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1. INTRODUCTION

1.1 Support Vector Machines: a bridge between
Mathematical Programming and Data Mining

During the last decade, the storage capacity of digital information has been
duplicated every nine months. It grows, therefore, at a speed by far higher
than the one anticipated by Moore’s law for the growth of the computing
power, [30, 43], causing the appearance of the so-called data graves, [30],
data that are stored and rest peacefully, with nobody who demands them or
remembers them.

The establishment of such data graves existence, and the consequent
loss of opportunities for advance in business and knowledge, are causing
an enormous interest to develop techniques that, complementary to the pre-
viously existing ones, allow to obtain unknown and potentially useful in-
formation from data of applications as diverse as Bioinformatics (genetic

expression, ...), Customer Relationship Management (customer retention,
market basket analysis, ...), bank (risk evaluation of credits, fraud detec-
tion, credit scoring, ...), Internet (webpage classification, spam filtering,

(1, 2,3, 27,33, 37, 38, 77).

We speak, using a common denomination in scientific publications, and, in
particular, in the publishing lines of some of the journals with highest impact
in our area of knowledge, of Data Mining. The references (2, 13, 38, 40, 76]
can serve as introduction to the subject.

Examining, for example, the different options of the open-coded soft-
ware Weka, [73], described in [76], it is observed that one of the pillars of
Data Mining, although quite previous to this one, is the classification. We
find, next to well-known procedures in the statistical community, like lo-
gistic regression, bayesian models, classification trees or neural networks,
more recent ones, like the one we are dealing with in this work: the Sup-
port Vector Machines (SVM), that has jumped from the Statistical Learning
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world, [21, 67, 68] to applications ... through Mathematical Programming.
See [5, 9, 8, 18, 19, 50, 57, 61, 64, 78] for other classification methods that,
like Support Vector Machines, use advanced techniques of Mathematical Pro-
gramming.

In the classification problem, we have a set of objects €2, partitioned into
$(C) classes (also called groups), where f(-) denotes the cardinality of a set.
The aim is to build a classification rule which predicts the class membership
c* € C of an object u € §, by means of its predictor vector z*. The predictor
vector z* takes values in a set X which is usually assumed to be a subset
of RP, and the components z,, £ = 1,2, ...,p, of the predictor vector z are
called predictor variables.

Not all the information about the objects in  is available, but only in
a subset I, called the training sample, where both predictor vector and class
membership of the objects are known. With this information, the classifica-
tion rule must be built. For each ¢ € C, denote by I, the set of objects of
I which belong to the class c, i.e., [, = {u € I : ¢* = c}. In general, C is a
finite set C = {1,2,...,Q}. We assume throughout this thesis that each class
is represented in the training sample, i.e., I, # @Vc € C. Special attention
will be paid to the binary classification case, in which only two classes exists,
C = {-1,1}. The most common approaches for the multigroup case consists
on reducing the problem to a series of binary classification problems.

This introductory chapter is organized as follows. In Section 1.2, we
expose the basic aspects of SVM for the binary classification case, and in
Section 1.3, possible extensions to the multigroup case are presented. In some
situations, SVM involves the optimization of large scale Linear Programs. In
Section 1.4, the column generation technique, a well-known Mathematical
Programming tool for solving that type of problems, is briefly described.
The main aims of this thesis and an overview of the remaining chapters is
included in Section 1.5.

1.2 Binary classification

We focus now on the case in which C = {—1,1}. SVM proposes a classification
rule based on a score function f,

fla)=w'z+p, | (1.1)
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with w € IR?, and 8 € IR. With this score function, the linear classification
rule allocates those z € RRP with f(z) > 0 to group 1, and those z with
f(z) <0 to group —1. In case of ties, i.e. f(x) =0, objects can be allocated
randomly or by some predefined order. Throughout this thesis, following a
worst case approach, ties will be considered as misclassifications.

The first question we may ask is if there exists or not (w, §) such that the
corresponding linear classification rule correctly classifies all objects in I.

Definition 1.1: A score function f with coefficients (w, ) is said to separate
the training sample [ if

¢ (WTa*+6) >0 Vuel (1.2)

In addition, the training sample I is called sepamble if there exists a score
function with coefficients (w, 3) that separates I. Otherwise, I is said to be
nonseparable. '

In Section 1.2.1, we deal with the separable case, in which I is assumed
to be separable, describing the so-called hard-margin approach. In Section
1.2.2, for the nonseparable case, the hard-margin approach is used after a
transformation on the data. A different approach for the nonseparable case,
is described in Section 1.2.3, which is useful to avoid overfitting, phenomenon
which happens when a low misclassification rate in I does not generalize
to forthcoming objects. Other alternatives for the nonseparable case are
presented in Section 1.2.4.

1.2.1 The hard-margin approach

Any solution (w, 3) of (1.2) satisfies that w # 0. In particular, (w, 3) generates
a hyperplane, {x € RP : w'z+ B = 0}, such that all objects in the halfspace
{x € R?: w'z + 3 > 0} will be allocated to class 1, whereas all the objects
in the halfspace {z € R” : w'z + 8 < 0} will be allocated to class -1.
When [ is separable, the system (1.2) has infinite solutions, that generate
infinite different hyperplanes. How could we choose one of these solutions?
The classification quality in the training sample is identical for all those gen-
erated classification rules: all correctly classify every object in I. However,
not all of them seem equally reasonable. In Figure 1.1 we can see two hy-
perplanes, both separating I (classes are represented by circles and squares).
Very intuitively, we can think that the hyperplane represented by the thick
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line is more convenient than the one represented by the thin line. In particu-
lar, the former allocates the object represented with ’?’ to the square class,
when it seems much more likely to belong to the circle class.

Fig. 1.1: Two rules that classify equally well?

The previous example intuitively indicates the convenience of choosing
a hyperplane that is far away from both classes. SVM is based on this
principle, as described in what follows. Given a fixed norm || - || in [R? to
measure the distances (for instance, the Euclidean one), the distance between
z*, for an object u € I, and the halfspace where it is misclassified is given by .

N B ctwTz* + 0)
o) = S 0}

where || - ||° denotes the dual norm of || - ||, see [12].

Definition 1.2: Define the margin of object u € I by p*(w,3). We call the
margin on the training sample I the minimum p* :

p'(w, B) = min p*(w, B).
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It has been shown, [67, 68], that the probability of misclassifying a forth-
coming individual is bounded by an amount that depends on the margin.
This provides a theoretical foundation for choosing the hyperplane which is
furthest away from both classes. Thus, the sought classifier is the one that
not only correctly classifies all the objects of I, but it also has maximum
margin:

max  pl(w, )
s.t.: c(w'z+6) >0 Vuel, (1.3)
weRP BeR.

This problem is called the hard-margin maximization problem, as opposed
to the soft-margin version, explained in Section 1.2.3, where some objects in
I are allowed to be misclassified. :

Geometrically, the search of the classifier of maximum margin can be seen
as the problem of finding the band of maximal width (the distances measured
with norm || - ||) that leaves a group to each side, as can be seen in Figures
1.2-1.3 for the norms L, and L.

Fig. 1.2: Maximal margin (L2 norm)

Note that, for g > 0, (uw, uf) and (w, B) yield the same classification rule,
in the sense that the classification of any object is exactly the same by both
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Fig. 1.3: Maximal margin (Le norm)

rules. Moreover, by Definition 1.2, p!(uw, u8) = p(w, 3). Using this homo-
geneity property of the margin function, the margin maximization problem
can be formulated as the following convex problem with linear constraints:

min  ||w||°
st (w'z*+B8) >1Vuel (1.4)
we R, pBeR.

If, to measure distanées, we have used, like in Figure 1.3, a polyhedral
norm || - || (i.e., whose unit ball is a polyhedron), then its dual || - ||° is also
polyhedral, and therefore Problem (1.4) can be reformulated as a Linear
Programming problem, see for instance [49, 56], resoluble with commercial
Linear Programming solvers such as CPLEX, [42]. However, if the problem
is very large, as usually happens in Data Mining applications, there exist
advanced Linear Programming techniques, such as column generation, briefly
described in Section 1.4. In addition, for databases in which the number of
predictor variables p is large, the use of polyhedral norms yields solutions
where many of the components of the vector w are null, corresponding to
classifiers that do not use all the predictor variables available. Such predictor
variables can thus be discarded, with the advantage of obtaining cheaper or
more interpretable classifiers. The most studied case in the literature, is not,
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nevertheless, the one that has || - || as a polyhedral norm, but the Euclidean
one, where Problem (1.4) is equivalent to the following convex quadratic
problem with linear constraints:

‘min  w'w
s.t.: c* (wT:c“ + ,B) >1Vuel

welR, Be R

In [56], empirical results show that ‘in terms of separation performance, L,
Ly and Euclidean norm-based SVMs tend to be quite similar’.

1.2.2 Embedding into a feature space

In Section 1.2.1 we have assumed that I is separable. If this is not the case,
Problem (1.4) is infeasible, thus alternative approaches must be applied. One
of these approaches consists of applying to the data, as a preprocessing step,
a mapping ® : IR? — F, where E is, in principle, a subset of RY for a
large N, and such that, in the new space, the transformed training sample
I= {(®(z*),c*) : u € I} is separable, [14, 24, 25, 29, 41], and the hard-
margin approach is applied there. After that, w € R, 3 € R, are sought
and the classification rule is built, based on the score function f,

f(z) =0 B(@) + 4, (15)

allocating u, as in the separable case, to group 1 if f(z) > 0, and to group
—1if f(z) < 0. '

This rule is linear in the transformed data, but nonlinear in the original
space IRP. The different components of ® are usually called features, whereas
the space F of the transformed data is called feature space.

Rephrasing Problem (1.4), but in the feature space E instead of the space
X C IRP, the following margin maximization problem is obtained.

min  ||wl|
st (WTP(a*)+B8) >1Vuel (1.6)
weR',BeR |
For the case in which the norm || - || is polyhedral and E has a high

dimension (but finite), Problem (1.6) is formulated as a large scale Linear
Programming problem, for which the column generation technique, briefly
described in Section 1.4, is specially advisable. For example, it could be
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useful for automatic selection of the most influencing predictor variables [16]
and interactions [17]. This is the approach followed in Chapters 2 and 3. As
said before, the choice of a polyhedral norm contributes to get a solution of
Problem (1.6) with many null components, which would indicate that many
of the features ¢ are not used by the classifier.

If the Euclidean norm is used to measure distances in the feature space,
Problem (1.6) becomes a quadratic convex problem whose dual is

max S A=Y e AvAYCHEB(zv) T B(z?)
s.t.: Y ouer €AY =0 (1.7)
AU>0 Vuel.

Defining the kernel as K : (z,y) € RP x R? — &(z)"®(y) € IR, Problem
(1.7) becomes

max Yot A — ,1—, Zu,vGI AvAct K (2, zv)
s.t.: D uer €AY =0 (1.8)
A >0 Vuel.

In order to solve Problem (1.8), it is not even needed the explicit knowl-
‘edge of @, but only an algorithm to evaluate the kernel K induced by ®. In
this way, the feature space does not need to be a subset of RY, and could
be a general Hilbert space [23]. » :

The maximization problem is quadratic concave, with as many decision
variables as elements in /, and with only one constraint, linear, in addition
to the nonnegativity ones. The dimension of this problem is, therefore, in-
dependent of the dimension p of the original data and the dimension of the
feature space E. Hence, Problem (1.8) is a specially attractive formulation
in applications with not too many objects, but high dimensional, like the
problems found, for example, in [27, 77]. For more details, see, for example
23, 41].

1.2.3 The soft-margin approach

An alternative strategy (and sometimes complementary to the later) to deal
with the nonseparable case, is the one based on the soft-margin maximization,
[21, 23, 41], in which, starting off with the infeasible Problem (1.4), their
constraints are perturbed to make it feasible, introducing a penalty in the
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objective to control the deviations. In general, Problem (1.4) is formulated

as .
min  [|lw]]* + ClEJ}*

s.t.: c(w'z*+8)+€&>1, Vuel ] (1.9)
we R, BeR,Ec RO,
where || - ||* is a given norm, that does not need to be the same as the norm

| - ||° used for the coefficients w, and C is a constant, used to balance the
deviations £ and the margin of the correctly classified objects, usually chosen
by crossvalidation techniques, [47].

For example, using the polyhedral norm || - ||; for both, w and the devia-
tions € = (&, )uer, the relaxed Problem (1.9) is formulated as

min  [jwl|: + Cll¢]ly
s.t.: ct (wa" + ﬁ) +&4 > 1, Yuel (1.10)
weR,BeR,Ec RO,

Other choices for || - ||* yield different soft-margin problems and the one that
best fits to the model can be used.

~ Sometimes, the soft-margin approach is used even for a separable I, be-
cause that approach has been empirically shown to avoid overfitting.

Both approaches, an embedding ¢ and the soft-margin maximization, can
be used together, yielding, for norm || - ||;, the following problem:

min  [jwll + ClI€]lx
st M (WTRE)+8)+Er 21, Yuel (1.11)
we RN, BeR, e R,

where N denotes the cardinality of the set of features F which define the
embedding ® = (¢)ger. Problem (1.11) can be formulated as the following
Linear Program

min Yoperwi +wy) +C X &
st Ygerlwi —wy)ctd(z¥) + B+ 21 Vuel
: w;' >0 peF
wy 20 peF
>0 Vuel

g€ R.

(1.12)
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1.2.4 Other alternatives

Recently, other alternative strategy for nonseparability has been proposed:
instead of transforming the problem into another one on which I is separable
(and where, for instance, the maximin criterion is applicable), a different
criterion can be used that does not require separability. Such is the case,
for example, of the method described in [51, 59], where the sum of the dis-
tances between each misclassified point and the halfspace where it is correctly
classified, is minimized. This yields the following optimization problem,

. —C"(wT:t"-!-ﬁ)
min . ). max{—W—,O}
8.t.: we R, € R,

which enjoys the good properties of the median hyperplane, [52, 58], but, like
that one, is multimodal.

1.3 Multigroup classification

The extension of SVM for the case in which the number of groups @ is greater
than two is not trivial.. The most used approaches are actually based on
combining the classifiers obtained as solutions of several two-classes SVMs.
Already in [21], which is the origin of SVM, the method one-against-all is set
out. There, Q classification rules are built. For ¢ € C, the c-th classification
rule is built by means of SVM applied to the classification of objects of class ¢
as opposed to the rest of the objects of I. The final classification rule allocates
an object to the class to which it is allocated the highest number of times
among the built classification rules.

Another approach based on the same idea is the so-called one-against-one
[39], in which SVM is applied to each pair of classes, ignoring the remaining
objects. The Q(%ﬂ obtained classifiers are combined, for example, as in
the one-against-all approach. A different way to combine these classification
rules can be seen in [60].

Other authors, as for example in [10, 34, 75|, have proposed the use of a
(multiple) score function f = (fc)ecec With @ components f. : X — IR of
the form (1.1). Then, an object u €  will be allocated to the class ¢* with
greater score function value.
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¢’ = argmax fo(2).

As in the two-group case, in case of ties, the object will be unclassified by
this rule, and can be later allocated randomly or by a prefixed order to some
class in arg max.cc f.(z). Following a worst-case approach, we will consider
those objects as misclassified throughout this thesis.

Special attention is paid to this multiple score function approach, since it
is considered in Chapter 5. Every component of the multiple score function
f is a score function f, with the form (1.1), used in Section 1.2. Denote
W= (w!,...,w?) and b= (B, ..., %), where w® € IR?, and 3° € IR are the
coefficients of the score function f, :

P
= > wize + B (1.13)
k=1

We now extend the concept of separability given in Section 1.2 to the
multi-group case.

Definition 1.3: A score function f = (f.)cec with the form (1.13) is said to
separate I if

 fa(z®) > fi(zY) Vi# L Vue .

Moreover, I is said to be separable if there exists a score functlon f = (fe)eee,
with the form (1.13) separating I.

Notice that, for binary classification, C = {—1, 1}, this concept of sepa-
rability is equivalent to the concept given in Section 1.2, Definition 1.1, as
we see in the following property.

Property 1.4: Let C = {—1,1} and let I be a training sample. The two
following conditions are equivalent:

e There exists a multiple score function f = (f-1, f1) separating 1.

e There exists a score function f of the form (1.1) separating I

Proof. Given a multiple score function f = (f-j, fi) with coefficients
(w™!, 471 and (w', 4), the score function f defined by the coefficients w =
w' —w ™t and B = 3 — 37! separates I.
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Conversely, given (w, 3), satisfying (1.2), settingw! =w, f' =3, w™' =0
and 37! = 0, we have a multiple score function that separates I. a

As in Section 1.2, we first explore the hard-margin formulations for the
separable case (Section 1.3.1) and later, in Section 1.3.2, we extend it to the
soft-margin approach, in which some objects are allowed to be misclassified.

1.3.1 The hard-margin approach

Suppose that I is separable, which ensures the existence of at least one score
function f separating I. Uniqueness of such a score function f, separating I,
‘never holds. Indeed, it is easy to see that given (&, 5) € RP*! the classifica-
tion rules obtained by (W, b) and (W, b) with ¢ = Aw®+& and §¢ = A3+,
for all ¢ € C, are equivalent for all A > 0, in the sense that both allocate ob-
jects to the same classes.

Moreover, there are also more than one score function that separate [
and they are not equivalent. For instance, given a score function separating
I, let ¢ be any value satisfying:

0 <e <minmin {fe(z*) — f(2")}-

The function f¢ = (f, +¢, f, ..., fo) also separates I. We need a criterion
for choosing one of these multiple score functions. In the binary classification
case, following Vapnik’s publications in generalization ability [67], the margin
maximization criterion was presented. Now we present an extension of the
concept of margin for the multigroup case.

Definition 1.5: Let ||-||° be a norm in IRP?. The margin of an object u with
respect to the score function (W,b), with W # 0, is defined as

o fe(2®) = fi(2)
“(W. b) = .
p“(W,b) jin | R

The margin of a score function (W, b) with respect to the training sample /

is the minimum:
p' (W, ) = min p*(W, ).

As said in the binary case, a common choice for the norm || - ||°, is the
Euclidean norm, but other norms might be useful. For example, in Chapter
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5, we use the L; norm, which allows us to formulate the maximal margin
problem as a Linear Program, solvable with existing commercial software.

Now, we consider the problem of maximizing the margin

I
max p (W, b)
st (W,b) e R x R2. (1.14)

Denote by §(W,b) the amount

min min_ (fe(z") - f5(=%)),
which is the numerator of the margin p/(W,b). Note that for all A > 0,
solutions (W, b) and (AW, Ab) yield the same classification rule, and, following
Definition 1.5, they also have the same margin. Using this property, Problem
(1.14) can be formulated as the following convex probblem:

max 6(W, b)
s.t: [Wl° <1, (1.15)
(W,b) € R® x R?,

in the sense that any optimal solution of Problem (1.15) is also optimal for
Problem (1.14), and for any optimal solution (W*,b*) of Problem (1.14),

i 1 1 * 1%
UG TR
is an optimal solution of (1.15). ,
Formulation (1.15) is derived by using the normalization constraint [|W|° =
1, i.e. normalizing the denominator of p!(W,b) and maximizing its numera-
tor, 8(W,b). Another equivalent formulation can be suggested, normalizing
the numerator and minimizing ||W||°, yielding

min W] .
s.t.: o(W,b) > 1 (1.16)
(W,b) € RP® x R°.

Throughout the thesis, we will use one or another approach in order to obtain
formulations with better properties.
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1.3.2 The nonseparable case

Two different approaches are explained, in Sections 1.2.2 and 1.2.3, for the
nonseparable binary classification: embedding the data into a higher dimen-
sional space, and the soft-margin approach, which allows some objects to be
misclassified. Both approaches can be extended to the nonseparable multi-
group case.

After applying an embedding ® : R? — E, with ® = (¢1,¢,...,0n) tO
the data, the score function f can be expressed as

fol@) =D win(z) + B° = () D(z) + 4, (1.17)
k=1

with w® € RY, and 8¢ € R, Vc € C.

As in the binary classification case, a soft-margin version of Problem
(1.14) can be developed; hopefully avoiding overfitting by allowing some ob-
jects to be misclassified. A score function f which does not separate I, will
be infeasible for Problem (1.16) because constraint (W, b) > 1 does not hold.
Such constraint can be rephrased as the set of constraints

@) @(z*) + ° — ()@Y~ F 21, Yuel,ViEC, jAc

Hence, in order to allow a score function f that does not separate I; we relax
these constraints by adding perturbations &, which are later penalized in the
objective function. Let ¢ be the vector of all the perturbations & . Then the
soft-margin version of Problem (1.16) can be formulated as:

min  ||W]|]° + C|i€||* ‘ ‘ .

s.t.: (W) T ®(z*) + B — (W) T®(z¥) - FF + & > 1, (1.18)
Vuel,Vje€C, j#c* '
(W,b) € RN? x R?,

where || - ||* is a given norm, that does not need to be the same as the norm
|| - || used for the coefficients W, and C is a given constant whose purpose is
to trade off the perturbations & and the margin. A popular choice for the
norm || - ||* is, for instance, the Ly norm, [|€]ly = 3./ sec. jsen & [T5]-

In principle, formulation (1.18) uses, for each object v € I, @ — 1 per-
turbations, one for every constraint. For a given score function defined by
(W, b), if an object u is missclassified, the amount

Jaulz®) = fi(e*) = @) T@(a") + B — (W) B(z") — F
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can be seen as a measure of how far object u is from being correctly classified.
Hence, it could seem more logical to use just one perturbation 7, per object
u. This can be done, within the framework of formulation (1.18), via the
choice of norm [|€]|* = 3°,c; MaXjec, jxex &, yielding the following problem:

min WP+ Cllal |
s.t.: (W) T®(z*) + B — (W) T O(z¥) — 7 + 1y > 1, (1.19)
YVuel, Vjel, j#c" '

(W,b) € RV? x R,

where 7 denotes the vector (1, ).es of one deviation per object.

1.4 Large scale linear programs

When the embedding ® has a high (finite) dimension, Problem (1.12) be-
comes a large scale Linear Program, for which we propose to use the well-
known Mathematical Programming tool called Column Generation, initially
introduced for the cutting-stock problem [32]. In this section, we briefly
describe stich a tool, that will be used in Chapters 2 and 3.

When a Linear Programming problem (P) has a high number of decision
variables, instead of solving it directly, the Column Generation technique
solves a series of reduced problems where only a subset V" of the set of decision’
variables V is considered. Decision variables are iteratively added to V as
needed. '

For V C V, let Master Problem (P-V) be Problem (P), we are interested
in solving, where all the decision variables not in V' are set to zero. We start
with an initial subset V of decision variables, for example, a random sample
from V. Once the initial set is generated, we solve Problem (P-V). The
next step is to check whether the current solution is optimal for Problem
(P) or not, and, in the latter case, look for a new decision variable v in
V\ V such that the solution of the new Problem (P-(VU{v})) is better than
the one of Problem (P). Then, the decision variable v is added to subset
V, and Problem (P-V) is solved again. This process is repeated until no
other promising decision variable is found. A simple summary scheme of the
column generation algorithm can be seen below.

In each step, we ideally would like to find which decision variable is the
most promising, in the sense that, adding it to V yields the maximal im-
provement to the objective function of Problem (P). The problem of finding
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the most promising decision variable, called the pricing problem, is related to
the problem of finding the most violated constraint in the dual formulation
of Problem (P). Sometimes, in order to accelerate the column generation
algorithm, several good decision variables, obtained by the pricing problem
are added to V instead of only one.

CG-summary: Summary of the column generation algorithm
Step 0. Get an initial set of decision variables V.
Stép 1. Solve the pricing problem to generate a new decision variable v.

Step 2. If no new promising decision variable are found, then STOP: we
have found the optimal solution of Problem (P). Otherwise, add it
(them) to the set V, solve Problem (P-V), and go to Step 1.

When, instead of using an exact algorithm to solve the pricing problem, a
heuristic is used, then the column generation algorithm yields a good solution
of Problem (P), but with no guarantee of optimality.

1.5 Thesis overview

Building classification rules based on margin maximization has shown to be
~ very efficient in Data Mining applied fields. Despite of the great advances
obtained in the last years, there are still many aspects (modeling, numerical
and algorithmic issues) to explore.

In this thesis we present some proposals in which Mathematical Program-
ming tools are used to obtain classifiers with some interesting properties. In
practical applications, the main goal is to obtain classifiers with a low per-
centage of misclassified objects, but the fact that, on top of that, they are
also easily interpretable, or cheap, or useful to detect relevant predictor vari-
ables and their interactions, might also be of great interest. For instance, in
microarray analysis, interpretability is one of the issues that influences the
choice of a prediction method, [63], where easily interpretable models, which
might help to provide new medical insights, are sometimes preferred. In some
fields, as diverse as cancer diagnosis and credit scoring, doctors or lenders
might find important to easily explain the classification rule and detecting
which combinations of predictor variables are critical to predict class mem-
bership. Sometimes, the importance or cost of correctly classifying an object
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varies depending on the class it belongs to. In this way, methods taking into
account this importance or cost of misclassification depending on the class
are highly desirable in many applications.

Our main aims in this work are:

1. Model, with SVM techniques, classification problems that incorporate
costs (misclassification costs, feature costs, measurement costs).

2. Automatically detect adequate nonlinear data transformation and rel-
evant interactions between variables for SVM.

3. Analyze the empirical behavior of the proposed methods in real data-
bases standard in Data Mining literature.

In Chapter 2, based on our paper [16], an SVM-based model is proposed,
which, while enjoying a good classification rate, automatically detects the
most important predictor variables, and those values which are critical for the
classification. The method involves the optimization of a large scale Linear
Programming problem, for which we use the well-known Column Generation
technique described in Section 1.4. Moreover, the proposed classifier is robust
against the presence of outliers. In Chapter 3 we extend this method to one
that, apart from detecting the relevant predictor variables, also detects the
most relevant interactions between them. The classification ability of the
proposed method is comparable to standard SVM for different kernels and
clearly better than Classification Trees. These results are the basis of our
paper [17].

. The problem of incorporating misclassification costs that depend on the
classes is analyzed in Chapter 4. Based on our reference [14], in that chapter
we propose a model in which, for a score function f, the margin of a class ¢
is defined, independently of the margin of the other class, and the problem
of simultaneously maximizing both margins is analyzed.

In many pracical applications it is important that the built classifier is
cheap or quick to apply it to new objects. For instance, in a poll by KD-
nuggets, [45], where both practitioners and academics participated, ‘dealing
with unbalanced and cost-sensitive data’ was selected between the most im-
portant Data Mining topics, where cost-sensitive data means data ‘which
has different cost to get it’, [46]. This situation is illustrated in [46] with the
following example:
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E.q. for a medical diagnosis, we can use data from a blood test or
a spinal fluid test, but blood test is much cheaper (and easier) to
get than a spinal fluid test. Making decision in such cases (which is
really all the real-world cases) requires combining accuracy and other
metrics with the cost of getting the data.

In Chapter 5, based on our paper [15], we propose, for multi-group clas-
sification, a biobjective optimization model which takes into account both
measurement costs (economical costs, risk incurred by the measuring process,
computational times, space requirements), and misclassification rate. Again,
within an SVM framework, misclassification rate is taken into account via
margin maximization.

We introduce a biobjective mixed integer problem, for which Pareto op-
timal solutions are obtained. Those Pareto optimal solutions correspond
to different classification rules, among which the user would choose the one
yielding the most appropriate compromise between the cost and the expected
misclassification rate. '

Computational results show the great potential of Mathematical Pro-
gramming tools, in particular, Linear and Mixed Integer Programming, to
develop powerful variants of Support Vector Machines.



2. DETECTING RELEVANT VARIABLES

2.1 Introduction

In practical applications, classification accuracy of the obtained classifier is
not the only concern, but other characteristics of the classifier are also taken
into account. For instance, in microarray analysis, interpretability is one of
the issues that influences the choice of a prediction method, [63]. Classifiers
obtained by SVM have shown to have good classification ability but are, in
general, hard to interpret. In some application fields, practitioners, such as
doctors or businessmen, may be very unwilling to use a classifier they cannot
interpret. For them, Data Mining methods sometimes proceed like a black-
box, so they would not feel confident enough to use the classifier unless they .
can interpret it somehow. ’
For instance, it is easy to interpret and manage queries of type

e s predictor variable ¢; big?
e [s predictor variable #; small?
e Does predictor variable ¢3 attain a very extreme value?

where the concept of ‘big’, ‘small’ and ‘extreme value’ must be quantified,
e.g. in the form

|E predictor variable ¢ greater than or equal to b?| (2.1)

This type of queries are used e.g. in Classification Trees. In this way, practi-
tioners can interpret the classifier, describing how it works. Moreover, they
can directly see which role the different predictor variables are playing in
the classifier, and detect the values of a predictor variable critical for the
classification.

In this chapter we propose a new model that, by using piecewise con-
stant functions, automatically selects the adequate scale for each predictor
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variable. The obtained rule is based on queries of type (2.1), which makes in-
terpretability easier. Moreover, as shown empirically, the obtained classifiers
are robust against the presence of outliers.

We restrict ourselves to the case in which two classes exist, C = {-1, 1}.
The multiclass case, described in Section 1.3, can be reduced to a series of
two-class problems, as has been suggested e.g. in [39, 41, 68]. A summary of
these strategies can be found in Section 1.3.

We work in an SVM-based framework, where the feature space is de-
fined by binarizing each predictor variable, and considering all the possible
cutoffs. For this reason, we call our method the Binarized Support Vector
Machine, BSVM. Numerical results show that the proposed approach gives
a classifier that behaves similar to the standard linear SVM and clearly bet-
ter than Classification Trees. Moreover, the tradeoff between interpretability
and classification ability can be controlled via an upper bound on the number
of features allowed. . .

The classifier proposed in this chapter, BSVM, is described in Section
2.2. Since the number of features to be considered may be huge, the BSVM
method yields an optimization problem with a large number of decision vari-
ables, namely #(I) - p, where #(-) denotes the cardinality of a set. In Section
2.3, a Column-Generation-based algorithm, see Section 1.4 for more details
in Column Generation techniques, is proposed in order to solve such an op-
timization problem. Numerical results are shown in Section 2.4, whereas
conclusions are discussed in Section 2.5.

2.2 Binarized Support Vector Machines

In practical applications, simple rules of type (2.1) are very desirable because
of their interpretability. For example, a doctor would say that having high
blood pressure is a symptom of disease. Moreover, quantitative variables
usually appear together with the qualitative ones. In order to deal with con-
tinuous variables in the form of the presence or absence of certain symptom,
we propose the use of rules of type (2.1), where the cutoff value b need to be
chosen. Choosing the threshold b from which a specific blood pressure would
be considered high is not usually an easy task.

We theoretically consider all the possible rules of type (2.1), mathemati-
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cally formalized by the function

ba(z) = { 0 otherwise (22)

forbe Rand £=1,2,...,p. In our model, each ¢y is a feature that defines
a component of the transformation ® used in the nonlinear score function
(1.5).

This binarization procedure could be done in a tedious preprocessing step,
where all the possible features are created. However, we do not do it as a
preprocessing step but, as we will see later on, propose a method to generate
features when needed.

The set of possible cutoff values b (and, thus the number of features)
is, in principle, infinite. However, given a training sample I, many of those
possible cutoffs will yield exactly the same classification in the objects in I,
which are the objects whose information is available. In this sense, for a
certain predictor variable £ and a given training sample I, we can constrain
the choice of b € IR to the finite set B, = {z} : v € I}. In this way, the
family of features under consideration is given by

F={¢n:be By =1,2,...,p} (2.3)
This family of features define the embedding

¢ = (¢eb){ ,beB )

L2,...,p

used in the score function (1.5), which now becomes

flz)= wT<I>(x) +8= Z Z wep + 5, (2.4)

£=1 {beBy|z,>b}
where w € RV,

Note that binary 0-1 variables can be accommodated to this framework
easily, by taking b = 1. It might be less obvious for ordinal variables, i.e.
qualitative variables whose values can be sorted according to some meaning-
ful order »= . For instance, a predictor variable £ taking the values {‘big’,
‘medium’, ‘small’} yields the following queries of type (2.1): “Is z, > big?”,
with affirmative answer for z, € {‘big’}; “Is z, = medium?”, with affirmative
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answer for z, € {‘medium’, ‘small’}; and “Is z, > small?” always affirma-
tively answered.

For nominal variables, where there exists no meaningful order for the &
values they take, queries of type (2.1) make no sense. In order to accom-
modate all types of variables to a common framework, a preprocessing step
is needed where every nominal variable £ is replaced by k new variables as
follows: for every possible value £ of the original nominal variable ¢, a new
binary variable is built taking value one when 1z, is equal to & and zero other-
wise. For instance, a variable ¢ taking values {‘red’,'blue’,‘green’} is replaced
by three binary variables asking the questions ‘is z, = red?’, ‘is zy = blue?’
and ‘is z, = green?’.

Example 2.1: In the Credit Screening Database, from the UCI Machine
Learning Repository {6] (see Appendix A for further details), there are 15
variables, six of which are continuous (c), four binary (b) and five are nominal
(n). Since no information about the meaning of the values is provided, we
have considered that values cannot be sorted according to a meaningful order,
and have encoded them as explained above. After the encoding, the original
set of 15 variables, whose information about their names, types and the values
they take, is given in Table 2.1, is replaced by a set of 43 variables.

name type values
Al b b, a
A2 c [13.75,76.75]
A3 c [0,28]
A4 n wylt
A5 n 8, D, 88
A6 n ¢, d, ce, i, j, k,m, 1, q, w, X, e, aa, ff
A7 n v, h, bb, j, n, z dd, ff, o
A8 c [0,28.5]
A9 b t, f
Al0 b t, f
A1l ¢ [0,67]
A12 b t, f
A13 n g D, S
A14 c [0,2000]
A15 c [0,100000]

Tab. 2.1: Types of variables in Credit Screening Database
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Example 2.2: In the Cylinder Bands Database, from the UCI Machine
Learning Repository [6], there are 35 variables (excluding the first four at-
tributes, which are for identification of the object), twenty of which are con-
sidered to be continuous (c), five binaries (b), three are considered to be
ordinal (o) and eight are are considered to be nominal (n). All objects hav-
ing at least one missing value have been removed from the database. After
the encoding, the original set of 34 variables, whose information about its
name, type and values it takes is given in Table 2.2, is replaced by a set of
56 variables.

For a certain predictor variable ¢, the coefficient wy, associated to feature
¢ Tepresents the amount with which the query ‘is z, > b7’ contributes to the
score function (2.4). Hence, the weight wg, gives insightful knowledge about
how predictor variable ¢ influences the classification, since we are replacing
variable ¢ by the function s — >_ (beBy| s2b} Wb thus determining the change
of scale to be applied to variable £. Moreover, those variables £ for which
wep are zero for all b € B, are not needed for the classification, and can be .
discarded.

Example 2.3: For instance, taking the Wisconsin Breast Cancer Database

~from the UCI Machine Learning Repository, [6], with data from cancer di-
agnosis (see Appendix A for further details of the database), and using the
BSVM, it turns out that only 12 out of 30 variables have at least one non-
zero wyy. In other words, only 12 out of the 30 variables are relevant for the
classification. In Figure 2.1 we show, for each of these twelve variables, its
contribution to the score function. As an illustration, Table 2.3 shows, for-
variable Worst Texture, its cutoffs b, the corresponding weights wg, and the
cumulative weights ), ., way.

We have also plotted in Figure 2.1 the median (represented by a star) and
the mean (represented as a cross). It can be seen how, although the mean, or
the median, is sometimes a good choice for the cutoff, this does not happen
in general, and BSVM prefers other choices.

Since the output of the features proposed in this chapter is always binary,
the importance, represented by the coefficients, is always measured in the
same scale. The practitioner could choose to interpret those features with
the highest coefficient in absolute value, obtaining in this way a great insight
in the behavior of the classifier. However, if the practitioner prefers to keep
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id name type values
5 grain screened b yes, no
6 ink color b key, type
7 proof on ctd ink b yes, no
8 blade mfg n benton, daetwyler, uddeholm
9 cylinder division n gallatin, warsaw, mattoon
10 paper type n uncoated, coated, super
11 ink type n uncoated, coated, cover
12 direct steam b yes, no
13 = solvent type n xylol, lactol, naptha, line, other
14 type on cylinder b yes, no
15 press type n WoodHoeT0, Motter70, Albert70, Motter94
16 press o 802, 813, 815, 816, 821, 824, 827, 828
17 unit number o 1,2,3,4,5,6,7,8,9, 10
18 «cylinder size n catalog, spiegel, tabloid
. . northUS, southUS, canadian,
19 paper mill location n . .
scandanavian, mideuropean
20 plating tank b 1910, 1911,
21 proof cut c [0,100]
22 viscosity c [0,100]
23 caliper c {0,1.0]
24 ink temperature c [5,30 ]
25 humifity c {5,120]
26 roughness c [0,2]
27 Dblade pressure c [10,75)
28 wvarnish pct c [0,100]
29 press speed c [0,4000]
30 1ink pct c [0,100]
31 solvent pct c [0,100]
32 ESA Voltage c [0,16]
33 ESA Amperage c [0,10]
34 wax c (0,4.0]
35 hardener c [0,3.0]
36 roller durometer c (15,120
37 current density c [20,50}
38 anode space ratio c [70,130]
39 chrome content c (80,120]

Tab. 2.2: Variables in Cylinder Bands Database
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Fig. 2.1: Automatic choice of the scales
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b Web | Doy <y ey
20.24 0.17795 0.17795
23.75 0.19729 | 0.37524
25.73 0.01160 | 0.38685
25.84 0.20116 | 0.58801
27.57 0.11219 | 0.70019

Tab. 2.3: Scale for the variable Worst Texture.

the number of features low in order to get a complete picture about how the
classifier works, then a wrapper feature selection procedure, as in [35], could
be used to gain interpretability. In Section 2:4.2 we give some numerical
results using a simple but powerful wrapper procedure known as recursive
feature elimination, as first proposed in [36].

We follow here the so-called soft-margin approach, described in Section
1.2.3, which allows some objects to be misclassified. This approach has been
empirically shown to avoid overfitting, a phenomenon which happens when
a low misclassification rate in I does not generalize to forthcoming objects.
Following Section 1.2.3, in order to obtain w and 3, we use the soft-margin
maximization problem (1.11), which yields Linear Programming formulation
(1.12).

After finding the maximal soft-margin hyperplane in the feature space
defined by F, the score function has the form described in (2.4).

For each feature, the absolute value of its coeflicient indicates the impor-
tance of that feature for the classification. Using basic Linear Programming
theory, it is easy to see that the number of features with non-zero coefficient
is not larger than the number of objects in the database.

2.3 Building the classifier

In this section, we propose Problem (1.12) to be solved by the well-known
Mathematical Programming tool called Column Generation, described in
Section 1.4. It consists of solving a series of reduced problems, where de-
cision variables are iteratively added as needed. Each decision variable w
corresponds to a feature ¢, so in each step of the column generation algo-
rithm, the pricing problem chooses the most promising feature ¢ € F.

For sake of completeness, we formulate now, the master problem (1.12-F)
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for a given set of features F :

min Yoper(Wy +wy)+C Y

S.b. Y sep(wf —wy)ctp(xt) + Bt +E4 21 Vuel
wi>0 ¢eF
wy > 0 ¢peF
>0 Vuel
B € R.

(1.12)-F

We start with an initial set of features F. For example, we can get as
an initial set of features, one feature ¢y per variable £, with b equal to the
median of variable z, in the objects of I. Then, Problem (1.12-F') is solved
and the new step of the column generation algorithm, new promising features
¢ are sought in order to add them to F.

In order to generate new features, the Column Generation technique uses
the dual formulation of Problem (1.12),

max uel /\“
s.t.: 1< et dcP(z*) <1 Ve F (2.5)
At = ’

0< A\ <C uel

The dual formulation of the Master Problem (1.12-F) only differs from this
one in the first set of constraints, which should be attained for all features
¢ € F instead of all features ¢ € F. .

Let (w*,8*) be an optimal solution of Master Problem (1.12-F), and let
(A)uer be the values of the corresponding optimal dual solution. If the
optimal solution of the Master Problem (1.12-F) is also optimal for Problem
(1.12), then, for every feature ¢ € F the constraints of the Dual Problem
(2.5} will hold, i.e.

-1< Z Acto(z*) < 1.

uel
Denote ['(¢) = >~ _; Aic*p(z). If (w*, 8*) is not optimal for Problem (1.12),

u
then the most violl‘;t{ed constraint gives us information about which feature
is promising and could be added to F, in the sense that adding such a feature
to the set F' would yield, at that iteration, the highest improvement of the
objective function. Thus, we wish to generate a new feature ¢ € F maxi-

mizing |I'(¢)|. Finding such a ¢ can be reduced to solving two optimization
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problems:
maXger ['(4),
min¢€f F(d))
In Section 2.3.1, a specific exact algorithm for solving these problems for
the set of features F, is developed. In Section 2.3.2, implementations details
for the Column Generation Algorithm are given.

2.3.1 Generation of features

Finding the best ¢ € F is reduced to finding a predictor variable ¢ and
a cutoff b € By, such that |I'(¢e)|, with ¢ defined by (2.2), is maximal.
In this section we describe an algorithm for, fixed the predictor variable £,
finding the cutoff b maximizing I'(¢g). Finding the minimum can be done in
a similar way.

First, we sort all the objects in decreasing order by the values of the
predictor variable £. Denote by u(i) the object in i-th position. For simplicity,
suppose there are not repeated values, i.e. ;" > zi® > ... > g2 The
case with repeated values will be analyzed later on.

Once ¢ is fixed and all the objects are sorted by the values of the pre-
dictor variable ¢, the value I'(¢g) can be efficiently calculated with a recur-
sive procedure. Indeed, for certain i € {1,2,...,4#(I)}, we have I'(¢w,,,) =
L(de) + Ai +1)c“(i““l), where b; denote the cutoff chosen as z*(®. More-
over, since A is nonnegative for all u € I, whenever ¢*(i + 1) = 1, then
T(¢eb;,y) > T'(des; ). Thus, checking whether ¢4, is a maximum is not needed
for every i, but only for those 4 such that ¢*® =1 and ¢*+1) = —1.

In the case in which there are repeated values in {z} : u € I}, the rule
above does not apply. Let i and ¢ be such that z3¢™) > g4 = Z+D —
o= O S gD Note that, in the set of objects where predictor
variable £ has the same value, there could be objects belonging to different
classes. In this case, then b = b; must be checked, whatever the value of
0+t However, if ¢#®) = ¢uli+tl) = = ¢#(+1) and c++D) = 1 we know
that setting b = b;, for any j = 4,2+ 1,...,%+¢, will be improved by setting
b = b;y441. This means that b = b; does not give a maximum of I'(¢g). Only
if ¢*® =1 and c*¢+**1) = —1 it is worth to consider b = b; as a candidate
to be the maximum.

The minimization of I' is done analogously. For example, in case of no
repeated values, candidates to be a minimum correspond to objects u(%)
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belonging to class —1 where the next object u(¢ + 1) belongs to class 1.
Taking into account all these considerations we obtain, for a fixed pre-

dictor variable ¢, given the dual values A}, the algorithm described below,

which finds the cutoff b} (and respectively, b; ) for which I'(¢py) (respec-

tively, I‘(cbgbl-)) is maximal (respectively, minimal).

Algorithm 1-BSVM: Choosing a cutoff for variable ¢.

Step 0. Sort the objects by z : 4.

Step 1. Set i « 1, sum— 0, maz— 0 and min< 0.

*

Step 2. Set sum«— sum+Ay,c*®.

Step 3. Step 3.1. If z?(i) = x';(iﬂ), then, go to Step 4.

Step 3.2. Otherwise, if for some ¢t > 0, xz(i_t_l) < a:?(i’t) =...=

:v;f(i) < x}f(i)"l and there exists j with j = 1,...,t and ¢*® #£
c*(=9) then:

o If sum>maxz, then set maz — sum.

e If sum<min, then set min — sum.

Step 3.3. Otherwise,

o if ¢*® =1, ¢*0+1) = —1 and sum>maxz, then set maz «
sum.

o if ) = —1, ¢+ =1 and sum<min, then set min «—
sum.

Step 4. Set i — ¢+ 1. If 7 < §(I), then go to Step 2, otherwise STOP.

2.3.2 Implementation details

The column generation algorithm has been implemented as follows. First,
an initial set of features Fy is built. We have chosen to start with one feature
per variable, with the cutoff set equal to its median in the objects of I. Then,
Problem (1.12-F}) is solved for such initial set of features. The dual values
of the optimal solution found, are used to generate new features.

In every step of the column generation algorithm, instead of generating
just one feature (the one maximizing |I'(4)|), we generate two features for
every predictor variable £, given by the cutoffs for which I'(@¢) is maximal
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and minimal. This is done using Algorithm 1, as described in Section 2.3.1.
We do it for all the predictor variables, thus obtaining 2p features. Those
generated features having |['(¢)| > 1 are added to F' and the LP problem
(1.12-F) is solved. These steps are repeated until all the generated features
have |T'(¢)| < 1, in which case, we have found an optimal solution of Problem
(1.12). A summary of this Column Generation Algorithm is described as
follows.

Algorithm CG-BSVM

Step 0. Set Fy < {dub;, Pavy, - - - » Ppby }, Where b} is the median of the pre-
dictor variable ¢, for £ = 1,2,...,p. Set F' — Fy.

Step 1. Solve Problem (1.12-F). Let (w*, 3*) be its optimal solution, with
dual values A}, Vu € I.

Step 2. For each £ = 1,-2, ...,pdo:

Step 2.1. Run Algorithm 1 to choose b}
Step 2.2. If ['(¢yy) > 1, then set F — F U {¢p }.

Step 2.3. Run Algorithm 1 to choose b, .
Step 2.4. If ['(¢,,-) < —1, then set F' — F'U {d’eb;}-

Step 3. If F has been modified, then go to Step 1, otherwise STOP: we
have found an optimal solution of Problem (1.12).

2.4 Numerical results

First we are going to analyze the classification ability of the set of features
proposed in the chapter. With this aim, a series of numerical experiments
have been performed using databases publicly available from the UCI Ma-
chine Learning Repository [6]. Five different databases were used, namely,
bands, credit, ionosphere, sonar and wdbc. Details about them are given
in Appendix A.

In order to compare the quality of the BSVM classifier with the classi-
fication quality of other classifiers, we have tested the performance of two
very different benchmark methods: Classification Trees, both with pruning
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(prTree) and without pruning (Tree), and SVM with linear kernel. All re-
sults presented are obtained by 10-fold crossvalidation, e.g. [47]. The average
percentages of correctly classified objects in both the training sample (tr)
and testing sample (test) are displayed in Table 2.4 for different values of
the parameter C. CPLEX 8.1.0 [42] was used as the LP solver.

It is a well-known fact in SVM that, if the parameter C is chosen too
close to zero, one may obtain as optimal solution of Problem (1.12) a vector
with w = 0, from which a trivial classifier assigning all objects to one class
is obtained. This degenerate situation (indicated in Tables 2.5-2.6 as d.c.)
is avoided by taking a bigger C.

2.4.1 Comparing with other techniques

Results of the BSVM are shown in Table 2.5, where the average percentages
of correctly classified objects in the training and testing samples are displayed
along with the number of generated features (f features) with non-zero co-
efficient in the classifier, and the number of predictor variables actually used
by the classifier (f var). As the results show, the BSVM behaves considerably
better than Classification Trees and comparable to the standard linear SVM
technique. Classification Trees are widely used in applied fields as diverse
as medicine (diagnosis), computer science (data structures), botany (classi-
fication), and psychology (decision theory), mainly because they are easy to
interpret. We claim that the BSVM maintains this property without losing
the good classification ability of the standard linear SVM.

2.4.2 Reducing the number of features

The results in Table 2.5 show that the number of features is usually over
one or even two hundreds, which makes hard to detect the most relevant
features. In order to obtain a more interpretable classifier, we proceed with
a pruning procedure in which features are recursively deleted. In this pro-
cedure, which has been successfully applied in standard SVM, see [36], all
the generated features with zero coefficient in the classifier and the feature
with non-zero coefficient having the smallest absolute value are eliminated.
Then, the coefficients are recomputed by the optimization of the LP problem
(1.12). This elimination procedure is repeated until the number of features
is below a number given in advance.

The average percentages of correctly classified objects in the training and
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bands
method C| %tr %test
SVM | 0.01 64.44 64.44
SVM | 0.10 74.57 65.93
SVM 1 80.16 71.85
SVM 10 81.65 72.96
SVM 100 82.18 72.22
SVM | 1000 82.35 72.59
priree 74.12 64.81
Tree 92.43 66.67

credit
method C| %tr % test
SVM | 0.01 86.36 86.31
SVM | 0.10 86.31 86.31
SVM 1 86.74 85.85
SVM 10 86.80 86.00
SVM 100 86.91 85.85
SVM | 1000 87.09 85.54
prlree 86.31 86.31
Tree 95.15 81.69

ionosphere

method Cl| %tr % test
SVM | 0.01 66.25 65.71
SVM { 0.10 89.21 87.71
SVM 1 91.84 87.71
SVM 10 94.03 88.29
SVM 100 95.21 87.71
SVM | 1000 95.65 86.29
prTree 91.17 89.43
Tree 98.03 87.71

sonar
method C|{ %tr % test
SVM | 0.01 54.56 54.00
SVM | 0.10 84.33 75.00
SVM 1 88.39 74.50
SVM 10 92.28 73.50
SVM 100 97.06 75.00
SVM | 1000 | 100.00 73.50
prTree 82.56 71.50
Tree 97.56 77.00

wdbc
method C| %tr % test
SVM | 0.01 87.16 86.79
SVM | 0.10 95.95 95.71
SVM 1 98.27 98.04
SVM 10 98.45 97.68
SVM 100 99.11 96.96
SVM | 1000 99.50 96.43
prTree 96.71 94.46
Tree 99.31 93.75

Tab. 2.4: Classification behavior in benchmark methods
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bands

C| %tr % test | features { var

0.01 d.c.

0.1 d.c.
0.1 98.85 73.33 121.1 28.0
10 | 100.00 72.59 128.8 283
100 | 100.00 72.22 128.5 28.3
1000 | 100.00 72.59 128.4 28.4

credit
C| %tr % test | ffeatures | var
0.01 86.31 86.31 1.0 1.0
0.1 ] 86.31 86.31 1.0 1.0
0.1 95.71 82.92 138.2  21.7
10 | 100.00 80.00 199.5 24.8
100 | 100.00 79.69 200.3 24.7
1000 | 100.00 80.31 200.5 2438
ionosphere

C| %tr %test | features { var

0.01 d.c.

0.1 | 91.17 90.57 2.0 2.0

0.1 | 100.00 90.57 92.7 311

10 | 100.00 90.57 93.1 312

100 | 100.00 90.57 93.1 31.2

1000 | 100.00 90.57 934 31.1
sonar

Cl %tr %test || features { var

0.01 d.c.

0.1 91.83  75.00 39.2 - 259
0.1 { 100.00 80.50 97.5 47.8
10 | 100.00 80.00 97.4 47.8
100 | 100.00 80.50 97.5 47.8
1000 | 100.00 80.50 97.5 47.8
wdbc

C| %tr % test || features | var
0.01 92.60 90.54 1.0 1.0
0.1 97.74 96.07 21.1 9.0
0.1 | 100.00 95.71 68.4 24.8
10 | 100.00 96.25 68.2 25.0
100 | 100.00 95.89 67.6 25.0
1000 | 100.00 96.07 68.0 25.0

Tab. 2.5: Classification behavior on BSVM
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testing sample are shown, in Table 2.6, when the elimination procedure is
applied until 30 or less features remain in the classification rule. As can be
seen, the classification ability slightly deteriorates, but still keeps on being
better than the one of the Classification Trees.

BSVM (reducing number of features)

bands credit ionosphere sonar wdbc
C tr test tr test tr test tr test tr test
0.01 d.c. 86.31 86.31 d.c. d.c. 92.60 90.54
0.1 d.c. 86.31 86.31 91.17 90.57 | 91.94 76.50 | 97.74 95.89

19214 7222 | 91.93 84.00 | 100.00 90.00 | 100.00 77.50 | 100.00 95.71

10 | 94.81 66.30 | 89.50 80.92 | 100.00 89.43 | 100.00 77.00 | 100.00 96.07
100 | 95.47 66.30 | 90.09 82.00 | 100.00 89.71 | 100.00 77.00 | 100.00 96.07
1000 | 95.14 66.67 | 91.42 80.77 | 100.00 89.43 [ 100.00 77.00 | 100.00 96.25

Tab. 2.6: Reducing the number of features to at most 30

2.4.3 Behavior in presence of outliers

The classifier proposed in this chapter is based on threshold functions, thus it
seems that extreme observations, with very high or very low values, will not
have a strong influence in the classifier. To empirically test this fact, a series
of experiments have been performed where some outliers were artificially
introduced in the database. Every cell in the database wdbc was chosen to
be an outlier with probability 0.05. Those cells chosen, were modified by
adding p times the range of its predictor variable, for p = 10,100, 1000. In
Tables 2.7 and 2.8 results of database wdbc are shown for the benchmark
methods and for the BSVM. The classification ability of the linear SVM
classifier dramatically worsens when introducing outliers, whereas the BSVM
is hardly affected.

2.5 Conclusions

In this chapter, a new SVM-based tool for supervised classification has been
proposed where the classifier gives insightful knowledge about the way the
predictor variables influence the classification. Indeed, the nonlinearity be-
havior of the data is modeled by the BSVM classifier using simple queries,
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Benchmark methods with outliers. Database wdbc

original p=1 p=10 p =100
method C|l|%tr %test| %tr %test | %tr %test | %tr % test
SVM | 0.01 | 87.16 86.79 | 65.26 65.18 | 63.21 63.21 | 63.21 63.21
SVM | 0.10 | 95.95 95.71 | 90.24 88.75 | 64.13 63.21 | 63.47 62.86
SVM 1]9827 9804 | 91.53 90.18 | 65.65 59.64 | 64.94 62.86
SVM 10 | 98.45 97.68 | 92.24 88.57 | 64.54 57.68 | 64.96 61.61
SVM | 100 | 99.11 96.96 | 92.42 88.57 | 64.72 57.50 | 64.94 60.89
SVM | 1000 | 99.50 96.43 | 92.40 88.75 | 64.70 57.50 | 64.94 60.71
priree 96.71 94.46 | 96.31 93.04 | 95.71 92.14 | 95.99 92.32
Tree 99.31 93.75 | 98.95 93.75 | 98.95 93.75 | 98.95 93.75

Tab. 2.7: Classification behavior of benchmark methods with outliers

BSVM with outliers. Database wdbc

original p=1 p=10 p =100
. C| %tr %test| %tr %test| %tr %test| %tr % test
0.01 [ 92.60 90.54 | 90.00 85.89 [ 90.00 85.89 | 90.00 85.89
0.1 97.74 96.07 98.35 95.36 98.35 95.36 98.35 95.36
1 | 100.00 95.71 | 100.00 95.18 | 100.00 95.18 | 100.00 95.18
10 | 100.00 96.25 | 100.00 95.00 | 100.00 95.00 | 100.00 95.00
100 | 100.00 95.89 | 100.00 95.00 | 100.00 95.00 | 100.00 95.00
1000 | 100.00 96.07 | 100.00 95.18 | 100.00 95.18 | 100.00 95.18

Tab.-2.8: Classification behavior of BSVM with outliers
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of type (2.1), easily interpretable by practitioners, for instance by represen-
tations similar to Figure 2.1. Its classification behavior, which is between
SVM and Classification Trees, makes BSVM an interesting tool when a good
classification ability is required, but interpretability of the results is an im-
portant issue. Our preliminary tests show that BSVM is much more robust
than SVM against outliers.

The binarization procedure has been applied to each variable separately.
If interactions between variables are expected to be relevant, more general
binarization procedures might be considered. This issue is addressed in Chap-
ter 3.



3. DETECTING RELEVANT INTERACTIONS

3.1 Introduction

In Chapter 2, we have introduced the so-called Binarized Support Vector
Machine (BSVM) method, where each variable is replaced by a set of binary
variables obtained by queries of type (2.1). Although BSVM gives a powerful
tool for detecting which are the most relevant variables, interactions between
them are not taken into account. In this chapter, based on [17], we extend
the BSVM in order to get classifiers that detect the interactions between
variables which are useful to improve the classification performance. We
call the proposed extension Non-linear Binarized Support Vector Machine
(NBSVM). ’

To extend BSVM, in addition to considering queries of type (2.1), for all
possible cutoffs b, NBSVM also considers the simultaneous positive answer
to two or more of such queries, i.e.,

Is predictor variable ¢; greater than or equal to by,

and predictor variable ¢, greater than or equal to b, (3.1)

and predictor variable ¢, greater than or equal to b,?

Special attention will be paid to the case ¢ = 2, in which the pairwise
interaction is explored by queries of type

Is predictor variable ¢; greater than or equal to b,

and predictor variable £, greater than or equal to by? (3.2)

For this particular case, it is easy to measure how the classifier is affected by
the interaction of each pair of variables, as shown in Section 3.2.

We restrict ourselves to the case in which two classes exist, C = {—1,1}.
The multiclass case can be reduced to a series of two-class problems, as has
been suggested e.g. in [39, 41, 68}, as briefly described in Section 1.3.
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The remainder of the chapter is organized as follows: NBSVM is de-
scribed in Section 3.2. Since the number of features to be considered may
be huge, the NBSVM method yields a large scale optimization problem with
a large number of decision variables, in general, of order (§(I)p)?. The clas-
sifier uses the weighted sum of features defined from queries of type (3.1)
and an independent term. In Section 3.3, the Column-Generation-based al-
gorithm proposed in Chapter 2 is extended in order to solve the soft-margin
maximization problem when queries of type (3.1) are considered. Numerical
results are shown in Section 3.4, whereas conclusions are discussed in Section
3.5.

3.2 Nonlinear Binarized Support Vector Machines

The set of features J under consideration in BSVM, given by (2.3), does not
consider interactions between predictor variables. Since we would like to get
a model in which these interactions are taken into account, we now consider
a family of features, F, obtained by multiplying different features of F. We
define F as the set of all products of degree up to g of features of F, i.e.

f-:{H¢: Fc]-',ﬁ(F)gg}.

PEF

In what follows, features in F are called features of degree one whereas
a feature ¢ € F, made up of the product of k features of degree one, ¢ =
Ber by - Doapy - - - Do b, With £ # £,Vi # j and by # minye; 7, is said to be a
feature of degree k, for k =2,...,g.

In our model, each ¢ € F is a feature that defines a component of the
transformation ® = (¢) .+ used in the nonlinear score function (1.5).

Special attention will be paid to the case g = 2. For each pair of variables
(1, €2) let G, 05 615, = Pty by - Peap,- For simplicity in the notation, we denote
Wabe, 0,105 20D Way, DY Wey 00,6, D wep, respectively. With this notation,
the score function (2.4) can be rephrased as

f(z) = Z Z Wep + Z Z Z Z Wey t2,b1,52 + B-

£=1 bEBy|xe>b l1=14{2=1 bgeBtl Imll >by bgeB,;z ]:1:12 >bo
(3.3)

The weight wy, associated to feature ¢ represents the amount with which
the query ‘is z, > b7’ contributes to the score function (3.3). In Chapter 2, a
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representation of how certain variable £ influences the classifier is proposed.
We extend that representation to show the role that the interaction between
a pair of variables plays in the classifier obtained with our procedure.

For a certain pair of variables (¢1, ¢2), the coefficient wy, ¢, 5, 5, represents
the amount with which the query ‘is z,, > b; and simultaneously z,, > b2?’
contributes to the score function (3.3). The role played in the score function
(3.3) by the interaction between variables ¢, and ¢,, is represented by the
function ¢y, ¢,(s, 1),

V(s,t) € R®.

> D

b2€ By, [s2b1 ba€By, [t2b2

Pyt (S’ t) = Wey,2,b1,b2>

Example 3.1: Taking the Credit Screening Database, as in Example 2.1
(see Appendix A for further details of the database), and for w obtained by
the algorithm explained in Section 3.3, function @14 a3, is plotted in Figure
3.1, where, at each point (s,t) in the graphic, the gray intensity represents
the value of pp14 p3(s,t). The color in the down-left corner of the pictures
corresponds to the null value, whereas lighter levels of gray corresponds to
negative values and darker ones correspond to positive values.

The same information is given in Table 3.1. For instance, an object having
Th3 = 3 and z},, = 800, would have pp14 43(800,3) = wp14 A3 210,0.375 =
0.6422, represented by the darkest gray area in Figure 3.1, whereas an ob-
ject having %3 = 15 and z},, = 500, would have pp1423(400,15) =
WA14,A3,210,0.375 TWA14 A3 232,5.835 TWA14 A3 70,05 = 0-6422—0.2613—1.0642 =
—0.6833, represented by the light gray area in the top-right corner of Figure
3.1. '

values of A3 \ values of A14 | [0,70) [70,210) [210,232) [232,2000]
[0.000,0.375) 0 0 0 0
[0.375,5.835) 0 0 0.6422 0.6422
[5.835, 9.500) 0 0 06422  —0.4220

[9.500, 28.000) 0 —-0.2613 0.3809 —0.6833

Tab. 3.1: Role of the interaction in the score function

The interaction of those pair of variables (¢,,¢2) having we, ¢, b, 5, = 0 for
all by € By, and all by € By,, has no effect in the classification based on score
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Fig. 3.1: Role of the interaction in the score function. Database credit

function (3.3). Moreover, the maximal absolute value that function ¢ takes
in JR? measures how important for the classification is the interaction of the
pair of variables (¢;, £,). Such a measure, which we call interaction intensity
is defined, for a pair of variables (¢, ¢s) with ¢; # {;, as follows

I(,4) = max E E Wey,85,b1 b

b2€ By, |s2b1 b2€ By, Jt2b2

= max Z Z Be, 02,5152 (Z")

b1€ By, b2€By,

Following a similar discussion, the importance for the classification of a
variable ¢, without taking into account its interactions with other variables,
is given by

I¢,0) = max Z Wep

beBy|s>b
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Z Bep(x")] .

beBy

= maX
u€f)

Example 3.2: For the Credit Screening Database, Figure 3.2 represents in
a gray scale the different values of I(¢y, £;) for each pair of variables (¢;, £2),
for w obtained by maximizing the soft margin, as will be explained in Section
3.3. Note that, nominal variables have been coded, as in Example 2.1. The
identification number of the original variables, as described in Table 2.1, are
shown at the edges of the table. From this picture, it is evident that in the
classifier, the most relevant variable is the continuous variable A8 and the
pairs with highest interaction intensity I are:

e nominal variable A5 taking the value ‘p’, and continuous variable A14

e continuous variable A2 and nominal variable A7 taking the value ‘v’,
and

e continuous variables A2 and A3.

For many pairs of variables, interactions are discarded by the classifier: for
instance, the interaction between continuous variables A2 and A11, or nominal
variables A5 and A6.

Example 3.3: Taking the Cylinder Bands (see Appendix A for further de-
tails), whose variables are described in Example 2.2, Figure 3.4 represents, in
a gray scale the different values of I(¢y, ¢,) for each pair of variables (¢1,¢2),
obtained after applying the method that will be explained in Section 3.3. For
the nine pairs of variables ¢; and ¢, for which I(¢y, ¢;) is highest, function
¢, is plotted in a gray scale in Figure 3.3. Black (respectively white) colors
correspond to the highest (respectively lowest) value of I(¢;,¢5) for any pair
of variables.

For instance, looking at the graphic of variables humifity and hardener
and going from the bottom-left corner in the top-right direction, the gray
intensity becomes lighter and lighter. This occurs because features associated
to those variables have negative weights. In the graphic of variables ink pct
and viscosity, two weights are positive and one negative.



3. Detecting relevant interactions

42

-Nwh

N N T I
7 8 910111213 1415

Fig. 3.2: Interaction between pairs of variables. Database credit
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Fig. 3.3: Role of the interaction in the score function. Database bands
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Fig. 3.4: Interaction between pairs of variables. Database bands
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3.3 Building the classifier

In order to choose w and @ in (2.4) we follow, as in Chapter 2, a soft-
margin SVM-based approach [21], described in Section 1.2.3, which consists
in finding the hyperplane which maximizes the margin in the feature space,
but allowing some objects to be misclassified. As in the previous chapter,
we choose the L; norm in the soft-margin maximization problem, yielding
Problem (1.12-F) and use the column generation technique, described in
Section 1.4 to solve it. After finding the maximal margin hyperplane in the
feature space defined by F, the score function has the form described in (2.4).

In order to use, as in Chapter 2, the column generation technique, an al-
gorithm for solving the pricing problem, which generates a promising feature
in F , is needed. We develop such algorithm in Section 3.3.1 and, in Section
3.3.2, some implementation details for the column generation algorithm are
given.

3.3.1 Generation of features

For the particular case in which just features of degree one are considered,
an exact algorithm (Algorithm 1-BSVM, in Chapter 2) for solving the pric-
ing problem is given. In such algorithm, for each predictor variable ¢, the
most promising cutoff b is found. This exact algorithm cannot be directly
extended for features of degrees greater than one. For instance, when we
want to generate a feature of degree 2, ¢y, ¢, 5, b,, fOur parameters are to be
determined: two predictor variables £;, £y, and two cutoffs by, by, one for each
chosen predictor variable. If, as done in Algorithm 1-BSVM, we first consider
the predictor variables ¢, ¢, are fixed, then it is not possible to sort the ob-
jects simultaneously according to two variables, so Algorithm 1-BSVM does
not apply. Now we present a simple example where a local search heuristic
procedure is used to generate promising features.

Example 3.4: In Table 3.2, a simple example with two predictor variables
and four objects is presented, where we generate all the possible features.
At a certain step of the column generation algorithm, let A\, be the dual
values of the optimal solution of the master problem. We face the problem of
generating the most promising feature. For predictor variable 1, the possible
cutoffs are 5,6 and 9 while the possible cutoffs for predictor variable 2 are 6,8
and 10. We also consider here the trivial cutoff 3 for each predictor variable,
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class | 1 9
¢l 5 8
Al 9 3
A3l 6 6
Al 3 10

Tab. 3.2: Simple example of database

Al + 022 + B3 FMA T N+ 222 + X33 | A2 + 2363 | \3¢?
At + 233 4+ Mt | Al + 233 233 -
Alct + 2t | Mt - -
Mgt i -

Tab. 3.3: Generated features of degrees one and two

which leads to a feature ¢,3(z*) = 1 for all objects u € I. In Table 3.3,
the values of T' for different cutoffs for predictor variable 1 (columns) and
different cutoffs for predictor variable 2 (rows) are shown.

Since we are also considering the trivial cutoffs, we can find in Table 3.3
the features of degree 1, represented in the first column and the first row of
the table, along with the features of degree 2. Note that, when we move along .
the positions in the table, right-to-left and up-to-down movements lead to
either T' gaining one term of the form A,c* or I" remaining itself. This will
be taken into account in order to implement heuristics to find a promising
feature ¢ to be added to F.

Suppose we know the value of I for certain feature of degree two, ¢ =
®ey.0,.61.5,- In Example 3.4, this corresponds to a position in Table 3.3. Once
a predictor variable is fixed, for instance the predictor variable ¢;, the objects
of I can be sorted increasingly by their values in that predictor variable. Let
u(?) the object in the i-th position. We want to change the current cutoff

b = xz(i) in order to create a different feature (]3 = @y, 02 brbp- YWhen changing
by to a different value b, = x’e‘(j) , the values of ¢ change only in the objects
u(k) with i < k < j if 4 < j (and, respectively j < k <4 if j < 1). Taking
this into account, we know that, when moving backward, i.e. j < %, then the
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change in I' is easily computed using that
L@)=T@)- >, xOc®,
k: p(zv(R))=1, j<k<i

When moving forward, i.e. j > 4, then, in order to know if the term \*(*)¢cu(¥)
must be added, we need to check, for all objects u(k) with s < k < j, whether

:rz(k) is greater than or equal to the cutoff b;. When dealing with features
of degree greater than two, this last condition should be checked for all the
other variables used in the feature, but the rest remains analogous.

All the above comments are taken into account to implement a local
search heuristic that, in every step, moves forward or backward in the ordered
set of possible cutoffs for a randomly chosen variable. The algorithm stops
when T movements are performed without any improvement in the value of

I
Algorithm 1-NBSVM: choosing g cutoffs
Step 0. Initialization:

e 4, — 1, Vk=1,2,...,9.
. bk«—x;flfi’“),‘v’kzl,Q,...,g.

e steps « 0 and max~ 0.
Step 1. Randomly choose a predictor vafiable e {0, ..., 40}
Step 2. Randomly choose a type of movement: forward or backward..
Step 3.
o If fo‘rward, then randomly choose h € {ik, 4 +1,...,#(I)}.
o If backward, then randomly choose h € {1,2,...,4}.
Step 4. Let b= ﬁj(h), compute T'(¢), for ¢ = de, .0, b1,...5;-1,65541,sbg-

Step 5. If I'(¢) > max then & «— b, max— ['(¢) and steps « 0. Otherwise,
steps «— steps+1.

Step 6. If steps <T, then go to Step 1. Otherwise, STOP.

An analogous algorithm for minimizing I" can be developed just changing
Step 5 in the obvious way.
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3.3.2 Implementation details

The column generation algorithm has been implemented as follows. First
of all, the Algorithm CG-BSVM, described in Chapter 2, is run. Algorithm
CG-BSVM obtains a solution of Problem (1.12) for the set F of features of
degree one, and, as a byproduct, it also provides us with a set of features
F', that have been generated during its application. We take such a set of
features F, as an initial set F C F C F in Step 0 of the scheme presented in
(CG-summary). In a second step, features of degree up to g are generated.
For a given set of g variables {¢,,4;,...,#,}, Algorithm 1-NBSVM described
in Section 3.3.1 provides us with a local search heuristic to find the cutoffs
{b1,ba,...,by}, such that the feature ¢ = g5, - Peps, - - - - - P, is promising
to solve Problem (1.12).

In our implementation, g predictor variables are randomly selected. Other
ways of selecting the g predictor variables might accelerate the optimization
of Problem (1.12). We do not require the g predictor variables to be different,
allowing in this way features of degree lower than g. For instance if the
feature generated is ¢ = @405 - P773 - P7,89, it can be simplified to ¢ =
$4,05 - Hr89 which is a feature of degree two. For such set of g predictor
variables, the local search heuristic described in Algorithm 1-NBSVM chooses
their corresponding good cutoffs either by maximizing or minimizing I". We
generate in this way ¢ features by maximizing [' with Algorithm 1-NBSVM
for ¢ different random choices of the set of predictor variables, and other ¢
features by minimizing I' for other ¢ different random choices of the set of
predictor variables. Among the generated features, those ¢ with |[I'(¢)] > 1
are added to the set F and the LP problem (1.12-F) is solved. The whole
algorithm of column generation stops when all of these 2¢ generated features
satisfy |I'(¢)| < 1. The current implementation of the column generation
algorithm is as follows:

Algorithm CG-NBSVM
Step 0. Run Algorithm CG-BSVM to build an initial set F' with features

of degree one.

Step 1. Repeat q times:

Step 1.1. Randomly choose a set of g predictor variables ¢;, £z, ..., ¢,
and select by, b, . . ., by by maximizing I" using Algorithm 1-
NBSVM.
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Step 1.2. If I'(¢) > 1, then F — F U {¢}.
Step 2. Repeat ¢ times:

Step 2.1. Randomly choose a set of g predictor variables 41, ¢s, .. ., ¢,
and use Algorithm 1-NBSVM for minimizing I, to choose
bi,ba, ..., by

Step 2.2. If I'(¢) < —1, then F — F U {¢}.

Step 3. If F has not been modified in Steps 1 or 2, then STOP: we have
found a good solution of Problem (1.12). Otherwise, solve Problem
(1.12-F) and go to Step 1.

3.4 Numerical results

In this section we analyze the classification ability of the set of features
proposed in this chapter. With this aim, a series of numerical experiments
have been performed using the same databases used in Chapter 2, publicly
available from the UCI Machine Learning Repository [6]. We use the five
databases used in Chapter 2, namely, bands, credit, ionosphere, sonar
and wdbc whose details are given in Appendix A.

In order to compare the quality of the NBSVM classifier with the classifi-
cation quality of other classifiers, we have tested the performance of two very
different benchmark methods: classification trees, with and without pruning,
and SVM with linear kernel, polynomial kernel for degrees between two and
five, and radial basis function kernel. The averaged percentages of correctly
classified objects in both the training sample (tr) and testing sample (test)
are displayed in Tables 3.5-3.9 for standard SVM and different values of the
parameter C, which trades off the margin and the perturbations in formula-
tion (1.9). For classification trees, results are shown in Table 3.4. All results
presented are obtained by 10-fold crossvalidation, e.g. [47]. CPLEX 8.1.0°
[42] was used as the LP solver.



bands credit ionosphere sonar wdbc

%tr %test | %otr %test | %tr %test | %otr %test | %tr % test

Pruned Tree | 74.12 64.81 | 86.31 86.31 | 91.17 89.43 | 82.56 71.50 | 96.71 94.46

Crude Tree | 92.43 66.67 | 95.15 81.69 | 98.03 87.71 | 97.56 77.00 | 99.31 93.75

Tab. 3.4: Results for Clasification Trees
lineal degree 2 degree 3 degree 4 degree 5 rbf

C|%tr %test| %tr %test| %tr %test| %tr %test| %tr %test| %tr % test
0.01 | 64.44 64.44 80.74 74.44 97.24 78.15 | 100.00 75.56 | 100.00 75.56 64.44 64.44
0.10 | 74.57 65.93 90.45 75.93 | 100.00 75.93 | 100.00 75.56 | 100.00 75.56 64.44 64.44
1} 80.16 71.85 | 99.14 77.41 | 100.00 75.93 | 100.00 75.56 | 100.00 75.56 | 95.43 73.33
10 | 81.65 72.96 | 100.00 73.33 | 100.00 75.93 | 100.00 75.56 | 100.00 75.56 | 100.00 72.96
100 | 82.18 72.22 | 100.00 73.33 | 100.00 75.93 { 100.00 75.56 | 100.00 75.56 § 100.00 72.96
1000 | 82.35 72.59 | 100.00 73.33 | 100.00 75.93 | 100.00 75.56 | 100.00 75.56 | 100.00 72.96

Tab. 3.5: Results for SVM. Database bands
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lineal degree 2 degree 3 degree 4 degree 5 rbf
Cl%tr %test | %tr %test| %tr %test| %tr %test| %tr %test | %tr % test
0.01 | 86.36 86.31 | 86.70 86.15 | 92.99 85.54 | 96.44 84.92 | 98.77 81.69 | 54.77 54.77
0.10 | 86.31 86.31 | 90.87 85.08 | 96.36 84.00 98.79 80.46 99.62 77.69 | 74.53 70.77
1] 86.74 85.85 | 95.16 84.92 | 98.24 80.46 | 99.52 77.85 [ 99.71 77.38 | 95.08 85.69
10 | 86.80 86.00 | 96.96 83.85 | 99.32 77.69 | 99.71 76.77 | 99.78 77.38 | 97.42 85.85
100 | 86.91 85.85 | 98.44 78.62 | 99.73 77.08 99.78 76.92 | 100.00 76.15 | 99.13 83.85
1000 | 87.09 85.54 [ 99.62 78.15 | 99.78 76.31 | 100.00 75.38 | 100.00 76.15 | 99.71 82.77
Tab. 3.6: Results for SVM. Database credit
lineal degree 2 degree 3 degree 4 degree 5 rbf
C|%tr %test| %tr %test| %tr %test| %tr %test| %tr %test | %tr % test
0.01 | 66.25 65.71 | 91.52 88.86 | 97.71 91.14 | 99.43 90.29 | 100.00 86.57 | 64.00 64.00
0.10 | 89.21 87.71 | 95.87 90.57 | 99.37 90.57 | 100.00 86.29 | 100.00 86.57 | 94.76 93.14
1] 91.84 87.71 | 98.29 90.29 | 100.00 87.43 | 100.00 86.29 | 100.00 86.57 | 98.00 93.71
10 | 94.03 88.29 | 99.52 90.00 | 100.00 87.71 | 100.00 86.29 | 100.00 86.57 | 99.49 94.00
100 | 95.21 87.71 | 100.00 87.43 | 100.00 87.71 | 100.00 86.29 | 100.00 86.57 | 100.00 94.29
1000 | 95.65 86.29 | 100.00 87.43 | 100.00 87.71 { 100.00 86.29 | 100.00 86.57 | 100.00 94.29

Tab. 3.7: Results for SVM

. Database ionosphere

SUOIIOBIdIUL JUBAJ[OI FUIPID( °E

Ig



lineal degree 2 degree 3 degree 4 degree 5 rbf
C| %tr %test| %tr %test| %tr %test| %tr %test| %tr %test| %tr % test
0.01 54.56 54.00 88.78 79.00 99.39 83.50 | 100.00 86.00 | 100.00 85.00 53.00 53.00
0.10 | 84.33 75.00 | 97.00 78.50 { 100.00 86.50 | 100.00 86.00 | 100.00 85.00 | 53.39 53.50
1| 88.39 74.50 | 100.00 86.00 | 100.00 86.50 | 100.00 86.00 | 100.00 85.00 | 100.00 86.00
10 | 92.28 73.50 | 100.00 86.50 | 100.00 86.50 | 100.00 86.00 | 100.00 85.00 | 100.00 87.50
100 { 97.06 75.00 | 100.00 86.50 | 100.00 86.50 | 100.00 86.00 | 100.00 85.00 | 100.00 87.50
1000 { 100.00 73.50 | 100.00 86.50 | 100.00 86.50 | 100.00 86.00 | 100.00 85.00 | 100.00 87.50

Tab. 3.8: Results for SVM. Database sonar

lineal degree 2 degree 3 degree 4 degree 5 rbf
C|%tr %test| %tr %test| %tr %test| %tr %test| %tr %test| %tr % test
0.01 | 87.16 86.79 | 95.36 95.18 | 96.37 96.25 | 98.06 97.86 | 98.31 97.68 | 76.35 76.25
0.10 | 95.95 95.71 97.80 97.14 98.25 98.21 98.65 97.50 99.19 96.96 95.54 95.36
1| 98.27 98.04 98.39 97.68 98.97 97.68 99.44 96.79 99.92 96.61 98.35 97.86
10 | 98.45 97.68 99.25 97.86 99.66 96.96 | 100.00 96.43 | 100.00 96.07 99.13 98.21
100 | 99.11 96.96 99.98 96.43 | 100.00 96.25 | 100.00 96.43 | 100.00 96.07 | 100.00 96.96
1000 | 99.50 96.43 | 100.00 96.96: | 100.00 96.25 | 100.00 96.43 | 100.00 96.07 | 100.00 96.61

Tab. 3.9: Results for SVM. Database wdbc
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Crude Wrapped

g C| %tr %test| §f fHv| %tr % test
1] 0.01 d.c. d.c.

1 0.1 d.c. d.c.

1 1| 98.85 73.33 | 121.1 28.0 | 92.14 72.22
1 10 | 100.00 72.59 | 128.8 28.3 | 94.81 66.30
1 100 | 100.00 72.22 | 1285 28.3 | 9547 66.30
1| 1000 | 100.00 72.59 | 1284 28.4 | 95.14 66.67
2| 0.01 d.c. d.c.

2 0.1 d.c. d.c.

2 1 | 100.00 72.59 | 132.1 338 | 99.34 72.22
2 10 | 100.00 77.78 | 131.5 34.9 | 100.00 72.22
2 100 | 100.00 75.93 | 133.2 34.7 | 100.00 73.33
2 | 1000 | 100.00 75.56 | 134.2 34.6 | 100.00 75.56
3| 0.01 d.c. d.c.

3 0.1 | 88.23 73.33 [ 39.0 28.0| 87.41 72.96
3 1} 100.00 74.07 | 140.9 35.6 | 99.92 76.30
3 10 | 100.00 76.30 | 143.4 35.0 | 100.00 70.74
3 100 | 100.00 77.41 | 143.2 34.8 | 100.00 74.07
3 | 1000 | 100.00 78.15 | 141.6 35.6 | 100.00 72.96
41 0.01 d.c. d.c.

4 0.1 ] 89.30 72.59 | 43.6 29.7 | 89.14 71.85
4 1 | 100.00 76.30 | 1424 358 | 99.84 71.48
4 10 | 100.00 76.30 | 148.4 35.3 | 100.00 74.81
4] 100 ! 100.00 72.59 | 145.0 35.3 | 100.00 71.48
4 | 1000 | 100.00 78.52 | 1474 35.0 | 100.00 73.33
5] 0.01 d.c. d.c.

5 0.1 90.33 71.11 55.7 31.0 89.67 71.11
5 1| 100.00 77.04 { 148.0 35.2 | 100.00 75.19
5 10 | 100.00 75.56 | 146.0 35.2 { 100.00 75.19
5| 100 | 100.00 77.78 | 144.3 35.0 | 100.00 74.07
5 | 1000 | 100.00 77.78 | 148.2 35.3 | 100.00 73.33

Tab. 3.10: Classification behavior. Database bands

Results of NBSVM are shown, for different values of C and g, in Tables
3.10-3.14, where the averaged percentages of correctly classified objects in
training and testing samples are displayed along with the number of gener-
ated features (f £) with non-zero coefficient in the classifier and the number
of predictor variables actually used by the classifier (f v). As NBSVM is an
extension of BSVM, we have included the results of BSVM, which coincides
with NBSVM for g = 1, in the first group of rows in Tables 3.10-3.14. We
have chosen parameters T and ¢ in Algorithms 1-NBSVM and CL-NBSVM
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Crude Wrapped
g C| %tr % test tf Hv| %tr % test
1] 0.01 86.31 86.31 1.0 1.0 | 86.31 86.31
1 0.1 86.31 86.31 1.0 1.0 | 86.31 86.31
1 1 95.71 82.92 | 138.2 21.7 | 91.93 84.00
1 10 | 100.00 80.00 | 199.5 24.8 | 89.50 80.92
1{ 100 | 100.00 79.69 | 200.3 24.7 | 90.09 82.00
1} 1000 | 100.00 80.31 | 200.5 24.8 | 91.42 80.77
21 001 86.31 86.31 1.0 1.0 | 86.31 86.31
2 0.1 86.31 86.31 1.0 1.0 ] 86.31 86.31
2 1 99.56 83.85 | 169.2 30.7 | 95.35 84.15
2 10 | 100.00 82.92 | 180.1 31.2 | 95.06 83.38
2| 100 { 100.00 82.15 | 182.7 30.8 | 94.97 83.85
2 | 1000 | 100.00 81.69 | 181.8 30.3 | 95.11 81.23
31 0.01 86.31 86.31 1.0 1.0 | 86.31 86.31
3 0.1 86.32 86.00 1.0 1.1 | 86.32 86.00
3 1 99.93 83.54 | 188.4 29.0 | 95.86 83.54 |
3 10 | 100.00 85.85 | 193.7 29.3 | 96.48 81.85
3 100 | 100.00 83.85 | 192.6 29.5 | 96.92 82.31
3 | 1000 | 100.00 84.15 | 190.3 29.1 | 96.44 80.92
4] 0.01 | 86.31 86.31 1.0 1.0} 86.31 86.31
4 0.1 86.32 86.00 1.0 1.1 | 86.32 86.00
4 1 99.97 84.31 | 204.2 29.3 | 96.50 82.92
4 10 | 100.00 84.31 | 206.1 29.4 | 97.01 81.23
4 100 | 100.00 85.69 | 199.9 28.6 | 97.38 81.69
4 | 1000 | 100.00 85.54 | 198.5 28.5 | 97.74 81.85
51 0.01 86.31 86.31 1.0 1.0 | 86.31 86.31
5 0.1 86.32 86.00 1.0 1.1 | 86.32 86.00
5 1} 100.00 84.92 | 209.1 28.4 | 96.27 83.38
5 10 | 100.00 85.38 | 213.0 27.8 | 97.44 80.46
5 100 | 100.00 83.85 | 207.8 28.3 | 97.45 80.46
5 | 1000 | 100.00 85.08 | 209.5 28.2 | 98.10 82.15

Tab. 3.11: Classification behavior. Database credit
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Crude Wrapped

g Cl %tr %test| #f Hv| %tr %test
1] 0.01 d.c. d.c.

1 0.1 91.17 90.57 2.0 2.0 91.17 90.57
1 0.1 | 100.00 90.57 92.7 31.1 | 100.00 90.00
1 10 | 100.00 90.57 93.1 31.2 | 100.00 89.43
1 100 | 100.00 90.57 93.1 31.2 | 100.00 89.71
1 { 1000 | 100.00 90.57 93.4 31.1 | 100.00 89.43
21 0.01 d.c. d.c.

2 0.1 94.10 90.57 11.2 10.1 94.10 90.57
2 0.1 | 100.00 92.57 | 105.6 32.4 | 100.00 91.14
2 10 | 100.00 92.57 | 107.3 31.9 | 100.00 91.71
2 100 { 100.00 92.57 | 109.5 32.0 | 100.00 91.71
2 | 1000 | 100.00 92.00 | 108.1 32.1 | 100.00 91.71
3] 0.01 d.c. d.c.

3 0.1 94.89 90.86 16.5 13.3 94.89 90.57
3 0.1 | 100.00 92.29 | 101.2 32.6 | 100.00 91.43
3 10 | .100.00 92.29 | 1044 32.7 | 100.00 92.29
3 100 | 100.00 92.86 | 103.0 32.8 | 100.00 91.71
3 | 1000 | 100.00 92.00 | 104.5 32.6 | 100.00 90.29
41 001} ° d.c. d.c.

4 0.1 95.05 91.71 | 20.2 16.2 | 95.05 92.29
4 0.1 | 100.00 92.57 | 104.1 33.0 | 100.00 92.57
4 10 | 100.00 92.00 | 99.5 33.0 | 100.00 91.43
41 100 | 100.00 92.57 | 102.5 33.0 | 100.00 92.57
4 | 1000 | 100.00 92.29 | 1024 33.0 | 100.00 93.14
5] 0.01 d.c. d.c.

5 0.1 ] 95.59 9257 | 351 2481 95.62 92.57
5 0.1 | 100.00 93.43 | 100.8 32.8 | 100.00 91.71
5 10 | 100.00 92.29 | 101.5 33.0 | 100.00 92.57
5 100 | 100.00 93.14 98.7 33.0 | 100.00 92.57
5 { 1000 | 100.00 93.43 | 101.9 33.0 | 100.00 93.14

Tab. 3.12: Classification behavior.

Database ionosphere
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Crude Wrapped

g C| %tr %test | #f Hv| %tr % test
1] 0.01 d.c. d.c.

1 0.1 91.83 75.00 | 39.2 259 | 91.94 76.50
1 0.1 | 100.00 80.50 97.5 47.8 | 100.00 77.50
1 10 | 100.00 80.00 974 47.8 | 100.00 77.00
1] 100 | 100.00 80.50 | 97.5 47.8 | 100.00 77.00
1 { 1000 | 100.00 80.50 97.5 47.8 | 100.00 77.00
2| 0.01 d.c. d.c.

2 0.1 | 99.06 80.50 | 63.7 48.4 | 98.44 81.50
2 0.1 | 100.00 85.00 { 109.0 55.6 | 100.00 84.00
2 10 { 100.00 85.00 { 107.7 56.7 | 100.00 84.00
2 100 | 100.00 86.00 | 107.6 56.3 | 100.00 82.50
2 | 1000 | 100.00 86.00 | 107.6 56.3 | 100.00 82.50
3 0.01 d.c. d.c.

3 0.1} 9950 8100 | 78.5 55.5| 99.22 79.00
3 0.1 | 100.00 87.00 | 116.6 59.0 | 100.00 83.50
3 10 | 100.00 83.00 | 114.7 59.5 | 100.00 79.00
3 100 | 100.00 84.50 | 113.1 59.4 | 100.00 83.50
3 { 1000 | 100.00 84.50 | 113.1 59.4 | 100.00 83.50
4] 0.01 d.c. d.c.

4 0.1 99.83 82.00 97.0 59.1 99.61 78.50
4 0.1 | 100.00 84.00 | 119.7 59.8 | 100.00 81.50
4 10 | 100.00 83.00 | 119.0 59.7 | 100.00 80.00
4 100 | 100.00 83.00 | 118.9 59.8 | 100.00 80.00
4 | 1000 | 100.00 83.00 | 118.9 59.8 | 100.00 80.00
51 0.01 d.c. d.c.

5 0.1 | 99.67 80.50 | 100.4 59.9 | 99.61 80.00
5 0.1 | 100.00 82.00 | 122.9  60.0 | 100.00 79.50
5 10 | 100.00 84.00 | 123.9 59.8 | 100.00 79.00
5 100 | 100.00 79.00 | 120.0 59.7 | 100.00° 77.00
5 | 1000 | 100.00 79.00 | 120.0 59.7 | 100.00 77.00

Tab. 3.13: Classification behavior. Database sonar
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Crude Wrapped
g Cl| %tr % test f1f f#v| %tr % test
11 0.01 | 9260 90.54 1.0 1.0| 9260 90.54
1 0.1 97.74 96.07 | 211 9.0 97.74 95.89
1 0.1 | 100.00 95.71 68.4 24.8 | 100.00 95.71
1 10 | 100.00 96.25 | 68.2 25.0 | 100.00 96.07
1 100 | 100.00 95.89 67.6 25.0 | 100.00 96.07
1| 1000 | 100.00 96.07 68.0 25.0 | 100.00 96.25
2| 0.01 ] 9349 91.07 1.0 18| 9349 91.07
2| 01| 98.95 95.89 | 41.0 233 | 99.01 95.89
2| 0.1 100.00 96.79 | 87.4 29.7 | 100.00 96.79
2 10 | 100.00 97.14 | 90.0 29.4 | 100.00 97.14
2| 100 | 100.00 97.32 | 88.0 29.5( 100.00 96.79
2 | 1000 | 100.00 96.61 | 89.9 29.5 | 100.00 96.61
31 0.01 | 93.67 91.07 1.0 26| 93.67 91.07
3| 01| 9895 95.00 | 426 25.5| 98.95 95.36
3| 0.1} 100.00 96.61 | 103.0 29.7 | 100.00 95.89
3 10 | 100.00 97.14 | 99.9 30.0°| 100.00 96.25
3 100 | 100.00 97.50 | 103.3 30.0 | 100.00 96.61
3 | 1000 | 100.00 96.79 | 101.5 29.9 | 100.00 96.25
41 0.01 94.15 93.04 1.0 34 94.15 '93.04
4 01| 99.19 95.36 | 54.8 29.5 | 99.21 94.82
41 0.1 | 100.00 97.14 | 110.1 30.0 | 100.00 96.61
4 10 | 100.00 96.07 | 112.3 30.0 | 100.00 95.54
4 100 | 100.00 97.14 | 108.2 30.0 | 100.00 96.61
4 | 1000 | 100.00 97.50 | 112.1  30.0 | 100.00 96.61
51 0.01 94.15 91.79 1.0 4.0 94.15 91.79
5 0.1 99.23 95.54 54.2 27.8 | 99.19 95.89
5 0.1 | 100.00 95.89 { 1144 30.0 | 100.00 95.18
5 10 | 100.00 96.25 | 110.8 30.0 | 100.00 96.43
5| 100 | 100.00 96.43 | 113.3 30.0 | 100.00 96.07
5 | 1000 | 100.00 96.61 | 115.1 30.0 | 100.00 95.89

Tab. 3.14: Classification behavior. Database wdbc
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as 100 and 25 respectively.

In order to interpret the obtained classifier, the number of features cannot
be high. It might be useful to keep low the number of features actually used
by the classifier. As in Section 2.4.2, it is also possible to reduce the number
of features by using a wrapper approach that recursively deletes features. For
instance, [36] proposes a procedure, successfully applied in standard linear
SVM, where all the generated features with zero coeflicient in the classifier
and the feature whose non-zero coefficient has smallest absolute value are
eliminated. Then, the coefficients are recomputed by the optimization of the
LP Problem (1.12). This elimination procedure is repeated until the number
of features is below a desired threshold. In Tables 3.10-3.14, numerical results
are shown (columns wrapped), for an elimination procedure that is applied
until 30 or less features remain in the classification rule.

It is a well-known fact in SVM that, if the parameter C is chosen too
close to zero, one may obtain as optimal solution of Problem (1.12) a vector
with w = 0, from which a trivial classifier assigning all objects to one class is
obtained. This degenerate situation (indicated in Tables 3.10-3.14 as d.c.)
is avoided by taking a bigger C.

The results show that NBSVM behaves comparable to the standard SVM
technique.. Indeed the best averaged percentage of correctly classified objects,
for the best choice of C, of standard SVM is never worse than NBSVM’s more
than 0.86%.

Comparing NBSVM with its ancestor BSVM, we see that the considera-
tion of interactions via the introduction of features of degree greater than one
leads to an improvement in the classification performance, together with the
added value of allowing us to measure interactions intensity, as illustrated in
Section 3.2.

Moreover, comparing Table 3.4 with Tables 3.10-3.14, it turns out that, in
terms of classification performance, NBSVM generally behaves considerably
better than classification trees. For instance, taking the database bands, for
any choice of C the prediction rate of NBSVM is nearly 5 points higher than
Classification Trees.’ _

If we want to keep low the number of features used, we can use the
wrapped (instead of the crude) version of NBSVM. From our computational
experience it seems that the wrapping slightly worsens the classification abil-
ity in most instances, though in some cases it deteriorates significantly. This
is the case, for instance, of sonar. However, even the wrapped version be-
haves better or equal than Classification Trees (even 7 points above) for all
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values of the parameter C, as shown in Tables 3.4 and 3.13.

3.5 Conclusions

In this chapter an extension of BSVM for supervised classification, the NB-
SVM, has been proposed, where the classifier gives insightful knowledge
about the way the predictor variables and the interactions between them
influence the classification. Indeed, the nonlinearity behavior of the data
and interactions between the different variables are modeled by the NBSVM
classifier using simple queries, of type (3.1), and combinations of them, easily
interpretable by practitioners, for instance by representations similar to Fig-
ure 3.1. Its classification behavior, which is between SVM and Classification
Trees, makes NBSVM an interesting tool when a good classification ability
is required, but interpretability of the results is an important issue.

Although in most instances the wrapping procedure leads to a very slight
deterioration of the classification ability, in some cases the change is consider-
able. The design of more sophisticated wrapping strategies deserves further
study.



4. BIOBJECTIVE MARGIN MAXIMIZATION

4.1 Introduction

Crude SVM, as described in Chapter 1, cannot take into account different
misclassification costs or known a priori probabilities. In this chapter, based
on our reference [14], we formulate a new model in which margin of a hy-
perplane on each class is dealt independently of the other class. We study
the two-class problem C = {—1,1} in which the simultaneous maximization
of both margins is sought. In other words, we seek the set of hyperplanes
such that there is not any other hyperplane having greater margin for both
classes, thus we expect their performance cannot be improved simultaneously
with respect to both classes.

As in Chapter 1, we deal separately with the hard-margin approach (Sec-
tion 4.2), where separability is required, and the soft margin approach (Sec-
tion 4.3), which allows nonseparability of I and avoids overfitting by allowing
some objects to be misclassified. Some illustrative examples, as well as a vi-
sual procedure for choosing the threshold 3, based on the Receiver Operating
Characteristic (ROC) curves are given in Section 4.4, ending with some con-
cluding remarks in Section 4.5.

4.2 The hard-margin approach

In this section we address the hard-margin approach, for the case in which
I is separable, as introduced in Section 1.2.1. All the results in this section,
holds also for the case in which an embedding ® is applied, see Section 1.2.2
for further details, by just replacing the vector z* by its image in the feature
space E, ®(z*). The soft-margin approach for dealing with the nonseparable
case will be addressed in Section 4.3.

In the concept of margin on a training sample I, as defined in Definition
1.2, both classes are equally important and are dealt with in the same way.
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Hence, different misclassification costs or known a priori probabilities cannot
directly be taken into account. We now extend such definition in order to
get a notion of margin which deals with both classes separately.

Definition 4.1: Given a training sample I, the margin of (w, ) on class
¢ € C is the minimum margin over the margin on all objects u € I,

{c"(wa“ + 6)

llwl]°

,0}, ce {-1,1}.

(4 — min ot — m]
p*(w, ) = min p*(w, f) = min max

In the classical SVM approach, Problem (1.3) is solved to get the classifier
for which the margin on I is maximal. We propose a novel approach, in which
instead of maximizing the margin on I, we simultaneously maximize the
margin on both classes as defined in Definition 4.1. In addition, we impose

that the hyperplane (w, 3) separates I. This yields the following biobjective
optimization problem with open feasible region:

max  {p"(w,B), o7 Hw,B)}
st:  (wa*+6)>0 Vuel, (4.1)
weRP, e R

We seek the set of Pareto-optimal solutions to Problem (4.1), i.e., the set -
of feasible solutions (@, §) such that no (w, 3) exists such that

with at least one inequality strict. Since for u € I,
p*(pw, pfB) = p*(w,B) Yu>0,Ywe RP, VG € R,

it follows for all u > 0, w € R?, 3 € R, that

P (pw, pB) pHw, B)
p N pw, pB) = p~Hw,B). (42)

Hence, if (w, ) is a Pareto-optimal solution of Problem (4.1), then, for any
g > 0, (uw, uB) is also feasible for Problem (4.1), and, by (4.2), it is also a
Pareto-optimal solution of Problem (4.1).
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Our final aim is to construct classifiers with adequate tradeoff of misclas-
sification costs in the two groups in Q. In other words, we ideally would solve
the biobjective problem

max  {p'(w,B),p (w,B)}
st ct(wz*+8)>0 Vueq, (4.3)
we€ RP, e R.

by describing the set of Pareto-optimal solutions.

Since the class ¢* of u € € is known only for the objects u € I, we
consider Problem (4.1) as a surrogate of Problem (4.3), and thus the set of
Pareto-optimal solutions of Problem (4.1) is seen as an approximation to the
set of Pareto-optimal solutions of Problem (4.3).

First let us recall that (@, 3) is a weakly efficient solution of Problem
(4.1) if no feasible (w, 8) exists that is strictly better than (@, 3) for both
objectives, i.e. _

pHw,B8) > pH@,B) (4.4)
piw,B) > p7H(@,B). '

We refer the reader to e.g. [28] for further details on these concepts of
vector optimization.

We first characterize, for any given norm || - ||°, the set of weakly efficient
solutions (Theorem 4.4). Then, for the particular case of the Euclidean norm,
we use this result to characterize the Pareto-optimal solutions.

Since all feasible solutions (w, 3) satisfy that p'(w, 8) > 0 and p~}(w, B) >
0 one can generate all weakly efficient solutions by solving max-min type
scalarizations, [28]. '

For the sake of completeness we state the following technical result

Lemma 4.2: The set of weakly efficient solutions of Problem (4.1) is ob-
tained as the set of optimal solutions of

max  min {p*(w, 3),0p (w, B)}
st cMwz*+8)>0 Yu eI, (4.5)
welR, e R.

when 8 € (0, 4+00), in the sense that

1. any optimal solution of Problem (4.5) is weakly efficient for Problem
(4.1),
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2. for every weakly efficient solution (wg, B9) of Problem (4.1) there exists
6 € (0, +00), such that (we, 3) is optimal for Problem (4.5).

Proof. First, let 8 € (0,400) and let (@, 3) be an optimal solution of Prob-
lem (4.5). By contradiction, suppose it is not weakly efficient for Problem
(4.1), thus there is another (w, () strictly better than (@, 3) in both objec-
tives, i.e. they satisfy (4.4).

Therefore, the following inequality holds

min{p'(w, 8),0p™" (w, 8)} > min{p"(@, B),0p™ (@, B)}

which contradicts the fact that (@, 3) is optimal for Problem (4.5).

On the other hand, given a weakly efficient solution (@, 3) of Problem
(4.1), note that, since it is feasible, by the constraints of Problem (4.1), then
p* (@, B) > 0 and p~(@, B) > 0. Let 0 be given by

1
p_ P 1( 2 p)
pi@,B)

The objective function of Problem (4.5) for such a 8 yields
P@,8) )

min{p' (w, ), @5 ~(w,8)}

Now suppose (@, () is not an optimum of Problem (4.5), thus there exists
(@, B) feasible for Problem (4.5) and hence also for Problem (4.1) with better

objective value than (@, 8) ,

p~ (@, B)
Therefore,
P& B > p@0) (4.6)
Y&, 3 ~ -
pflwf—é)—p‘l(w,ﬁ) > pl(@,B). (4.7)
pH@, B)

> p~ Y@, B), which together with (4.6)
,3) is a weakly efficient solution.

The inequality (4.7) implies p~ (
contradicts the assumption that

/\E)

le
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O
For 8 € (0, 400), define
20
Ay = ——
© T 41
u 1, ifue .[1
Vo= -9, ifuel,
and consider the following problem
min  |wl®
st yEwTzt+pB) >4y Vuel, (Ps)
we R, B € R.

Observe that for § = 1, Problem (P;) coincides with Problem (1.4), which
is the most used formulation for finding the optimal hard-margin hyperplane
in the classical SVM. To emphasize this fact, throughout this chapter we call
it Problem (P;). '

Lemma 4.3: Given (@, 3) € IR x IR, and 6 € (0, +0o0), the following state-
ments are equivalent for § # 1

1. (@, B) is an optimal solution of Problem (P,),

2. (0,6 + z—j) is an optimal solution of Problem (F),

Proof. First of all, we show that some (@, ) is a feasible solution of Problem

(P), iff (@,8+ Z—:_}) is a feasible solution of Problem (Fy).
Suppose (@, 3) is a feasible solution of Problem (P;). For any u € I_4,

since @ x% + 3 > 1, we get

= -1 6—-1 26
L:JTU

>14 —— = —— = A,
7r1= Ter1 ex1 M

For u € I_y, feasibility of (@, ) implies @Tz* + § < ~1, yielding

-1 -20

- 6-1
o7 —_) << —_ _—) —
@' z"+ 0+ )_0(1+9+1) )

—Ay.

Hence, (@, 8 + z—_‘&) is a feasible solution of Problem (Fp).
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Analogously, if (@, 3 + g;_—}) is a feasible solution of Problem (F), then.
+

_ - _ = 9~ -1 -1
wau+@=wTZ.u @_i_o__;_}__.%ZAg—m:l, \V'UEII,
PPN LY M e R R

so (@, B) is a feasible solution of Problem (P;).

Now we prove the optimality of such solutions. Given (@, (), optimal
solution of Problem (P,), let (w*, #*) be an optimal solution for Problem
(Py). Using what we have proven above, (@, 3 + g—;—%) is feasible for Problem
(Py), so |lw*||° < [|@]|°. On the other hand, (w*,3" + 477) is feasible for

Problem (P,), which yields [|w*||° > ||@||°. Hence (@, 3 + §73) is an optimal

solution of Problem (Py). The other implication is analogous.
Od

Theorem 4.4: Let O be the set of optimal solutions of Problem (P;). The
set £ of weakly efficient solutions of the biobjective Problem (4.1) is given
by

&= {(pwr,uB) : 1B= Pl <1, p>0, (w1, 4) € O}.

Proof. Let (@,5) € R” x R. By Lemma 4.2, (@, () is weakly efficient for
Problem (4.1) if and only if there exists § € (0, +00) such that (@, 3) is an
optimal solution of Problem (4.5). This is equivalent to (@, #) being optimal
for
{ ol }
miny minge sy cH(wTz*+f),0 minger_, ct(wTzu+)
st:  cMwlz*+6)>0 ' Yuel, (4.8)
we R, BeR.

min

Observe that (w,3) is optimal for Problem (4.8) if and only if (uw, 13)
is optimal for Problem (4.8) for any u > 0. Hence, by normalizing the de-
nominator in the objective of Problem (4.8) we have that (@, ) is optimal
for Problem (4.8) if and only if there exist 8 € (0, 400) and x> 0 such that
(u, uf) is optimal for the following problem:

min  ||jw||°®
S.t.: min {minuel1 (wTz* + B), 0 minge;_,(—w'z* — ,6)} = Ay,

weIRP, € R,
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where Ag = %. Such a problem is equivalent to the following one
min llwl|® A
s.t.:  min {mingep, (w'z* + 8), minyes_, O(~wTz* — ﬂ)} > Ay,

we R, B€ R,
which can be rephrased as

min lw|l°

st yHw Tz +6) > A Yu € I,
OytwTz* +8) > Ay Vue I,
w € IRP, B € R.

Since

Y =vs Yu€IL
0y11‘=y10£’ Vue[—h

Problem (4.9) is actually Problem (P;). Hence, (@, ) is weakly efficient iff
there exists u > 0 such that (u@,uB) solves (Pj) for some 6 € (0, +o0).
By Lemma 4.3, this is equivalent to (u@, u8 — gf_-%) being optimal for ().
Hence, (@, B) has the form (uw;, 4B) with |3 — 61| < 1, and every (@, §) with

such a form is weakly efficient for Problem (4.1). O

This result sets that, for an arbitrary norm, the classification rules given
by the weakly efficient solutions of Problem (4.1) correspond to hyperplanes
that are parallel to the hyperplane described by one of the classical SVM
classification rules, obtained by solving Problem (1.4), as stated in Chapter
1. For the particular case of the Euclidean norm we have that all these
weakly efficient solutions are also Pareto-optimal.

Lemma 4.5: For the particular case in which || - ||° is the Euclidean norm,
then Problem (F5) has a unique solution.

Proof. Note that, for the Euclidean norm, (F) can be rephrased as
min  [lw]i3

st:  yEwzt+8)> A  Vuel, (4.10)
weRP Be€R.
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Given 0, the function w — |lw||3 is strictly convex, so there exists a unique
wp such that any optimal solution (w, ) for Problem (4.10) has w = ws. We
show now that the set of optimal solutions of Problem (4.10) is a singleton.

For Problem (4.10), KarushKuhnTucker (KKT) conditions at (we, 3),
which are necessary and sufficient for optimality, are given by

AL >0 Vuel
g — ¥ pes YR = 0

Doucr MY =0
Abys(wg z* + B) — Ag) =0 Vuel

First of all, note that A\g # 0. Indeed, if Aj = 0 for all u € I, one would
have wy = 0, which simultaneously implies, since (wp, 8) is feasible, that
8> Ag>0and 8 < ’_‘—g < 0. This is a contradiction, and hence Ay # 0.

Hence, for any (wy, 3), optimal for Problem (4.10) there exists u € I such
that

Yh(wg 2"+ f) — Ag =0

ie.
A
g = —g—w,;rx“. (4.11)
Yo

This means that the set of optimal solutions of Problem (4.10) is finite.
On the other hand, by convexity, for any two different optimal solutions of
Problem (4.10), all the solutions in the segment between them are optimal.
This contradicts the finiteness of the set of optimal solutions of Problem
(4.10), yielding the conclusion that such a set has an unique solution, (ws, 5s),

with (3 of the form (4.11) for some u € I.
O

Corollary 4.6: For the particular case in which ||-||° is the Euclidean norm,
then the set of Pareto-optimal solutions of the biobjective Problem (4.1) is
given by £,

8 = {(/u’wla:u‘ﬁ) : ]ﬁ - /Bll < 1) uw > 0) (wlaﬂl)},
where (wy, 1) is the unique optimal solution of Problem ().

Proof. Any Pareto-optimal solution is, by definition, weakly efficient. Let
us show the converse. Let (@,3) be weakly efficient. By Lemma 4.3 and
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Theorem 4.4, there exist 6 € (0,+00) and u > 0 such that (u@, uB3) solves
(Pa).

Suppose (@, 3) is not Pareto-optimal. Then (u@, 13) would not be Pareto-
optimal either. Hence there would exist (', 8’) such that

P B) > M, pB) = p (@, B), w2
p MW, B) = p7H e, ) = p7 (@, B),
with at least one of those inequality strict.
Without loss of generality we can assume that ||'||2 = ||u@|]2. Then
(4.12) is equivalent to

minger, Yo (" + F) > minger, v (o 2" + 1) > Ao,
minges , y2(W' 2% + ) > minges , ye(u@ " + pb) > A,.

Hence, (&', #’) would be feasible for Problem (F;). Since its objective value
at (W', ) is ||'||2 = ||u@]||3, we would have that («', ') is also optimal for
Problem (P;). By Lemma 4.5, (P) has a unique optimal solution. Thus
(W', B") = (u@,uB), contradicting that at least one of the inequalities in

(4.12) is strict.
O

4.3 The soft-margin approach

When the set I is not linearly separable, no hyperplane exists classifying
correctly all data points, and thus Problem (1.4) is infeasible. For these
cases, the hard-margin approach can be extended to the so-called soft-margin
approach, see Section 1.2.3 for a description, which consists of allowing some
objects in I to be misclassified, by perturbing Problem (1.4) in order to make
it feasible, as described in Section 1.2.3. In this section, we see that, for the
case in which the amount |w]|® + CI|€]|* defines a norm || - ||’ in R? x R'D,
the results in Section 4.2 can be extended for the soft-margin approach.

Let | - || be a norm in R x IR*D. Then, a general soft-margin maximiza-
tion problem can be formulated as:

min (v, &)
s.t.: c¥ (wTa:“ + ﬁ) +&t>1 Yuel, (4.13)
weR, e R, tc RD.

Common choices for || - ||" are, for instance:
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o ||(w, O = |lwlli + C||€]l1, with || - || being the L; norm, which yields
Problem (1.10).

o [, Ol = V(llwll2)? + ClI¢]l2)*

C is a constant which is usually chosen by crossvalidation techniques, see
e.g. [26, 71, 72] and is used in order to tradeoff the perturbations " and the
classification scores w'z* + 3.

Moreover, we can follow [69], where a more general approach is proposed,
in which the perturbations are weighed by different parameters C; and C_j,
yielding the problem

min  |w[lf + C1 Eyer, (€%) + Cor s, (€)?
st C(wTzv+8)+&>1 Yu €I, (4.14)
weR, BeR,EecRD,

which corresponds to || - ||" equal to

I, )l —\/Ilw||2+012 e2rCL S (e (415)

uel uel_y

The parameters C; and C_; allow the incorporation of different a priori
probabilities or misclassification costs in an approximate way, [41]. The class
¢ having smaller a priori probability (or classification cost) should have the
large C, value. For instance in [41] C, = nLC, where n, denotes the number of
objects in I, for ¢ € {1, ~1} is suggested. With this, a priori probabilities,
as well as different misclassification costs for each class, can be taken into
account to weigh the perturbations, but not the margin itself, which is the
main aim of this chapter.

In order to characterize the set of weakly efficient solutions of Problem
(4.13), we reduce ourselves to the separable case as follows: first of all, we
define an embedding ® : IR? — IRP x R*D having two components: the first
component is the predictor vector z, and the second component is a vector
0 given by

1 if there exists u € I; with z = z*
du(z) = ¢ —1 if there exists u € I_; with z =z
0  otherwise.
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In the embedded feature space IRP x IR*D, the score function (1.1) becomes

f(@) = (, &) (z",8(z")) + 6.

Note that, for u € [, all the components of §(z*) are zero, but the u—th
component which is equal to one. Analogously, for u € I_;, all the com-
ponents of §(z*) are zero, but the u—th component which is equal to —1.
Hence, after the embedding ®(z) = (z, §(x)), the margin of (w, £, B) on class
¢, defined in Definition 4.1, is given by

pw,&,8) = min p (w,&,8) = min max

((w, &) (%, 5(z¥)) + B)
{ @ 0l ’0}'

As in Section 4.2, we now consider the problem of simultaneously maxi-
mizing the margin on both classes, imposing that (w, &, 3) separates I :

max  {p'(w,§,B),p7 (w, &, B)}
st ct(wz*+8)+E>0 Vuel, (4.16)
weIRP, e R, €€ R,

Applying Theorem 4.4 we get a characterization of the set & of the weakly
efficient solutions of Problem (4.16):

é = {(/‘Lwlnu'fhﬂ’ﬂ) : |ﬁ - /Bll < 17 H > 07 (wlaglvﬁl) € @}

where O denotes the set of optimal solutions of Problem (4.13). Moreover,
for the case in which the norm || - ||’ is given by (4.15), we have a Corollary -
analogous to Corollary 4.6.

Corollary 4.7: For the particular case in which || - ||' is the norm given by
(4.15), then the set of Pareto-optimal solutions of the biobjective Problem
(4.16) is given by &,

é = {(Nwl;lﬁghﬂﬁ) : Iﬁ_ﬂll < 1, M > 0},
where (wy, &, 3;) is the unique optimal solution of Problem (4.14).

Recall that, for u > 0, the classification rules given by (uw,ué, u3) are
equivalent in the sense that they allocate objects in exactly the same way.
As a consequence, all the classification rules corresponding to Pareto-optimal
solutions of Problem (4.16) are given by moving the parameter § in the
classification rule obtained by solving Problem (4.14) and all such solutions
corresponds to parallel hyperplanes.
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4.4 Illustrative examples

As has been proven in the preceding sections, the best classification rules, in
the Pareto sense, are obtained by varying the value (3 in the optimal solutions
of the classical SVM. The choice of such a value § is up to the decision maker,
who should take into account the tradeoff between the misclassification costs
and a priori probabilities in both classes.

In order to choose a value for the parameter 3, some authors (see e.g.
[48]) have suggested the use of the ROC curve. The ROC curve shows the
sensitivity, i.e. the proportion of correctly classified objects of the positive
class, against the specificity, proportion of correctly classified objects of the
negative class, for different values of the parameter 3. The ROC curves can
help the decision maker in the choice of 3, since that is the only free param-
eter, as shown by the characterization given in Corollary 4.7.

In order to show how to guide the choice of 3 in real-life settings, we have
performed various experiments using those databases in the UCI Machine
Learning Repository having two classes and no missing data whose predictor
variables are all continuous, as detailed in the summary table available in
[6]: bupa, ionosphere, pima, sonar and wdbc. A brief description of them
is presented in Appendix A. From each database, a random sample of 100
objects is drawn and used as training sample I and the remaining is used as
testing sample in order to validate the model. }

All the numerical results have been performed by using the SVM toolbox
for Matlab [62]. Data were not preprocessed and a linear kernel was used in
all the experiments. The norm ||-]|’ used in the experiments is given by (4.15).
The parameters C; and C_; where set to be equal, and their value chosen by
crossvalidation, as implemented in the popular SVM library LIBSVM [20].

With this information at hand, we can draw the ROC curve wn the training
sample, i.e. the plot, when (3 varies, of the proportions of misclassified objects
in both classes in the available set of data. This is not the ROC curve for
the whole population, which is unknown in real applications. We then use
the former as a surrogate of the latter. In Figures 4.1-4.5 we give the ROC
curves for the training sample (thick lines) and testing sample (thin lines).
The SVM solution is marked with a star. However, it is not evident to see
from ROC curves the effect of the 3 in the tradeoff between sensitivity and
specificity, since the value 3 yielding each pair is not plotted.

In Figures 4.6-4.10, specificity and sensitivity are shown for both training
and testing sample (training in thick) in such a way that the decision maker
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Fig. 4.6: Specificity and sensitivity of (w1, 81 — A), for a threshold A and (w1, 51)
optimal solution of (4.14). Database: bupa. C=0.03125
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Fig. 4.7: Specificity and sensitivity of (w1, 51 — A), for a threshold A and (wy, 81)
optimal solution of (4.14). Database: ionosphere. C=2.0

Fig. 4.8: Specificity and sensitivity of (w1, 81 — A), for a threshold A and (wy, 51)
optimal solution of (4.14). Database: pima. C=0.03125
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Fig. 4.9: Specificity and sensitivity of (w1, 81 — A), for a threshold A and (w;, 51)
optimal solution of (4.14). Database: sonar. C=0.5
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can choose a value for the parameter 3. Sensitivity and specificity values for
the classical SVM correspond to the case A = 0. The higher A, the higher
p~Hw,B,€), at the expense of decreasing p'(w,3,€). This, as empirically
illustrated in the graphics, translates into saying that the higher the value
chosen for A, the higher the specificity and the lower the sensitivity.

4.5 Conclusions

In this chapter, the concept of margin in a training sample I has been gen-
eralized to the margin in a class, in order to deal separately with them via
a Biobjective Program. Then, for any norm || - ||°, the set of hyperplanes
which are weakly efficient for the problem of simultaneously maximazing the
margin on both classes, has been characterized. Moreover, it has been proven
that, for the particular case of the Euclidean norm, the set of hyperplanes
which are Pareto-optimal in the simultaneous optimization of the margin in
both classes, is given by a set of parallel hyperplanes, one of which is just the
optimal margin hyperplane as defined by the correspondent unidimensional
SVM.

This chapter proposes a simple way for taking into account different mis-
classification costs, or known a priori probabilities of the classes. Our main
result gives a theoretical foundation for the commonly used ROC approach
for tuning the parameter (.

The equivalence between the set of weakly efficient solutions and the set
of Pareto-optimal solutions has been proven for the Euclidean case. We are
exploring now how to characterize the set of Pareto-optimal solution when
a polyhedral norm, like the L; norm, is used. This case differs from the
Euclidean case mainly because the solution of the classical one-objective
SVM is not unique.

We have dealt in this work with the two-group case. Extending it to the
case in which more than two classes exists is not trivial and it is a promising
issue for further research.



5. MULTIGROUP SVM WITH MEASUREMENT COSTS

5.1 Introduction

Correctly predicting the class membership of an object has been our main
goal throughout this thesis. However, in real-word classification problems it
is very convenient to obtain classification rules that, not only achieve good
classification behavior, but are also cheap or quick. A typical example is
medical diagnosis, where some tests are much more expensive or take much
longer than others. For instance, in a poll by KDnuggets [45], ‘dealing with
unbalanced and cost-sensitive data’ was selected, by both practitioners and
academics, between the most important Data Mining topics, where cost-
sensitive data means data ‘which has different cost to get it,” [46].

If the classification rule does not use variables based on the most expensive
tests, classifying new patients will be much cheaper or quicker, and hopefully
without deteriorating significantly the quality of classification.

In Chapter 4, we have analyzed the case in which there exists a cost as-
sociated to misclassification of objects depending on their class. Together
with this type of cost, which is related with the classification ability of the
rule, other costs, linked to the variables or attributes, can be defined. In the
simplest model we associate equal costs to each predictor variable. In that
case, keeping the total cost below a given level amounts to stating an upper
bound on the number of variables to be used. This, called feature selection,
is a well-known problem in the Data Mining literature, see e.g. [35] for an in-
troduction. Turney [66] proposed other types of nontrivial costs, for instance
the test cost, also called measurement cost, where each test (attribute, mea-
surement, feature) has an associated cost, such as economical payment, risk
incurred by the act of measuring it, computational effort or some kind of
complexity. The aim of minimizing such costs has been mentioned before in
the literature as a desirable consequence of feature selection, see e.g. [35],
but hardly directly addressed.

In this chapter, we address classification problems in which both misclas-
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sification rate and measurement costs are relevant. To do this, we formulate
the Biobjective Program, see e.g. [28], of the simultaneous minimization
of the misclassification rate, via the maximization of the margin, and the
measurement costs. Pareto-optimal solutions, i.e. classifiers that cannot
be improved at the same time in both objectives, are sought. The set of
Pareto-optimal solutions of the Biobjective Program gives us a finite set of
classification rules, in such a way that any rule which is not Pareto-optimal
should be discarded, since it is beaten in terms of margin and cost by an-
other rule. Choosing one out of the set of Pareto-optimal rules is done by an
appropriate compromise between the two criteria involved.

We have structured the chapter as follows. The classification model fol-
lowed in this chapter is presented in Section 5.2. The measurement costs we
want to incorporate are modeled in Section 5.3. Formulations for the hard-
margin maximization problem are derived in Section 5.4. Costs and margin
are incorporated in a Biobjective problem described in Section 5.5 and a
soft-margin version of it is proposed in Section 5.6. Section 5.7 is devoted to
some numerical results and, some conclusions are presented in Section 5.8.

5.2 The classification model

We are considering in this chapter the general case C = {1,2,...,Q} Hence,
we consider the multigroup SVM approach described in Section 1.3. We
work with a score function f given by (1.17) where an embedding ® =
(¢1,¢2,...,6n) : R — E is given. Denote by F the family of all features ¢
for k=1,2,..., N. For instance, family F given by

F =A{z1,Z2,...,Zp}, (5.1)

yields linear classifiers, as in (1.17), whereas quadratic classifiers, {25, 29],
are obtained by setting

}'={x1,x2,...,xp}U{xixj: 1<i<j<p} (5.2)

i.e., the set of monomials of degree up to 2.
This framework also includes voting classifiers, such as boosting, e.g.
(24, 31], in which C = {—1,1} and a set of primitive classifiers ¢, : X —

{0,1}

or(z) = 1 iff z is allocated to class 1 via the k-th classifier,
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are combined linearly into a single score function of the form (1.5). For a
very promising strategy for generating such primitive classifiers see e.g. [7].

5.3 Measurement costs

As stated in Chapter 1, finding a score function f as in (1.17) which separates
the groups and has maximal margin (either in its hard or soft versions) is a
plausible criterion when obtaining the predictor vector z* is costless. When
this is not the case, we should also take into account the cost associated with
the evaluation of the classification rule.

In many practical applications, as medical diagnosis, the predictor vari-
ables of the data may be some diagnosis test (such as blood test, ...) that
have associated a cost, either money, or risk/damage incurred to the patient.
If the classifier built does not depend on some of these variables, we could
avoid their measurement (and the corresponding cost) in the diagnosis of
new patients. In this situation, we should seek a classifier that enjoys good
generalization properties, and at the same time, has low cost.

Obtaining cheaper or quicker classification rules have been mentioned as
one of the desirable consequences of feature selection, where the aim is to
reduce the number of variables or features used by the classification rule.
However costs associated with such variables or features have seldom been
considered.

Several authors have addressed measurement cost issues related with
classification. For instance, [53, 54, 65 consider classification trees whose
branching rule takes such costs into account. See [66] for a comparison of
such methods and [4, 66] and the references therein for other proposals. In
most cases, the unique goal is to minimize some surrogate of the expected
misclassification cost, and, since the algorithm takes somehow into account
measurement costs, it is hoped that the rule obtained this way has a low
associated measurement cost.

In this chapter, however, we explicitly consider the minimization of mea-
surement costs as one criterion, whose trade-off with margin optimization is
to be determined by the user.

Costs are modeled as follows: Denote by Il the cost associated with
evaluating the feature ¢, € F at a given z. For instance, if we are following
a linear approach, as given by (5.1), II; represents the cost of measuring the
predictor variable [ in a new object.
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Given the parameter W = (w!,...,w?), define
S(W)={k|FceC: wi#£0,1<k<N}.

In other words, S(W) represents the set of features needed to classify new
objects. In principle, these are the features we have to pay for, so a score
function f with coefficients (W, ) will have associated a measurement cost
equal to
(Wb = Y L (5.3)
keS(W)

Pure linearity, as assumed in (5.3), may be unrealistic in some practical
situations. For instance, it may be the case that, once we have incurred a
cost for obtaining some feature @, some other features may be given for free
or at reduced cost. This may happen, for example, in a medical context
when the measurement of a variable requires a blood extraction, and some
other variables can be measured using the same blood test. Another context
where one encounters this, is the case in which some features are functions
of other features: In model (5.2), feature ®(z) = z;z; is obtained for free if
both features ®(z) = z; and ®(z) = z; have been previously inspected.

Example 5.1: In Table 5.1 one can see the costs of a simple example with
two classes Q = 2, and F = {¢1,...,¢s} with different costs. The score
function given by f, = ¢, + 4¢5 and fo = 3¢; + 2 incurs a cost of 2+ 2 = 4.

features | 1 @2 ¢3 P4 s
costs| 2 5 3 0 2

Tab. 5.1: Example of feature cost

In order to consider situations like the one described in Example 5.1,
suppose that precedence constraints, in the form of a partial order < between
the features, are given. This means that if A < k, the use of the feature ¢y
requires also the payment for feature ¢,. Moreover, in computing the total
cost, the cost for every feature has to be summed at most once. In order to
formalize this, define an auxiliary variable z;, € {0,1} foreach k =1,..., N,
representing

= { 1 if payment of II; is needed
k 0 otherwise
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in other words:

b = 1 if he S(W) for some h with k < h
¥~ 1 0 otherwise.

Thus, cost associated with a score function with coefficients (W,b) will
be

N
r(W,0) = > zlli. (5.4)
k=1

Particular cases already suggested in the literature can be easily accom-
modated into our framework. For instance, in [55] variables are grouped in
a way that, if one variable from a group is requested, then all the others in
the same group are available for zero additional cost. To model this case in
our setting, define the cost of one variable from each group to be equal to
the cost of the group it belongs to, and set the remaining variables to have
zero cost. Moreover, choose a partial order < for which A < j iff variables h
and j are in the same group and h has nonzero cost.

Moreover, this modelling technique allows us to use, but it is not limited
to, polynomial kernels. Indeed, suppose a kernel k(z,y) = ®(z)" ®(y) for
some ¢ : X — E. If & holds

e F is a finite dimensional feature space, E C R,

e for any component ¢y, k = 1,2,...,N, of & = (¢1,¢2,...,0n), the
information about what original variables are needed to calculate ¢y is
available,

then, the cost associated to a score function can be modeled using the
methodology explained in this section. Biobjective problems for other ker-
nels, which do not hold the conditions above, can also be formulated [74].
However, they yield combinatorial problems which are much harder to solve
in practice.

We will show in Sections 5.5 and 5.6, that this modelling technique allows
formulations as Biobjective Mixed Integer Programs. For these models there
exist suitable techniques for finding their Pareto-optimal solutions.

Minimizing (5.4) will be one of our goals. However, our main goal is find-
ing classifiers with good generalization properties. This, the second objective
in our model, will be discussed in detail in the following section.
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5.4 Margin optimization

As stated in Chapter 1, SVM uses the maximization of the margin as a
surrogate of the classification ability to find a good classifier. We follow
here the multigroup hard-margin maximization problem (1.15) described in
Section 1.3.2, which, after the embedding described in Section 5.2, leads the
following problem

max (W, b)

s.t: IWi° <1, (5.5)

(W,b) € RV? x R?.

We now derive some properties of Problem (5.5) that allows us to rephrase
it as an equivalent problem with less decision variables and detect the non-
separability of I for a given family of features F.

Property 5.2: Problem (5.5) has finite optimal value.

Proof. Let (W,b) = (w!,...,w?;8,...,39) be a feasible solution of Prob-
lem (5.5).
Let u € I and j # ¢*, then
(™) T@(z*) + % = ()T (a") - &
= (@ =) (") + 7 -
< @ = w?)Te(@)| + (8% - #).
To bound the first term, observe that, since all norms are equivalent,

there exists K such that |w{] < K forall k =1,2,...,N, ceC.
Hence,

(™ — W) @(")|
N .
< 3 kg - wlllgna)
k=1

< 2KN max |op(z*)] = K' < o0.

1<k<N,uel

Now, we will bound the term |3 — #7|. Since each class is represented,
I; # 0, let v € I;. Solution (W, b) feasible for Problem (5.5) implies both u
and v are correctly classified,
(@) (") + 57 — (W) (") + ) > 0
(@) T@(2") + 6 — (W) (z") + 57) < 0
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yielding,
(W™ =) TO(z") < 7 — % < (W — )T B(z*).
Thus
167 - 67| | |
< max{|(w* ~ a}f)T‘I’(w“)l, (W — o) T@(2”)[}
< ma{|(w”” — ) 0@}

IN

v — !
2KN | max  |gy(z")] = K'.

Hence the objective function is bounded by
0(W, b) = min min (W) T®(z*) + B — ()T ®(z¥) — B| < 2K".
u JFcH
0O

We have assumed that F is rich enough to enable separability of /. How-
ever, it may be useful to have a method to check such separability. In case
we do not know if I is separable in the feature space E, solving Problem
(5.5) allows us to check it. Indeed we have the property:

Property 5.3: I is separable if and only if Problem (5.5) has strictly positive
optimal value.

Another reduction of Problem (5.5) is even possible. Recall that, for all
A € IR, the score functions defined by (W,b) and (W, l;), with b° = b¢ + A
for all ¢ € C, are equivalent in the sense that both classify objects to the
same classes, and both have the same margins. Then, we can restrict the
coeflicients 3¢ to be nonnegative, yielding the problem:

max (W, b)
s.t.: IW]e <1 (5.6)
(W,b) € RV x RY.

Property 5.4: Problems (5.5) and (5.6) are equivalent in the sense that
every optimal solution of Problem (5.6) is also optimal for Problem (5.5),
and, for any optimal solution of Problem (5.5), there exists a feasible solution
of Problem (5.6) that is also optimal in both problems.
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5.5 A biobjective approach

In the last sections we have described the two objectives of our problem,
namely, maximizing the margin and minimizing the measurement cost. Hence
we have the following biobjective problem:

max 6(W,b)
min w(W,b)
st WP < 1 (5.7)

(W,b) € R¥? x RY.

We are seeking the set of Pareto optimal solutions of biobjective problem
(5.7), i.e. those feasible solutions that cannot be improved simultaneously in
both objectives.

Property 5.5: The set of Pareto-optimal outcomes of the biobjective prob-
lem (5.7) is finite.

Proof. The set of all outcomes of Problem (5.7) can be calculated by solving
the problem ’

max v (W, b)
s.t.: Wi <1
n(W,b) <=

(W,b) € RV? x RY

for any 7 in the set of possible costs:
{n(W,b): (W,b) € R"? x RS},

which is contained in the finite set {3, ¢ : S C{1,2,..., N}}. a

Using the notation of Section 5.4, the biobjective problem (5.7) can also
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be reformulated as

max Y
min 211:;1 szk )

WiP° <1

—szEk:hjkchzlwzgzh Vh=1,2,...,N
wf unrestricted Vk=1,2,...,N;ceC
y unrestricted

B8>0 YeeC
z, € {0,1} Vk=12...,N.

(5.8)
Recall that, due to the presence of a nonlinear constraint (|W]|° < 1),

Problem (5.8) is a biobjective Mixed Integer Nonlinear Program. As in Chap-
ters 2 and 3, we suggest the use of a polyhedral norm, such as, for instance,
a scaled Li-norm, [W]; = & Sy ZCQ=1 |wg|. Then, Problem (5.7), can be
rewritten as a biobjective mixed integer linear problem, as stated below.

Property 5.6: Let ||-||° be a scaled Ly-norm, [|[W]; = & SN T2 |wEl

Then, Problem (5.7) can be formulated as the following Biobjective Mixed
Integer Problem,

max y
. N
min > Tz
s.t.: Zgﬂ b (z") (w:-k: —wh—wit wj—k) +0 - -y 20, c I>
Vi#j;4,7€Cuel;
o1 Doy (@5 +w%e) SN

2 keh<k Z?:l (W +wy) SNz Yh=1,2,...,N

y unrestricted

wi >0 Vk=1,2,...,N;ceC

wt >0 Vk=1,2,..., N;ceC(C

=0 VeceC

2z € {0,1} Vk=1,2,...,N.
(5.9)

We focus on the generation of Pareto-optimal solutions of Problem (5.7)
for a scaled L;-norm by using formulation (5.9) as dicussed below. The very
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same approach can be used if one chooses any other polyhedral norm, such
as the L., norm, instead of the L; norm, in Definition 1.2.

Problem (5.9) is a biobjective mixed integer linear problem, which can
be tackled for instance, by adapting the two-phase method of [70] designed
for solving biobjective knapsack problems.

In the first phase, one obtains the so-called supported solutions, namely,
those which are found as solution of the scalarized problem

max  MO(W,b) — Aom(W, b)
5.b.: wle <1 (5.10)
(W,b) € R¥? x RS

for some weights A;, Ay € [0,1], with A\; + A2 = 1. These points describe,
in the outcome space, the frontier of the convex hull of the Pareto-optimal
outcomes.

Since we face a biobjective problem, the set of possible weights

A= {(/\1,/\2) EB?._I M+ A= 1}

that describe the supported efficient outcomes is unidimensional, and only -
a finite number of weights describe different outcomes. This fact can be
exploited to find all supported outcomes in a sequential way. _

A solution with minimal (zero) cost is the trivial solution (W, b) = (0, 0).
Note that with this solution, points are classified arbitrarily by the tie-break
rules, since all the components of the score functions will be zero.

When we are optimizing only the first objective, namely maximizing the
margin, the optimal value can be obtained by solving Problem (5.5), which
can be easily reformulated as a Linear Program. Denote by #* its optimal
value. Given an optimal solution (W*, b*) of Problem (5.5), a feasible solution
(W=, b*, z*) of the biobjective problem (5.7) can be built by setting

. | 1, ifwj®#0 for some c € C,
%= 0, otherwise.

If (W*,b*) is the unique optimal solution, then (W* b* 2*) will be a
Pareto-optimal point. Otherwise, a Pareto-optimal point of Problem (5.7)
can be found by maximizing the margin, i.e., by solving,

min (W, b)
s.t.: IWi° <1
oW, b) > 6"

(W,b) € RV? x RSY.
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Once we have both a Pareto-optimal solution with minimal cost, i.e.
(0,0), and a Pareto-optimal solution with maximal margin, namely (Wj, bo),
we construct an ordered list (sorted by either margin or by cost) whose ele-
ments can be built from any two consecutive already known elements (W7, by)
and (W, by) by the scalarized Problem (5.10) for certain A; and A;. Denote
' and 62 the margin of solution (W;,b;) and (W, by) respectively and costs
n! and 72. The scalarization needed in the problem is

92_01
/\1:02—91+7r2—7r1
Ny = w2 — 7l

02 — 9 & 12 — g1

All optimal solutions of such scalarized problem are Pareto-optimal points. If
both (or any of) (Wy, b,) and (W5, by) are solutions of the scalarized problem,
the set of its optimal solutions yield the only supported Pareto outcomes
between those of (Wi,by) and (Ws,bs), so we do not need to seek more
supported Pareto points between them. Since the number of Pareto outcomes
is finite, the process ends in finite time.

When all the supported Pareto outcomes are found, the non-supported
ones may be obtained in the following way. Let (Wi, b;) be any Pareto-
optimal point with cost 7' > 0. Let # be the minimal feature cost that is
positive,

Then a Pareto-optimal point, with cost strictly lower than 7!, is obtained by
solving the problem

max 6(W, b)
s.t.: W]° <1
(W) <t # (5.11)

(W,b) € RN? x RY.

Then, the next Pareto-optimal point can be found in the same way. Thus,
starting from any supported Pareto-optimal point with cost greater than
zero, the non-supported Pareto-optimal outcomes between it and the next
supported one can be found.
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5.6 Soft-margin biobjective optimization

In order to both avoid overfitting and deal with the non-separability of I, we
now derive, as in Section 1.3.2, a soft-margin version of biobjective Problem
(5.8), based on allowing some objects in I to be misclassified. This is done,
as in Problem (1.19), by adding to the model some slack variables n* € IR,
where n is the cardinal of the training sample. Using this idea, the biobjective
Problem (5.8) is replaced by the following problem:

max y
min ZkN=1 2y,
st: Sn k(@) (Wi —wl) + - —y+nt >0,
Vi i,j€Cuel;
IWI°+CXpern” S N

N2 €Y e 2w < Nz Vh=1,2,...,N (5.12)

wi unrestricted : Vk=1,2,...,N;ceC

y unrestricted ,

gec=0 VeeC

z € {0,1} Vk=1,2,...,N
=0 - Vuel,

for some user-defined value C, which trades off the perturbations n* .and the
margin.

In the same way as for the hard-margin approach, when || - ||° is a poly-
hedral norm, this problem can be formulated as a Biobjective Mixed Integer
Problem. For instance, if || - ||° is a scaled Li-norm, then Problem (5.12) can
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be formulated as follows:

max y
min Ziv:l Oz
s.t.: Z:’:l ¢k($u) (wi—k - wi_k - wik + w]_k) + ,Bl - 6j -y+ TI" 2 07
Vi£3;4,j€C,uel;
Z?=1 EII:]:l (wik + ‘U—c-k) +CY e <N

Sk ooy (WS Fwey) S Nz Vh=1,2,...,N
y unrestricted

wi >0 Vk=1,2,...,N;ceC
Wy >0 ‘ Vk=1,2,...,N;ceC
g >0 YeeC
zke{O,l} vk=1,2,...,N
>0 Yuel

(5.13)

The Two-Phase Method proposed in Section 5.5 to find the Pareto-
optimal classifiers can also be used for solving Problem (5.13). Note that
in this case, the solution with minimal (zero) cost is not the trivial solution
(W, b) = (0,0), but any optimal solution of Problem (5.13) with W set equal
to the null matrix. The following steps of the method remain analogous to
the hard-margin approach, and will not be repeated here.

5.7 Numerical results

In order to explore both, costs and quality, of the Pareto score functions
obtained, we have performed a series of numerical tests on six standard da-
tabases, publicly available from the UCI Machine Learning Repository [6]:
bupa, credit, pima, thyroid, vehicle and wdbc. A brief description of
them is presented in Appendix A. For the sake of simplicity, the features are
chosen as the original variables in the database zy, 2, . .., z, and their prod-
ucts, yielding monomials of degree up to g. However, other feature spaces, as
those proposed by (7], might give better classification rates. For the credit
database, only the eight quantitative variables where included.

Two types of costs are considered for the original variables. For the six
databases, costs are independently chosen, randomly in the interval (0, 1).
Moreover, for the databases bupa and pima there exists a file, donated by
Turney [66] and publicly available in the UCI repository [6], which contains
an example for possible costs for the measurement of the variables. The cost
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information comes from the Ontario Health Insurance Program’s fee schedule.
For these databases we have also considered such given costs. The remaining
features have zero cost. The partial order is given as follows: feature ¢ =
precedes all features of the form ¢(z) = zxq(z) for some monomial g(z) of
degree up to g — 1.

Data were standardized by subtracting its mean and dividing by its stan-
dard deviation. Then, from each database, a random sample with two thirds
of the objects is drawn and used as training sample /. The supported Pareto-
optimal solutions of Problem (5.12) were computed by the first phase of the
Two-Phase Method [70], described in Section 5.5. The non-supported Pareto-
optimal solutions can also be computed using formulation (5.11). The trade-
off parameter C is chosen to be equal to the number of objects in 1.

‘Bupa’, g=1. "Bupa’, g=1.
Random Costs. Random Costs.
100 e i i e 0.000155
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2 65 0.000148
¢ 7 ]
S 60 0.000147
5 0.000146 — ‘} —
S0 0.000145 -
0 05 1 15 2 25 3 0 0.5 1 15 2 25 3
cost cost

Fig. 5.1: Database ‘bupa’, g = 1, random costs

The results are plotted in Figures 5.1-5.10. In the right side of such fig-
ures, measurement costs of the Pareto-optimal rules (except for zero-cost
solutions) are plotted against the margin. Since only Pareto-optimal solu-
tions are considered, we see that, the higher the cost, the higher the margin.

This is the plot the final user will obtain in real-world applications, and
choose, with this information, one classification rule.

However, margin maximization is only a surrogate for the minimization
of the misclassification rate, which will remain unknown. In the left side of
Figures 5.1-5.10 we have plotted, for the Pareto-optimal classifiers obtained,
costs against the percentage of correctly classified objects in the testing sam-
ple. Figures show clearly that high correct classification rates correspond to
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high costs. Moreover, the trade-off between measurement costs and margin
translates into a similar trade-off between measurement costs and percentage
of correctly classified objects.

method bupa credit pima <thyroid vehicle wdbc
1-Nearest Neighbor 60.87 72.07 64.84 97.22 68.09 94.74
2-Nearest Neighbor 57.39 70.72  69.14 9444  68.09 94.21
3-Nearest Neighbor 60.00 73.87 7227 94.44 70.57 95.26
4-Nearest Neighbor 60.87 72.52  T72.27 93.06 71.28 95.26
5-Nearest Neighbor 62.61 72.07 7148 93.06 71.28 95.79
Classification Tree 67.83 72.97 70.31 93.06 66.67 90.53
linear SVM 72.17 77.48 74.22 95.83 81.21 95.79
polynomial SVM, g =2 | 66.96 65.32 38.28 94.44 78.37 94.21
polynomial SVM, g =3 | 59.13 69.37 66.41 91.67 79.79 93.68
polynomial SVM, g =4 | 58.26 59.01 62.89 93.06 76.24 89.47
polynomial SVM, g =5 | 57.39 75.23 67.19 94.44 74.11 91.58
rbf SVM 68.70 77.48 64.84 88.89 66.67 63.16

Tab. 5.2: Behavior of other methods

For comparative purposes, in Table 5.2, the percentage of correctly classi-
fied objects is shown for different classification methods, such as classification
trees [11], k—nearest neighbor classifier [22] and the classical SVM approach
as implemented in SVMlight [44]. For the databases with more than two
classes, mainly thyroid and vehicle, the one-against-one approach was
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used, as implemented in LIBSVM [20]. It can be observed that the clas-
sification behavior of the Pareto-optimal classifiers are among the best ones,
even for low classification costs.

5.8 Conclusions

In this chapter, we propose, for multigroup classification, a model that takes
into account measurement costs for the predictor variables. It is formulated
as a Biobjective Mixed Integer Program, for which a Two-Phase method is
proposed in order to find its Pareto-optimal solutions. Among such solu-
tions, it is up to the practitioner choosing one of them, taking into account
the margin, surrogate of the classification quality, and the cost. Our numeri-
cal examples show, for the supported Pareto-optimal solutions, the trade-off
between cost and margin, and also between cost and the classification quality
in a testing sample.

The method proposed in this chapter, can thus be seen as a procedure
that generates a series of classification rules with different costs, and ex-
pected good classification behavior supported by the theoretical generaliza-
tion properties of the margin maximizer (e.g. Vapnik [68]). Choosing one
classification rule among them can be done by the practitioner after plotting
the measurement costs against margins, as illustrated in the examples. To
have a better idea about the classification quality of the rules in new objects,
the practitioner could use a testing sample.

The choice of the L; norm allowed us to formulate the model as a Biob-
jective Mixed Integer Program, solved after addapting an already existing
tool: the Two-Phase method. Methods to find the Pareto-optimal solutions
when other norms, like the Euclidean, are of great interest, specially for its
ability to include other kinds of embedding or kernels.



6. FINAL REMARKS

The classification problem is one of the main tasks in Data Mining. In
this thesis we have shown the great potential of Mathematical Programming
tools, and in particular Linear Programming, to model and solve classification
problems where good classification quality is not the only aim, but other
properties are desirable for the obtained classifier.

When SVM is solved as a Linear Program, advanced techniques such as
Column Generation can be used to solve problems that otherwise will be
difficult to manage. For example, when all the cutoffs and all the interac-
tions between pair of variables are taken into account, the Linear Program
is too large to be solved by standard techniques. Moreover, in the Column
Generation algorithms proposed in Chapters 2 and 3, columns correspond to
features (defined by a variable with its cutoff, or a set of variables interacting).
Thus, the pricing problem that generate the columns actually generates such
features. The study of pricing problems that include statistical information
about the variables may be of interest and could accelerate the generation
process. For instance, we could use, measures used in Classification Trees to
decide the cutoff and variables for the split (like entropy, information gain,
Gini impurity), can be used alone, or together with the pricing problem, to
generate new columns or features.

We could also add constraints in the features we allow to be used. For
instance, in [7] they propose to use a set of features (they called them posi-
tive and negative patterns) which are similar to the presented in Chapter 3,
but imposing certain properties on how, when they are not combined with
the others, they classify objects in I. They then propose several ways to
combine these patterns, one of them is margin maximization. However, in
their model all the patterns should be at hand, whereas, by extending the
column generation model proposed in this thesis, patterns could be generated
as needed.

In Chapter 4, we formulate the problem of simultaneous maximization of
the margin on each class, defined independently to the other class. This prob-
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lem is useful to find classifiers when misclassifying an object is not equally
important depending on the class the object belongs to. Multicriteria op-
timization allow us to analyze this situation and characterize the classifiers
that can not be improved simultaneously in both classes. In the Euclidean
case, this result provides a new theoretical foundation for the use of the
widely used tool called ROC curve.

In addition, Linear Programming and Mixed Integer Programming tools
for exactly solving multicriteria problems have been widely developed, allow-
ing us to find a reduced set of good classifiers, in the sense that they can not
be improved simultaneously in all of the desired properties. The practitioner
has the opportunity of picking up one of them by trading off the different
aims. An example of this situation is presented in Chapter 5, with a model
in which cheap classifiers with good classification quality are sought.



APPENDIX



A. DATABASES DESCRIPTION

In this section we briefly describe the different databases, all of them are
publicly available at the UCI Machine Learning Repository [6], used in the
computational experiments and numerical examples, namely,

the Cylinder Bands Database, called here bands;

the BUPA Liver-disorders Database, called here bupa;
the Credit Screening Databases, called hére credit;
the Tonosphere Database, called here ionosphere;

the Pima Indians Diabetes Database, called here pima;
the Sonar Database, called here sonar;

the Thyroid Disease Database, called here thyroid;
the Vehicle Silhouettes Database, called here vehicle;

and the New Diagnostic Database contained in the Wisconsin Breast
Cancer Databases, called here wdbc.

For each database, the name of the file (as called in the database), the
total number of objects ||, the number of groups @, the number of variables
(all quantitative, after the preprocessing explained in Section 2.2) p and the
type of data are given in Table A.1. Under the column type, q denotes
that the database contains only numeric variables and m that it is a mixed
database with numeric, binary and qualitative variables.

In case of existence of missing values, as occurs in bands, credit, objects
with missing values have been removed from the database.



Database filename | 2] @ p type
bands bands.data | 365 2 56 m
bupa bupa.data | 345 2 5 q
credit crx.data | 666 2 43 m
ionosphere ionosphere.data | 351 2 34 q
pima pima-indians-diabetes.data | 768 2 8 q
sonar sonar.all-data | 208 2 60 q
thyroid new-thyroid | 215 3 5 q
vehicle vehicle.data | 846 4 18 q
wdbc wdbc.data | 569 2 30 q

Tab. A.1: Description of the databases
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