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ABSTRACT 

Cermets with a nominal composition (Ti0.8Ta0.2C0.5N0.5 - 20 wt% Co) were synthesised 

by a mechanically induced self-sustaining reaction (MSR) process from stoichiometric 

elemental powder blends. The MSR allowed the production of a complex (Ti,Ta)(C,N) 

solid solution, which was the raw material used for the sintering process. The 

pressureless sintering process was performed at temperatures between 1400 ºC and 

1600 ºC in an inert atmosphere. The microstructural characterisation showed a complex 

microstructure composed of a ceramic phase with an unusual inverse core-rim structure 

and a Ti-Ta-Co intermetallic phase that acted as the binder. 
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INTRODUCTION 

Titanium carbonitride-based cermets are replacing conventional cemented 

carbides and coated hard metals in cutting tools for some specific applications, such as 

in high-speed cutting due to better mechanical properties and chemical stability at high 

temperatures [1]. Cermets are composed of a hard ceramic phase, primarily a (Ti, Mt1, 

Mt2…)(C,N) solid solution, where Mt1, Mt2… are transition metals from the VB and 

VIB groups, and a metallic phase (usually Co or Ni) that acts as the binder. This 

combination of phases minimises the negative properties of ceramics and metals and 

allows the material to maximise useful properties, such as hardness, toughness, thermo 

shock resistance, high temperature creep resistance, high oxidation resistance, wear 

resistance, and plastic strain resistance, among others [2-5]. 

The physical and chemical properties of cermets can be adjusted for particular 

applications by introducing additives to the basic Ti(C,N)-Ni/Co system, which are 

typically other metal transition carbides [6]. For example, TaC is used when the hot 

hardness and the thermo shock resistance should be improved. Usually, several of these 

additives are added to cermets, and the typical core-rim structure is developed for the 

hard phase during the liquid phase sintering process. The core corresponds to the 

original undissolved Ti(C,N) particle; the rim is composed of a newly formed complex 

carbonitride solid solution produced through a dissolution/re-precipitation process 

during sintering, which contains Ti and others transition metals, such as Ta, Mo, W, V, 

or Nb [7-9]. 

The good cutting performance of cermets can be attributed to the mechanical 

behaviour of the rim phase, and therefore, many studies have focussed on changing the 

composition of this phase, i.e., the complex carbonitride solid solution, to improve the 
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mechanical properties and capacity of cermets [10]. This variation in composition is 

usually done by modifying the nature and amount of the binary carbides [11-14]. 

However, as the rim phase forms and grows during the liquid phase sintering process, 

the final composition depends strongly on the sintering temperature and the relative 

solubility of carbides in the binder phase, which makes the straightforward control of 

the rim stoichiometry difficult. 

In 1976, Rudy [15] reported that the use of a carbonitride solid solution in the 

Ti-Mo-C-N and Ti-W-C-N systems as input material in the cermet production allows 

better control of the rim phase composition, and hence, cermets with superior thermal 

deformation, wear resistance and strength characteristics are obtained. Many other 

authors have since proposed the use of different complex solid solutions containing 

titanium and at least one element selected from the IVB, VB, and VIB groups as raw 

materials to fabricate cermets with improved properties and performance [6, 12, 16]. 

Moreover, other authors have stated that using these solid solutions as ceramic raw 

material could enable the production of cermets without a core-rim structure and, thus, 

maintain the mechanical behaviour of a rim-type composition and reduce the fracture 

paths that can generate along stressed core-rim interfaces. Currently, few studies have 

been published on the development of cermets without core-rim structures [17, 18]. 

Employing complex solid solution phases in cermet production is currently 

difficult because methods needed to synthesise the phases appropriately have not been 

developed. Usually, these solid solutions are obtained by reacting mixtures of metal 

carbides and nitrides that have been previously manufactured by a carbothermal 

reduction process from metal transition oxides at high temperatures and sometimes at 

high pressures [16, 19-21]. Subsequently, the material is crushed and ball-milled to 



 4 

reduce the particle size, homogenised to the desired proportion of the binder phase, and 

processed by powder metallurgy techniques. 

Córdoba et al. [22-24] have shown that the mechanochemical process denoted as 

a mechanically induced self-sustaining reaction (MSR) is an affordable and 

reproducible manufacturing process used to obtain complex transition metal 

carbonitrides. This reactive milling method uses the strong exothermic character of the 

carbide and nitride formation from the elements to obtain complex carbonitrides with 

high purity and with good control of stoichiometry. The same authors have also shown 

that this methodology may be successfully used in the development of cermets with the 

basic Ti(C,N)-Ni/Co composition [25]. 

In this study, a (Ti,Ta)(C,N) solid solution synthesised by the promising MSR 

method was employed as the ceramic raw material for cermet fabrication. The applied 

methodology for the powdered cermet synthesis consisted of performing one single 

milling process by adding the desired proportion of the binder component to the 

elemental mixture needed to generate the hard ceramic component by MSR in-situ. In 

this study, we focused on the evolution of the microstructure and chemical composition 

of the hard ceramic and binder phases during liquid phase sintering. 

 
EXPERIMENTAL 

Titanium powder (99% in purity, < 325 mesh, Strem Chemicals), tantalum 

powder (99.6% in purity, < 325 mesh, Alfa-Aesar), graphite powder (< 270 mesh, Fe ≤ 

0.4%, Merck), and cobalt powder (99.8% in purity, < 100 mesh, Strem Chemicals) were 

used in this study. Tempered steel balls (15, d = 20 mm, m = 32.6 g) and 46.5 g of an 

elemental powder mixture were placed in a 300 ml tempered steel vial (67Rc) and 

milled under 6 atm of high-purity nitrogen gas (H2O and O2 ≤ 3 ppm, Air Liquide) 
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using a modified planetary ball mill (Planetary Mill Pulverisette 4, Fritsch). The 

powder-to-ball mass ratio (PBR) was ~ 1/10.5, and a spinning rate of 400 rpm for both 

the rotation of the supporting disc and the superimposed rotation in the direction 

opposite to the vial was employed. The vial was purged with nitrogen gas several times, 

and the desired nitrogen pressure (6 atm) was selected before milling. The planetary 

mill allowed for operation at a constant gas pressure and the detection of self-

propagating reactions during milling; this was possible by connecting the vial to a gas 

cylinder via a rotating union (model 1005-163-038, Deublin) and a flexible polyamide 

tube. The gas pressure was monitored continuously with a solenoid valve (model 

EVT307-5DO-01F-Q, SMC Co.) connected to a data acquisition system (ADAM-4000 

series, Esis Pty Ltd.). When an MSR takes place, the temperature increase due to the 

exothermic reaction produces an instantaneous increase in the total pressure, and the 

ignition time can be obtained from the spike observed in the time-pressure data 

recorded. 

Cermets were fabricated using a pressureless process. Powdered cermets were 

first shaped (green bodies) and then sintered at high temperatures. The shaping process 

was performed by uniaxial pressing at 2 tons for 5 min and cold isostatic pressing at 200 

MPa for 10 min to yield cylinders of 13 mm in diameter and 9 mm in height. The green 

bodies were sintered at different temperatures from 1400 ºC to 1600 ºC for 60 min 

(heating and cooling rate 5 ºC/min) under an inert atmosphere (Argon gas, H2O ≤ 8 ppm 

and O2 ≤ 2 ppm, Linde) in a horizontal tubular furnace (IGM1360 model no. RTH-180-

50-1H, AGNI). The Archimedes Method was used to measure the density of the 

sintered cermets. 

X-ray diffraction diagrams of powders and polished surfaces of cermets were 

obtained with a Philips X’Pert Pro instrument equipped with a Θ/Θ goniometer using 
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Cu Kα radiation (40 kV, 40 mA), a secondary Kβ filter, and an X’Celerator detector. 

The diffraction patterns were scanned from 20º to 140º (2Θ) in a step-scan mode at a 

step of 0.02º and a counting time of 275 s/step. The space group symmetry as well as 

the lattice parameters of TixTa1-xCyN1−y and the binder phases were calculated from the 

whole set of peaks of the XRD diagram using the FULLPROF Suite software 

containing DICVOL, WinPLOTR, and FullProf computer programs [26]. The 

Williamson-Hall method [27] was used to separate the effects of domain size and 

microstrain on line broadening. The method assumes that the following mathematical 

relationship between the integral breadth (β), the size of the coherent crystalline domain 

(D), and the lattice distortion or microstrain (e) is applicable:  
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A plot of β cos(θ/λ) versus 2 sin(θ/λ) was constructed, and the microstrain and the 

domain size were obtained from the slope and the intercept, respectively. 

 The scanning electron microscopy (SEM) images were obtained on a Hitachi S-

4800 SEM-Field Emission Gun microscope. The transmission electron microscopy 

(TEM) images and electron diffraction (ED) patterns were taken on a 200 kV Philips 

CM200 microscope equipped with a SuperTwin objective lens and a tungsten filament 

(point resolution ∅ = 0.25 nm). Powder samples were dispersed in ethanol, and droplets 

of the suspension were deposited onto a holey C film. For the TEM characterisation of 

consolidated cermets, thin disks (3 mm ∅) were prepared by a process of subsequent 

cutting, polishing, dimpling, and finally ion milling (DuoMiller, Gatan Inc. and ion 

miller model no. 1010, Fischione). 
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The transition metal content in the ceramic and binder phases was measured by 

energy dispersive X-ray spectrometry (EDX) with detectors coupled by the Hitachi 

scanning electron microscope and the Philips transmission electron microscope 

mentioned above. The overall carbon and nitrogen content in the cermets was 

determined by elemental analysis of C, N made by a LECO elemental analyser (mod. 

CNHS-932). Moreover, the total metal transition quantification was performed using an 

atomic emission spectrometer with an inductively coupled plasma (ICP) (mod. Ultima 

2, Horiba Yobin Yvon). 

 

RESULTS AND DISCUSSIONS 

• Powder Synthesis. 

A powder mixture of titanium, tantalum, graphite, and cobalt with an atomic 

ratio corresponding to a nominal composition of Ti0.8Ta0.2C0.5N0.5 + 20 wt% Co was 

ball-milled with nitrogen (6 bar). After 41.5 min of treatment in the planetary mill, a 

pressure spike was observed in the time-pressure data due to the occurrence of a highly 

exothermic reaction inside the vial (i.e., for the MSR process). This pressure spike was 

associated with the ignition of the self-sustaining reaction that led to the formation of a 

carbonitride ceramic phase, which was confirmed by XRD (Figure 1). The milling 

continued for 30 min after ignition to ensure the completion of the reaction and to 

obtain a narrow particle size distribution required to achieve an optimal cermet 

densification after sintering. This sample was labelled P1. A second sample with the 

same initial composition, labelled P2, was obtained under identical conditions, except 

that for this reference sample, the milling was stopped at the ignition (Table 1). 

Figure 1 shows the XRD diagrams for the two powdered cermets obtained after 

the MSR process. Both diagrams were similar; the only difference was the presence of 
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less intense and broad reflections in the P1 sample, which was due to the 30 min post-

combustion milling that induced microstructural changes without any apparent chemical 

and crystallographic modification. The formation of a major phase that could be 

associated with a cubic phase and a Fm-3m space group was observed and confirmed 

by indexing with DICVOL06 software [26]. This phase was assigned to a complex 

titanium-tantalum carbonitride by comparing with the following reference diffraction 

patterns: TiN (38-1420), TiC0.3N0.7 (42-1488), TiC0.7N0.3 (42-1489), TiC (32-1383), 

TaC (35-0801) and TaN (49-1283). The XRD reflections appeared between the 

reflections corresponding to tantalum and titanium nitrides and carbides as observed in 

the inset in Figure 1, and therefore, this phase can be described as a TixTa1-xCyN1-y solid 

solution. The existence of Ti, Ta, C, and N in the ceramic phase was determined by 

EDX and electron energy loss spectroscopy (EELS) measurements and confirmed the 

incorporation of nitrogen, which was incorporated from the working atmosphere into 

the final product during the MSR process. 

Lattice parameter a of the cubic ceramic phase, which is dependent on the 

chemical composition of the solid solution, i.e., the atomic Ti/Ta and C/N ratios [28], 

was calculated using FullProf software. The crystalline domain size and lattice strain 

were also estimated by the Williamson-Hall equation. The value of these parameters 

(Table I) showed that the post-combustion milling reduced the crystalline domain size 

and increased the microstrain content in the sample but did not induce any noticeable 

crystallographic and chemical change as confirmed by the constant value observed in 

the lattice parameter. Moreover, the lattice parameter value was higher than those 

reported in previous studies for TiCxN1-x [29, 30] and is explained by the replacement of 

tantalum for titanium in the TiCxN1-x structure [22]. A small amount of unreacted 
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tantalum was also detected in the XRD diagrams, but no elemental titanium was 

observed. 

The XRD diagrams in Figure 1 showed the presence of reflections that cannot be 

ascribed to elemental Co (binder), which was added to the Ti/Ta/C reactive mixture and 

can be considered inert in the self-sustaining reaction that produced the ceramic phase. 

It was possible to assign these reflections to intermetallic solid solutions in the Ti-Ta-Co 

ternary system, such as the (TaxTi1-x)Co with cubic structure and Fd-3m space group as 

well as (TixTa1-x)Co2 with hexagonal structure and Pm-3m space group, using binary 

Ti-Co and Ta-Co phase diagrams [31], the Ti-Ta-Co ternary phase diagram at 950 ºC 

[32], and reference diffraction patterns for the Ti-Co and Ta-Co systems. These 

intermetallic phases were also produced during the MSR process triggered by the heat 

released during the carbonitride formation. 

The morphology of P1 and P2 powdered cermets was characterised by SEM and 

representative images are shown in Figure 2. The P1 sample showed the characteristic 

morphology of a material obtained by a dry milling process consisting of 

submicrometre particles forming irregular aggregates with an average size of 1 micron. 

Reference sample P2 showed larger aggregates with a sintered appearance, of which 

some were in the millimetre range. This observation was a clear indication of the high 

local temperatures reached during the MSR and can also account for the appearance of 

the liquid phase and the formation of the intermetallic solid solution phases. These 

findings confirmed that the post-combustion milling was a necessary step to crush these 

large aggregates and homogenise the entire sample for the subsequent sintering process. 

EDX compositional surface mapping was performed for the P1 powdered 

cermet (Figure 3) to differentiate the ceramic and binder phases in the SEM images. 
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Cobalt was only found in the binder phase, was well distributed in the sample, and 

surrounded the ceramic particles. However, titanium and tantalum were found in both 

the ceramic and binder phases, which demonstrated the existence of an intermetallic 

solid solution in the binder. Figure 3 also showed that binder particles were significantly 

smaller than the ceramic particles. Furthermore, particles of unreacted tantalum were 

also found in some of the EDX maps, which confirmed the XRD results. A semi-

quantitative study was performed by a punctual EDX-SEM analysis in ceramic particles 

and a ratio of Ta/Ti = 0.20 was determined, which was slightly below the nominal Ta/Ti 

ratio in the initial mixture (Ta/Ti = 0.25) (Table 1). The presence of unreacted Ta, and 

Ti and Ta in the binder phase was the origin of this compositional deviation. The same 

punctual EDX-SEM analysis could not be performed in the binder due to its small 

particle size. 

The C and N contents in the ceramic phase were estimated from elemental 

analysis measurements assuming that the presence of C and N in the binder phase was 

negligible due to their low solubility in this phase [33, 34]; therefore, the quantification 

of C and N could be only attributed to the ceramic phase. A C/N ratio of 2.9 was 

determined (Table I), which was higher than the composition expected from the initial 

elemental mixture. The presence of Ti and Ta in the binder decreased the amount of 

these metals available to form the complex carbonitride, and consequently, a phase 

richer in carbon was obtained. The C/N and Ta/Ti quantifications allowed us to propose 

an average composition of the ceramic phase of Ti 0.83Ta0.17C0.74N0.26 for the P1 sample. 

A similar stoichiometry was determined for the P2 sample, which confirmed that the 

post-combustion milling did not produce any compositional variation. 
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• Pressureless Sintering 

Cermets were prepared from P1 powdered samples by pressureless sintering at 

temperatures between 1400 ºC and 1600 ºC. These cermets were labelled C1-T, where 

T corresponds to the sintering temperature. The density of the cermets as a function of 

sintering temperature is plotted in Figure 4. The relative density was calculated from the 

law of mixtures assuming the starting nominal composition (Ti0.8Ta0.2C0.5N0.5 + 20 wt% 

Co). The density increased with sintering temperature, which reached maximum value 

at 1550 ºC. The high temperatures needed for an optimal sintering were due to the 

presence of tantalum (m.p. = 3017 ºC) in the binder phase, which required high 

temperatures to obtain the liquid phase necessary to assist densification. The decrease 

observed at values above this temperature was attributed to the mass loss of binder due 

to an excessive fluidisation of the phase. The transition metal content in the cermets 

after sintering was confirmed by ICP, which provided evidence of the loss of Co at 

temperatures above 1550 ºC. 

The XRD diagrams of C1 cermets are shown in Figure 5, where the reflections 

of ceramic and binder phases are clearly observed. For all cermets, the TixTa1-xCyN1-y 

reflections practically appeared at the same 2θ position, which suggested that the 

ceramic phase composition remained unchanged at the different sintering temperatures. 

However, the XRD reflections were displaced to higher diffraction angles when 

compared to the P1 powdered sample (inset in Figure 5). The C/N ratio, which was 

measured by elemental analysis, was invariant between powdered and sintered cermets; 

therefore, the 2θ displacement was attributed to a different Ta/Ti ratio as a result of the 

titanium enrichment of the ceramic phase during the liquid phase sintering process. 
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Indexing of the XRD reflections corresponding to the binder phase showed the 

presence of the (TixTa1-x)Co2 hexagonal intermetallic solid solution between 1400 ºC 

and 1550 ºC. An electron diffraction (ED) study performed at the binder phase in the 

C1-1550 sample confirmed the presence of this phase. In Figure 6, two ED patterns are 

shown along the [211] and [212] zone axis of this hexagonal structure. A semi-

quantitative analysis by EDX confirmed that this phase was an intermetallic Ti-Ta-Co 

solid solution with a 1:2 stoichiometry. 

Above the temperature of 1550 ºC, the XRD reflections were better allocated to 

intermetallic solid solutions with the same 1:2 stoichiometry (TixTa1-x)Co2 but with 

cubic structures (Fd-3m space group). The Ti-Ta-Co ternary phase diagram [32] 

showed that both the hexagonal and cubic polymorphs had a very close composition 

interval with a fairly narrow coexistence region. Small compositional changes in the 

binder phase produced during the liquid phase sintering process can induce the presence 

of either of the two polymorphs in the cermet. The XRD diagram at 1500 ºC showed 

additional reflections (Figure 5) that were associated with the presence of a second 

intermetallic solid solution with a cubic structure (Pm-3m space group) and a (TixTa1-

x)Co stoichiometry in the cermet. Moreover, the estimated lattice parameter (a = 2.99 Å) 

for this cubic phase was very close to the binary TiCo compound (a = 2.986 Å). 

The lattice parameters, domain crystalline sizes, and lattice strains for the TixTa1-

xCyN1-y ceramic phase and the (TixTa1-x)Co2 hexagonal and cubic phases are shown in 

Table 2. The lattice parameter a for the carbonitride phase showed a similar value for all 

sintering temperatures and were in agreement with the invariant 2θ position of the 

reflections in the XRD diagrams. The nanometric values for the crystalline size domains 

were inconsistent with the SEM and TEM observations (Figures 7 and 8), which 

showed micrometric ceramic particles. Thus, the large reflection broadening observed in 
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the XRD diagrams was not due to a size effect but to the existence of compositional 

fluctuations in the solid solutions that constitute the ceramic and binder phases, and they 

are produced during the dissolution/re-precipitation processes that occur during the 

liquid phase sintering process. 

Characteristic SEM images of cermets are depicted in Figure 7. Cermets sintered 

at lower temperatures showed high porosity, poor wetting of the ceramic phase, and 

deficient distribution of the binder phase, which were all induced by the presence of Ta 

in the binder. The porosity decreased and the binder was homogeneously distributed in 

the cermet with increasing temperature. Concurrently, the smallest particles disappeared 

and the larger ones grew at the expense of the latter. Above 1550 ºC, all small particles 

were dissolved and the continuous growth of large ceramic particles was observed. 

Most large particles in Figure 7 showed a core-rim structure that was typically 

formed by the dissolution/re-precipitation process during sintering [19]. These particles 

were characterised by a spherical core and a faceted rim. Several studies on the 

influence of the C/N ratio in TiCxN1-x particle morphology [7, 35] allowed us to suggest 

a higher N content in the core rather than in the rim. However, unlike what happens in 

particles with a classic core-rim structure, Figure 7 shows an inverse contrast between 

the core and rim; the rim exhibited a darker contrast, which suggested a composition 

richer in Ti. An inner rim with an even darker contrast was observed in some particles, 

and thus, its composition may be richer in titanium. 

Bright field TEM images for the C1-1550 cermet are shown in Figure 8. Due to 

the transmission electron technique, the contrast was reversed compared to the SEM 

micrographs, and the ceramic particles appeared with a lighter contrast compared to the 

intermetallic binder. The ceramic phase clearly showed the inverse core-rim structure, 
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where the core exhibited a darker contrast manifesting a higher content in tantalum 

compared to the rim phase. This was in agreement with the SEM observations. As 

Figure 8 shows a ceramic particle with an inner rim and a very bright contrast (marked 

with an arrow); this was an indication of a higher titanium composition. 

The electron diffraction (ED) studies were performed at the interface between 

the core and rim structures (round marked area), and the two ED patterns along the 

[011] and [-112] zone axes were found (inset in Figure 8). Both belonged to the same 

crystalline domain with a cubic structure and Fm-3m space group, which was in 

agreement with the XRD data. This demonstrated that the rim phase precipitated and 

grew onto the core while maintaining the same orientation and crystalline structure. 

Therefore, the only difference between the core and rim phases was the chemical 

composition. 

The semi-quantitative EDX analyses were performed with the SEM equipment 

for all the cermets, and the results are shown in Figure 9. The cores exhibited the same 

Ti and Ta contents at different sintering temperatures and in relation with the ceramic 

phase of the P1 precursor powder. Therefore, the core can be considered the 

undissolved ceramic particle during the sintering process. The rim phase also consisted 

of a TixTa1-xCyN1-y solid solution but with a lower Ta/Ti ratio. In addition, this 

composition was almost constant with the temperature, which suggested that a similar 

level of saturation in Ta and Ti was reached in the binder phase. It was not possible to 

estimate the composition of the inner rim due to its small size compared to the electron 

probe. 

A similar semi-quantitative EDX study was performed on the binder phase, and 

the results are shown in Figure 9. The high initial Ta/Ti ratio observed at 1400 ºC was 
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due to the incorporation of free Ta in the P1 powdered sample into the binder phase and 

its homogenisation during sintering. The dissolution process of small ceramic particles 

became relevant with increasing temperature, although re-precipitation was also 

observed and was confirmed by the appearance of the core-rim structure in some of the 

ceramic particles. Thus, the Ta/Ti ratio decreased and reached a minimum value at 1500 

ºC. At this temperature, most of the small particles had practically dissolved, which 

enriched the binder phase with Ti and induced the formation of a new intermetallic 

phase in the binder. At this temperature, the presence of two binder phases was 

observed with 1:2 and 1:1 stoichiometries, (TixTa1-x)Co2 hexagonal and (TixTa1-x)Co 

cubic, respectively. This last phase appeared in the SEM micrographs with a darker 

contrast (Figure 7c). Finally, above this temperature, the dissolution/re-precipitation 

process reached a steady state, the ceramic particles grew continuously and a constant 

Ta/Ti ratio was observed. 

 

CONCLUSIONS 

A titanium-tantalum carbonitride solid solution was employed as the raw 

ceramic material to fabricate cermets using Co as the binder phase instead of a mixture 

of different ceramic phases. This process was possible because of the mechanically 

induced self-sustaining reaction (MSR) method used to synthesise these complex 

carbonitrides. To simplify the synthetic method, the powdered cermets were obtained in 

a single milling process by adding the Co to the reactant mixture, which led to the 

carbonitride solid solution. Moreover, this raw material synthesised by the MSR 

contained a Ti-Ta-Co intermetallic solid solution instead of cobalt as the binder phase. 

After sintering, the formation of an inverse core-rim structure by a dissolution/re-

precipitation process was confirmed, where the rim phase was richer in titanium than 
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the core. The dissolution of the smallest ceramic particles in the binder that already 

contained Ti and Ta caused the re-precipitation of the rim phase with higher titanium 

content. 
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FIGURE CAPTIONS 

Figure 1. X-ray powder diffraction diagrams of products obtained via the MSR process 

for samples P1 and P2. (�) TixTa1-xCyN1-y; (�) Ta; (−) Cubic (TixTa1-x)Co; (β) 

Hexagonal (TixTa1-x)Co2. 

 

Figure 2. SEM micrographs showing (a) the morphology of P1 powdered cermet and 

(b) the aggregates with sintered aspect observed in sample P2. 

 

Figure 3. EDX-SEM map of P1 powdered cermet showing the distribution of transition 

metals in the ceramic and binder phases. (Ti, red; Ta, green; Co, blue). 

 

Figure 4. Density of cermets after pressureless sintering at different temperatures. 

 

Figure 5. X-ray powder diffraction diagrams of cermets sintered at different 

temperatures. (�) TixTa1-xCyN1-y; (○) Cubic (TixTa1-x)Co; (β) Hexagonal (TixTa1-x)Co2; 

(♦) Cubic (TixTa1-x)Co2. 

 

Figure 6. Bright-field TEM images corresponding to cermet C1-1550 and ED patterns 

along the [211] and [212], which correspond to the (TixTa1-x)Co2 hexagonal binder 

phase in the marked zone. 

 
Figure 7. SEM micrographs of C1 cermets sintered at different temperatures. 

 
Figure 8. Bright-field TEM images corresponding to cermet C1-1550 and ED patterns 

along the [011] and [-112], which correspond to the TixTa1-xCyN1-y ceramic phase in the 

marked zone and in the interface between the core and rim. 

 

Figure 9. Tantalum and titanium contents in the ceramic and binder phases of cermets 

sintered at different temperatures determined by EDX analysis. The results are 

expressed as Ta/Ti atomic ratio. 
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Table I. Ignition time and total milling time for powdered cermets synthesised 

by the MSR. Some parameters corresponding to the TixTa1-xCyN1-y solid solution 

in P1 and P2 samples are shown. 

 Sample 

 P1 P2 

Ignition time (min) 41.5 41.5 

Total milling time (min) 71.5 41.5 

Lattice parameter (Å) 4.340 4.340 

Crystalline domain size (nm) 29 61 

Lattice microstrain (%) 0.29 0.13 

Ta/Ti ratio by EDX 0.20 0.21 

C/N ratio by elemental analysis 2.9 2.9 
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Table II. Lattice parameters, diffracting domain size (D) and microstrain (e) of ceramic and 

binder phases of cermets sintered at different temperatures. 

 Ceramic phase Intermetallic Phase 

Specimen a (Å) V (Å3) 
D 

(nm) 
e % 

(x10e6) 
a (Å) c (Å) 

V 
(Å3) 

D 
(nm) 

e % 
(x10e5) 

C1-1400 4.323 80.8 49 2.93 4.753 7.761 150.3 83 6.33 

C1-1450 4.322 80.7 53 4.76 4.765 7.751 151.9 83 6.42 

C1-1500 4.327 81.0 69 5.58 4.765 7.766 156.2 70 4.23 

C1-1550 4.326 81.0 70 6.02 4.755 7.753 151.9 73 4.55 

C1-1575 4.322 80.7 73 6.36 6.730 - 304.9 77 5.01 

C1-1600 4.328 81.1 75 7.22 6.710 - 302.1 80 6.25 
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Figure 1. X-ray powder diffraction diagrams of products obtained via the MSR process 

for samples P1 and P2. (�) TixTa1-xCyN1-y; (�) Ta; (−) Cubic (TixTa1-x)Co; (β) 

Hexagonal (TixTa1-x)Co2. 
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Figure 2. SEM micrographs showing (a) the morphology of P1 powdered cermet and 

(b) the aggregates with sintered aspect observed in sample P2. 
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Figure 3. EDX-SEM map of P1 powdered cermet showing the distribution of transition 

metals in the ceramic and binder phases. (Ti, red; Ta, green; Co, blue). 

1 µm 

Ti 

Ta 

Co 



 25

 

1400 1450 1500 1550 1600

6.5

6.6

6.7

6.8

6.9

7.0

7.1

 

 

C1-1600

C1-1575
C1-1550

C1-1500

C1-1450

R
e

la
tiv

e
 d

e
n

s
ity

 (%
)

ρ 
(g

/c
m

3
)

Sintering Temperature (ºC)

C1-1400
87

88

89

90

91

92

93

94

95

96

 

 

Figure 4. Density of cermets after pressureless sintering at different temperatures. 
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Figure 5. X-ray powder diffraction diagrams of cermets sintered at different 

temperatures. (�) TixTa1-xCyN1-y; (○) Cubic (TixTa1-x)Co; (β) Hexagonal (TixTa1-x)Co2; 

(♦) Cubic (TixTa1-x)Co2. 
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Figure 6. Bright-field TEM images corresponding to cermet C1-1550 and ED patterns 

along the [211] and [212], which correspond to the (TixTa1-x)Co2 hexagonal binder 

phase in the marked zone. 
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Figure 7. SEM micrographs of C1 cermets sintered at different temperatures. 
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Figure 8. Bright-field TEM images corresponding to cermet C1-1550 and ED patterns 

along the [011] and [-112], which correspond to the TixTa1-xCyN1-y ceramic phase in the 

marked zone and in the interface between the core and rim. 
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Figure 9. Tantalum and titanium contents in the ceramic and binder phases of cermets 

sintered at different temperatures determined by EDX analysis. The results are 

expressed as Ta/Ti atomic ratio. 

 


