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ABSTRACT:  The advantages of the Sample Controlled Thermal Analysis (SCTA) for 

both the kinetic analysis of solid state reactions and the synthesis of materials are 

reviewed.  This method implies an intelligent control of the temperature by the solid 

state reaction under study in such a way that the reaction rate as a function of the time 

fits a profile previously defined by the user. It has been shown that SCTA has important 

advantages for discriminating the kinetic model of solid state reactions as compared 

with conventional rising temperature methods. Moreover, the advantages of SCTA 

methods for synthesizing materials with controlled texture and structure are analyzed. 

 

INTRODUCTION 

Smart temperature methods for studying chemical reactions imply controlling the 

temperature in such a way that the reaction itself follows a trend predefined by the user. 

The most widely used smart temperature control method is the Sample Controlled 

Thermal Analysis (SCTA), independently developed by Rouquerol [1-2] and the Paulik 

brothers [3], although the last authors named the method Quasi-isothermal Quasi-

isobaric Thermal Analysis as shown in the review of J. Simon [4]. This method involves 

controlling the temperature in such a way that the reaction rate is maintained constant 

all over the process. SCTA has been used by several authors for the synthesis of 

different materials, such as catalysts and sorbents with controlled porosity [5-23], 

structural ceramics [24-27] or electroceramics [28-31] and for binder burnout [32-34]. 

Besides it has many applications in analytical chemistry [35-38]. CRTA has been also 

extensively applied to the kinetic analysis of solid state reactions [39-62]. The scope of 

this work is to summarize the advantages of SCTA methods for performing the kinetic 

analysis of solid state reactions and for the synthesis of materials. 

 

THE SCTA METHOD 

The graphic representation proposed by Reading [63, 64], shown in Fig. 1, is very 

useful for remarking the advantages of SCTA with regards to conventional methods 

from the point of view of the experimental condition control. Fig. 1 represents the 

evolution of the temperature, mass change and partial pressure of the evolved gases as a 

function of the time for different experimental conditions. In general, the lower the 



reaction rate, the lower is the chance of appreciable temperature or pressure gradients 

within the sample bed. Therefore, Constant Rate Thermal Analysis (CRTA) provides an 

advantage in terms of maintaining constant the product gas pressure and the reaction 

rate at a strictly constant value. Thus, SCTA method reduces the pressure and 

temperature gradients within the sample and, therefore, minimizes the influence of heat 

and mass transfer phenomena on the forward reaction, leading to meaningful kinetic 

parameters necessary for an adequate kinetic analysis. On the other hand, the isothermal 

and conventional rising temperature methods would lead to significant changes in the 

reaction rate and in the product gas pressure, which generally cannot be controlled by 

the user and could modify the shape of the α-T plots leading to a meaningless 

interpretation of the reaction mechanism. The proper control that SCTA methods exert 

on both the atmosphere surrounding the sample and the real temperature of the sample 

bed explains that it has been frequently observed that the activation energies calculated 

by this method, for either reversible [45, 65-78] or irreversible [79] thermal 

decomposition of solids, are independent of the sample size in a wide range of starting 

sample mass, while a similar behaviour was not observed when rising temperature 

experiments were concerned. 

Fig. 2 illustrates, by way of example, a simple and universal SCTA device developed by 

us [80, 81] that could be used with any thermoanalytical instrument (TAI). It is 

constituted by a conventional PID temperature programmer, which has the 

thermocouple connected to the input socket, for setting preselected isothermal or rising 

temperature conditions. A second programmer is used for controlling the profile of the 

TAI output signal as a function of the time. The control of the reaction rate is achieved 

by connecting the control relay of the TAI programmer to the digital input of the 

temperature programmer. SCTA control is performed by selecting from the menu of the 

digital input that allows one to move the temperature program from a preset heating rate 

when the TAI control relay is closed to a preset cooling rate when the TAI control relay 

is open. In other words, the temperature increases if the output signal supplied by the 

TAI is higher than the programmed setpoint and decreases if it is lower than the 

setpoint. This device has been successfully attached to different analytical devices for 

SCTA control. Fig. 3 shows, by way of example [80], the change of weight and 

temperature as a function of the time obtained for the thermal decomposition of PVC 

under SCTA control at a previously selected constant decomposition rate rate C = 

1.2.10
-3

%. s
-1

. In this case the output corresponding to the total change of weight 

supplied by the electrobalance was used as input of the TAI signal programmer on the 

device outlined in Fig. 2. It can be observed that the plot of the reacted fraction as a 

function of the time fits a straight line with a slope equal to the previously selected 

constant decomposition rate. 

 

 

 



ADVANTAGES OF SCTA 

Discrimination of the kinetic model 

The reaction rate of a solid state reaction can be represented by the following equation: 

 
𝑑𝛼

𝑑𝑡
= 𝐴 exp (−

𝐸

𝑅𝑇
)𝑓(𝛼)       (1), 

where α is the reacted fraction, t is the time, dα/dtis the reaction rate, T is the 

temperature, A is the preexponential factor of Arrhenius,  E is the activation energy, R is 

the gas constant and f(α) is a function representing the kinetic model.   

Eq. (1) must be accomplished for whatever thermal pathway is followed for achieving a 

particular point of the triplet (dα/dt)-α-T. If the α-T (or t) plot is obtained at a constant 

decomposition rate (C = dα/dt), Eq. (1) can be rearranged, after taking logarithms, in the 

form: 

      −𝑙𝑛𝑓(𝛼) = 𝑙𝑛
𝐴

𝐶
−  

𝐸

𝑅𝑇
                     (2). 

The plot of the left hand side of Eq. (2) as a function of 1/T leads to a straight line, 

where the slope leads to the activation energy and the intercept to the pre-exponential 

factor of the Arrhenius expression of the process. It was previously shown from a 

theoretical analysis [62] that only the f(α) function that really describes the kinetic 

model obeyed by the reaction fulfil Eqn. (2), contrarily to what occurs in rising 

temperature experiments[82-93].  In this latter case, a number of different kinetic 

models can fit simultaneously a given α-T plots, making impossible to discriminate the 

kinetic model from a single experiment recorded under a linear heating program. In 

order to illustrate this behaviour it has been shown in Fig. 4 that a unique TG curve can 

be calculated by assuming different kinetic models: F1, A2 and A3, while these models 

can be unambiguously discriminated by CRTA as shown on the right side of Fig. 4 that 

represents the curves calculated from Eq. 1 for the models F1, A2 and A3 by assuming 

the same kinetic parameters used in Fig. 4.6 and a constant reaction rate, C = 5.10
-6

 s
-1

. 

This analysis leads to the conclusion that SCTA method is a more reliable approach 

than conventional non-isothermal methods both for discriminating the real kinetic 

model obeyed by solid state reactions and for obtaining correct values of their activation 

energies. 

The experimental results included in Fig. 5 for the thermal dehydroclorination of PVC 

supports the above conclusion. Thus, the SCTA α-T plot obtained from Fig. 3 is 

compared with a conventional thermogravimetric curve (TG) obtained for the thermal 

decomposition of PVC under a heating rate of 3,3.10
-2

 K.s
-1

.  It is observed that the 

SCTA experiment allows discriminating the two steps evolved in the 

dehydroclorination of PVC, while conventional TG cannot.  Moreover, the shape of the 

α-T plot clearly shows that the first step of the dehydroclorination takes place through 

an Avrami-Erofeev kinetic model. It has been shown [62,94] that in such a case the α-T 

plot starts with a rise of temperature until reaching the preset value of the reaction rate 

that is immediately followed by a decreasing of the temperature until reaching a given 



value, αm, of the reacted fraction (that depends on the value of the coefficient n of the 

Avrami-Erofeev equation), and the temperature rises again once the corresponding αm 

value is attained. Thus, a glance to the shape of the SCTA curve would be enough for 

envisioning the kinetic model of a solid state reaction contrarily what occurs with the 

TG curves have always led to sigmoidal shaped α-T plot, independently of the reaction 

mechanism obeyed by the reaction. 

 

Synthesis of materials with controlled texture and structure 
 

The SCTA methods allow a precise control of the reaction rate, what implies a direct or 

indirect control of the partial pressure of the gases generated or consumed in the 

reaction and the associated heat evolution rate. This temperature control allows both 

minimizing the heat and mass transfer phenomena and performing a very precise control 

of the atmosphere surrounding the samples.These features have been exploited for 

developing materials with controlled porosity and structure for being used either as 

adsorbents or catalysts [5,9,21-23, 95-100].  

The universal SCTA control device outlined in Fig. 2  has been used for controlling 

both the reaction rate and the partial pressure during the thermal decomposition under 

vacuum of precursors of catalysts and ferroelectric materials. The output signal of the 

pirani or penning was used as TAI input control signal at the time that the 

decomposition rate was monitored through a proper control of the pumping rate of the 

vacuum system. Thus, both the partial pressure of the gases generated in the reaction 

and the thermal decomposition rate were simultaneously controlled. The results 

obtained by using the described SCTA vacuum system for the synthesis of - Fe2O3 

(hematite) from the thermal decomposition under vacuum of -FeO(OH) (goethite) 

samples with acicular shaped particles [19,20] are reported as way of example. Slit pore 

channels oriented along the c-lattice axis (the long axis of the particle) were formed at 

very low water vapour pressures as shown in Fig. 6. Isolated round pores were 

progressively formed as far as the water vapour pressure was increased at the time that 

its size was increasing as a function of the pressure as Fig. 6 shows. A   diminution of 

the water vapour pressure during the thermal decomposition of goethite strongly 

promoted the increase of the specific surface of the hematite obtained as final product. 

A similar behaviour was reported for the textural properties of the -Fe2O3 (maghemite) 

obtained by controlling both the rate and the water vapour pressure during the thermal 

decomposition of the -FeOOH (lepidocrocite) precursor by means of the SCRT method 

[18]. Very recently, SCTA has been used for enhancing the long-term CO2 capture of 

CaO at Ca-looping conditions. Thus it has been shown that CaOregenerability at 

conditions close tothe Calcium-looping (CaL) process is improved by means of a 

relativelyshort-timed preheating treatment and carried out at a relativelylow 

temperature, which is based on SCTA in an air/CO2 atmosphere [100] 
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Captions of figures. 

Figure 1.Trend of temperature, mass and pressure (and/or d/dt) during a thermal 

decomposition reaction for different methods. 

Figure 2. Scheme of the universal SCTA device to be used for controlling the reaction 

temperature of any  thermoanalytical device. 

Figure 3. SCTA plot obtained for the dehydroclorination of PVC at a constant 

decomposition rate C =5.10
-4

 s
-1

 (5,0.10
-4

 mg.s
-1

) 

Figure 4. A single TG curve at a heating rate of 1 ºC/min for three different models: F1: 

Ea= 172.3 kJ mol
-1

 and A = 2.30 10
13

 s
-1

; A2: Ea= 118.1 kJ mol
-1

 and A = 1.24 10
8
 s

¬1
; 

A3: Ea= 100.0 kJ mol
-1

 and A = 1.66 10
6
 s

-1
 (left). Discrimination between the three 

kinetic models (F1, A2, A3) of Fig. 4.6 by means of the SCTA method (right). 

 

Figure 5. A comparison of the α-T plot obtained from the SCTA experimental data 

included in Figure 3 with a TG  recorded for the dehydroclorination of PVC at a heating 

rate β = 3,3.10
-2

 K.s
-1 

 

Figure 6. TEM micrographs corresponding to hematite sample prepared by thermal 

decomposition of goethite under SCTA conditions:  P= 5.5x10
-5

 mbar andC = 1,6.10
-5

 s
-

1
 (left) and P=8.3 mbar and C= 1,2.10

-5
 s

-1
. 

 

 


