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Abstract 

A set of powdered cermets based on (Ti, Ta, Nb)CxN1-x carbonitride solid 

solutions were synthesized from mixtures of elemental powders by a mechanically 

induced self-sustaining reaction (MSR) method and subsequently sintered using a 

pressureless method. Differing nominal compositions of the hard phase were used, and 

the nature of the metallic-binder phase (Co, Ni, or Co-Ni) was varied. For comparative 

purposes, the design of the material was performed using two different synthesis 

pathways. The composition and microstructure of the ceramic and binder phases before 

and after sintering were analyzed and related to the microhardness of the material, which 

was found to increase with increasing contiguity of the hard phase and with decreasing 

particle size. The samples synthesized in one step (SERIES 2) showed higher 

microhardness and a more homogeneous microstructure with smaller particle size of the 

hard phase due to the presence of Ti, Ta, and Nb in the molten binder that hindered the 

ceramic growth during the liquid phase sintering. 
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Introduction 

 

Because of a highly desirable combination of properties, titanium carbonitride, 

along with other metal carbides and metallic binders, are used in cutting tools. However, 

they may not be used for heavy turning and interrupt milling equipment due to their 

relatively low toughness and low thermal shock resistance. For high-speed cutting 

applications, high temperature behavior is critical and more important than other 

mechanical properties such as toughness and mechanical shock resistance. 

Modern cermets are traditionally made of a Ti(C,N) solid solution or mixtures of 

TiN and TiC as the primary hard component with Co/Ni as the binder. A variety of 

carbides such as Mo2C, WC, TaC/NbC, etc. are added to improve the sinterability, hot 

hardness and thermal shock resistance. The addition of tantalum[1,2] (or the less 

expensive niobium[3]) increases the bending strength due to the formation of a high-

strength complex carbonitride phase and has a positive effect on the material’s resistance 

to plastic deformation. These systems exhibit highly complex behavior in their 

microstructure according to the type of additive used; therefore, great effort has been 

taken to improve the mechanical properties that are closely related to the microstructure 

developed during sintering. 

Conventional methods of powder metallurgy do not allow for the production of 

some continuous single-phase carbonitrides from their carbides and nitrides[4]. As a 

promising alternative to the conventional methods, mechanically induced self-sustaining 

reactions (MSRs) have been employed to produce a variety of advanced materials 

including borides, carbides, nitrides, sulfides, hydrides, silicides, carbonitrides, 
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intermetallics, etc.[5-10] Although the preparation of the carbides [11-15] and 

nitrides[16,17] of transition metals (especially those in groups IVB and VB) by MSR has 

been investigated, research is comparatively lacking on the direct formation of the 

carbonitrides of transition metals through combustion synthesis and has focused largely 

on the synthesis of titanium carbonitrides[18]. In addition to Ti(C,N), Córdoba and 

coworkers[6,8,9] recently conducted a SERIESs of experimental studies on the formation 

of Nb, Ta, Hf, (Ti, Nb), (Ti, Ta), (Ti, Zr), (Ti, V) and (Ti, Hf) carbonitrides by MSR 

using a powder mixture of metals and graphite under a nitrogen atmosphere. 

From a technical standpoint, if one desires to develop a new family of cermets 

using pre-made complex carbonitrides instead of unalloyed mixtures as the raw material 

to achieve a high level of quality and reliability, one must realize that the methods 

necessary to appropriately synthesize this new family of cermets have yet to be 

developed. MSR can then be considered as an alternative technique for use in the 

synthesis of complex carbonitride phases. The possibility of employing these complex 

phases allows for the development of new ways to optimize the set of properties that are 

targeted for specific technological applications. 

Based on the above considerations, we put forward an innovative idea for 

development of a new family of (Ti, Ta, Nb)CxN1-x-based cermets. This work employs 

MSR as an alternative procedure for the fabrication of these materials in a simple, direct 

and effective way. We have evaluated the microstructural characteristics of the sintered 

material and focused on the changes in the chemical composition of the hard and binder 

phases during liquid phase sintering. We have attempted to find a relationship between 
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the raw powder characteristics and the microstructure and microhardness of the final 

cermets. 

 

Materials and Methods 

 

Titanium (99% pure, <325 mesh, Strem Chemicals), niobium (99.6% pure, <325 

mesh, Strem Chemicals), tantalum (99.9% pure, <325 mesh, Aldrich), cobalt (99.8% 

pure, Strem Chemicals), nickel (puriss., Fluka), graphite (11 m
2
/g, Fe≤0.4%, Merck) and 

high-purity N2 gas (H2O and O2 ≤3 ppm, Air Liquide ) were used in this work. 

Powder mixtures with differing elemental molar ratios were ball milled under 6 

bars of highly pure nitrogen gas using a modified planetary ball mill (model Micro Mill 

Puverisette 7, Fritsch) operating at a constant gas pressure and allowing for the detection 

of self-propagating reactions during milling[5]. Seven tempered steel balls, together with 

6 g of powder, were placed in a tempered steel vial (67Rc) for each milling experiment 

and milled at 600 rpm. The volume of the vial was 50 cc. The diameter and mass of the 

balls were 15 mm and 13.41 g, respectively. The powder-to-ball mass ratio (PBR) was 

1/15.65.  

Cermets were fabricated through a pressureless process. Powdered cermets were 

first shaped (green bodies) and then sintered at high temperature to obtain hard cermets. 

The formation process was performed by means of cold isostatic pressing at 200 MPa for 

5 min to yield cylinders of 12 mm in diameter and 45 mm in height. The green bodies 

were sintered at 1550 ºC for 60 min (heating rate = 10 ºC/min, free cooling) under an 

inert atmosphere (helium gas, H2O≤3 ppm, O2 ≤2 ppm and CnHm ≤0.5 ppm, Air Liquide) 
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in a horizontal furnace (AGNI GmbH). The sintering temperature was optimized in 

previous research [19]. The bulk densities of the cermets were measured by the water 

immersion technique (the Archimedes method).  

X-ray diffraction diagrams of powders and polished surfaces of cermets were 

obtained with a Panalytical X’Pert Pro instrument equipped with a / goniometer using 

Cu Kα radiation (40 kV, 40 mA), a secondary Kβ filter and an X’Celerator detector. The 

diffraction patterns were scanned from 30º to 80º (2) at a scanning rate of 0.42º min
−1

. 

The lattice parameters were calculated from the entire set of peaks from the XRD 

diagram using the Fullprof[20] computer program assuming a suitable symmetry for all 

observed phases. 

Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) 

analysis were performed with a Hitachi FEG S-4800 microscope. The cermets were 

sectioned and polished until they acquired a mirror effect for the microhardness 

measurements and SEM observation. For reliable comparisons, the specimens were taken 

from the central part of each cermet. The Vickers test was performed at room temperature 

in a Microhardness FM-700 (Future-Tech. Corp) with a load of 9.81 N (Hv 1.0) for 15 s. 

Twelve micro-indentations were taken at different locations on the polished cermet, and 

the reported value was found from the average of the measured values. 

Microstructural parameters were obtained from boundary intercepts with test lines 

on planar sections. The average number of intercepts per unit of length for the 

ceramic/binder interfaces, (NL)ceramic/binder, and for the ceramic/ceramic grain boundaries, 

(NL)ceramic/ceramic, was determined. From both parameters, the contiguity of the ceramic 

phase was calculated as follows: 
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C = 2(NL) ceramic/ceramic / [2(NL) ceramic/ceramic + (NL)ceramic/binder] 

and the mean free path in the binder phase: 

λ = ∅ceramic / (NL)ceramic/binder 

in which ∅ceramic is the mean particle size obtained from the particle-size distribution 

study. 

 

Results and Discussion 

 

1. Powdered cermets synthesis 

 

Powdered cermets were prepared by MSR in a nitrogen atmosphere starting from 

elemental powders: titanium, niobium, tantalum, and graphite (necessary for (Ti, Nb, 

Ta)CxN1−x formation) with nickel and/or cobalt as the binder phase. The intended starting 

mixtures are shown in Table I. Additionally, three samples consisting of only a ceramic 

phase (without a metallic binder) were obtained from titanium, niobium, tantalum, and 

graphite mixtures (Table I). A combustion process took place in each mixture and the 

ignition times are also shown in the table. Milling was prolonged several minutes after 

combustion to obtain a homogeneous final product. 

It is empirically suggested that MSR and SHS (self-propagating high-temperature 

synthesis) processes do not occur unless the adiabatic temperature is higher than 1800 

K[21]. The adiabatic temperature, which measures the capacity for the self-heating of a 

mixture, represents the maximum temperature reached by a product resulting from an 

exothermic reaction and can be used to determine if a specific reaction proceeds via a 
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mechanically induced self-sustaining reaction. The adiabatic temperatures of T8, T9, and 

T95 mixtures (ceramic phases) were determined using the protocol developed by 

Córdoba et al.[6] from the adiabatic temperature of the extreme binary compounds 

defining each quinary solid solution system. The calculated values were 3862 K, 3959 K, 

and 4007 K for samples T8, T9, and T95, respectively. In each case, the adiabatic 

temperature was well above the limit of 1800 K, confirming the presence of an MSR 

process. 

The XRD diagrams of samples T8, T9, and T95 obtained by MSR (Fig. 1(a)) 

show the formation of complex carbonitride phases that can be defined as (Ti, Nb, 

Ta)CxN1−x. The XRD diagrams also exhibit the shift in the reflections typical of 

differences in the Ti/Nb/Ta ratios in the stoichiometry of the (Ti, Nb, Ta)CxN1−x solid 

solutions. The symmetry in the XRD reflections of the quinary phases suggests that 

carbonitride solid solutions were obtained in which Ti, Ta and Nb atoms occupy the (0, 0, 

0) positions, and C and N atoms occupy the (1/2, 1/2, 1/2) positions of the NaCl-type 

crystal structure. In contrast, the large broadening of the XRD reflections indicates that 

solid solutions with a nanometric grain microstructure were obtained. Careful 

examination of the XRD diagrams in Fig. 1(a) indicated the existence of a secondary 

minor phase, marked with a symbol (♠) in Fig. 1, which can also be indexed as TaCxN1-x 

(see Table II) in the cubic system and Fm–3m space group. In addition, all of the samples 

indicated the presence of small amounts of unreacted metallic titanium, niobium, and/or 

tantalum. 

Adding up to 20 wt% of binder (Co and/or Ni) that did not participate in the MSR 

process to the initial Ti/Nb/Ta/C mixture did not inhibit the formation of (Ti, Nb, 
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Ta)CxN1−x by a combustion reaction. Rather, the addition caused an increase in the 

ignition time by ∼10 min due to the presence of the binder phases, which were 

considered inert with regards to the Ti/Nb/Ta/C mixture (Table I). In particular, ductile 

nickel and/or cobalt can absorb part of the energy imparted by the mill through ball–ball 

and ball–wall impacts. Not all of the energy transmitted by the milling device was 

transferred to the reactive Ti/Nb/Ta/C mixture, and, consequently, the ignition was 

delayed. 

Nickel and cobalt were inert with regards to the MSR (Ti, Nb, Ta)CxN1−x 

synthesis, however, the simultaneous reaction of Ni and/or Co with Ti, Ta, and Nb 

extracting these elements from the starting mixture used to obtain the ceramic phase was 

also observed. This was evidenced by the presence of (Co, Ni)–(Ti,Ta,Nb) intermetallic 

phases in the powdered cermets (Figs. 1(b), 1(c) and 1(d)). These intermetallic phases 

were primarily observed with compositions of 1:1 and 2:1. The XRD reflections 

corresponding to the intermetallics were shifted from each other and from the standard 

ICSD phases, which are related to a change in the lattice parameter due to the formation 

of intermetallic solid solutions. In previous experiments, X-ray diffraction of powder 

mixtures of Ni and Ti milled under similar conditions did not show any interaction 

between the two metals[22] suggesting that the formation of intermetallic solid solution 

phases was triggered by the heat released during the combustion process involved in the 

carbonitride phase formation. 

The lattice parameter for each carbonitride phase, calculated using the Fullprof 

software, is shown in Table II. When the amount of niobium and tantalum was increased, 

a higher value for the lattice parameter of the carbonitride phase was observed as a 
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consequence of a higher expansion of the titanium carbonitride lattice, which can be 

considered the host structure. Powdered cermets (samples containing Co, Ni or Ni/Co) 

showed larger lattice parameters than those of the corresponding ceramic samples (T8, 

T9, and T95). In the powdered cermets, titanium was preferably extracted by Co and/or 

Ni from the reactant mixture to form the intermetallic solid solutions and induced the 

formation of a carbonitride solid solution phase with higher niobium and tantalum 

contents leading to increased lattice parameters. Moreover, the lattice parameters of the 

complex carbonitride phases were larger when Ni was used as the binder. This finding 

indicated that nickel extracted more titanium than cobalt for the formation of the 

intermetallic solid solution phase. 

EDX compositional surface mapping was performed on the powdered cermets to 

analyze the distribution of the elements involved in the MSR process, and a characteristic 

map corresponding to the T9Co sample is shown in Fig. 2. The presence of carbon and 

nitrogen in the ceramic particles and the effective dispersion of the titanium, niobium and 

tantalum are evidence of the formation of a complex carbonitride phase. It is worth noting 

that the binder phase (cobalt in this case) was also well distributed in the sample; a 

finding that is extremely important for the subsequent sintering processes. 

 

2.- Powdered cermets sintering 

 

Two SERIES of cermets were densified (Table III). The first one (SERIES 1: 

Tx+Binders) was obtained by sintering a powder mixture composed of samples T8, T9, 

or T95 (complex carbonitrides obtained by MSR) and the metallic binder (Ni and/or Co), 



 10 

which was added after the synthesis of the ceramic phase. The powder mixture was 

homogenized by manual milling in a mortar for 10 min. The second Series (SERIES 2: 

TxBinders) corresponds to cermets sintered from the powdered cermets in Table II, 

which were obtained by a one-step MSR process. 

XRD diagrams of the consolidated cermets are shown in Fig. 3, in which the 

reflections for the complex carbonitride and the metallic-binder phases are observed. For 

both seriess, the binder phases were composed of intermetallics. In the case of SERIES 1, 

the binder phases were produced during the high-temperature sintering process. For 

SERIES 2, the intermetallics were already present in the powdered cermets and the high-

temperature sintering process merely induced changes in the chemical composition of 

these intermetallics as suggested by a comparison of Figs. 1 and 3. Examination of the 

XRD reflections corresponding to the intermetallics again showed the existence of solid 

solutions with a basic structure formed by the lattices described as hexagonal 

Ni3(Ti,Ta,Nb) (JCPDS: 05-0723), orthorhombic Ni3(Nb, Ta, Ti) (JCPDS: 15-0101), cubic 

Co2(Ti,Ta,Nb) (JCPDS: 17-0031), hexagonal Co2(Ti,Ta,Nb) (JCPDS: 05-0719) and cubic 

Co(Ti,Ta,Nb) (JCPDS: 18-0429). Compositional fluctuations in the intermetallic solid 

solutions were observed among the different cermets. It is noteworthy that when the 

amount of niobium and tantalum was increased, the content of the intermetallic phase in 

the cermets also increased and an intermetallic phase poorer in Co or/and Ni was formed. 

By increasing the content of Nb and Ta, the reaction of formation of the carbonitride 

phase becomes less exothermic, and possibly full conversion was not achieved remaining 

a greater amount of free Ti, Ta, and Nb to form the intermetallic phase. 
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The lattice parameters for the complex carbonitrides in all of the cermets are 

presented in Table III. A preliminary description of the nature of the binder phases, as 

observed by XRD, is also shown. Two tendencies were observed in comparing the results 

from Tables II and III (Fig. 4). In SERIES 1, the complex carbonitride phase had a larger 

lattice parameter after sintering. However, in SERIES 2, the resulting complex 

carbonitride had a slightly smaller lattice parameter after sintering. These changes in the 

complex carbonitride stoichiometry, as reflected by variations in the lattice parameter, 

cannot be explained in terms of the varying thermodynamic stability of carbon and 

nitrogen because transition metals have a similar affinity for carbon and nitrogen at high 

temperature, as shown by Kang et al.[23,24] The high temperature stability of transition 

metal carbonitrides was confirmed in a monolithic sample of titanium carbonitride, 

which, after processing at 1700 °C for 3 h under an inert atmosphere, did not show any 

compositional change. 

The differing behaviors observed in the SERIES 1 and SERIES 2 cermets 

regarding changes in their lattice parameters (carbonitride stoichiometry) were related to 

differences in dissolution-reprecipitation processes involving the complex carbonitrides 

during sintering and were affected by the composition of the melted binder. The ceramic 

phase dissolution in the melted binder occurs through decomposition as its elemental 

constituents are incorporated into the liquid phase. Therefore, the stoichiometric changes 

observed in SERIES 1 samples (the increase in their lattice parameters) can be explained 

by taking into account the fact that the dissolution in the binder of the main ceramic 

phase and the minor phases observed after the MSR procedure, such as the unreacted 

metals and their subsequent incorporation into the complex carbonitride, occurred during 
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sintering. In the case of the SERIES 2 samples, the presence of the intermetallic phases 

prior to the sintering process reduced the dissolution of the ceramic phase in the binder, 

and only a small decrease in the lattice parameter was observed suggesting a composition 

slightly richer in Ti, probably induced by the preferential presence of this element in the 

intermetallic binder. 

The selected SEM images showing the polished surface of the studied cermets are 

presented in Fig 5. The characteristic microstructural parameters of the cermets are listed 

in Table IV including the mean ceramic grain size, the binder mean free path, the ceramic 

contiguity, the phase volume fraction of the components and the porosity. Although the 

ceramic phase obtained by MSR has been previously proven to have nanometric 

characteristerics, the microstructure, as observed by SEM, did not show nanosized 

particles. This observation is not surprising because a sharp increase in grain growth at 

the micrometric level has frequently been observed during conventional sintering when 

densities close to the theoretical maximum are reached in systems with nanocrystalline 

particles[25]. 

The grain size was affected by the initial composition and the synthesis path. 

When the amounts of niobium and tantalum were increased in the initial mixture, smaller 

ceramic grains were observed, which suggested that ceramic growth was hindered by the 

presence of Nb and Ta in the host titanium carbonitride structure. In contrast, the SERIES 

1 cermets generally showed coarser ceramic grain sizes than those in SERIES 2 (see 

Table IV and Fig. 6). The presence of a high quantity of transition metals (Ti, Ta, and 

Nb) in the melted binder in SERIES 2 should reduce the solubility of the ceramic 

particles during the liquid phase sintering and hinder growth by a solution-reprecipitation 
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process. In SERIES 1 cermets, the growth is enhanced by a binder free of Ti, Ta, and Nb, 

which favors the dissolution of the smaller ceramic particles and the reprecipitation on 

the larger ones, which thus continue to grow. Since the volume fraction of ceramic 

particles in the cermets is large, their growth can also induce a coalescence process that 

leads to the formation of even coarser particles [26]. A binder phase located inside large 

particles proved that they had grown by a coalescence process (Fig. 7). Evidence of such 

growth can be observed in the different regions of the SEM micrographs. The slightly 

smaller contiguity values for samples from SERIES 1, prepared by a two-step procedure, 

indicate that there was a more homogenous distribution of the ceramic grains in the 

binder phase than in SERIES 2, as is observed in Fig. 5. 

The component phase volume fraction was determined by image analysis, as 

shown in Table IV. The volume fraction of the binder phase tended to be stable within a 

range of 23 to 36% in both series studied because of the similar weights of the metallic 

cobalt and/or nickel used as binders. Binder areas of varying contrast were found on the 

SEM micrographs (Fig. 7), and when they were analyzed by EDX (inset Fig. 7), slightly 

different compositions were observed indicating the formation of intermetallic solid 

solutions. 

The microhardness of the cermets was evaluated and the results are shown in 

Table IV. The presence of cobalt in the intermetallic solid solutions caused hardening in 

the cermets due to a greater contribution to the hardness from Co (Hv=10.3 GPa) than 

from Ni (Hv=6.3 GPa). The influence of the nature of the binder on the Vickers 

microhardness of cermets is not evident from the results presented in Table IV. However, 

the microhardness of the studied cermets proved to be particularly sensitive to the 
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contiguity of the hard phase. In general, when samples containing the same type of binder 

(Co, Ni or CoNi/Co) are compared, the microhardness was found to increase with 

increasing contiguity of the hard phase and with decreasing particle size. A more compact 

complex carbonitride skeletal structure with increased rigidity was formed enhancing the 

hardness of the material. The overall comparison of the results independent of the cermet 

composition showed no clear dependence of the microhardness with the different studied 

factors (chemical composition and microstructural parameters) probably due to the 

variability in the binder phase composition. 

 

Conclusions 

 

Powdered cermets produced by MSR showed larger lattice parameters than did 

the corresponding ceramic samples (T8, T9, and T95). In the powdered cermets, titanium 

was preferably extracted by Co and/or Ni from the reactant mixture to form the 

intermetallic solid solutions inducing the formation of a carbonitride solid solution phase 

with a higher content of niobium and tantalum, which led to increasing lattice parameters. 

Varying the composition of the melted binder used in the dissolution-

reprecipitation processes during sintering produced changes in the lattice parameter. The 

presence of a large quantity of Ti, Nb, and Ta in the melted Co/Ni binder should reduce 

the solubility of ceramic particles hindering their growth by a solution–reprecipitation 

process.  

The microhardness of cermets with the same type of binder proved to be 

particularly sensitive to contiguity of the hard phase. The rigidity of the material was 
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enhanced by the formation of a complex carbonitride three-dimensional network 

structure. 
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Figure Caption 

 

Figure 1. X-ray powder diffraction diagrams of the products following the mechanically 

induced self-sustaining reaction process from the starting mixtures in Table I [# Ta, + Ti, 

│ Nb, ♠ TaCxN1-x, ○ Co(Ti,Ta,Nb), □ Ni(Ti,Ta,Nb), ♥ (Co,Ni)(Ti,Ta,Nb), © 

Co2(Ti,Ta,Nb)]. 

Figure 2. EDX-SEM mapping of the T9Co powdered cermet showing the distribution of 

product components. 

Figure 3. X-ray powder diffraction diagrams for SERIES 1 and SERIES 2 cermets after 

the sintering procedure from the starting mixtures in Table I [α, hexagonal Ni3(Ti, Ta, 

Nb); β, orthorhombic Ni3(Nb, Ta, Ti); χ, cubic Co2(Ti, Ta, Nb), δ, cubic Co(Ti, Ta, Nb); 

λ, orthorhombic (Co,Ni)3(Nb, Ta, Ti); µ, hexagonal Co2(Ti, Ta, Nb)]. 

Figure 4. Comparison of carbonitride lattice parameter before and after sintering for (a) 

SERIES 1 and (b) SERIES 2. 

Figure 5. Characteristic SEM micrographs of the T9+Cos, T95+Cos, T8Cos, T9Cos, 

T95Cos, T95+Nis, T9CoNis and T95+CoNis samples. 

Figure 6. Particle size distribution of the ceramic phase in sintered cermets. 

Figure 7. Characteristic SEM micrographs of cermets showing the binder phase inside 

the ceramic particle. 
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Table I. Summary of the starting elemental mixtures, milling times and ignition times for 

the samples studied. 

Sample Raw powders (atomic ratio) + binder (wt%) 
tmol 

(min) 
tig 

(min) 

T8 Ti/Ta/Nb/C (0.8/0.1/0.1/0.5) 50 43 

T9 Ti/Ta/Nb/C (0.9/0.05/0.05/0.5) 50 43 

T95 Ti/Ta/Nb/C (0.95/0.025/0.025/0.5) 50 43 

    
T8Co Ti/Ta/Nb/C (0.8/0.1/0.1/0.5) + 20% Co 60 52 

T9Co Ti/Ta/Nb/C (0.9/0.05/0.05/0.5) + 20% Co 60 52 

T95Co Ti/Ta/Nb/C (0.95/0.025/0.025/0.5) + 20% Co 60 52 

 
T8Ni Ti/Ta/Nb/C (0.8/0.1/0.1/0.5) + 20% Ni 60 52 

T9Ni Ti/Ta/Nb/C (0.9/0.05/0.05/0.5) + 20% Ni 60 53 

T95Ni Ti/Ta/Nb/C (0.95/0.025/0.025/0.5) + 20% Ni 60 53 

 
T8CoNi Ti/Ta/Nb/C (0.8/0.1/0.1/0.5) + 10% Co + 10% Ni 60 51 

T9CoNi Ti/Ta/Nb/C (0.9/0.05/0.05/0.5) + 10% Co + 10% Ni 60 55 

T95CoNi Ti/Ta/Nb/C (0.95/0.025/0.025/0.5) + 10% Co + 10% Ni 60 52 
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Table II. Summary of phases found after milling and the lattice parameters for the 

ceramic phase. 

Sample Phases found after MSR process a (Å) 

T8 (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, TaC0.58N0.42 4.3070(4) 

T9 (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, TaC0.70N0.30 4.2979(9) 

T95 (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, TaC0.63N0.37 4.2926(8) 

 
T8Co (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, Co(Ti,Ta,Nb), Co2(Ti,Ta,Nb) 4.3187(4) 

T9Co (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, Co(Ti,Ta,Nb), Co2(Ti,Ta,Nb) 4.3147(6) 

T95Co (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, Co(Ti,Ta,Nb), Co2(Ti,Ta,Nb) 4.3137(6) 

 
T8Ni (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, Ni(Ti,Ta,Nb) 4.3320(5) 

T9Ni (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, Ni(Ti,Ta,Nb) 4.3229(7) 

T95Ni (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, Ni(Ti,Ta,Nb) 4.3164(7) 

 
T8CoNi (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, (Co,Ni)(Ti,Ta,Nb) 4.3294(0) 

T9CoNi (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, (Co,Ni)(Ti,Ta,Nb) 4.3183(4) 

T95CoNi (Ti,Ta,Nb)(C,N), Ta, Nb, Ti, (Co,Ni)(Ti,Ta,Nb) 4.3150(4) 
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Table III. Summary of phases found after sintering for the two series cermets, the lattice 

parameters of the ceramic phase and the density measured by the Archimedes method. 

Sample Phases found after the sintering process a (Å) 
Density 
(g/cm3) 

SERIES 1 
T8+Cos (Ti,Ta,Nb)(C,N), cubic [Co2(Ti, Ta, Nb)] 4.3148(6) 6.48 
T9+Cos (Ti,Ta,Nb)(C,N), hexagonal [Co2(Ti, Ta, Nb)] 4.3089(2) 5.80 

T95+Cos (Ti,Ta,Nb)(C,N), cubic [Co2(Ti, Ta, Nb)] 4.3039(2) 5.81 

 
T8+Nis (Ti,Ta,Nb)(C,N), unknown 4.3248(0) 6.34 
T9+Nis (Ti,Ta,Nb)(C,N), orthorhombic [Ni3(Nb,Ta,Ti)] 4.3106(4) 5.65 

T95+Nis (Ti,Ta,Nb)(C,N), hexagonal [Ni3(Ti, Ta, Nb)] 4.3028(2) 5.21 

 
T8+CoNis (Ti,Ta,Nb)(C,N), orthorhombic [(Ni,Co)3(Nb,Ta,Ti)] 4.3259(6) 6.29 
T9+CoNis (Ti,Ta,Nb)(C,N), orthorhombic [(Ni,Co)3(Nb,Ta,Ti)] 4.3181(6) 5.74 

T95+CoNis (Ti,Ta,Nb)(C,N), orthorhombic [(Ni,Co)3(Nb,Ta,Ti)] 4.3068(4) 5.57 

SERIES 2 
T8Cos (Ti,Ta,Nb)(C,N), cubic [Co2(Ti, Ta, Nb)], cubic [Co(Ti, Ta, Nb)] 4.3217(2) 6.51 
T9Cos (Ti,Ta,Nb)(C,N), cubic [Co(Ti, Ta, Nb)] 4.3104(8) 5.90 

T95Cos (Ti,Ta,Nb)(C,N), hexagonal [Co2(Ti, Ta, Nb)] 4.3146(0) 5.68 

 
T8Nis (Ti,Ta,Nb)(C,N), hexagonal [Ni3(Ti, Ta, Nb)] 4.3295(8) 6.25 
T9Nis (Ti,Ta,Nb)(C,N), orthorhombic [Ni3(Nb,Ta,Ti)] 4.3160(0) 5.68 

T95Nis (Ti,Ta,Nb)(C,N), orthorhombic [Ni3(Nb,Ta,Ti)] 4.3036(6) 5.56 

 T8CoNis (Ti,Ta,Nb)(C,N), orthorhombic [(Ni,Co)3(Nb,Ta,Ti)] 4.3181(2) 6.63 
T9CoNis (Ti,Ta,Nb)(C,N), orthorhombic [(Ni,Co)3(Nb,Ta,Ti)] 4.3070(0) 6.12 

T95CoNis (Ti,Ta,Nb)(C,N), orthorhombic [(Ni,Co)3(Nb,Ta,Ti)] 4.3049(0) 6.06 
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Table IV. Vickers hardness, contiguity and average free pathway, with the average 

ceramic particle size, ceramic volume, binder volume and porous volume that were 

extracted from the image analysis of the selected samples. 

 

    Image Analysis 

Sample Hv (1.0) 
GPa 

Contiguity 
(C) 

Mean 
free path 

(µm) 

Ceramic 
Particle 

Size (µm) 

Ceramic 
Volume 
(% vol) 

Binder 
Volume 
(% vol) 

Porous 
Volume 
(% vol) 

SERIES 1 
T8+Cos 14.6 0.30 1.4 3.2 60 36 3 
T9+Cos 12.4 0.23 1.0 2.7 67 32 1 

T95+Cos 12.1 0.27 2.2 6.2 64 35 1 
 T8+Nis 11.7 0.31 1.0 2.9 65 31 4 

T9+Nis 10.5 0.28 1.2 4.0 69 28 3 
T95+Nis 10.7 0.26 1.6 5.6 72 25 3 

    T8+CoNis 12.2 0.39 0.5 2.0 70 29 1 
T9+CoNis 11.4 0.31 0.8 3.2 73 26 1 

T95+CoNis 12.5 0.35 0.8 3.3 72 27 1 
SERIES 2 

T8Cos 12.1 0.32 0.9 3.0 68 30 2 
T9Cos 11.0 0.25 1.7 3.9 61 36 3 

T95Cos 13.3 0.41 0.7 2.6 69 30 1 
 T8Nis 10.7 0.38 0.6 2.2 69 28 4 

T9Nis 10.9 0.36 0.4 2.3 75 23 2 
T95Nis 11.0 0.35 0.8 3.0 71 27 2 

 T8CoNis 14.1 0.39 0.6 2.9 74 25 1 
T9CoNis 13.9 0.37 0.7 3.2 73 26 1 

T95CoNis 12.7 0.34 1.0 4.0 71 28 1 
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Figure 5 
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Figure 7 
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