure 12. Effect of the migration frequency (number of generations 

between each migration) and migration rate (number of individuals 

migrated) on the fitness value, for 2 islands with a population of 512 

individuals in each of them.

Figure 13. Effect of the migration frequency and migration rate on the 

fitness value, for 16 islands with a population of 64 individuals in each of 

them.

Figure 14. Fitness evolution for the parallel island model using different 

parameters. Notation: “population per island ×  number of islands 

migration rate, migration frequency.” The number of islands is 3 in all 

cases. Log scale on vertical axis.



García-Calvo et al 13

master-slave model with 1024 individuals. We assume that the 
richer interchange of individuals inherent to cellular models is 
responsible for introducing more genetic diversity, and hence 
finding incessantly better individuals. Taking this into account, 
the question is whether we can gain the best of this beneficial 
behavior and the previously effective performance of the island 
model by fusing both methods in a hybrid model (see section 
“Study of fitness of hybrid (island + cellular) parallel model.”)

Finally, we have investigated whether cellular model can 
outperform the island one. In Figure 16, we have compared the 
cellular versus the island model, for the same whole population. 
We can notice that the island model offers results that are 
clearly better than the cellular approach, both in terms of fast 
convergence and of best fitness value obtained.

Study of f itness of hybrid (island + cellular) parallel 
model

We have studied the performance of a hybrid parallel model 
employing islands that include a cellular model inside each 
one. To simplify the implementation of the hybrid model 
and to keep the runtime low enough, we have only employed 

elitist selection in the cellular algorithm inside each island, 
selecting randomly the individuals to be migrated between 
different islands. The results are shown in Figure 16. It can 
be noticed that the hybrid model outperforms the pure cel-
lular one in terms of fitness value. It must be taken into 
account that the population has been restricted to 1024 
because we could not execute a cellular model with a popu-
lation higher than 32 × 32. The reason is that it would need 
more cache memory than available in the employed GPU. 
Using this relatively low population, a final comparison with 
a 4-island model can also be observed in Figure 16. As can 
be seen in the figure, the island model outperforms broadly 
the rest of models from the fitness perspective. Moreover, it 
is also better from a runtime viewpoint and is the only one 
that can reach the optimal fitness value for the evaluated 
genetic network (see next section) in less than 100 000 
generations.

Following the same reasoning, one should think that 
island model comprises the 2 mighty factors for discovering 
the best solutions: first, an elitist selection for a few hundreds 
of individuals, capable of finding good individual in a short 
number of generations, and second, the introduction of 
genetic diversity, in this case, via a relatively frequent and 
numerous migration.

Study of f itness versus runtime

This section contrasts all the GA models from the runtime 
perspective. We selected those configurations that produced 
good fitness value results and compared them, using the same 
number of individuals. The aim was to answer the following 
question: which model produces the best fitness value in less 

Figure 15. Fitness evolution of cellular models arranged as squares of 

8 × 8, 16 × 16, and 32 × 32 individuals. Their results along generations is 

compared with a master-slave model with elitist selection (named in the 

caption as “Basic 1024 “). Log scale on vertical axis.

Table 2. Number of generations needed to reach the optimal solution 
for the parallel island model using different parameters (island size, 
migration rate, and migration frequency). The number of islands is 3 in 
all cases.

ISLAND SIzE GENERATIONS 
UNTIL SOLUTION 
(2/4)

GENERATIONS 
UNTIL SOLUTION 
(16/16)

256 68 464 58 970

512 58 382 36 575

2048 10 951 10 688

4096 6307 5125

Figure 16. Fitness evolution along 100 000 generations. Cellular versus 

island and master-slave models are compared. In addition, results for 2 

hybrid models are also contrasted (see section “Study of fitness of hybrid 

(island + cellular) parallel model”). Legend: Island model parameters: 

“population per island ×  number of islands.” Number separated by 

commas are “migration rate, migration frequency,” respectively. Both 

hybrid models use a square of 16 × 16 individuals and 4 islands. “Basic” 

refers to the master-slave model. Log scale on vertical axis.



14 Evolutionary Bioinformatics 

time? Thus, we ran for 100 000 generations those configura-
tions and depicted the evolution of fitness versus time (Figure 
17). The above commented memory restriction for the cellular 
model implies using 1024 individuals for it (a 32 × 32 square 
configuration). Thus, other models can adapt to this number: 
master-slave with 1024 individuals, hybrid (cellular with four 
16 × 16 islands), and island models using 4 islands with 256 
individuals each. Two opposed migration values (16 migrations 
each 16 generations, and 2 each 4) were also tested for hybrid 
models. Hybrid models were the fastest to execute 100 000 
generations, but they provided fitness values much worse than 
those of the island model. In fact, results demonstrate that the 
island model clearly outperforms the rest of the models in fit-
ness after 100 000 generations. In addition, it is the only one 
that could reach the optimal solution (a fitness value of 
0.0005859375 as shown in section “Solution found”). In par-
ticular, a 1024-individual island model reached the optimal 
solution in less than 3000 s for this figure. However, we carried 
out other tests for the island model with a bigger number of 

Figure 17. Comparison between all the considered implementations of 

the algorithm in terms of fitness value versus runtime along 100 000 

generations for the same number of individuals. Legend: Island model 

parameters: “population per island × number of islands.” Number 

separated by commas are “migration rate, migration frequency,” 

respectively. Both hybrid models use a square of 16 × 16 individuals and 4 

islands. “Basic” refers to the master-slave model. Log scale on vertical 

axis.

Figure 18. Best solution found by our algorithm. Green nodes: active in E10.5, red nodes: active in E9, and yellow nodes: active in both E9 and E10.5. 

Red links represent repressors, green links represent activators, solid links represent transcriptional interactions, and discontinuous links represent 

protein-protein interactions. Links added by our solution are highlighted with thick lines, and the only link deleted by our algorithm is crossed out.



García-Calvo et al 15

individuals, and the optimal solution was reached even quicker 
(around 600 s using 12 000 individuals).

From another perspective, if we consider time as the main 
factor, thus interrupting the simulations at a certain time, it is 
discovered that island models reach always a much better result 
than the rest of the configurations. As a result, we can conclude 
that the implementation that produces better results (both 
from the performance and the GA fitness perspectives) is sim-
ulating a few thousands of individuals using elitist selection 
under the cellular island model.

Solution found

Along the several tests that we performed to discover the best 
solutions for the dynamics of the analyzed GRN, we found a 
minimal fitness value that was impossible to diminish. This is due 
to the acting rules that model the temporal dynamics, which 
imply that a lower bound on the fitness can exist. This is an addi-
tional achievement of our algorithm implementation, due to the 
fact that it allows one to run many generations in a few seconds, 
so that the time needed to reach a very low fitness value has been 
considerably reduced by using the GA island model over a mod-
ern GPU. The network that produced the best fitness value is 
represented in Figure 18. The initial active nodes (ie, genes that 
are expressed at the embryonic stage of day 9 after fertilization, or 
network E9, according to the notation of Aguilar-Hidalgo et al3) 
are depicted with red circles and the final active nodes (genes that 
are expressed at the embryonic stage of day 10.5 after fertiliza-
tion, or network E10.5) with green ones. This involves a transfor-
mation dynamics of the GRN from the initial network E9 to the 
final one E10.5 (see Figure 1). The best solution needs that nodes 
4, 6, 16, 17, and 23 change from active to inactive. However, all of 
these nodes receive activator links, and hence they cannot be 
made inactive. Additional repressor links (thick red links in 
Figure 18) were added by the best solution found to change the 
state of these nodes. This implies that the best network can have 
the same node state as E10.5, but inevitably 6 links must be dif-
ferent, with the optimal fitness value being the following:

fitness =0.9 0
32

0.1
6

1024
= 0.000586× + ×  (4)

Conclusions
Conclusions are twofold: first, we present a guide for practi-
tioners and experimentalists to employ GPU technology as a 
tool to study the temporal dynamics of GRNs, that is, its tem-
poral evolution between known initial and ending states by 
using Boolean rules and a GA. To conduct this study, a proper 
combination of 3 different fields that are at the forefront of 
current research in high performance computing has been 
required: parallelization, machine learning using metaheuris-
tics or novel algorithms inspired by nature, and big challenge 
applications. This analysis has implied the study of a wide vari-
ety of parallel GA models: master-slave, islands, cellular, and 

hybrid. To extract all the potential power of the GPU, we show 
how to apply development procedures that optimize the use of 
the GPU resources using CUDA. A thorough comparative 
study between the performance of the different versions of the 
parallel implementation on GPU and the performance of a 
sequential implementation on a CPU has been made.

Second, previous systematic analysis led to the discovery 
that a moderate population size under the parallel island model 
is enough to get to very good fitness values. The excellent effi-
ciency in terms of performance of the chosen model has 
allowed to compute many of the GA possibilities in around a 
minute and even finally to reach the optimal minimal fitness 
value for the studied network. In particular, the best results are 
obtained by simulating a few thousands of individuals using 
elitist selection under the island model. Our best implementa-
tion reduces the runtime to an order of 80 s for a population of 
20 000 individuals, running on a Nvidia GTX660 GPU. Our 
results also show that the rest of the models can be ranked in 
terms of efficiency, in descending order, in this way: hybrid 
model (employing islands which include a cellular model inside 
each one), cellular model, and master-slave model.

The potential of our study is evident for scientific analysis of 
the temporal dynamics of other GRNs, which may help to 
determine the causes of certain diseases or to identify thera-
peutic targets. In particular, GRNs with a large number of 
genes would take a prohibitive runtime if implemented sequen-
tially, if non optimized GPU code were used, or if an inade-
quate GA model were employed. However, GRN dynamics 
determination would be feasible if implemented in fitted paral-
lel codes on GPU (or on multi-GPU clusters, because parallel 
island model matches perfectly in them) following the proce-
dures presented in this work. Indeed, a future line of develop-
ment will be verifying the scalability for multi-GPU clusters in 
terms of the number of GPUs for the different GA models.

Author Contributions
RGC, JLG, FDR, and AC conceived and designed the experi-
ments. RGC implemented the programs and carried out the 
experiments. RGC, JLG, FDR, AC, and FJM analyzed the data. 
RGC, JLG, and FDR wrote the first draft of the manuscript. 
AC and FJM contributed to the writing of the manuscript. 
RGC, JLG, FDR, AC, and FJM agreed with manuscript results 
and conclusions. RGC, JLG, and FDR jointly developed the 
structure and arguments for the paper. RGC, JLG, FDR, AC, 
and FJM made critical revisions and approved final version. All 
authors reviewed and approved the final manuscript.

REfERENCEs
 1. Buchanan M, Caldarelli G, Los Rios PD, Rao F, Vendruscolo M, eds. Networks 

in Cell Biology. Cambridge, UK: Cambridge University Press; 2010.
 2. Bolouri H. Computational Modeling of Gene Regulatory Networks: A Primer. Lon-

don, England: Imperial College Press; 2008.
 3. Aguilar-Hidalgo D, Córdoba Zurita A, Lemos Fernández MC. Complex net-

works evolutionary dynamics using genetic algorithms. Int J Bifurcat Chaos. 
2012;22:1250156.



16 Evolutionary Bioinformatics 

 4. Aguilar-Hidalgo D, Lemos M, Córdoba A. Evolutionary dynamics in gene net-
works and inference algorithms. Computation. 2015;3:99–113.

 5. Bäck T, Fogel DB, Michalewicz Z. Handbook of Evolutionary Computation. Bris-
tol, UK: IOP Publishing; 1997.

 6. Simon D. Evolutionary Optimization Algorithms. Hoboken, NJ: Wiley; 2013.
 7. Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning. 

Reading, MA: Addison-Wesley; 1989.
 8. Mitchell M. An Introduction to Genetic Algorithms. Cambridge, MA: The MIT 

Press; 1996.
 9. Keedwell E, Narayanan A. Discovering gene networks with a neural-genetic 

hybrid. IEEE/ACM Trans Comput Biol Bioinform. 2005;2:231–242.
 10. Lee WP, Tzou WS. Computational methods for discovering gene networks from 

expression data. Brief Bioinform. 2009;10:408–423.
 11. Gonzalez-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sanchez-

Pérez JM. Predicting DNA motifs by using evolutionary multiobjective optimi-
zation. IEEE T Syst Man Cy C. 2012;42:913–925.

 12. Fan Y, Wu W, Yang J, Liu R. An algorithm for motif discovery with iteration on 
lengths of motifs. IEEE/ACM Trans Comput Biol Bioinform. 2015;12:136–141.

 13. Chaves-González JM, Vega-Rodríguez MA. DNA strand generation for DNA 
computing by using a multi-objective differential evolution algorithm. Biosys-
tems. 2014;116:49–64.

 14. Alba E, Troya JM. A survey of parallel distributed genetic algorithms. Complex-
ity. 1999;4:31–52.

 15. Cantú-Paz E. Efficient and Accurate Parallel Genetic Algorithms. Dordrecht, The 
Netherlands: Kluwer Academic Publishers; 2000.

 16. Gong YJ, Chen WN, Zhan ZH, et al. Distributed evolutionary algorithms and 
their models: a survey of the state-of-the-art. Appl Soft Comput. 
2015;34:286–300.

 17. González DL, De Vega FF. On the intrinsic fault-tolerance nature of Parallel 
Genetic Programming. In: Proceedings of the 15th EUROMICRO Interna-
tional Conference on Parallel, Distributed and Network-based Processing; Feb-
ruary 7-9, 2007:450–456; Naples. New York, NY: IEEE.

 18. Hidalgo JI, Lanchares J, Fernández de Vega F, et al. Is the island model fault tol-
erant? In: Proceedings of the 2007 GECCO Conference Companion on Genetic 
and Evolutionary Computation; July 7-11, 2007:27–37; London, England. New 
York, NY: ACM.

 19. Luo Z, Liu H. Cellular genetic algorithms and local search for 3-SAT problem 
on graphic hardware. In: Proceedings of the IEEE International Conference on 
Evolutionary Computation; July 16-21, 2006:2988–2992; Vancouver, BC, Can-
ada. New York, NY: IEEE.

 20. Li JM, Wang XJ, He RS, Chi Z-X. An efficient fine-grained parallel genetic 
algorithm based on GPU-accelerated. In: Proceedings of the IFIP International 
Conference on Network and Parallel Computing Workshops; September 18-21, 
2007:857–864; Liaoning, China. New York, NY: IEEE.

 21. Luong TV, Melab N, Talbi EG. GPU-based island model for evolutionary algo-
rithms. In: Proceedings of the 12th Annual Conference on Genetic and Evolu-
tionary Computation; July 7-11, 2010:1089–1096; Portland, OR. New York, NY: 
IEEE.

 22. Ben-Shalom R, Aviv A, Razon B, Korngreen A. Optimizing ion channel models 
using a parallel genetic algorithm on graphical processors. J Neurosci Methods. 
2012;206:183–194.

 23. Arenas MG, Romero G, Mora AM, Castillo PA, Merelo JJ. GPU Parallel Com-
putation in Bioinspired Algorithms: A Review. Berlin, Germany: Springer; 2012: 
113–134.

 24. Jin Y, Hallinan J. Evolving gene regulatory networks. Biosystems. 2009;98: 
2008–2009.

 25. Esmaeili A, Jacob C. A multi-objective differential evolutionary approach 
toward more stable gene regulatory networks. Biosystems. 2009;98:127–136.

 26. Nicolau M, Schoenauer M. On the evolution of scale-free topologies with a gene 
regulatory network model. Biosystems. 2009;98:137–148.

 27. Noman N, Monjo T, Moscato P, Iba H. Evolving robust gene regulatory net-
works. PLoS ONE. 2015;10:1–22.

 28. Eggenberger P. Evolving morphologies of simulated 3d organisms based on dif-
ferential gene expression. In: Fourth European Conference on Artificial Life, 
28–31 July 1997:205–213. Brighton, UK: The MIT Press.

 29. Banzhaf W. On the dynamics of an artificial regulatory network. In: Advances 
in Artificial Life: European Conference on Artificial Life; September 14-17, 
2003:217–227; Dortmund, Germany. New York, NY: Springer.

 30. Knabe J, Nehaniv CL, Schilstra M, et al. Evolving biological clocks using 
genetic regulatory networks. In: Artificial Life X: Proceedings of the Tenth 
International Conference on the Simulation and Synthesis of Living Systems; 
3–6 June 2006. Bloomington, IN: The MIT Press.

 31. Guo H, Meng Y, Jin Y. A cellular mechanism for multi-robot construction via 
evolutionary multi-objective optimization of a gene regulatory network. Biosys-
tems. 2009;98:193–203.

 32. Joachimczak M, Wróbel B. Processing signals with evolving artificial gene regu-
latory networks. In: Artificial Life XII: Proceedings of the Twelfth International 
Conference on the Synthesis and Simulation of Living Systems; 19–23 August 
2010:203–212. Odense, Denmark.

 33. Cussat-Blanc S, Harrington K, Pollack J. Gene regulatory network evolution 
through augmenting topologies. IEEE T Evolut Comput. 2015;19:823–837.

 34. de Jong H. Modeling and simulation of genetic regulatory systems: a literature 
review. J Comput Biol. 2002;9:67–103.

 35. Leclerc RD. Survival of the sparsest: robust gene networks are parsimonious. 
Mol Syst Biol. 2008;4:213.

 36. Keckler SW, Dally WJ, Khailany B, Garland M, Glasco D. GPUs and the future 
of parallel computing. IEEE Micro. 2011;31:7–17.

 37. Strohmaier E, Dongarra J, Simon H, et al. TOP500 supercomputing sites. 
http://www.top500.org/

 38. Halfhill TR. Parallel processing with CUDA. Microprocessor Report.  28 January 
2008:1–8.

 39. Nvidia. CUDA toolkit documentation. Technical Report. http://docs.nvidia.com/
cuda/. Published 2015.

 40. Luque G, Alba E. Parallel Genetic Algorithms: Theory and Real World Applications 
(Vol 367). Berlin, Germany: Springer; 2011.

 41. Krömer P, Platoš J, Snášel V. Nature-inspired meta-heuristics on modern GPUs: 
state of the art and brief survey of selected algorithms. Int J Parallel Prog. 
2014;42:681–709.

 42. Cecilia JM, Nisbet A, Amos M, García JM, Ujaldón M. Enhancing GPU paral-
lelism in nature-inspired algorithms. J Supercomput. 2013;63:773–789.

 43. Wahib M, Munawar A, Munetomo M, Akama K. Optimization of parallel 
Genetic Algorithms for nVidia GPUs. In: Proceedings of the 2011 IEEE Con-
gress of Evolutionary Computation (CEC); June 5-8, 2011:803–811; New 
Orleans, LA. New York, NY: IEEE.

 44. Sonnenburg S, Braun ML, Ong CS, et al. The need for open source software in 
machine learning. J Mach Learn Res. 2007;8:2443–2466.

 45. Nvidia. NVIDIA visual profiler. https://developer.nvidia.com/nvidia-visual-
profiler. Published 2016.

 46. Jaros J. Multi-GPU island-based genetic algorithm for solving the knapsack 
problem. In: Proceedings of the 2012 IEEE Congress on Evolutionary Compu-
tation; June 10-15, 2012:1–8; Brisbane, QLD, Australia. New York, NY: IEEE.

 47. Nvidia. NVIDIA thrust library. https://developer.nvidia.com/thrust. Published 
2016.

 48. Nvidia. CUDA toolkit 4.2 CURAND guide. Technical Report. https://developer.
download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/
CURAND_Library.pdf. Published 2012.

 49. Lässig J, Sudholt D. Design and analysis of migration in parallel evolutionary 
algorithms. Soft Comput. 2013;17:1121–1144.

 50. Muelas S, Peña JM, Robles V, et al. Machine learning to analyze migration 
parameters in parallel genetic algorithms. Adv Soft Comp. 2007;44:199–206.

http://www.top500.org/
http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/thrust
https://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf
https://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf



