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Abstract
Many model transformation scenarios require flexible execution strategies as they should produce models with the highest 
possible quality. At the same time, transformation problems often span a very large search space with respect to possible 
transformation results. Recently, different proposals for finding good transformation results without enumerating the 
complete search space have been proposed by using meta-heuristic search algorithms. However, determining the impact of 
the different kinds of search algorithms, such as local search or global search, on the transformation results is still an open 
research topic. In this paper, we present an extension to MOMoT, which is a search-based model transformation tool, for 
supporting not only global searchers for model transformation orchestrations, but also local ones. This leads to a model 
transformation framework that allows as the first of its kind multi-objective local and global search. By this, the advantages 
and disadvantages of global and local search for model transformation orchestration can be evaluated. This is done in a 
case-study-based evaluation, which compares different performance aspects of the local- and global-search algorithms 
available in MOMoT. Several interesting conclusions have been drawn from the evaluation: (1) local-search algorithms 
perform reasonable well with respect to both the search exploration and the execution time for small input models, (2) for 
bigger input models, their execution time can be similar to those of global-search algorithms, but global-search algorithms 
tend to outperform local-search algorithms in terms of search exploration, (3) evolutionary algorithms show limitations in 
situations where single changes of the solution can have a significant impact on the solution’s fitness.
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1 Introduction

Model transformations are the key technology to manipu-
late models in model-driven engineering (MDE) [9]. As the
applicability of MDE is expanding in software engineering
and beyond, model transformations have to cope with many
new challenges. One of these challenges is how to deal with
the large search spaces of many transformation problems. Of
course, one approach is to develop problem-specific heuris-
tics that allow todealwith the associated search spacewithout
having to enumerate all possible solutions, which is mostly
not possible due to practical space and time restrictions.How-
ever, finding such problem-specific heuristics is challenging.
Therefore, an alternative approach is the usage of meta-
heuristics that are problem independent. This is investigated
by Search-Based Software Engineering (SBSE) [35], which
is a lively research field applying search-based optimization
techniques to software engineering problems. Search-based
optimization techniques deal with large or even infinite
search spaces in an efficient manner. Concrete algorithms
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Fig. 1 Overview of MOMoT

include local-search methods, such as Tabu Search [32] and
Simulated Annealing [46], or genetic algorithms [39], such
as NSGA-II [16] and NSGA-III [15].

In recent years, SBSE has been applied successfully in the
area ofMDE [45]. Examples include the generation of model
transformations from examples [41,68,71], the optimization
of regression tests for model transformations [63], the detec-
tion of high-level model changes [6], and the enhancement
of the readability of source code for given metrics [22,23].
Very recently, several approaches have been proposed to
provide more efficient search capabilities for model trans-
formations [1,17,25].

MOMoT is one of these emerging approaches andwasfirst
presented in [25]. It relies onHenshin [4] as basemodel trans-
formation framework and MOEA1 as base meta-heuristic
search framework. Henshin is a graph-based model trans-
formation framework that offers a rule-based language and
associated tool set for in-place model-to-model transforma-
tions. The MOEA framework is an open-source Java library
that provides a set of multi-objective evolutionary algorithms
with additional analytical performance measures and that
can be easily extended with new algorithms. Thus, MOMoT
combines different search techniques with model transfor-
mations to produce output models that optimize one or more
potentially conflicting quality criteria. Reusing the existing
functionality of these base frameworks as much as possible
is the central principle of our framework. While in the rest of
the paper we discuss our framework in light of Henshin and
MOEA, the conceptual approach itself is generic so that it
may be used for other framework combinations. Please note,
however, that MOMoT is for now focused on in-place model

1 http://www.moeaframework.org.

transformations. Considering the application of search-based
optimization techniques on out-place model transformations
is out of the scope of this paper and subject to future work.

An overview of MOMoT is shown in Fig. 1. Like typi-
cally done in MDE, the studied problem domain is defined
with a meta-model using the meta-modeling language Ecore
offered by the Eclipse Modeling Framework (EMF) [64].
The concrete problem can then be defined with the help of an
instance of this meta-model referred to as problem instance
model. The model transformation that should transform the
problem instancemodel into a solutionmodel that fulfills cer-
tain quality criteria is defined with the model transformation
language Henshin. Using Java or OCL, the quality criteria of
the desired solution model are defined comprising objectives
and constraints. MOMoT’s search engine is then responsible
for investigating the search space to find an orchestration of
the model transformation rules that produces a good solu-
tion model with regard to the defined quality criteria. For
investigating the search space, MOMoT provides different
search algorithms including global evolutionary search algo-
rithms offered out-of-the-box byMOEAand single-objective
local-search algorithms (SOLA) implemented in our previ-
ous work [25]. The output provided by MOMoT does not
only comprise the found model transformation rule orches-
tration and solution model, but also the values computed for
the defined objectives and constraints for the found solution,
as well as statistical information about the performed search.

A novel feature of MOMoT and a contribution to the
model transformation literature of this paper is the appli-
cation of multi-objective local-search approaches (MOLA)
for model transformations. We are interested in this kind
of search approach as model transformations are naturally
considered as multi-objective problems. Even if only one
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particular objective should be minimized or maximized in
the output model of the transformation, normally one would
be in addition interested in finding a short transformation
sequence to reach this result, thus turning the problem in a
multi-objective problem [1]. In this paper, we contribute dif-
ferent multi-objective local-search approaches to MOMoT,
which have not been supported by MOMoT before, with the
aim of improving MOMoT’s capability to find good model
transformation orchestrations.

In fact, the existence of both local-search approaches and
global-search approaches is leading directly to the question,
which search approach is the best for a certain application
domain, such as model transformations in our case. Cur-
rently, there is no empirical work on comparing these two dif-
ferent approaches for model transformations despite the fact
that both approaches have been proposed for solving model
transformation problems [1,17,25,28,29]. In this paper, we
investigate this question by comparing a set of local-search
approaches and a set of global-search approaches for three
case studies taken from different domains. In particular, we
evaluate different performance aspects, such as the quality
of the search exploration, i.e., how much of the search space
is actually covered and how good the found results are, and
the time needed for this exploration.

Please note that this article is an extension of our previous
publications [26,28]. In [28], we have presented the overall
MOMoT framework with its support of (standard single-
objective) local-search algorithms and global evolutionary
search algorithms. The evaluation of MOMoT presented
in [28] focused on validating its applicability to model-based
software engineering problems and the runtime overhead
introduced by following a model-based approach compared
to a native encoding. In this evaluation, only the global
evolutionary search Algorithm NSGA-III was considered.
In [26], we have presented the integration of Henshin and
MOEA from an architectural point of view and demon-
strated the concrete tool support for specifying search-based
model transformations by using the Search Configuration
Modeling Language (SCML). Besides incremental advance-
ments of the general model transformation approach, this
article introduces two major extensions over the previ-
ous publications: First, we have extended MOMoT to also
support multi-objective local-search approaches to orches-
trate model transformation rules in addition to the global
evolutionary algorithms. Second, apart from this technical
contribution, we have significantly improved the evaluation
of our approach. In particular, we now compare the different
meta-heuristic search approaches concerning performance
in three case studies of varying complexity and subject. To
the best of our knowledge, this is the first evaluation of this
kind comparing the performance of local-search approaches
and global-search approaches for their application to model
transformations.

The remainder of this paper is structured as follows. First,
we introduce the background for this paper in Sect. 2, which
is mostly concerned with explaining meta-heuristic search
and its application for model transformations, as well as
presenting the running example for this paper. Section 3
describes MOMoT and demonstrates its capabilities on the
running example. Section 4 then introduces our extensions
of MOMoT and MOEA with multi-objective local-search
algorithms. Section 5 is dedicated to evaluating the different
search algorithms offered byMOMoT by using a case-study-
based evaluation approach. Finally, Sect. 6 discusses related
work and we conclude the paper with an outlook on future
work in Sect. 7.

2 Preliminaries: meta-heuristics andmodel
transformations

In this section, we describe meta-heuristic search, model
transformations and their joint application. Furthermore, a
motivating example is introduced, which is later on used as
a running example for the rest of this paper.

2.1 Meta-heuristic search

In this section, we discuss how meta-heuristic search is
used for turning engineering problems into optimization
problems, and subsequently show which different search
approaches are available for solving such problems.

2.1.1 Reformulating engineering problems as optimization
problems

A meta-heuristic is a heuristic method aimed at resolving a
general computation problem. In particular, it is applied on
problems that do not have a specific algorithm or heuristic
that produces a satisfactory solution, or when it is not possi-
ble to implement such optimal method. Most meta-heuristics
target the resolution of problems of combinatorial optimiza-
tion, but they can be applied to any problem that can be
reformulated in heuristic terms.

Search-based software engineering [35] is a field that
applies search-based optimization techniques to software
engineering problems. Thereby, search-based optimization
techniques can be categorized as meta-heuristic approaches
that deal with large or even infinite search spaces in an effi-
cient manner. Therefore, SBSE techniques are often applied
on problems where it is not feasible to use exact or enumer-
ative approaches [74].

Formally, a solution to a given optimization problem can
be seen as a vector of decision variables in the decision space
X . In order to evaluate the quality of a solution, a fitness
function f : X �→ Z maps a given solution to an objective



vector in the objective space Z . A meta-heuristic approach
uses these mappings to manipulate the decision variables of
a solution in such a way that we reach good values in the
objective space. The notion of good values relates to the
direction of the optimization; typically, an objective value
in the objective vector needs to be minimized or maximized.
Additionally, a solution may be subject to a set of inequality
constraints denoted gi (x) ≥ 0 with i = 1, . . . , P and a set of
equality constraints denoted h j (x) = 0 where j = 1, . . . , Q.
A solution satisfying the (P+Q) constraints is said to be fea-
sible, and the set of all feasible solutions defines the feasible
search space.

Meta-heuristic approaches dealing with large or infinite
search spaces are often divided in two groups, namely local-
search methods and global-search algorithms, commonly
referred to as evolutionary algorithms. The aim of local-
search methods is to improve one single solution at a time,
while evolutionary algorithms [39]manage a set of solutions,
called a population, at once. The number of objectives that
need to be optimized, i.e., the size of the objective vector,
is also used to categorize optimization problems. Single-
objective or mono-objective problems only deal with one
objective at a time, multi-objective problems deal with more
than one objective. Recently, due to the limits of how many
objectives different algorithms can handle, a distinction is
made between multi-objective problems and many-objective
problems. A many-objective problem has at least four objec-
tives, while multi-objective problems are known to address
problems with two and three objectives.

2.1.2 Local-search algorithms

Local-search methods start with an initial solution and then
perform two steps in each iteration: generation and moving.
The local-search process is shown in Algorithm 1 [65] and
visually depicted in Fig. 2. In the first step, a set of candidate
solutions called a neighborhood is generated from the current
solution. In the second step, a solution from the generated
neighborhood is selected to replace the current solution. The
whole process iterates until the given stopping criterion is
fulfilled, e.g., a specific solution is found, a solution with
sufficient quality is found or the algorithm has run a given
number of iterations.

Search Space

Objec�ve

Local Op�ma Local Op�ma

Local and Global Op�ma

Fig. 3 Local optimumand global optimum in a search space (from [65])

Algorithm 1: High-level Process of Local Search [65]
Input: Initial Solution s0
Output: Best Solution Found

1 t = 0
2 repeat
3 Generate(N (st ))

// Generate partial or complete neighborhood
4 st+1 = Select(N (st ))

// Select a neighbor to replace current
solution

5 t = t + 1
6 until Stopping criteria satisfied

In local search, neighbors consist of solutions that rep-
resent a small move from the current solution, i.e., a small
change in the representation of the current solution. A key
challenge of local-search algorithms is to not get stuck in low-
quality local optima. The relation between local and global
optima is depicted in the fitness landscape of Fig. 3 [65] for
a minimization problem. In a search space, many neighbor-
hoods with different local optima may exist; however, only
a subset of these local optima are actually global optima. In
many cases, there is even only one globally optimal solution.
Knowing the fitness landscape can help to select an algorithm
that is able to not get stuck in a local optimum. For instance,
in Hill Climbing or Gradient Descent [60], we start with an
initial, random solution in the search space and always select
a neighbor with a better fitness than the current solution. As
such, depending on where in the fitness landscape we start,
we may find a local optimum or even a global optimum.
However, once a local optimum is found, there is no way of

Generate
Neighborhood

Move to
Neighbor

Current
Solution

Fig. 2 Two steps performed by local-search methods in each iteration



exploring other parts of the search space and therefore there
is no guarantee to find a global optimum.

Many different local-search algorithms have been pro-
posed. These algorithms differ in whether they use amemory
or are memoryless (for addressing the problem of find-
ing local optima instead of global optima), in how they
generate the initial solution, in how they generate the neigh-
borhood and in how they select the next solution. Therefore,
different strategies have been proposed, such as Hill Climb-
ing [11], Random Descent, Tabu Search [32], Simulated
Annealing [46] and Gradient Descent [60].

2.1.3 Global-search algorithms

Global-search algorithms, typically referred to as evolu-
tionary algorithms [39], are stochastic, population-based2

algorithms that build upon the Darwinian principles of evo-
lution [13], i.e., the struggle of individuals to survive in an
environmentwith limited resources and the process of natural
selection. In the 1980s, different approaches to incorporate
this process into algorithms have been proposed. Examples
are Genetic Algorithms [37,38], Evolution Strategies [55,
56], Evolutionary Programming [30,31] and Genetic Pro-
gramming [49]. Nowadays, some widely used evolutionary
algorithms include the Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) [73], the Non-Dominated Sorting Genetic
Algorithm-II [16] (NSGA-II), and the NSGA-III [15]. Evo-
lutionary algorithms are the most studied population-based
algorithms [65], and the field of evolutionary multi-objective
optimization (EMO) is considered one of the most active
research areas in evolutionary computation [14].

Algorithm2:High-level Process ofGlobal Search [65]
Output: Best Solutions Found

1 Generate(P(0))
2 t = 0
3 while not termination_criterion(P(t)) do
4 Evaluate(P(t))
5 P ′(t) = Selection(P(t))
6 P ′(t) = Reproduction(P ′(t))

// Recombination and Mutation
7 Evaluate(P ′(t))
8 P(t + 1) = Replace(P(t), P ′(t))
9 t = t + 1

10 end

The high-level process of an evolutionary algorithm is
shown in Algorithm 2. In general, evolutionary algorithms
start with a population of individual solutions. This initial
population is often randomly generated or may be produced

2 Barring some small connotations, for simplicity, we treat the terms
global search, evolutionary and population-based algorithms equally.

in some other form. Every individual in the population is a
solution with a specific fitness assigned by the fitness func-
tion. In order to manipulate the population toward good areas
of the search space, evolutionary algorithms typically use
three search operators and a replacement scheme. The algo-
rithm stops when the defined stopping criterion is satisfied,
e.g., a specific number of iterations or evaluations have been
performed or no improvement has been achieved for a given
number of iterations.

The first search operator, called the selection operator,
chooses individuals from the population and selects them
for reproduction. Here, different selection strategies may be
applied, e.g., based on absolute or relative fitness of a solu-
tion. In any case, the idea is that solutionswith a higher fitness
are more likely to reproduce. For instance, in the determin-
istic tournament selection illustrated in Fig. 4, we select k
random solutions from the current population and choose
the best n solutions for recombination. In non-deterministic
tournament selection, the solution with the highest fitness is
selected with a given probability p, the next best solution
is selected with probability p ∗ (1 − p), the next best with
p ∗ (1 − p)2 and so on.

In the reproduction phase, variation operators are applied
on the selected solutions in order to produce new solutions.
The terms parent and child solutions, or parent and offspring
populations are used. The most common variation operators
are the recombination, or crossover, operator and the muta-
tion operator.

The recombination operator is an n-ary operator that takes
n parent solutions and produces n child solutions. The idea is
that the characteristics thatmake a solution good can be given
to its children, and if two good solutions are (re-)combined,
an even better solutionmay emerge. Themost basic recombi-
nation strategy is the one-point crossover, where two parent
solutions are cut at the same random position and the chil-
dren are created by a crosswise merge of the resulting parts.
This strategy is also depicted in Fig. 4.

Themutation operator is an unary operator that introduces
small, random changes into a single solution. The main idea
behind mutation is that it guides the algorithm into areas of
the search space that would not be reached through recom-
bination alone and avoids the convergence of the population
toward a few elite solutions.

In the replacement phase after selection and reproduction,
we need to choose which solutions from the parent popula-
tion and the offspring population should be kept for the next
iteration. The two extreme cases are the replacement of the
complete parent populationwith the offspring population and
the replacement of only one individual in the parent popu-
lation, e.g., the worst individual, through the best individual
from the offspring population. Of course, in practice, any
number of individualsmay be replaced.Another replacement
strategy is elitism, i.e., the selection of only the best solutions
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on the desired goals for a particular scenario, our approach
finds one or many solutions, i.e., rule application sequences
in terms of rule orchestrations. Doing so allows us to reuse
the same set of transformation rules for several scenarios, to
explicitly define the transformation goals for each specific
scenario, and to automatically find the best orchestration of
rules. Furthermore, by combining SBSE with model trans-
formations, the developer can stay in the model engineering
technical space. This means that the problem, the search con-
figuration input parameters, and the computed solutions are
defined at the model level.

2.3 Motivating example

In this section, we introduce the running example for demon-
strating MOMoT. We selected the example from the model
quality assurance domain. It is well known that the quality of
an object-oriented design has a direct impact on the quality
of the code produced. The Class Responsibility Assign-
ment (CRA) problem [8] deals with the creation of such
high-quality object-oriented models. When solving the CRA
problem, one has to decidewhere responsibilities, in the form
of class methods and attributes they manipulate, belong and
how objects should interact [51].

2.3.1 Modeling the CRA problem

As running example, we use a simplified version of the CRA
problem. As given elements, we have a set of methods and
attributes as well as dependencies between them. Such struc-
ture is also referred to as responsibilities dependency graph
(RDG). Based on the RDG, the goal is to generate a high-
quality class diagram (CD). For this purpose, a RDG2CD
model transformation is needed to evolve a RDG into a CD.
Figure 5 depicts the meta-models that are used to represent
RDGs andCDs, respectively. TheRDGmeta-model is shown
in the upper part containing only the features and their depen-
dencies, while the additional concepts of CD are shown in
the lower part. As both languages share a large portion of
the modeling concepts—actually the RDG meta-model is a
subgraph of the CDmeta-model—we use the package merge

Population
(size = 10)

Fig. 4 Steps performed by global-search methods in each iteration

from both populations. This leads to faster convergence, but 
may result in premature convergence.

2.2 Search-based model transformations

Model transformations are an important cornerstone of 
model-driven engineering (MDE), a discipline which facil-
itates the abstraction of relevant information on a problem 
as models. The success of the outcomes obtained by MDE 
approaches heavily depends on the optimization of these 
models through model transformations. When developing 
a model transformation, a modeler defines rules to manip-
ulate an input model. However, reasoning about how these 
rules can be applied to retrieve a model with certain char-
acteristics is a non-trivial task. Currently, the application of 
transformations is realized either by following the apply-as-
long-as-possible strategy or explicit rule orchestrations have 
to be provided. These techniques suffer from several draw-
backs, such as the implicitly hidden effect a transformation 
has on the characteristics of the model, the required knowl-
edge to understand the relationships among transformation 
rules, i.e., whether they are conflicting or enabling, the large 
or even infinite number of rule combinations, and the con-
sideration of multiple, potentially conflicting objectives.

In order to address all these difficulties, some works 
have proposed to apply search-based techniques, such as 
the recent approaches by Abdeen et al. [1] who integrate 
multi-objective optimization techniques to drive a rule-based 
design exploration, and Denil et al. [17] who integrate single-
state search-based optimization techniques, such as Hill 
Climbing and Simulated Annealing, directly into a model 
transformation approach.

In this work, we also consider the problem of finding the 
best orchestration of a given set of transformation rules as an 
optimization problem. Thereby, we aim at applying SBSE 
techniques for solving a reoccurring problem in the MDE 
domain, while at the same time we aim for a loose coupling 
between both worlds. In this sense, models and model trans-
formations are defined in the model engineering technical 
space, and the orchestration of the rule applications is dele-
gated to search-based optimization technologies. Depending
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relationship to let the CD meta-model receive the elements
of the RDG meta-model. In particular, the CD meta-model
introduces the possibility that classes encapsulate features.

2.3.2 Transformation goals

The goal is to produce high-quality CDs from RDGs. The
CRA problem is a problem with a fast growing search space
of potential class partitions given by the Bell number Bn+1 =∑n

k=0

(n
k

)
Bk . Already starting from a low number of features,

the number of possible partitions is unsuitable for exhaustive
search, e.g., 15 features yield 190899322 possible ways to
create classes.

For determining the quality of the obtained CDs, we use
two common metrics for assessing the quality of group-
ing functionality into classes: coupling and cohesion [8].
Coupling refers to the number of external dependencies a spe-
cific group has, whereas cohesion refers to the dependencies
within one group. Typically, low coupling is preferred as this
indicates that a group covers separate functionality aspects
of a system. On the contrary, the cohesion within one group
should be maximized to ensure that it does not contain parts
that are not part of its functionality.Mapping these definitions
to our problem,we can calculate coupling and cohesion as the
sum of external and internal dependencies, respectively. The
CRA problem uses the coupling and cohesion ratios, i.e., the
coupling and cohesion achieved considering the total num-
ber of classes and attributes. All the formulae to calculate

the cohesion ratio (CohRt) and coupling ratio (CoupRt)
are shown in Fig. 6 (taken from [51]).3 Please note that M(c)
and A(c) refer to all methods and attributes of class c, respec-
tively, MMI(ci , c j ) and MAI(ci , c j ) indicate the number of
method–method and method–attribute interactions between
classes ci and c j , respectively, and mi and a j refer to the i th
method and j th attribute, respectively.
Summing up, the challenge of this case is to find a way
to properly orchestrate transformation rules to optimize the
quality of the produced CDs.

3 MOMoT

In this section, we first present a glance at MOMoT, by
describing what it is and what it is made for. Then, we
explain MOMoT’s architecture, its current state and mention
the extensions performed in this work. Finally, we describe a
tour on MOMoT by giving some insights on its functioning.
We exemplify some parts with our running example, namely
the CRA problem.

3.1 MOMoT at a glance

With MOMoT, we have developed a novel approach for
search-based model transformations, which builds on the
non-intrusive integration of search-based optimization and
model transformations to solve complex problems on model
level. In particular, we formulate the transformation orches-
tration problem as a search problem by providing a generic
solution encoding based on transformations, which allows
for search-based exploration of the transformation space and
explicating the transformation objectives. The idea to tackle
this problem using search-based techniques is also reflected
in the recent approaches by Abdeen et al. [1] who integrate
multi-objective optimization techniques to drive a rule-based
design exploration. Denil et al. [17] also address this problem
by integrating single-state search-based optimization tech-
niques, such as Hill Climbing and Simulated Annealing,
directly into a model transformation approach.

Based on this trend and the ideas that we have initially
outlined in [45] on combining meta-heuristic optimization
and MDE, similar to Search-Based Software Engineering
(SBSE) [35], we introduced a problem- and algorithm-
agnostic approach called MOMoT (Marrying Optimization
and Model Transformations) [25,28]. Our approach loosely
couples the MDE and search-based optimization worlds to
allow model engineers to benefit from search-based tech-
niques while staying in the model engineering technical
space, i.e., the input, the search configuration, and the com-

3 Zero is assigned to the result of a division whenever its denominator
is zero.



Fig. 6 Formulae for calculating the cohesion ratio (CohRt) and coupling ratio (CoupRt)

3.2 MOMoT’s architecture

MOMoT’s technology stack is depicted in Fig. 7. In order to
unify the MDE and SBSE worlds in a single framework,
we bridge the Eclipse Modeling Framework (EMF), the
Henshin graph transformation framework, and the MOEA
meta-heuristic search framework.

TheEMFproject is amodeling framework and codegener-
ation facility for building tools and other applications based
on a structured data model. At the core of EMF is Ecore,
which enables the definition of meta-models. Ecore is the de-
facto reference implementation of the Essential Meta Object
Facility standard in Java. By basing our implementation of
MOMoT on EMF, we can use a multitude of existing frame-
works.

Henshin [4] offers a rich language and associated tool
set for in-place transformations of Ecore-based models.
Henshin comes along with a powerful declarative model

MOMoT Language

MOMoT

Java

XBase

EMF

HenshinMOEA
SOLA MOLA

Fig. 7 MOMoT’s architecture

puted solutions are provided at model level. In particular, we 
are focusing on how different meta-heuristic methods can 
be used to solve an optimization problem, on how we can 
support the model engineer in configuring these methods, 
and on the separation of the objectives of the transformation 
from the transformation itself. This separation enables the 
reuse of the same set of transformation rules and objective 
specifications for several problem scenarios.

MOMoT offers the following features for developing 
search-based model transformations: (i) a generic way to 
describe the problem domain and the concrete problem 
instance, (ii) an encoding for the solution of the concrete 
problem instance based on model transformation solu-
tions, (iii) a random solution generator that is used for 
the generation of an initial, random individual or random 
population, and (iv) a set of search-based algorithms to 
execute the search. To further support the use of multi-
objective evolutionary algorithms, we additionally provide 
(v) generic objectives and constraints for our solution encod-
ing, (vi) generic mutation operators that can modify the 
respective solutions, and (vii) a configuration language 
that also provides feedback about the specified search 
configuration.

Since our approach combines MDE techniques with 
SBSE techniques, the key building blocks are an environ-
ment to enable the creation of meta-models and models, 
a model transformation engine and language to manipu-
late those models and a set of meta-heuristic algorithms 
that perform a search to find transformation orchestrations 
that optimize the given objectives and fulfill the specified 
constraints.
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Fig. 8 Overview of MOMoT’s workflow

transformation language that has its roots in attributed graph
transformations and offers the possibility for formal reason-
ing.Besides rules,Henshin provides units to orchestrate these
rules, e.g., sequential units, priority units or amalgamation
units [7].

MOEA is the base meta-heuristic framework used in
MOMoT. It is an open-source Java library that provides a set
of multi-objective evolutionary algorithms with additional
analytical performance measures and can be easily extended
with new algorithms. Several different search algorithms
can be used for investigating the search space, including
global evolutionary search algorithms that are offered out-
of-the-box by MOEA, such as NSGA-III and ε-MOEA.
For the non-problem-specific search operators used by these
evolutionary algorithms, i.e., the selection operator and the
recombination operators, we reuse the generic operators pro-
vided by MOEA, such as the tournament selection operator
and the one-point crossover recombination operator. For the
problem-specific mutation operator, we have implemented
three dedicated mutation operators that take the semantics of
transformation units into account. The first operator replaces
random transformation units by placeholders reducing the
actual solution length. The second operator varies the user
parameters of a transformation unit based on the parame-
ters’ values. And the third operator selects a random position
within a solution and replaces all transformation units after
that position with a random, executable transformation unit.
The specific selection, recombination and mutation opera-
tions to use for a particular model transformation problem
have to be specified in the search configuration described in
the end of this section. Please note that additional selection,
recombination and mutation operators can be easily plugged
into MOMoT by implementing the Java interface Variation4

provided by MOEA for this purpose.
In our previous work [25], we also included in MOMoT

single-objective local-search algorithms (SOLA) for solv-
ing problems with only one objective, namely Hill Climbing
and Random Descent. As a novel feature of MOMoT,
in the present work we have implemented multi-objective
local-search algorithms (MOLA) formodel transformations.

4 http://moeaframework.org/javadoc/org/moeaframework/core/
Variation.html.

Indeed, with the aim of trying to discover the best algorithm
for each particular scenario, we aim at studying how effec-
tive local-search algorithms can be for solving problemswith
more than one objective, and checking if they can be more
effective than multi-objective algorithms for solving specific
problems. For this reason, in this paper we contribute differ-
ent multi-objective local-search approaches, which have not
been supported by MOMoT before, with the aim of improv-
ing MOMoT’s capability to find good model transformation
orchestrations. The extensions to MOMoT are explained in
detail in Sect. 4.

For specifying search-based model transformations,
MOMoT provides the Search Configuration Modeling Lan-
guage (SCML), which is exemplified in Sect. 3.3. SCML is
built upon the functionality of XBase and provides a model-
based representation of search configurations. Therewith, it
provides dedicated support for transformation engineers to
make use of search-based algorithms. Such search configu-
rations include, for instance, the specification of the search
algorithm to use and configurations needed for the respective
search algorithm, such as the aforementioned search opera-
tions used by evolutionary algorithms or the population size
used by population-based algorithms.

The complete source code of MOMoT with further expla-
nations, as well as the cases currently realized withMOMoT,
can be found on our project Web site.5

3.3 A tour onMOMoT

In this section, we give some details of howMOMoT works,
exemplifying some parts with the CRA example. Figure 8
shows the typical MOMoT workflow as well as the involved
artifacts. Some of its parts are described in the following.

3.3.1 Problem encoding

As it is typical in MDE, the problem domain itself is defined
as a meta-model (cf. the meta-model of the CRA problem
depicted in Fig. 5). Based on the specific problem domain, a
user can define both concrete problem instances, i.e., models,
and transformation rules that specify how problem instances

5 http://martin-fleck.github.io/momot/.

http://moeaframework.org/javadoc/org/moeaframework/core/Variation.html
http://moeaframework.org/javadoc/org/moeaframework/core/Variation.html
http://martin-fleck.github.io/momot/


Fig. 9 Implementation of the reassign rule in Henshin

can be modified in order to produce a solution, i.e., an out-
put model. In order to develop the necessary transformation
rules, MOMoT reuses Henshin. Furthermore, since in our
approachwe separate the objectives from the rules, no further
adaptations to those rules are necessary. The rule required
for the CRA example is depicted in Fig. 9.6 In the rule, fea-
tures with a gray background represent elements that are in
the model and remain in the model after a rule application,
those in red represent elements that are in the model before
the rule application and that are deleted afterward, and green
elementswere not in themodel before the rule application but
appear after the rule application. Therefore, the rule depicted
in Fig. 9 models the reassignment of the feature received as
parameter, featureName, to the class received as parameter,
className, nomatter to which class the feature was assigned
before (this is the reason why we do not need the class on the
left as parameter in the rule). As we start with a randomCRA
solution, which is improved by running the transformation,
we simply need one rule that reassigns the features between
different classes.

3.3.2 Solution representation

A solution in general consists of a set of decision variables
that are optimized by the respective SBSE algorithm, a num-
ber of constraints that need to be fulfilled in order for the
solution to be valid, and a number of objective values, one
for each of the objective dimensions evaluated by the defined
fitness function. As we deal with a transformation problem,
there are two common ways to represent a solution. Either
a solution is an ordered sequence of rule applications or it
is the model resulting from the application of that sequence.
We chose the first encoding as we consider it more flexible,
because the resulting model can always be calculated from
the sequence of configured rules and may be stored in a solu-
tion as attribute to avoid re-execution.

Furthermore, in our understanding, using a rule applica-
tion sequence as first-class citizen in the encoding has several
advantages. First, we are in line with the general SBSE

problem formulation, where a solution consists of separate
decision variables that are optimized by an algorithm. This
increases the understanding for users who are knowledge-
able in SBSE. Second, we are on the level of abstraction on
which the user has provided information, i.e., transforma-
tion rules. Therefore, giving also novices in SBSE a bit of
insight into the solutions. And third, we think that having the
rule sequence shown explicitly also makes the output models
more comprehensible as the user can compare solutions on
the level they are computed and not only based on the output
model, which may increase the acceptance of our approach.

Therefore, a decision variable in our solution is one
transformation unit. MOMoT supports many different trans-
formation units [28]: transformation rule, sequential unit,
priority unit, independent unit, loop unit, iterated unit, con-
ditional unit and placeholder unit.

3.3.3 Transformation unit parameters

Parameters allow to change the behavior of transformation
units with variable information that is typically not present
before execution time.When dealingwithmodel transforma-
tions, we can distinguish between two kinds of parameters:
those that are matched by the graph transformation engine
(matched parameters), and those that need to be set by the
user (user parameters). The former are often nodes within
the graph, whereas the latter are typically values of newly
created or modified properties. In the rule provided for the
CRA problem (cf. Fig. 9), the name of the :Feature and the
name of the class:Class are matched parameters, whereas
the featureName and className parameters are user param-
eters.7

3.3.4 Solution repair

Even though constraints can be used to specify the valid-
ity or feasibility of solutions, a solution that is the product
of recombining two other solutions (such as needed in evo-

7 Please note that the x:y notation used in Henshin is inspired from the
UML object diagram notation. Thus, it contains as first part the variable
name used for the elementmatch and as second part the type the element
match has to conform to.

6 Please note that MOMoT supports different Henshin transformation 
units and more complex transformations. We refer the interested reader 
to [28].



lutionary algorithms) might have unit applications that are
no longer executable, e.g., because an object passed as a user
parameter to the rule does not exist in themodel anymore. By
default, units that cannot be executed are ignored. However,
this behavior might not be satisfactory in some cases as the
process of determining that a transformation unit cannot be
executed is quite expensive due to unnecessarymatch finding
done by the transformation engine. Therefore, we consider
two repair strategies in our approach.

The first strategy replaces all non-executable transfor-
mation units with transformation placeholders and the sec-
ond strategy replaces each non-executable transformation
unit with a random, executable transformation unit. In the
ideal case, no solution repair strategy is necessary as non-
executable unit applications are not produced. Of course, this
depends on the chosen algorithm and the actual constraints
of the solutions. A user can also select a dedicated recombi-
nation operator that is able to consider some constraints, e.g.,
the partially matched crossover (PMX) [34] can preserve the
order of variables within a solution.

3.3.5 Search configuration

For configuring the search that should be used to find a
goodmodel transformation orchestration, we provide an own
SearchConfigurationModeling Language (SCML).Asmen-
tioned before, SCML is defined based on XBase and, thus,
integrates Java into the language. Hence, Java can be used for
defining different parts of the search configuration. Further-
more, we have also integrated OCL into SCML for allowing
some parts of the configuration to be definedwithOCL, espe-
cially the objectives and constraints defining when a found
solution is considered as being “good”.

The search configuration comprises the following parts:
the fitness function to be applied in the search comprising
objectives and constraints, the configuration of the search
algorithm that should be used, the transformation input, the
way in which the search results should be provided with pos-
sibly necessary post-processing steps, and the result analyses
that should be carried out. These parts are explained in detail
in the following paragraphs.

3.3.6 Objectives and constraints

The quality of each solution candidate is defined by a fitness
function that evaluates multiple objectives and constraint
dimensions. Each objective dimension refers to a specific
value that should be either minimized or maximized for a
solution to be considered “better” than another solution. For
instance, if we have two solutions with a similar coupling
value for theCRAproblem, the onewith the highest cohesion
will be considered better. Additionally, a solution candidate
may be subject to a number of constraints in order for the

solution to be valid. Such constraints are not strictly enforced
in the search, i.e., intermediate solution models as well as
final solution models may violate such constraints, but they
do impact the fitness of the solution. This is also true for
constraints imposed by the meta-model defining the problem
domain.8 Depending on the algorithm, such invalid solutions
may be filtered out completely or may receive a low rank-
ing in relation to the magnitude of the constraint violation.
For instance, we may decide to discard solutions where more
than two classes are empty, or solutions where all features
are within the same class.

As explained before, objectives and constraints can be
defined either by providing Java implementations or by spec-
ifyingmodel queries in OCL (the interested reader is referred
to [28] for additional examples). The calculation of the objec-
tive values described in Fig. 6 as mathematical formulae has
been implemented in Java for computing the coupling ratio
and the cohesion ratio (cf. Listing 1; lines 3 and 4 refer to the
Java classFitnessCalculator that computes thesemetrics). In
lines 7–9, we show a constraint defining that the number of
features not encapsulated by any class should be minimized.
The computation of the not encapsulated features is defined
with OCL (line 9).

We also provide default objectives such as done for the
solution length (line 5), i.e., the length of rule application
sequences of the computed solutions, which we aim at min-
imizing. There are several reasons for preferring shorter
solutions, i.e., solutions consisting in the minimal possible
rule applications. First, genetic algorithms may introduce
dead genes, i.e., transformation rule applications that do not
have any effect on the output. Second, shorter solutions may
contribute to lowering the costs in cases where the model
represents a physical system that has to be changed. Finally,
shorter solutions aremore easily understandable as the result-
ingmodel is closer to the initial version. Indeed, if models are
changed as a result of an optimization process, these changes
might need to be inspected by a person. Needing to under-
stand less transformation steps and the models obtained after
each step imply less efforts.

We also want to highlight that a specified fitness func-
tion may of course define conflicting objectives. This is
why the provisioning of multi-objective search algorithms
is an important feature of MOMoT. Such algorithms allow
to define conflicting objectives separate from each other
and perform the search in such a way that a good trade-
off between them can be found. In particular, multi-objective
search algorithms look for Pareto-optimal solutions, which
are solutions where at least one objective cannot be further
improved without worsening other objectives.

8 The only exception is the distinction between single-valued andmulti-
valued features, which is strictly enforced by Henshin.



3.3.7 Search algorithm configuration

The search algorithm configuration defines the search algo-
rithms to be used as well as their configurations. An example
of such a configuration for our CRA example is the use of
three algorithms that are executed sequentially (cf. Listing 2).
In the example shown in the listing, we use NSGA-III and
ε-MOEA for multi-objective search (lines 3 and 4, respec-
tively), which is needed as we have three partially conflicting
objectives (cf. Listing 1). In addition, we use random search
as a baseline comparison to demonstrate the need for a meta-
heuristic search (line 2). As we are using population-based
algorithms, we have to configure the population size for each
generation (set to 100, line 6) as well as the stopping criteria
as maximum evaluations per run (set to 10,000, line 7). As
meta-heuristic search includes some randomness, one may
also define that the algorithms are executed several times to
allow to draw statistical conclusions about the performance
of the different algorithms. In this code excerpt, we establish
30 runs (line 8).

the model to reduce the memory consumption during the
search process. In our example listing, line 4 specifies a loop
for randomly adding some classes to the model (recall that,
as explained in Sect. 2.3 and exemplified in Fig. 5, there
should be no classes in the inputmodel). Then, line 5 specifies
another loop for distributingmethods and attributes randomly
among the created classes. Variable cm stores the root of the
model, which is an element of typeModel (cf. Fig. 5).

3.3.9 Transformation results

MOMoT provides as transformation results: (i) the set of
orchestrated transformation sequences leading to (ii) the set
of Pareto-optimal output models with (iii) their respective
objective values. The objective values may give an overview
of how well the objectives are optimized. Listing 4 provides
an excerpt of this configuration, and, in addition, shows how
results may be post-processed and how specific solutions are
selected.

In particular, line 3 shows a post-processing operation in
which empty classes are removed from the model. Line 4
specifies where to store the objective values of the resulting
models, which is stored as plain text. Then, lines 5 and 6
determine the folder to store the sequences of rule applica-
tions that lead to the optimal models and the optimal models
obtained with such rules applications, respectively. Finally,
lines 7–9 show a further post-processing operation with the
aim of inspecting the kneepoint solutions. A kneepoint is a
solution that has better fitness (w.r.t. a specific dimension
of the solution space) than the neighborhood solutions. The
number of nearest neighbors forwhich the kneepoint solution
must be better is specified by the neighborhood size (line 8).

3.3.8 Transformation input

The execution of MOMoT transformations are started with 
dedicated run configurations that execute the compiled 
MOMoT search configurations, as shown in Listing 3. 
Please note that input models are modeled in EMF and 
encoded in XMI. In the listing, the input model, named Ini-
tial_Config.xmi, is loaded in line 2. In order to allow for an 
efficient search, a preprocessing is possible to prepare an 
initial structure beneficial to perform the search or to slice



3.3.10 Results analysis

MOMoT performs additional analysis to give more insights
into the computed solutions and the relative algorithm per-
formance (cf. Listing 5). For instance, we can statistically
analyze dedicated performance indicators, such as Hyper-
volume (see line 2), to compare the performance of different
algorithms. This data can also be used to plot graphs to give
a better overview about the analysis.

We use three algorithms for the given example as can be
seen in Listing 2, ε-MOEA, NSGA-III and Random Search
(RS), and execute each algorithm 30 times. The results of the
analysis are depicted in Fig. 10. We can clearly see that for
the Hypervolume indicator, random search has the lowest
and therefore worst value, while ε-MOEA has the highest
value. A similar result is produced for the Inverted Gener-
ational Distance, where lower values are considered better.
The fact that a meta-heuristic search outperforms random
search is a good indicator that the problem is suitable for
SBSE techniques. In order to investigate the results further,
MOMoT provides several other features to test and compare
different algorithms [25]. More details about evaluation pos-
sibilities are provided in Sect. 5, which is about an in-depth
comparison of local- and global-search algorithms supported
in MOMoT for three case studies.

4 ImprovingMOMoT’s local search
capabilities

As explained in Sect. 3.1, MOMoT counts on local-search
algorithms for solving problems with one objective (SOLA)
and global-search algorithms for problems with more than
one objective using the MOEA framework. However, with
the aim of trying to discover the best algorithm for each
particular scenario, we aim at studying how effective local-
search algorithms can be for solving problemswithmore than
one objective, and checking if they can bemore effective than
multi-objective algorithms for solving specific problems.
They conform what we call Multi-Objective Local-search
Algorithms (MOLA, cf. Fig. 7).

Indeed, the existence of both local-search and global-
search approaches raises the question of which approach is
better for a specific application domain. In this work, we con-
tribute with an empirical comparison in the domain of model
transformations, for which we compare a set of local-search

Fig. 10 Statistical analysis for the CRA case results. a Hypervolume
indicator, b Inverted Generational Distance

approaches and a set of global-search approaches for three
case studies. In order to implement MOLA in MOMoT, we
need to gobeyond local-search algorithmsused to solve prob-
lems with one objective. For obtaining the Pareto-optimal set
of solutions, we need to make these algorithms iterative, so
that they do not focus on improving only one objective, but
all of them. Besides, in order to obtain the best solutions, we
need these algorithms not to stop in local optima.

In this section, we first explain how iterated local search
has been implemented as an extension to MOMoT. Then, we
describe further extensions to local-search algorithms nec-
essary for managing to escape local optima. We conclude
this section with a synopsis summarizing the improvements
made to MOMoT regarding local-search capabilities.

4.1 Iterated local search

The idea is to build single objectives out of a set of objec-
tives. This can be done by applying weights to the different
objectives and aggregating them all into one objective to be



Algorithm 3: Iterated local search in MOMoT
Output: Pareto-optimal set p

1 p = ParetoSet{}
2 repeat
3 s0 = randomSolution()

4 ( f ,�) = randomAggregatedFitness()
5 b = localsearch(s0, f ,�, es)

// Perform a local search with
specific fitness function and
evaluation count

6 e = e + localsearchevaluations
7 p = p ∪ {b}
8 until Evaluations e exhausted

Algorithm 4: Simulated Annealing in MOMoT
Input: Initial Solution s0
Output: Best Solution b Found

1 t = 0, b = s0, c = s0, nb = 0, nc = 0
2 repeat
3 n = Select Any(N (c)) // Select random

neighbor
4 If f (n) > f (b) Then
5 b = c = n; nb = nc = 0
6 Elseif f (n) > f (c) Then
7 c = n
8 nc = 0
9 Else

10 nc = nc + 1
11 If rnd() < e−� f (n,c)·(ts+t ·td ) Then
12 c = n
13 Endif
14 Endif
15 If nb > cb or nc > cc Then
16 c = b
17 nb = nc = 0
18 Endif
19 t = t + 1
20 nb = nb + 1
21 until Evaluations exhausted

to the changes in its internal structure. As the metal cools, its
new structure becomes fixed, consequently causing themetal
to retain its newly obtained properties. In Simulated Anneal-
ing, we keep a temperature variable to simulate this heating
process. It is initially set high and then it is allowed to slowly
cool as the algorithm runs. While this temperature variable
is high, the algorithm will be allowed, with more frequency,
to accept solutions that are worse than our current solution.
This gives the algorithm the ability to jump out of any local
optima it finds early in its execution. As the temperature and
therewith the chance of accepting worse solutions are grad-
ually reduced, the algorithm gradually focuses on an area of
the search space in which, hopefully, a global optimum can
be found. This gradual cooling process is what makes the
SA algorithm effective at finding a close-to-optimum solu-
tionwhen dealingwith large problems that contain numerous
local optima.

A pseudo-code representation of our tailored implemen-
tation of the SA algorithm in MOMoT is depicted in
Algorithm 4. In this excerpt, t represents the time, which
is initialized with 0 (line 1) and discretely increases in each
iteration (line 19). Variable b keeps the best solution found
and is initialized with the random solution s0 (line 1). Vari-
able c denotes the current solution, also initialized with s0
(line 1). Finally, variables nb and nc denote the number of
steps (iterations) performed since the latest best solution and
current solution were set, respectively.

After these initializations (line 1), the following process
is repeated until the stopping criterion is met (lines 2–21).
An iteration starts by selecting and keeping in n a random

either maximized or minimized. We have extended MOMoT 
by implementing such a mechanism.

A high-level description of the implementation of the 
iterated local search, the basis for MOLA, is shown in Algo-
rithm 3. Basically, multi-objective solutions are found by 
iteratively applying single-objective local searches. As usual, 
we start with an empty set of solutions (line 1) and repeat the 
same process until the stopping criterion is met (lines 2–8). 
In this process, a random solution is obtained and is stored 
in s0 (line 3). In every iteration, a different multi-to-single-
objective aggregation is used as fitness function (variable 
f ; line 4). In each of these aggregations, different random 
weights are given to the different objectives, with the pur-
pose of obtaining the optimal solutions in the Pareto front 
and avoiding the optimization of only one objective. Since, 
iteration after iteration, we get an array of solutions (p), we 
use � to represent the improvement among solutions. In par-
ticular, having two solutions A and B, � specifies the greatest 
relative worsening of any objective of A with respect to B, 
meaning that A is not Pareto-dominating B. This �, there-
fore, determines the solutions to be gathered in p. With the 
explained inputs, an algorithm for local search is run (line 
5, where es is used to denote the evaluation count, i.e., the 
number of fitness evaluations performed in this run) and a 
solution is obtained, stored in b and added to the Pareto set 
of solutions p (line 7).

4.2 Escaping local optima

In line 5 of Algorithm 3, we see that we apply a local-
search algorithm. With the aim of avoiding to fall into and 
get stuck in local optima, we have developed another exten-
sion to MOMoT that consists in a tailored implementation of 
Simulated Annealing (SA) [46] as a new local-search algo-
rithm. SA belongs to a class of local-search algorithms that 
are known as threshold algorithms [67]. It has a stochastic 
component. This algorithm was originally inspired from the 
process of annealing in metal work. Annealing involves heat-
ing and cooling a material to alter its physical properties due



neighbor of the current solution. If the fitness of this neighbor
is better than thefitness of the best solution so far (line 4), then
we update the best and current solutions with such neighbor
and set the number of iterations since the latest best and
current solutions to 0 (line 5). If the fitness of the selected
neighbor, n, is not better than the fitness of the best solution
so far, but it is better than the current solution (line 6), then the
current solution and the number of iterations since the current
solution are updated accordingly (lines 7 and 8). If the fitness
of the selected neighbor, n, is not better than the fitness of
the best solution so far neither of the current solution (line
9), then the number of iterations since the current solution is
increased (line 10).

Line 11 gives the stochastic behavior to our algorithm
to decide whether to jump to a worse solution (if the algo-
rithm reaches this line, it is because f (n) < f (c) < f (b)).
Here, e is theEuler number. Regarding its exponent,� f (n, c)
denotes the fitness decrease from the fitness of the selected
neighbor to the fitness of the current solution, ts is the inverse
of the start temperature (which is set to a high value), t is the
current iteration, and td is a temperature decrease value. The
two last variables model the decrease in the temperature over
time. As the iterations increase, the second part of the mul-
tiplication increases. And, since this is part of an exponent
that is transformed to a negative number, the higher the value
of the exponent, the lower the final value of the computation
and therefore the less chances to jump to the worse solution
(line 11). This is how we emulate the annealing behavior.
The fitness decrease also affects this decision, since it is also
part of the exponent. Thus, the higher the fitness decrease,
the less chances to jump to a worse solution.

As earlier mentioned, the comparison in line 11, rnd() <

e−� f (n,c)·(ts+t ·td ), is used to stochastically decide whether to
select a different place in the solution space. The higher the
exponent of the right-hand side of the comparison is, the
lower is the value of the right-hand side (since it is applied
the negative product) and, therefore, the lower the chances
are to perform the jump. If the jump is to be done, then the
current solution is set to the (worse) random neighbor (line
12) computed in this iteration. However, in this case please
note that we do not reset nc, since the fitness value of the
current solution must have gotten worse.

In line 15, cb and cc are threshold values. They are used
in lines 15–18 to decide whether the search restarts at the
best solution found so far if no improvement to the current
solution can be done within cc iterations or no improvement
to the best solution can be done within cb steps. In lines 19
and 20, the discrete time and the number of iterations since
the latest best solution are updated appropriately.

We have also extended the implementation of the Hill
Climbing algorithm so that it aborts and thus restarts when no
improvement can be found for n iterations. Furthermore, we
have augmented both Simulated Annealing and Hill Climb-

ing with a limited version of Tabu Search [32]. Tabu Search
helps avoiding local optima by using different memories to
remember the recently visited solutions (short term), focus or
prohibit moves toward solutions with specific characteristics
(intermediate). In particular, we forbid to change variables
that have been recently changed by modifying the neighbor-
hood of each search to look for rule additions, modifications
or deletions for forbidden variables.

Finally, we have also added a new way of obtaining the
neighborhood population for the local-search algorithms.
The neighborhood population contains random solutions
where parameters of a rule application have changed or the
rule application itself has been replaced or deleted. There is a
parameter end to favor (i) adding new transformations at the
end, (ii) replacing an empty rule application before or (iii)
removing an arbitrary one in case no such rule application
exists. This has the advantage that no rule can get broken as
a result of this rule application, therefore preserving as many
existing transformations as possible. Consequently, the effect
of adding this single rule application may behave better in
certain scenarios.

4.3 Synopsis

So far, local-search algorithms were applied in MOMoT for
solving problems with only one objective, what we know as
single-objective local-search algorithms (SOLA, cf. Fig. 7).
In particular, only Hill Climbing [11] and Random Descent
were included in MOMoT for solving single-objective prob-
lems. But the problemwith these two local-search algorithms
is that they can fall in local optima quite fast without a chance
to escape. In fact, after starting in an initial random solution,
they always select a neighbor with a better fitness than the
current solution. With this behavior, they may find a local
optimum, from which they cannot continue (cf. Fig. 3). Fur-
thermore, they were used to solve problems with only one
objective.

In this extension of MOMoT, we have implemented iter-
ated local search with the aim of exploring the usefulness
of local-search algorithms for solving multi-objective prob-
lems, as described in Sect. 4.1.We have named this extension
multi-objective local-search algorithms (MOLA, cf. Fig. 7).
Furthermore, due to the limitation of current local-search
algorithms to fall into local optima, we have implemented
new versions of several of these algorithms with the aim of
escaping local optima, as explained in Sect. 4.2. In particular,
we have implemented new versions of Simulated Annealing
and Hill Climbing, for which we have, among other tech-
niques, integrated some features of Tabu Search. Please note
that our iterated local search is easily extensible, since any
local-search algorithm can be used. Finally, we have also
implemented a new way of obtaining the neighborhood pop-
ulation, again with the aim of escaping local optima.



5 Case-study-based evaluation

In this section, we perform experiments based on the guide-
lines for conducting empirical explanatory case studies [58].
The main goal is to evaluate whether local- and global-
search algorithms show different behaviors, i.e., in terms of
search exploration and runtime performance, for orchestrat-
ing model transformation executions. Please note that this
is the first study of its kind investigating and comparing the
performance of single-objective local search, multi-objective
local search, and global-search algorithms for their appli-
cation to model transformations. This evaluation has been
carried out based on three case studies considering three dif-
ferent transformations which are solved in a search-based
manner withMOMoT: Stack Load Balancing,Class Respon-
sibility Assignment, and Transportation Line Optimization.
While the first two case studies have been already investi-
gated in our earlier publications [25,28], they have not been
used to compare the performance of local- and global-search
algorithms as done in this study.

5.1 Research questions

As mentioned above, we performed this study to evaluate
the possible distinct behavior of different search-based algo-
rithms concerning their search capabilities for finding good
solutions for transformation problems. More specifically, we
aimed to answer the following two research questions (RQs):

– RQ1—Search exploration Is there a significant difference
of local-search approaches to global-search approaches
applied to the domain of model transformations concern-
ing the exploration of the search space?

– RQ2—Search time Is there a significant difference of
local-search approaches to global-search approaches
applied to the domain of model transformations concern-
ing the execution time of the search process?

model transformations, the domain meta-models and a set
of sample input models of different sizes. We have selected
these cases due to their difference in used transformation
concepts such as rule parameters, preconditions, and also
number of objectives to consider.

– CS1—Stack load balancing (SLB) This transformation is
about balancing the loads of different stacks by moving
elements to the left or right neighbor stack. The descrip-
tion of the example is presented below.

– CS2—Class responsibility assignment (CRA) This trans-
formation is the running example already presented in
Sect. 2.3 and therefore not further introduced in this sec-
tion.

– CS3—Transportation line optimization (TLO)This trans-
formation is about finding the best configuration of a
transportation line, considered within the domain of
cyber-physical production systems, in order to speed-up
the production processwhileminimizing the costs of pro-
ducing items. It is described in detail below.

The stack load balancing case
This case study consists of a system of stacks, where each
stack can have a different number of boxes referred to as
load. The meta-model that represents the stack system is
depicted in Fig. 11. Every stack in the system has a unique
identifier, a number that indicates its load, and is connected
to a left and right neighbor in a circular manner. A concrete
stack example instance composed of five stackswith different
loads is shown in Fig. 12 in its abstract syntax.

The objective is tominimize the load difference among the
different stacks in theminimum number of steps, as specified
in Listing 6. To manipulate stack models, we propose two
basic rules which shift part of the load from one stack either
to the left or to the right neighbor. The ShiftLeft rule is shown
in Fig. 13—an analogous rule is used to shift parts to the right.
Each rule has five input parameters: fromId, toId, amount,
fromLoad, and toLoad. While producing a match for this
rule, all these input parameters acquire a value, i.e., they are
instantiated, and the rule can be applied. For retrieving these
values, Henshin matches the pattern in the rule consisting of
nodes and edgeswith themodel graph. Since stacks are nodes
in the graph and the left and right relationships are edges, they
can be matched automatically and values for fromId, toId,

StackModel
Stack

id: EString
load: EInt0..*

stacks

right1

le�1

Fig. 11 Stack meta-model

In order to answer these research questions, we perform this 
study to extract several measurements using three case stud-
ies. The complete case study setup is summarized in the next 
subsection.

5.2 Case study setup

We now introduce the case studies used in our study, the mea-
surements as well as statistical tests and finally the parameter 
configuration used for the search algorithms.

5.2.1 Case studies

Our research questions are evaluated using the following 
three case studies. Each one consists of one or more Henshin



s1 : Stack
id = 'Stack 1'
load = 1

s2 : Stack
id = 'Stack 2'
load = 7

s3 : Stack
id = 'Stack 3'
load = 3

s4 : Stack
id = 'Stack 4'
load = 9

s5 : Stack
id = 'Stack 5'
load = 5

m : StackModel

right
le�

right
le�

right
le�

right
le� le�

right

Fig. 12 Stack example model in abstract syntax

Rule shiftLeft(fromId: EString, toId: EString, amount: EInt, fromLoad: EInt, toLoad: EInt) @StackModel

«preserve»
to: Stack

id = toId
load = toLoad->toLoad + amount

«preserve»
from: Stack

id = fromId
load = fromLoad->fromLoad – amount

«preserve»
left

SufficientLoadPrecondition:
amount <= fromLoad

Fig. 13 ShiftLeft rule to shift load

Table 1 Input models of the
stack case

Model #Stacks Load

A 2 11

B 5 28

C 10 50

D 25 139

Asc 10 45

fromLoad, and toLoad can be set. Furthermore, the rule also
contains a precondition, which ensures that the amount that
is shifted is not higher than the load of the source stack. This
attribute condition is shown as an annotation in the figure.

We have used five different initialmodels of different sizes
for our experiments in this case. They have from two stacks
and a load of 5, to 25 stacks and a load of 139. Stacks A to D
just contain a random number of loads, whileAsc contains an
ascending and descending number of loads 1-2-3-4-5-6-5-4-
3-2 and was handcrafted to be unbalanced and at the same
time to have no direct improving neighbors. Table 1 shows
the characteristics of each model.

The class responsibility assignment case
This case has already been introduced asmotivating example.
For this case, we use four initial models of different sizes for

Table 2 Input models of the CRA case

Model #Methods #Atts #D. deps #F. deps

A 2 3 4 0

B 4 5 8 7

C 7 9 19 16

D 15 18 36 53

our experiments. The characteristics of eachmodel are shown
in Table 2.
The transportation line optimization case
This case is taken from the research project CDL-MINT9

carried out by TU Wien. The main goal is to investigate
the application of MDE techniques in the domain of smart
production. This case is about designing a cyber-physical
production system in which different configurations for a
production line are possible depending on the given objec-
tives. Its meta-model is shown in Fig. 14. We distinguish
three types of classes. While those with a gray background
are abstract classes, the ones with a white background can be
instantiated. Finally, classes in orange are used to represent
non-functional properties. When instantiating a model, these
classes get associated with an element (System, Component
or Item) and represent several features of it at runtime.

In the meta-model, System is the root class, which is
composed of several Areas. The system can have associ-
ated a SimConfig, where several parameters of the simulation
can be specified, for instance, the simulation speed. The
purpose of other parameters is to be calculated at runtime
in order to measure some non-functional properties of the

9 https://cdl-mint.big.tuwien.ac.at.

https://cdl-mint.big.tuwien.ac.at


System Area

SimConfig
simTime : Elong
budget : EInt
remainingBudget : Eint
itemThroughput : EInt
avgLatency : EDouble
avgQuality : EDouble
totalEnergyConsump�on : EDouble
simSpeed : EDouble

Component
pseudoId : EInt
typeId : EInt
processingTime : EInt
ac�veEnergy : EInt
passiveEnergy : EInt
produc�onCost : EInt
cost : EInt
isBusy : EBoolean
reliability : EDouble

Conveyor Machine
minInput : EInt

TurnTable ItemGenerator
generatedType : EInt

Store
capacity: EInt

DeliveryStore WasteStoreTemporalStore
isStack : EBoolean

ComponentInfo
crea�onTime : ELong
useTime : ELong
produc�onCost : ELong
okCount : EInt
koCount : EInt
u�liza�on : EDouble
energyConsump�on : EDouble

InputSlot
name : EString

OutputSlot
name : EString

Item
type: EInt
state : EInt
quality : EDouble

ItemInfo
crea�onTime : ELong
finaliza�onTime : ELong
totalLatency : ELong

componentInfo

[0..1]

outputSlotinputSlot [0..*] [0..*]

outputComponent

[1..1]

inputComponent

[1..1]

inputSlot outputSlot
[0..1] [0..1]

item

[0..1]
item

[0..1]

simConfig [0..1]

area

[0..*]

component

[0..*]

itemInfo

[0..1]

transportation line. On their way, they may serve as input to
Machines, which produce other items as output. Those items
that complete the transportation line successfully, should end
up in a DeliveryStore, representing the place where they are
ready to be sent to the customer. If there is a problem with
an item, this should end up in a WasteStore and must be
discarded.

We use two rule sets for this meta-model that differ in
the size of the search space. Four rules that are present in
both rule sets are shown in Fig. 15. The rule in Fig. 15a,
createExpensivePrinter is used to create an item generator
that represents an expensive printer. In order for the rule to be
executed, there must exist an area, so that the created printer
gets associated with it. We also see in the figure how an
output slot is associated with the added printer. Please note
that no input slot is needed, since the printer will not receive
any input. The rule contains a negative-application condition
(NAC), represented by an element in blue. Thus, the rule
will not be applied if there is a component, no matter of
which specific type, whose pseudoId is the Integer received
as parameter and whose typeId is 1. Please note that these
values are precisely given to the created printer.

In the search of the optimal configuration, it may be nec-
essary to remove existing components. For that purpose, we
have the rule deleteComponent (cf. Fig. 15b). It deletes the

Fig. 14 Transportation line meta-model

system, such as the throughput or the latency. An area, 
in turn, can contain any number of Components. As we 
see, there are seven types of Components, namely Con-
veyor, Machine, TurnTable, ItemGenerator, DeliveryStore, 
TemporalStore and WasteStore. Each machine has its pur-
pose. Conveyors, for instance, are used to move items along 
them, item generators are used to build items, and turn 
tables route items of a specific state or type to a dedicated 
location. Components can have associated a ComponentInfo 
entity, where several runtime parameters of the component 
are stored. This includes meta-information about objects like 
the creation time. Some other parameters are used to measure 
non-functional properties of the component during simula-
tion time, such as its utilization or its energy consumption. 
Each component can have one or more InputSlots and Out-
putSlots. These are used to connect components among them. 
InputSlots and OutputSlots specify the required or respec-
tively the provided type and state of the objects passed along. 
Items coming into an input slot of the wrong type are consid-
ered to be destroyed. The slots, in turn, can have an incoming 
or outgoing Item, and items can have an associated Item-
Info to store some non-functional information. Items have a  
quality attribute that, for the evaluation in this paper, only 
acquires values of 0 (low quality) and 1 (high quality). They 
are created by ItemGenerators and are moved along the



Rule createExEE pxx ensivevv Printer(i(( n x:Exx InEE t)tt

«forbid»
: Component

pseudoId= x
typeId=1

«create»
: OutputSlot

name = “output”«create»
outputSlot

«preserve»
: Area

«create»
: ItemGenerator

cost=2000
typeId=1
pesudoId=x
passiveEnergy=10
activeEnergy=200
productionCost=45
reliability=1
processingTime=60000
generatedType=2

«create»
component

Rule deleteComponent(c(( ompId:Edd IntEE ,tt tyt pyy eId:Edd IntEE )tt

«delete»
: Component

pseudoId= compId
typeId=typeId

Rule createExEE pxx ensivevv Machine(i(( n machineId:Edd IntEE )t

«create»
: OutputSlot

name = “output”

«create»
outputSlot

«preserve»
: Area

«create»
: Machine

cost=2000
typeId=3
pesudoId=machineId
passiveEnergy=50
activeEnergy=2000
minInput=2
reliability=1
processingTime=20000

«create»
compop nent

«forbid»
: Component

pseudoId= machineId
typeId=3

«create»
: InputSlot

name = “input1”

«create»
: InputSlot

name = “input2”

«create»
inputSlot

«create»
inpputSlot

Rule reconnectMatchingSlot(i(( nCompId:Edd IntEE ,tt inCompTypyy e:EIntEE ,tt inSlot:tt ESEE tring,gg outStt lot:tt ESEE tring,gg outComId:Edd IntEE ,tt outCompTypyy e:EIntEE )t

«preserve»
outputSlot

«preserve»
inputSlot

«create»
inputSlot«preserve»

: Component
pseudoId=inCompId
typeId=inCompType

«preserve»
: OutputSlot

name=inSlot

«preserve»
: InputSlot

name=outSlot

«preserve»
: Component

pseudoId=outCompId
typeId=outCompType

(a)

(b)

(c)

(d)

Fig. 15 Some rules of the transformation line example

component whose pseudoId and typeId match the parame-
ters received. Similar to the rule for creating an expensive
printer, we have rule createExpensiveMachine in Fig. 15c.
Specifically, this is a type of machine that must have at least
two inputs (attribute minInput) in order to produce output.
Indeed, as we can see in the rule, two input slots are created
by the rule and associated with the created machine. The
NAC specifies that, in order to apply this rule, there must not
exist in the system a machine with the pseudoId and typeId
that are to be given to the new machine.

Finally, rule reconnectMatchingSlot, in Fig. 15d, is used
to connect two components. In particular, it creates a con-
nection between an output slot of a component and an input
slot of another component. As we see in the rule, the param-

eters received by the rule are used to match the four specific
entities.

For our evaluation, we use two different rule sets, namely
a generic and a specific rule set, for reaching search spaces of
different sizes. Both of them are used to solve two different
problems, namely creating and changing a factory layout,
resulting in four different settings.

Both rule sets contain the rules mentioned above, but dif-
fer in the remaining rules. In particular, the first, so-called
generic, rule set can create arbitrary factories. It does so by
first creating componentswith input and output slots and then
connecting output slots with matching input slots. Convey-
ors and stores start with undefined slot types (− 1), while the
other components have defined slot types. In the matching



5.2.2 Evaluation measures

To answer our research questions, we use several metrics
depending on the nature of the research question.

In order to evaluate research question RQ1, we compare
the results of NSGA-III, Iterated Simulated Annealing and
Iterated Hill Climbing based on Hypervolume (IHV) and
Inverted Generational Distance (IGD) for all cases. Hyper-
volume corresponds to the proportion of the objective space
that is dominated by the Pareto front approximation returned
by the algorithm and delimited by a reference point. The
larger the proportion, the better the algorithm performs.
It is interesting to note that this indicator is Pareto domi-
nance compliant and can capture both the convergence and
the diversity of the solutions. Therefore, IHV is a com-
mon indicator used when comparing different search-based
algorithms. However, due to lack in solution variability, the
hypervolume indicator is often zero. Thus, we additionally
show the Inverted Generational Distance (IGD), i.e., the
average distance of any solution vector in the approximated
Pareto front to a vector in the solution space.

process, such a component will get all its slot types assigned 
if the input component’s slot type is defined.

The second, so-called specific, rule set only allows to cre-
ate a limited set of factories to reduce the size of the search 
space. In particular, it only considers printers, machines and 
conveyors. The creation rules for printers and machines are 
equal to the creation rule of the generic case. However, there 
are two rules for conveyors transporting (a) parts and (b) 
complete toys. Thus, there are no slots with undefined slot 
types and there is only a single rule connecting matching 
slots.

As for the two problems to be solved, the first one is to 
create an optimal transportation line from scratch, while the 
second one is to change an existing transportation line, i.e., 
to find an optimal reconfiguration.

For the problem of creating a transportation line from 
scratch, we use a near-empty model as input. It only con-
sists of a system with only one area, a waste store with two 
input slots and a delivery store with two input slots allowing 
only finished items. We do not use the rule deleting com-
ponents. In the reconfiguration problem, we have applied a 
search process with the aim of producing an expensive trans-
portation line. The outcome is the model that we use as input. 
It is composed of 42 components (13 item generators, 7 con-
veyors, 14 machines, 2 turn tables, 4 stacks, 1 waste store 
and 1 delivery store), 52 input slots, 45 output slots and only 
7 slot connections. An optimization strategy will thus need 
to focus on finding the right connections and deleting unnec-
essary machines.

We have five objectives in this case, namely (i) maxi-
mizing the number of high-quality items in DeliveryStores,
(ii) minimizing the number of wasted items, (iii) minimiz-
ing the number of low-quality items in DeliveryStores, (iv) 
minimizing the energy consumption of the system, and (v) 
minimizing the total cost of the items produced. The search 
objectives for this case have been written in Java. Many 
objectives contain additional code paths to avoid returning 
zero. For example, when checking for produced items, we 
consider the number of items that are in a DeliveryStore. 
However, if that number is zero, then the number of items 
that have been generated and are within the transportation 
line is used. We shall highlight that the calculation of the 
fitness is realized so that the first computation is preferred 
over the second one. Listing 7 shows the Java code for 
the first objective, namely maximizing the number of high-
quality items in DeliveryStores. Listing 8, in turns, shows 
a short OCL version of the objectives without any addi-
tional code to guide the search. Specifically, the objectives, 
in the order stated before are shown from line 4 to line 
9.



In order to evaluate research question RQ2, we compare
the runtime of all algorithms. We measure the time between
the start of the algorithm initialization and when we get the
result. We do not consider the problem setup, i.e., neither
the model loading nor the transformation loading, since it
is equal for all algorithms. We do not consider the result
analysis, including saving models and objective values, nor
the warm up phase, either.

5.2.3 Statistical tests

Since meta-heuristic algorithms are stochastic optimizers,
they can provide different results for the same problem
instance from one run to another. For this reason, our study is
performed based on 30 independent simulation runs for each
case and the obtained results are statistically analyzed by
using the Mann–WhitneyU test [3] with a 99% significance
level (α = 0.01). TheMann–WhitneyU test [50], equivalent
to the Wilcoxon rank-sum test, is a nonparametric test that
allows two solution sets to be compared without making the
assumption that values are normally distributed. Specifically,
we test the null hypothesis (H0) that two populations have the
samemedian against the alternative hypothesis (H1) that they
have different medians. The p value of theMann–WhitneyU
test corresponds to the probability of rejecting the H0 while
it is true (type I error). A p value that is less than or equal to
α means that we accept H1 and we reject H0. However, a p
value that is strictly greater than α means the opposite.

For each case, we apply theMann–WhitneyU test to com-
pare the results of all algorithms. In particular, we want to
see whether the observed behavior differences are statisti-
cally significant or potentially just a random result.

5.2.4 Parameter configuration

In order to retrieve the results for each case and algorithm,we
need to configure the execution process and the algorithms

accordingly. To be precise, all our results are retrieved from
30 independent algorithm executions to mitigate the influ-
ence of randomness. In the Stack case, we choose 5000,
10, 000, 20, 000 and50, 000 evaluations for Stack-A toStack-
D, respectively, and 20, 000 for the Asc input model. In the
CRA case, we choose 10, 000, 20, 000, 40, 000 and 80, 000
evaluations for CRA-A to CRA-D, respectively. Finally, in
the transportation line case, we choose 25, 000 evaluations
for the creation of transportation lines from scratch and 5000
evaluations for the reconfiguration of transportation lines.

For all evolutionary algorithms, we choose the population
size to be 100. Furthermore, we need to specify the evolution-
ary operators. As a selection operator, we use deterministic
tournament selection with n = 2. Deterministic tournament
selection takes n random candidate solutions from the pop-
ulation and selects the best one. The selected solutions are
then considered for recombination. As recombination oper-
ator, we use the one-point crossover for all algorithms. The
one-point crossover operator splits two parent solutions, i.e.,
orchestrated rule sequences, at a random position andmerges
them crosswise, resulting in two, new offspring solutions.
The underlying assumption here is that traits which make the
selected solutions fitter than other solutions will be inherited
by the newly created solutions. Finally, we use a mutation
operator to introduce slight, random changes into the solu-
tion candidates to guide the search into areas of the search
space that would not be reachable through recombination
alone. Specifically, we use our own mutation operator that
exchanges one rule application at a random position with
another with a mutation rate of five percent.

For the iterated local search, we need to configure how
solutions are initialized and the parameters of the local
search. We initialize by pre-applying a Hill Climbing-like
population-based local search and taking the best w.r.t. a cer-
tain objective aggregation function. We define the tabu size,
i.e., variable indices that may not be changed, to be 1. The
subalgorithm is performed for n = √

e · p evaluations with
e being the total number of evaluations and p the population
size.



Table 3 Hypervolume and average runtime of the stack case

Case Alg. Hypervolume Time (s)

Min Avg Max

Stack-A ε-MOEA 0.000 0.000 0.000 0

NSGA-II 0.000 0.000 0.000 0

NSGA-III 0.000 0.000 0.000 0

HC-iter. 0.000 0.000 0.000 1

HC-sing. 0.000 0.000 0.000 0

RD-iter. 0.000 0.000 0.000 0

RD-sing. 0.000 0.000 0.000 0

SA-iter. 0.000 0.000 0.000 1

SA-sing. 0.000 0.000 0.000 1

Random S. 0.000 0.000 0.000 1.21

Stack-B ε-MOEA 0.083 0.424 0.542 1.16

NSGA-II 0.500 0.540 0.542 1.76

NSGA-III 0.500 0.540 0.542 1.81

HC-iter. 0.000 0.097 0.500 5.03

HC-sing. 0.542 0.542 0.542 2.96

RD-iter. 0.125 0.412 0.542 3.43

RD-sing. 0.125 0.429 0.542 3.51

SA-iter. 0.292 0.533 0.542 3.43

SA-sing. 0.542 0.542 0.542 3.31

Random S. 0.000 0.000 0.000 8.65

Stack-C ε-MOEA 0.459 0.564 0.635 1.64

NSGA-II 0.553 0.622 0.635 2.52

NSGA-III 0.553 0.610 0.635 2.58

HC-iter. 0.000 0.049 0.424 10.5

HC-sing. 0.553 0.606 0.624 3.86

RD-iter. 0.235 0.466 0.588 5.04

RD-sing. 0.235 0.449 0.600 5.05

SA-iter. 0.541 0.623 0.635 5.95

SA-sing. 0.612 0.627 0.635 5.86

Random S. 0.000 0.000 0.000 20.4

Stack-D ε-MOEA 0.373 0.566 0.690 12.3

NSGA-II 0.509 0.606 0.699 16.5

NSGA-III 0.450 0.599 0.684 15.8

HC-iter. 0.000 0.018 0.210 75.2

HC-sing. 0.615 0.672 0.694 30.0

RD-iter. 0.324 0.498 0.637 40.3

RD-sing. 0.419 0.508 0.595 42.4

SA-iter. 0.577 0.626 0.656 34.7

SA-sing. 0.588 0.625 0.657 34.1

Random S. 0.000 0.000 0.000 142

Stack-Asc ε-MOEA 0.000 0.281 0.400 3.72

NSGA-II 0.237 0.356 0.400 5.80

NSGA-III 0.225 0.345 0.400 6.06

HC-iter. 0.000 0.042 0.263 17.7

HC-sing. 0.000 0.000 0.000 2.25

For Simulated Annealing, we need to specify the temper-
ature and temperature decrease (cf. Sect. 4.2). We choose 
ts = 0.2 as inverse start temperature and td = 0.007 as tem-

perature decrease value. We enforce a restart when the current 
solution cannot be improved after cc = 50 steps and when 
the best solution cannot be improved after cb = 1000 steps,
i.e., it is never reset within a subalgorithm execution. For Hill 
Climbing, we specify the neighborhood size to be n = 10, 
always choose the best neighbor and restart the search after 
10 unsuccessful improvement attempts.

5.3 Result analysis

This section describes the results of the experiments con-
ducted with the three case studies. Based on the obtained 
results, we discuss the answers to our research questions.

5.3.1 Results for RQ1

Table 3 summarizes the minimum, average and maximum 
hypervolume values gained by executing the Stack case with 
three evolutionary algorithms (ε-MOEA, NSGA-II, NSGA-
III), three local-search algorithms in single and iterated 
fashion (Hill Climbing: HC-sing./HC-iter., Random Descent: 
RD-sing./RD-iter. and Simulated Annealing: SA-sing./SA-
iter.) and Random Search (Random S.) for the five input 
models (cf. Table 1). In the table, we have highlighted in 
bold the values of the best solutions.

The hypervolume indicator for the smallest stack example 
is always zero because this example can be solved by just a 
single rule application, so the Pareto front consists of only 
two solutions with normalized values (0, 1) and (1, 0). In  
that case, this indicator always returns zero. In any case, all 
algorithms deliver a good solution.

For larger problems, the results show that iterated Hill 
Climbing and random search are not suitable algorithms for 
this kind of problem. They do not only clearly take longer 
than the other algorithms, but also perform worse. The perfor-
mance of local searches, especially Hill Climbing, is strongly 
tied to the problem structure. If the load can be balanced by 
just shifting stacks to the direct neighbor, Hill Climbing per-
forms well. For all the randomly generated examples, Stack-A 
to Stack-D, this is the case to a certain extent. If the loads have 
to be distributed to a stack that is far away and therefore shift-
ing some load to a direct neighbor does not solve the problem, 
such as in the Stack-Asc model, then local searches perform 
clearly worse than global searches. In fact, for Stack-D, single 
Hill Climbing performs statistically significantly better than 
Simulated Annealing. The numbers obtained for Simulated 
Annealing look like it performs better than the evolutionary 
algorithms, but not at the level of statistical significance. In 
contrast, this is exactly the other way around for Stack-Asc. 
There, the evolutionary algorithms perform better than Sim-



Table 3 continued

Case Alg. Hypervolume Time (s)

Min Avg Max

RD-iter. 0.000 0.000 0.000 2.29

RD-sing. 0.000 0.000 0.000 2.32

SA-iter. 0.125 0.193 0.287 5.70

SA-sing. 0.125 0.195 0.237 5.55

Random S. 0.000 0.000 0.000 36.6

ulated Annealing and Simulated Annealing performs better
than Hill Climbing. Here, both results are statistically sig-
nificant. This shows that even for very simple problems, the
concrete inputmodel may have a great impact onwhich algo-
rithm performs best.

Table 4 shows the hypervolume values for the Class
ResponsibilityAssignment case.Overall, ε-MOEAperforms
best. It works significantly better than all the other algorithms
in the largest example and is not worse in any other. As cou-
pling and cohesion are strongly conflicting, Hill Climbing
is not able to find meaningful results. Iterated Hill Climb-
ing performs slightly, but statistically significantly, better
as it tries out different search directions and starting points
and thus avoids not being able to continue at all. Simulated
Annealing works better than Hill Climbing, but worse than
genetic algorithms. It is able to escape local optima, but
cannot find vastly different results. For larger models, its effi-
ciency compared to the evolutionary algorithms decreases.
Iterated Simulated Annealing performs statistically signifi-
cantly worse than non-iterated Simulated Annealing.

Table 5 shows the hypervolumes of the Transportation
Line case. Since really low values are reported due to the
limited solution variability, this indicator is not very mean-
ingful. Thus, we also list the Inverted Generational Distance
(IGD). Initially, we expected that genetic algorithms would
perform best in this case. However, this is not the case.

For the transportation line creation, single Simulated
Annealing and even random search outperform the evolu-
tionary algorithms in termsof InvertedGenerationalDistance
(IGD). Interestingly, all evolutionary search algorithms have
the same maximum IGD, i.e., fail to find even a single solu-
tion of a product line actually producing products. A manual
inspection of the solutions generated by the genetic algo-
rithms showed that they often contain unnecessarymachines.
While there do exist many potentially working transporta-
tion lines, they are not that dense in the search space, which
might be problematic for an algorithm dedicated to finding
well-spread solutions. For the reconfiguration scenarios, the
results are more evenly distributed since all solutions start
with a working example. However, the evolutionary algo-
rithms perform better in this case compared to the local ones.

Table 4 Hypervolume and average runtime of the CRA case

Case Alg. Hypervolume Time

Min Avg Max

CRA-A ε-MOEA 0.421 0.421 0.421 1 s

NSGA-II 0.421 0.421 0.421 1 s

NSGA-III 0.403 0.408 0.421 1 s

HC-iter. 0.000 0.164 0.278 1 s

HC-sing. 0.000 0.000 .000 667 ns

SA-iter. 0.241 0.397 0.421 1.29 s

SA-single 0.125 0.389 0.421 1.14 s

Random S. .000 .000 .000 1.84 s

CRA-B ε-MOEA 0.461 0.465 0.471 3.44 s

NSGA-II 0.463 0.466 0.472 3.73 s

NSGA-III 0.426 0.446 0.456 3.53 s

HC iter. 0.000 0.125 0.285 2.41 s

HC-sing. 0.000 0.000 0.000 0 s

SA-iter. 0.258 0.357 0.416 5.23 s

SA-single 0.278 0.392 0.450 4.81 s

Random S. 0.000 0.000 0.000 7.08 s

CRA-C ε-MOEA 0.618 0.642 0.661 17.6 s

NSGA-II 0.598 0.639 0.661 14.6 s

NSGA-III 0.551 0.598 0.632 14.0 s

HC-iter. 0.000 0.114 0.354 8.00 s

HC-sing. 0.000 0.000 0.000 0 s

SA-iter. 0.419 0.461 0.540 17.7 s

SA-single 0.336 0.456 0.532 20.0 s

Random S. 0.000 0.000 0.000 29.9 s

CRA-D ε-MOEA 0.493 0.558 0.621 555 s

NSGA-II 0.427 0.484 0.521 104 s

NSGA-III 0.434 0.483 0.522 125 s

HC-iter. 0.000 0.038 0.163 48.9 s

HC-sing. 0.000 0.000 0.000 0 s

SA-iter. 0.172 0.208 0.260 112 s

SA-single 0.155 0.225 0.300 134 s

Random S. 0.000 0.000 0.000 209 s

In Sect. 5.3.3, we describe some conclusions after the
study realized.

5.3.2 Results for RQ2

The evaluation tables also show the average runtime for the
investigated transformations for the different search algo-
rithms and input models. A Mann–Whitney U -test on the
performance shows that for the smallmodels, such asCRA-A
and the Stack models, evolutionary algorithms use statisti-
cally significantly less time than the other algorithms. This
might be caused by copying solutions often for generating
neighbors. This effect vanishes for larger models, where Hill
Climbing performs better. This may be attributed to the fact



Table 5 Hypervolume, inverse generational distance and average runtime of the transportation line case

Case Alg. Hypervolume IGD Time (s)

Min Avg Max Min Avg Max

Create generic ε-MOEA 0.000 0.000 0.000 0.685 333 k 384 k 59.2

NSGA-II 0.000 0.000 0.000 0.231 308 k 384 k 130

NSGA-III 0.000 0.000 0.000 0.739 295 k 384 k 109

Hill Climbing iterated 0.000 0.000 0.000 384 k 384 k 384 k 17.6

Hill Climbing single 0.000 0.000 0.000 384 k 384 k 384 k 1.02

RandomDescent single 0.000 0.000 0.000 384 k 384 k 384 k 1.88

SA-iterated 0.000 0.000 0.000 0.539 38.4 k 384 k 186

SA-single 0.000 3.93 m 38.8 m 0.181 0.498 1.178 84.0

Random search 0.000 0.000 0.000 0.641 0.868 1.048 119

Create specific ε-MOEA 0.000 1.04 m 11.3 m 0.948 151 k 302 k 92.0

NSGA-II 0.000 3.02 m 11.3 m 0.862 90.5 k 302 k 162

NSGA-III 0.000 2.51 m 11.3 m 0.809 101 k 302 k 131

Hill Climbing iterated 0.000 2.12 m 23.1 m 0.976 271 k 302 k 26.0

Hill Climbing single 0.000 0.000 0.000 302 k 302 k 302 k 1.08

RandomDescent single 0.000 0.000 0.000 302 k 302 k 302 k 3.96

SA-iterated 0.000 0.425 m 12.8 m 0.428 13.732 0 k 213

SA-single 0.000 4.03 m 20.4 m 0.776 0.943 1.295 146

Random search 0.000 0.000 0.000 1.448 1.559 1.638 201

Change generic ε-MOEA 0.000 0.000 0.000 33.028 40.819 55.888 120

NSGA-II 0.000 0.000 0.000 1.118 22.391 33.028 188

NSGA-III 0.000 0.000 0.000 1.118 19.375 55.888 210

Hill Climbing iterated 0.000 0.000 0.000 56.327 56.327 56.327 91.8

Hill Climbing single 0.000 0.000 0.000 55.888 55.888 55.888 94.9

RandomDescent single 0.000 0.000 0.000 55.888 55.888 55.888 93.9

SA-iterated 0.000 0.000 0.000 33.048 33.226 33.574 458

SA-single 0.000 0.000 0.000 33.029 33.371 33.542 118

Random search 0.000 0.000 0.000 27.211 31.094 33.041 436

Change specific ε-MOEA 0.000 0.000 0.000 1.249 1.525 1.908 128

NSGA-II 0.000 0.000 0.000 1.020 1.599 1.889 153

NSGA-III 0.000 0.000 0.000 1.359 1.711 1.887 147

Hill Climbing iterated 0.000 0.000 0.000 2.813 2.813 2.813 95.3

Hill Climbing single 0.000 0.000 0.000 2.791 2.791 2.791 98.5

RandomDescent single 0.000 0.000 0.000 2.791 2.791 2.791 96.1

SA-iterated 0.000 0.000 0.000 2.670 2.893 3.025 462

SA-single 0.000 0.000 0.000 1.908 2.075 2.409 125

Random search 0.000 0.000 0.000 1.345 1.851 2.759 564

First, for smaller examples, i.e., small input models, local-
search algorithms perform reasonable well with respect to
the search exploration. We have observed even cases where
local-search algorithms perform better than global-search
algorithms. In contrast, for bigger examples, global-search
algorithms tend to outperform local-search algorithms. This,
however, is also dependent on the problem structure. In
particular, for problems that can be solved by following a
particular solution path, local-search algorithms may per-
form better than global-search algorithms even for bigger

that generating multiple neighbors is more efficient than gen-
erating a single neighbor in our implementation. The reason 
is that for generating an arbitrary number of neighbors, the 
execution of all transformations of a solution has to be con-
ducted only once.

5.3.3 Lessons learned

From the gathered data presented in Sects. 5.3.1 and 5.3.2, 
we can draw the following conclusions.



examples. For instance, we have observed in the Stack Load
Balancing case that for already quite well balanced prob-
lem instances, local-search algorithms perform better than
global-search algorithms.

Second, for problems where single changes of the solu-
tion can have a significant impact on the solution’s fitness,
evolutionary search algorithms are not applicable. With the
Transportation Line Creation case, we have studied a partic-
ular interesting instance of such a problem. Here, a single
change in the investigated production line might break the
whole production leading to a solution with very low fitness.
We have observed that in such a case, Simulated Annealing
has an advantage as it avoids going in a production-breaking
path with high fitness decrease. This might be also related to
the solution encoding that we chose for MOMoT, which is
encoding the application of transformation rules representing
single changes of the investigated problem. In future work,
we may investigate whether encoding the states of a model
instead of the changes of the model brings improvements of
evolutionary algorithms for such cases.

Third, we observed that for small input models, global-
search algorithms are significantly more performant in terms
of search time. For bigger input models, local-search algo-
rithms are as performant as global-search algorithms.

5.4 Threats to validity

In this subsection, we elaborate on several factors that may
jeopardize the validity of our results. According toWohlin et
al. [72], there are four basic types of validity threats that can
affect the validity of our study. We cover each of these in the
following paragraphs.

5.4.1 Conclusion validity

Conclusion validity is concerned with the statistical rela-
tionship between the treatment and the outcome. We use
stochastic algorithms which by their nature produce slightly
different results with every algorithm run. To mitigate this
threat, we perform our experiment based on 30 independent
runs for each case and algorithm and analyze the obtained
results statistically with the Mann–Whitney U test with a
confidence level of 99% (α = 0.01) to test if significant
differences exist between the measurements for different
treatments. This testmakes no assumption that the data is nor-
mally distributed and is suitable for ordinal data, so we can
be confident that the statistical relationships we observed are
significant. Regarding evaluation times, they are measured
using standard Java features, namely System.nanoTime().
In order to mitigate the threat of having the garbage collector
consuming resources, we perform System.gc() before each
execution.

5.4.2 Construct validity

Construct validity is concernedwith the relationship between
theory and what is observed.Most of what wemeasure in our
experiments are standard metrics such as Hypervolume and
Inverted Generational Distance that are widely accepted as
good proxies for quality of search approaches. Furthermore,
we have based our conclusions in three specific cases for
which a set of specific local-search and global-search algo-
rithms have been implemented in MOMoT. Even for each
local-search algorithm, we could have implemented different
parameters to guide the local search, such as howmuch inves-
tigation of the neighbors is performed, for instance. Should
we have constructed our experiments with different cases
and/or different algorithms, we may have obtained differ-
ent results. To mitigate this threat, we have implemented
the algorithms in MOMoT based on well-described algo-
rithms [40].

5.4.3 Internal validity

There are several internal threats to validity that we would
like to mention. For instance, even though the trial-and-error
method we used to define the parameters of our search algo-
rithms is one of the most used methods [21], other parameter
settings might yield different results. In fact, parameter tun-
ing of search algorithms is still considered an open research
challenge. We mitigated the risk of choosing completely odd
parameter values by comparing automatically generated sen-
sible parameters found by a simple genetic algorithm to our
chosen values. The search performed with these values pro-
vided results which were not as good as the manually found
parameters. Also and as mentioned before, the transforma-
tion problems selected may have an influence in the results.
We have considered both a two-objective problem, the stack
example, where local search automatically fulfills one of the
objectives, i.e., short transformation length, amulti-objective
problem with three objectives and a many-objective problem
with five objectives.

5.4.4 External validity

The first threat in this category is the limited number of trans-
formations we have evaluated, which externally threatens the
generalizability of our results. Our results are based on the
three case studies, and we have tried to minimize this threat
by choosing three problems from three completely different
domains. In any case, additional experiments are necessary
to confirm our results and increase the chance of generaliz-
ability.

Second, we focus onHenshin as graph transformation tool
and did not consider other graph transformation tools such
as VIATRA [69], Fujaba [53], and GReAT [2] to mention



generate test cases, in the form of models that are the input
for testing updated transformations. In our work, we assume
to have correct model transformation rules available as a pre-
requisite but foresee as a possible future work the inclusion
of oracle functions for model transformations in the search
process.

Searching for transformation rule applicationswith search-
based optimization techniques for high-level change detec-
tion has been presented in [6]. In the scenario of high-level
change detection, the input model and the output model are
given as well as the possible transformation rules. The goal is
to find the best sequence of rule applications which gives the
most similar outputmodelwhen applying the rule application
sequence to the input model. In other words, the high-level
change detection we have investigated previously is a special
case which is now more generalized in the proposed frame-
work by having the possibility to specify arbitrary goals for
the search. Another combination of model engineering and
SBSE is presented in [20]; however, in this framework the
possible changes to themodels are not defined as transforma-
tion rules, but are generally defined directly on the generic
genotype representations of the models.

6.2 Transformation as search process

Searching for model transformation results is currently sup-
ported by approaches using some kind of constraint solver.
For instance, Kleiner et al. [47] introduce an approach they
call transformation as search where they use constraint pro-
gramming to search and produce a set of target models from
a given source model. Another approach is proposed by
Gogolla et al. [33]where so-called transformationmodels are
definedwith OCL and then translated to a constraint solver to
find valid output models for given input models. Compared
to MOMoT, these approaches aim for a full enumerative
approach where concrete bounds for constraining the search
space have to be given. Furthermore, these approaches search
for models fulfilling some correctness constraints, but find-
ing optimal models based on some objectives is not natively
supported in such approaches. In [18,19] an approach extend-
ing the QVT Relations language is presented which also
foresees the inclusion of transformation goals in the trans-
formation specifications including different transformation
variants. However, the search for finding the most suitable
transformation variant is not based on meta-heuristics but is
delegated to themodel engineers who have tomake decisions
for guiding the search process. In [59], the authors present an
approach for representing the variability ofmodelmigrations
which are necessary for dealing with meta-model/model co-
evolution scenarios. The different migration alternatives are
represented on the intentional level using feature models
which allows an explicit visualization of conflicting solu-
tions, i.e., conflicting decisions. While this approach allows

just a few. Furthermore, there are many other model trans-
formation languages which are similar or quite different to 
the graph transformation language used in Henshin, e.g., con-
sider model migration languages such as Epsilon Flock [57] 
or COPE [36]. Furthermore, Henshin may be considered as 
an in-place model transformation approach, i.e., an input 
model is modified to produce the output model. By this, also 
out-place model transformations may be emulated. However, 
we have not considered such transformation emulations in 
our case study and leave this kind of transformations as sub-
ject for future work. Finally, in order for our approach and 
results to be generalized also to out-place model transforma-
tion languages, we aim to apply it also to out-place model 
transformation languages such as QVT-O [54], QVT-R [54], 
TGGs [62], ETL [48], and RubyTL [12].

6 Related work

With respect to the contribution of this paper, we discuss 
three main threads of related work. First, we elaborate on 
the application of search-based techniques for generating 
model transformations from examples, which has been the 
first application target of search-based techniques concern-
ing model transformations. Second, we discuss approaches 
which apply search-based techniques to optimize models. 
Finally, we survey work of applying search-based techniques 
done in the related field of program transformation.

6.1 Search-based model transformation generation

An alternative approach to develop model transformations 
from scratch is to learn model transformations from exist-
ing transformation examples, i.e., input/output model pairs. 
This approach is called model transformation by example 
(MTBE) [41,68,71] and several dedicated approaches have 
been presented in the past. Because of the huge search 
space when searching for possible model transformations 
for a given set of input/output model pairs, search-based 
techniques have been applied to automate this complex 
task [5,24,42–44,61]. While MTBE approaches do not fore-
see the existence of model transformation rules, on the 
contrary, the goal is to produce such rules, we discussed 
in this paper the orthogonal problem of finding the best 
sequence of rule applications for a given set of transformation 
rules in combination with transformation goals. Furthermore, 
MTBE approaches are mostly concerned with out-place 
transformations, i.e., generating a new model from scratch 
based on input models, while we focussed in this paper on in-
place transformations, i.e., rewriting input models to output 
models. Finally, the authors in [63] propose the use of SBSE 
in MDE for optimizing regression tests for model transfor-
mations. In particular, they use a multi-objective approach to



to capture the variability of the solution space, the evaluation
of the solutions is currently not targeted.

Another very recent line of research concerning the search
of transformation results is already applying search-based
techniques to orchestrate the transformation rules to find
models fulfilling some given objectives. The authors in [17]
propose a strategy for integrating multiple single-solution
search techniques directly into a model transformation
approach. In particular, they apply exhaustive search, ran-
domized search, Hill Climbing, and Simulated Annealing.
Their goal is to explicitly model the search algorithms
as graph transformations. Compared to this approach, our
approach is going into the opposite direction. We are reusing
already existing search algorithms provided by dedicated
frameworks from the search-based optimization domain.
The most related approach to MOMoT is presented by
Abdeen et al. [1]. They also address the problem of find-
ing optimal sequences of rule applications, but they focus
on population-based search techniques. Thereby, they con-
sider the multi-objective exploration of graph transformation
systems, where they apply NSGA-II [16] to drive rule-based
design space explorations of models. For this purpose, they
have directly extended amodel transformation engine to pro-
vide the necessary search capabilities.

Our presented work follows the same spirit as the pre-
vious mentioned two approaches; however, our aim is to
provide a loosely coupled framework which is not targeted
to a single optimization algorithm, but allows to (re)use
the most appropriate one for a given transformation prob-
lem. Additionally, we aim to support the model engineer
in using these algorithms through a dedicated configuration
DSL and provide analysis capabilities to evaluate the per-
formance of different algorithms. As an interesting line of
future research, we consider the evaluation of the flexibility
and performance of the different approaches we have now for
combining MDE and SBSE: modeling the search algorithms
as transformations [17], integrating the search algorithms
into transformation engines [1], or combining transforma-
tion engines with search algorithm frameworks as we are
doing with MOMoT.

Finally, we also contributed to the Transformation Tool
Contest (TTC) 2016 a case study [27] about a search-based
model transformation problem, which resulted in eight dif-
ferent solution submissions.10 In particular, six out of eight
solutions resorted on meta-heuristic algorithms for solv-
ing the given case study. Some approaches re-implemented
genetic algorithms within the model transformation lan-
guages (UML-RSDS and Henshin), others combined the
transformation engines with search-based algorithm imple-
mentations (VIATRA-DSE, ATL/Java, andMDEOptimiser),

10 http://www.transformation-tool-contest.eu/2016/solutions_cra.
html.

and one approach translated the complete transformation
problem to a genetic algorithm framework (SIGMA).

InMOMoT, we are also following the strategy of combin-
ing the transformation engine with search-based algorithm
implementations (by reusing an extended version of the
MOEA framework). Compared with the other TTC solu-
tions, we allow for a more flexible selection and combination
of different meta-heuristic search algorithms.

6.3 Search-based program transformation

Program transformation is a field closely related to model
transformation [70], and thus, similar problems are occurring
in both fields. For instance, one challenging transformation
in this field is the (re)-modularization of programs which
has been tackled as a many-objective optimization problem
in [52]. Another challenging program transformation sce-
nario is to enhance the readability of source code given
certain metrics. In this context, we are aware of a related
approach that discusses the search-based transformation of
programs [22,23]. In particular, a set of rewriting rules is pre-
sented to optimize the readability of the code and dedicated
metrics are proposed and used as fitness function. As search
techniques, random search, Hill Climbing, and genetic algo-
rithms are used.

Our approach follows a similar idea of finding opti-
mal sequences of rule applications, but in our case we are
focussing on model structures and model transformations
instead of source code. Furthermore, we also consider the
application of different search algorithm for finding opti-
mal rule sequences, and in addition, provide an evaluation
for three cases. Moreover, we consider the instantiation
of our framework for the problem of program transforma-
tion in combination with model-driven reverse engineering
tools [10] as an interesting subject for future work to further
evaluate our approach.

7 Conclusion and future work

In this paper, we have shown how to apply different meta-
heuristic search algorithms for model transformation prob-
lemswhich are considered to bemulti-objective optimization
problems.WithMOMoT,Henshinmodel transformation rule
application sequences are computed to optimize the resulting
output models. This is achieved by an adapted version of the
MOEA framework in order to realize not only population-
based recombination but also local searchers exploring the
neighborhood. In addition, we also contribute a tool for
the scientific community to perform experimental research
focusing on the usage of different meta-heuristic search algo-
rithms and their combination forMDEproblems.MOMoTas

http://www.transformation-tool-contest.eu/2016/solutions_cra.html
http://www.transformation-tool-contest.eu/2016/solutions_cra.html


well as the experiments presented in this paper are available
as open-source.

MOMoT provides a wide spectrum of different search
algorithms and their combination for orchestrating trans-
formation rules, but as always, there is still room for
improvements. First, as we currently provide different algo-
rithms but not their combination, we plan to incorporate
Memetic Algorithms which allow for combined usage of
global and local searchers. Second, we would like to explore
the combination of search-based and approximate model
transformations [66], i.e., howmuch precision may be traded
for performance. Third, we plan to investigate if MOMoT is
also applicable to typical out-place transformation scenarios.
Here, one of the most interesting research questions is how
to formulate and evaluate the fitness of output models which
may require the integration of simulation techniques.
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