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a b s t r a c t 

The integration of symbolic reasoning systems based on logic and connectionist systems based on the

functioning of living neurons is a vivid research area in computer science. In the literature, one can find

many efforts where different reasoning systems based on different logics are linked to classic artificial

neural networks. In this paper, we study the relation between the semantics of reasoning systems based

on propositional logic and the connectionist model in the framework of membrane computing, namely,

spiking neural P systems. We prove that the fixed point semantics of deductive databases without nega- 

tion can be implemented in the spiking neural P systems model and such a model can also deal with

negation if it is endowed with anti-spikes and annihilation rules.
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. Introduction

Searching new ways for automating reasoning is one of the

ngines in computer science. In the last decades, the two main

esearch areas devoted to this aim, namely, connectionist systems

ns logic-based systems, have explored very different techniques,

pproaches and representation systems. 

On the one hand, logic-based systems are based on a symbolic

epresentation of the knowledge and derivation rules which allow

o obtain new formulae from previous ones. Many effort s have

one in order to prove the correctness and soundness of the rules

epending on the expressiveness of the language and the chosen

emantics. 

On the other hand, the traditional connectionist systems used

o handle automatic reasoning are based on artificial neural nets

nspired in the network of biological neurons in a human brain.

hese nets have been also widely studied and provide a point of

iew where the data is encoded in real numbers and the synapses

etween neurons determine the flow of information. 

The integration of both paradigms is a vivid area in artificial

ntelligence (see, e.g., [1–3] ). In the framework of membrane

omputing, several studies have been presented where P systems

re used for representing logic-based information and performing

easoning by the application of bio-inspired rules (see [4,5] ).

hese papers study approaches based on cell-like models, as P

ystems with active membranes, and deal with procedural aspects
∗ Corresponding author.

E-mail addresses: sbdani@us.es (D. Díaz-Pernil), magutier@us.es (M.A. Gutiérrez-

aranjo).
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f the computation. The approach in this paper is different in both

enses. 

On the one hand, the connectionist model of P systems is

onsidered, i.e, the model of P system inspired by the neurophys-

ological behavior of neurons sending electrical impulses along

xons to other neurons (the so-called spiking neural P systems

r SN P systems for short). On the second hand, we consider the

emantics of propositional deductive databases in order to show

ow SN P systems can deal with logic-based representing and

easoning systems. 

One of the key features of the integrate-and-fire formal spiking

euron models [6] (and, in particular, of the SN P systems) is the

se of the spikes as support of the information. Such spikes are

hort electrical pulses (also called action potentials) between neu-

ons and can be observed by placing a fine electrode close to the

oma or axon of a neuron. From the theoretical side, it is crucial to

onsider that all the biological spikes of an alive biological neuron

ook alike. This means that we can consider a bio-inspired binary

ode which can be used to formalize logic-based semantics: the

mission of one spike will be interpreted as true and the absence

f spikes will be interpreted as false . 

As we will show below, SN P systems provide a natural way

or dealing with this binary behavior in a connectionist model. SN

 systems suffice for dealing with the semantics of propositional

ogic systems which do not use negation. The semantics of reason-

ng systems with negated information, even in the propositional

ase, needs to add new elements for dealing with the difference

etween negated information and absence of information (see [7] ).

The literature of SN P system provides an efficient tool for

ealing with such negated information: the use of anti-spikes and
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2 
annihilation rules. SN P systems with anti-spikes were presented

in [8] as a formalization of the idea of inhibiting in some way

the communication between neurons. Such extended model has

been widely studied (see, e.g., [9–11] ) and it has inspired the use

of negative information (see, e.g., [12–14] ). Recently, the study

of SN P systems has been extended with different features, see

e.g., SN P systems with thresholds [15] , SN P systems with request

rules [16] , SN P systems with structural plasticity [17] or cell-like SN

P systems [18] . Among the recent contributions, the approaches

shown in [19–21] deserve to be cited. In such papers, the in-

teraction between reasoning systems and membrane computing

is also studied. Instead of dealing with propositional logic, the

authors consider fuzzy logic and the applications focus on fuzzy

representation of the knowledge and fault diagnosis. 

The main result of this paper 1 is to prove that given a reason-

ing system based on propositional logic it is possible to find an SN

P system with the same declarative semantics. We prove it in both

cases: when the reasoning system involves negation and when it

does not. A declarative semantics for a rule-based propositional

system is usually given by selecting models which satisfy certain

properties. This choice is often described by an operator mapping

interpretations to interpretations. In this paper we consider the

so-called immediate consequence operator due to van Emden and

Kowalski [22] . It is well-known that for a rule based system

without negation KB , such operator is order continuous and its

least fix point coincides with the least model of KB . We adapt the

definition of the immediate consequence operator to a restricted

form of SN P system and we prove that a least fix point, and

hence a least model is obtained for the given reasoning system.

The monotonicity is lost if negation is allowed, but even in this

case, the immediate consequence operator can be computed with

membrane computing techniques. 

The paper is organized as follows: firstly, we recall some

aspects about SN P systems and the semantics of deductive

databases. In Section 3 we prove that standard SN P systems can

deal with the semantics of deductive databases if they do not

involve negation. In Section 4 it is shown that endowing SN P

systems with anti-spikes and annihilation, then such devices can

deal with the semantics of deductive databases with negation.

Finally, some conclusions and topics for further discussion are

provided in the last section. 

2. Preliminaries

We assume the reader to be familiar with basic elements about

membrane computing and the semantics of rule-based systems.

Next, we briefly recall some definitions. We refer to [23] for a com-

prehensive presentation of the former and [7,24,25] for the latter. 

2.1. Spiking neural P systems 

SN P systems were introduced in [26] with the aim of incor-

porating membrane computing ideas with spike-based neuron

models. It is a class of distributed and parallel computing devices,

inspired by the neurophysiological behavior of neurons sending

electrical impulses ( spikes ) along axons to other neurons. 

In SN P systems the cells (also called neurons ) are placed in the

nodes of a directed graph, called the synapse graph . The contents

of each neuron consist of a number of copies of a single object

type, called the spike . Every cell may also contain a number of

firing and forgetting rules. Firing rules allow a neuron to send

information to other neurons in the form of spikes which are
1 A preliminary version of this paper appeared in the Proceedings of the 14th 

Brainstorming Week on Membrane Computing (BWMC2016).

f

c

p

ccumulated at the target cell. The applicability of each rule is

etermined by checking the contents of the neuron against a

egular set associated with the rule. In each time unit, if a neuron

an use one of its rules, then one of such rules must be used.

f two or more rules could be applied, then only one of them

s non-deterministically chosen. Thus, the rules are used in the

equential manner in each neuron, but neurons function in parallel

ith each other. As usually happens in membrane computing, a

lobal clock is assumed, marking the time for the whole system,

nd hence the functioning of the system is synchronized. 

Formally, an SN P system of the degree m ≥ 1 is a construct 2 

= (O, σ1 , σ2 , . . . , σm 

, syn )

here: 

1. O = { a } is the singleton alphabet ( a is called spike );

2. σ1 , σ2 , . . . , σm 

are neurons , of the form σi = (n i , R i ) , 1 ≤ i ≤ m ,

where:

(a) n i ≥ 0 is the initial number of spikes contained in σ i ;

(b) R i is a finite set of rules of the following two forms:

(1) firing rules E / a p → a q , where E is a regular expression

over a and p, q ≥ 1 are integer numbers 3 ;

(2) forgetting rules a s → λ, with s an integer number such

that s ≥ 1;

3. syn ⊆ { 1 , 2 , . . . , m } × { 1 , 2 , . . . , m } , with (i, i ) �∈ syn for 1 ≤ i ≤ m ,

is the directed graph of synapses between neurons.

ules of type (1) are firing rules, and they are applied as follows.

f the neuron σ i contains k spikes, k ≥ p , and a k belongs to the

anguage L ( E ) associated to the regular expression E , then the

ule E / a p → a q can be applied. The application of this rule means

emoving p spikes (thus only k − p remain in σ i ), the neuron

s fired, and it produces q spikes which are sent immediately

o all neurons σ j such that ( i, j ) ∈ syn . The rules of type (2) are

orgetting rules and they are applied as follows: if the neuron σ i 

ontains exactly s spikes, then the rule a s → λ from R i can be used,

eaning that all s spikes are removed from σ i . If a rule E / a p → a q 

f type (1) has E = a p , then we will write it in the simplified form

 

p → a q . In each time unit, if a neuron σ i can use one of its rules,

hen a rule from R i must be used. Let us remark that it is possible

hat two or more rules can be applied in a neuron, and in that

ase only one of them is non-deterministically chosen regardless

ts type.. The j th configuration of the system is described by a

ector C j = (t 1 , . . . , t m 

) where t k represents the number of spikes

t the neuron σ k in such configuration. The initial configuration is

 0 = (n 1 , n 2 , . . . , n m 

) . Using the rules as described above, one can

efine transitions among configurations. Any sequence of transi-

ions starting in the initial configuration is called a computation. A

omputation halts if it reaches a configuration where no rule can

e used. Generally, a computation may not halt. If it halts, the last

onfiguration is called a halting configuration. 

A useful extension to the model presented above was intro-

uced by adding anti-spikes as a formalization of the idea of

nhibiting in some way the communication between neurons (see

8] ). This extension leads to the definition of SN P systems with

nti-spikes . In this extension a further object, a , is added to the

alphabet O , and the spiking and forgetting rules are of the forms

 / b p → b ′ q and b p → λ where E is a regular expression over a or

ver a , while b, b ′ ∈ { a, a } and p, q ≥ 1. As above, if L (E) = b p , then

e write the first rule as b p → b ′ q . The rules are used as in a usual

N P system, with the additional fact that a and a cannot stay
We provide a definition without delays, input or output neurons because these

eatures are not used in this paper.
3 In the general case, the restriction p ≥ q is imposed. In this paper, we will also 

onsider rules E / a → a 2 . A more complex design of our solutions satisfying p ≥ q is 

ossible, but we prefer to include rules E / a → a 2 for the sake of a simpler design. 
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T  
ogether: if in a neuron there are either objects a or objects a ,

nd further objects of either type (maybe both) arrive from other

eurons, such that we end with a r and a s inside, then immediately

n annihilating rule of the form a a → λ is applied in a maximal

anner, so that either a r−s s or a s −r remain, provided that r ≥ s

r s ≥ r , respectively. The mutual annihilation of spikes and anti-

pikes takes no time, so that the neuron always contains either

nly spikes or anti-spikes. The j th configuration of the system is

escribed by a vector C j = (t 1 , . . . , t m 

) . If t i ≥ 0, it denotes that

he neuron σ i has t i spikes at the configuration C j . If t i = −s i 
ith s i ≥ 1, it denotes that the neuron σ i has s i anti-spikes at the

onfiguration C j . 

.2. Semantics of rule-based deductive databases 

Given two pieces of knowledge V and W , expressed in some

anguage, the rule V → W is usually considered as a causal relation

etween V and W . In this paper, we only consider propositional

ogic for representing the knowledge. Given a set of propositional

ariables { p 1 , . . . , p n } , a literal is a variable or a negated variable

nd a rule is a formula L 1 ∧ · · · ∧ L n → A, where n ≥ 0, A is a vari-

ble and L 1 , . . . , L n are literals. The variable A is called the head of

he rule and the conjunction of literals L 1 ∧ · · · ∧ L n is the body of

he rule. If L i = p i , it is said that p i occurs positively in the body of

he rule. If L i = ¬ p i , it is said that p i occurs negatively in the body

f the rule. If n = 0 , it is said that the body of the rule is empty. If

here do not exist negated variables in the body of a rule, the rule

s called definite . A finite set of rules KB is a deductive database

nd it is said that it is a definite deductive database if all the rules

n KB are definite. An interpretation I is a mapping from the set of

ariables { p 1 , . . . , p n } to the set {0, 1}. As usual, we will represent

n interpretation I as a vector (i 1 , . . . , i n ) with I(p k ) = i k ∈ { 0 , 1 }
or k ∈ { 1 , . . . , n } . The set of all the possible interpretations for

 set of n variables will be denoted by 2 n . Given two inter-

retations I 1 and I 2 , I 1 ⊆ I 2 if for all k ∈ { 1 , . . . , n } , I 1 (p k ) = 1

mplies I 2 (p k ) = 1 . We will denote by I ∅ the interpretation that

aps to 0 every variable, I ∅ = (0 , . . . , 0) . The interpretation I is

xtended in the usual way, I(¬ p i ) = 1 − I(p i ) for a variable p i ;

(L 1 ∧ · · · ∧ L n ) = min { I(L 1 ) , . . . , I(L n ) } and for a rule 4

(L 1 ∧ · · · ∧ L n → A ) = 

{
0 if I(L 1 ∧ · · · ∧ L n ) = 1 and I(A ) = 0 

1 otherwise 

An interpretation I is a model for a deductive database KB if

(R ) = 1 for all R ∈ KB . Next, we recall the propositional version

f the immediate consequence operator which was introduced by

an Emden and Kowalski [22] . 

efinition 1. Let KB be a deductive database on a set of vari-

bles { p 1 , . . . , p n } . The immediate consequence operator of KB is

he mapping T KB : 2 
n → 2 n such that for all interpretation I, T KB ( I ) is

n interpretation 

 KB (I) : { p 1 , . . . , p n } → { 0 , 1 }
uch that, for k ∈ { 1 , . . . , n } , T KB (I)(p k ) = 1 if there exists a rule

 1 ∧ · · · ∧ L n → p k in KB such that I(L 1 ∧ · · · ∧ L n ) = 1 ; otherwise,

 KB (I)(p k ) = 0 . 

The importance of the immediate consequence operator is

hown in the following theorem (see [27] ). 

heorem 1. An interpretation I is a model of KB if and only if T KB ( I )

I. 

Since the image of an interpretation is an interpretation, the

mmediate consequence operator can be iteratively applied. 
4 Let us remark that, from the definition, if n = 0 , I(L 1 ∧ · · · ∧ L n ) = 1 and, hence, 

or a rule with an empty body, we have I(→ A ) = 1 if and only if I(A ) = 1 . 

t

efinition 2. Let KB be a deductive database and T KB its immedi-

te consequence operator. The mapping T KB ↑ : N → 2 n is defined

s follows: T KB ↑ 0 = I ∅ and T KB ↑ n = T KB ↑ (T KB ↑ (n − 1)) if n > 0.

n the limit, it is also considered 

 KB ↑ ω =
⋃ 

k ≥0

T KB ↑ k

The next theorem is a well-known result which relates the

mmediate consequence operator of a definite deductive database

ith its least model of a definite deductive database (see [25] ). 

heorem 2. Let KB be a definite deductive database. The following

esult hold 

• T KB ↑ ω is a model of KB

• If I is a model of KB, then T KB ↑ ω ⊆ I

xample 1. Let us consider the following deductive database KB

n the set of variables � = { p 1 , p 2 , p 3 , p 4 }
 1 ≡ → p 1 

 2 ≡ p 1 → p 2 

 3 ≡ p 1 ∧ p 2 → p 3 

 4 ≡ p 3 → p 4 

 5 ≡ p 2 → p 4 

nd let us consider the interpretation I : � → {0, 1} such that

(p 1 ) = 1 , I(p 2 ) = 0 , I(p 3 ) = 0 and I(p 4 ) = 0 . Such interpretation

an be represented as I = (1 , 0 , 0 , 0) . The truth assignment of

his interpretation to the rules is I(R 1 ) = 1 , I(R 2 ) = 0 , I(R 3 ) = 1 ,

(R 4 ) = 1 , I(R 5 ) = 1 . Since I(R 2 ) = 0 , the interpretation I is not a

odel for KB . The application of the immediate consequence op-

rator produces T KB (I) = (1 , 1 , 0 , 0) . We observe that T KB (I) �⊆ I and

ence, by Theorem 1 , we can also conclude that I is not a model for

B . Finally, if we consider I ∅ = (0 , 0 , 0 , 0) , the following interpre-

ations are obtained by the iterative application of the immediate

onsequence operator 

T KB ↑ 0 = I∅ = (0 , 0 , 0 , 0)

T KB ↑ 1 = T KB (T KB ↑ 0) = (1 , 0 , 0 , 0)

T KB ↑ 2 = T KB (T KB ↑ 1) = (1 , 1 , 0 , 0)

T KB ↑ 3 = T KB (T KB ↑ 2) = (1 , 1 , 1 , 1)

In this case T KB ↑ 3 is a fix point for the immediate consequence

perator and a model for the definite deductive database KB . 

. Semantics of deductive databases with SN P systems

The semantics of deductive databases deals with interpreta-

ions, i.e., with mappings from the set of variables into the set

0, 1} (which stand for false and true ) and try to characterize

hich of these interpretations make true a whole deductive

atabase which, from the practical side, may contain hundreds

f variables and thousand of rules. The immediate consequence

perator provides a tool for dealing with this problem and pro-

ides a way to characterize such models. In this section we will

xplore how this problem can be studied in the framework of SN

 systems and prove that the immediate consequence operator

an be implemented in this model and therefore, membrane

omputing provides a new theoretical framework for dealing with

he semantics of deductive databases. 

Our main result for definite deductive databases claims that SN

 systems can compute the immediate consequence operator and

ence, its least model. 

heorem 3. Given a definite deductive database KB and an interpre-

ation I, an SN P system can be constructed such that 

(a) It computes the immediate consequence operator T KB ( I ) .
(b) It computes the least model for KB in a finite number of steps.
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5 With a more complex design of the SN P system, it may be considered that

these neurons do not contain spikes at the initial configuration and the vector

I = (i 1 , . . . , i n ) is provided as a spike train via an input neuron, but in this paper 

we have chosen a simpler design and focus on the computation of the immediate

consequence operator. An analogous comment fits for the computed output.
Proof. Let us consider a deductive database KB , let { p 1 . . . , p n } be

the propositional variables and { r 1 , . . . , r k } be the rules of KB . Given

a variable p i , we will denote by h i the number of rules which have

p i in the head and given a rule r j , we will denote by b j the number

of variables in its body. The SN P systems of degree 2 n + k + 3 

�KB = (O, σ1 , σ2 , . . . , σ2 n + k +2 , syn ) 

can be constructed as follows: 

• O = { a } ;
• σ j = (0 , { a → λ} ) for j ∈ { 1 , . . . n }
• σn + j = (i j , R j ) , j ∈ { 1 , . . . , n } , where i j = I(p j ) and R j is the set

of h j rules R j = { a k → a | k ∈ { 1 , . . . . . . , h j }}
• σ2 n + j = (0 , R j ) , j ∈ { 1 , . . . . . . , k } , where R j is one of the follow-

ing set of rules 

• R j = { a b j → a } ∪ { a l → λ| l ∈ { 1 , . . . , b j − 1 } } if b j > 0

• R j = { a → a } if b j = 0 .

For a better understanding, the neurons σ2 n + k +1 and σ2 n + k +2 

will be denoted by σ G and σ T , respectively. 

• σG = (0 , { a → a } )
• σT = (1 , { a → a } )
• syn = { (n + i, i ) | i ∈ { 1 , . . . , n }}

∪ 

{
(n + i, 2 n + j) | i ∈ { 1 , . . . , n } , j ∈ { 1 , . . . , k } 

and p i is a variable in the body of r j 

}

∪ 

{
(2 n + j, n + i ) | i ∈ { 1 , . . . , n } , j ∈ { 1 , . . . , k } 

and p i is the variable in the head of r j 

}
∪ {( G, T ), ( T, G )}

∪ 

{
(T , 2 n + j) | j ∈ { 1 , . . . , k } 

and r j is a rule with empty body 

}
�

Before going on with the proof, let us note that the construc-

tion of this SN P system is illustrated in the Example 2 . The next

remarks will be useful: 

Remark 1. For all t ≥ 0, in the 2 t th configuration C 2 t the neuron

σ T contains exactly one spike and the neuron σ G does not contain

spikes. 

Proof. In the initial configuration C 0 , σ T contains 1 spike and σ G 

does not contain spikes. By induction, let us suppose that in the

C 2 t the neuron σ T contains exactly one spike and σ G does not con-

tain spikes. Since the unique incoming synapse in σ T comes from

σ G and the unique incoming synapse in σ G comes from σ T and

in both neurons occurs the rule a → a , then in C 2 t+1 the neuron

σ G contains exactly spike and σ T does not contain spikes and fi-

nally, in C 2 t+2 the neuron σ T contains exactly spike and σ G does

not contain spikes. �

Remark 2. For all t ≥ 0 the following results hold: 

• For all p ∈ { 1 , . . . , k } the neuron σ2 n + p does not contain spikes

in the configuration C 2 t

• For all q ∈ { 1 , . . . , n } , the neuron σn + q does not contain spikes

in the configuration C 2 t+1

Proof. In the initial configuration C 0 , for all p ∈ { 1 , . . . , k } , the

neuron σ2 n + p does not contain spikes and each neuron σn + q con-

tain, at most, one spike. Such spike is consumed by the application

of the rule a → a and, since all the neurons with synapse to σn + q 
do not contain spikes at C 0 , we conclude that at the configuration

C 1 , the neurons σn + q do not contain spikes. 

By induction, let us suppose that in C 2 t , for all p ∈ { 1 , . . . , k } ,
the neuron σ2 n + p does not contain spikes and for all q ∈ { 1 , . . . , n } ,
the neuron σn + q does not contain spikes in the configuration

C 2 t+1 . According to the construction, the number of incoming
ynapses in each neuron σ2 n + j is b j if b j > 1 and 1 if b j = 0 . Such

ynapses come from neurons that send (at most) one spike in

ach computational step, so in C 2 t+1 , the number of spikes in

he neuron σ2 n + j is, at most, b j if b j > 1 and 1 if b j = 0 . All these

pikes are consumed by the corresponding rules. Moreover, at

 2 t+1 , all the neurons with outgoing synapses to σ2 n + p do not

ontain spikes, so we conclude that at C 2 t+2 , for all j ∈ { 1 , . . . , k } ,
the neuron σ2 n + j does not contain spikes. We focus now on the

eurons σn + q with q ∈ { 1 , . . . , n } . By induction, we assume that

hey do not contain spikes in the configuration C 2 t+1 . Each neuron

n + q can receive at most h q , since there are h q incoming synapses

nd the corresponding neuron sends, at most, one spike. Hence, at

 2 t+2 , σn + q has, at most, h q spikes. All of them are consumed by

he corresponding rule and, since all the neurons which can send

pikes to σn + q do not contain spikes at C 2 t+2 , we conclude that,

or all q ∈ { 1 , . . . , n } , the neuron σn + q does not contain spikes in

he configuration C 2 t+3 . �

emark 3. For all q ∈ { 1 , . . . , n } , the neuron σ q does not contain

pikes in the configuration C 2 t . 

roof. The result holds in the initial configuration. For C 2 t with

 > 0 it suffices to check that, as claimed in Remark 2, for all

 ∈ { 1 , . . . , n } , the neuron σn + q does not contain spikes in the con-

guration C 2 t+1 and each σ q receives at most one spike in each

omputation step from the corresponding σn + q . Therefore, in each

onfiguration C 2 t+1 , each neuron σ q contains, at most, one spike.

ince such spike is consumed by the rule a → λ and no new spike

rrives, then the neuron σ q does not contain spikes in the config-

ration C 2 t . 

Before going on with the proof, it is necessary to formalize

hat means that the SN P system computes the immediate con-

equence operator T KB . Given a deductive database KB on a set of

ariables { p 1 , . . . , p n } , an interpretation on KB can be represented

as a vector I = (i 1 , . . . , i n ) with i j ∈ {0, 1} for j ∈ { 1 , . . . , n } . Let

s consider that such values i j ∈ {0, 1} represent the number of

pikes placed in the corresponding neuron σn + j at the initial 5 

onfiguration C 0 . We will consider that the computed output for

uch interpretation is encoded in the number of spikes in the

eurons σ1 , . . . , σn in the configuration C 3 . 

The main results of the theorem can be obtained from the

ollowing technical remark. �

emark 4. Let I = (i 1 , . . . , i n ) be an interpretation for KB and let

 = (s 1 , . . . , s n ) be a vector with the following properties. For all

j ∈ { 1 , . . . , n } 
• If i j = 0 , then s j = 0 .

• If i j � = 0 , then s j ∈ { 1 , . . . , h j }
Let us suppose that at the configuration C 2 t the neuron σn + j

ontains exactly s j spikes. Then, the interpretation obtained by

pplying the immediate consequence operator T KB to the interpre-

ation I, T KB ( I ) is (q 1 , . . . , q n ) where q j , j ∈ { 1 , . . . , n } , is the number

of spikes of the neuron σ j in the configuration C 2 t+3 . 

roof. Firstly, let us consider k ∈ { 1 , . . . , n } and T KB (I)(p k ) = 1 . Let

s prove that at the configuration C 2 t+3 there is exactly one spike

n the neuron σ k . 

If T KB (I)(p k ) = 1 , then there exists at least one rule

 l ≡ L d 1 ∧ · · · ∧ L d l → p k in KB such that I(L d 1 ∧ · · · ∧ L d l ) = 1 . �
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Fig. 1. Graphical representation of the synapses of the SN P system of Example 1 .
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6 In this section we will use −1 (instead of 0) to denote the value false . In 

this way, an interpretation will be represented by a vector I = (i 1 , . . . , i n ) with 

i j ∈ { 1 , −1 } . 
Case 1: Let us consider that there is only one such rule r l and

he body of r l is empty. By construction, the neuron σ2 n + l has only

ne incoming synapse from neuron σ T ; the neuron σn + j contains

xactly s j spikes, j ∈ { 1 , . . . , n } and s j ∈ { 1 , . . . , h j } ; and according

o the previous remarks: 

• In C 2 t the neuron σ T contains exactly one spike.

• For all p ∈ { 1 , . . . , k } the neuron σ2 n + p does not contain spikes

in the configuration C 2 t

• For all q ∈ { 1 , . . . , n } , the neuron σ q does not contain spikes in

the configuration C 2 t .

In these conditions, the corresponding rules in σ T and σn + k are

red and in C 2 t+1 , the neuron σ2 n + k contains one spike. In C 2 t+2 ,

he neuron σn + k contains one spike and σ k does not contain

pikes. Finally, in the next step σn + k sends one spike to σ k , so, in

 2 t+3 , σ k contain one spike. 

Case 2: Let us now consider that there exists r l ≡ L d 1 ∧ . . . L d l →
p k in KB such that I(L d 1 ∧ · · · ∧ L d l ) = 1 and d l > 0. We suppose

hat I(L d 1 ∧ · · · ∧ L d l ) = 1 and, since KB is definite, this means that

(L d 1 ) = · · · = I(L d l ) = 1 and therefore, in C 2 t , the neuron σn + d j
ontains s d j spikes, with s d j ∈ { 1 , . . . , h d j } . All these neurons fire

he corresponding rule, and σ2 n + k has at C 2 t+1 exactly b k spikes

since all the incoming synapses send the corresponding spike).

he rule a b k → a is fired and in C 2 t+2 the neuron σn + k contains

t least one spike. It may have more spikes depending on the

xistence of other rules with p k in the head, but in any case, the

umber of spikes is between 1 and h k . The corresponding rule

res and the neuron σ k contains one spike in C 2 t+3 . 

Finally, we prove the statements claimed by the theorem: 

(a) The SN P system computes the immediate consequence

perator T KB ( I ). 

roof. It is directly obtained from Remark 4 . Let us note that one

f the possible vectors S = (s 1 , . . . , s n ) obtained from the interpre-

ation I is exactly the same interpretation I = (i 1 , . . . , i n ) . If we also

onsider the case when t = 0 , we have proved that from the initial

onfiguration C 0 where i k represents the number of spikes in the

euron σn + k , then the configuration C 3 encodes T KB ( I ). �

(b) The SN P system computes the least model for KB in a finite

umber of steps. 

roof. Let us consider the empty interpretation as the initial one,

.e., T KB ↑ 0 = I ∅ . We will prove that

(∀ z ≥ 1) T KB ↑ z = C 2 z+1 [1 , . . . , n ]

here C 2 z+1 [1 , . . . , n ] is the vector whose components are the

pikes on the neurons σ1 , . . . , σn in the configuration C 2 z+1 . We

ill prove it by induction. �

For z = 1 , we have to prove that T KB ↑ 1 = T KB (T KB ↑ 0) =
 KB (I ∅ ) is the vector whose components are the spikes on the neu-

ons σ1 , . . . , σn in the configuration C 3 . The result holds from Re-

ark 4 and it has been proved in the statement (a) of the theorem.

y induction, let us consider now that T KB ↑ z = C 2 z+1 [1 , . . . , n ]

olds. As previously stated, this means that in the previous

onfiguration C 2 z the spikes in the neurons σn +1 , . . . , σ2 n can

e represented as a vector S = (s 1 , . . . , s n ) be a vector with the

roperties claimed in Remark 4 , namely, if the neuron σ j has no

pikes in C 2 z+1 , then s j = 0 and, if the neuron σ j has spikes in

 2 z+1 , then s j ∈ { 1 , . . . , h j } . Hence, according to Remark 4 , three

omputational steps after C 2 z , T KB (C 2 z+1 [1 , . . . , n ]) is computed 

 KB ↑ z + 1 = T KB (T KB ↑ z) = T KB (C 2 z+1 [1 , . . . , n ]) = C 2 z+3 [1 , . . . , n ]

inally, it is well-known that for a definite database KB ,

 KB ↑ z ⊆ T KB ↑ z + 1 and, since the KB has a finite number of

ariables and a finite number of rules, then there exist n ∈ N such

hat T ↑ n ⊆ T ↑ ω and hence, T ↑ n is a model for KB . �
KB KB KB 
xample 2. Let us consider the deductive database from

xample 1 . The SN P system associated with this KB and the

nterpretation I ∅ is 

= (O, σ1 , σ2 , . . . , σ13 , σG , σT , syn )

nd its graphical representation is shown in Fig. 1 . In such SN P

ystem O = { a } , 

1 = (0 , { r 1 , 1 ≡ a → a } ) σ8 = 

(
0 , 

{
r 8 , 1 ≡ a → a 

r 8 , 2 ≡ a 2 → a 

})
2 = (0 , { r 2 , 1 ≡ a → a } ) σ9 = (0 , { r 9 , 1 ≡ a → a } )
3 = (0 , { r 3 , 1 ≡ a → a } ) σ10 = (0 , { r 10 , 1 ≡ a → a } ) 
4 = (0 , { r 4 , 1 ≡ a → a } ) σ11 = 

(
0 , 

{
r 11 , 1 ≡ a → λ
r 11 , 2 ≡ a 2 → a 

})
5 = (0 , { r 5 , 1 ≡ a → a } ) σ12 = (0 , { r 12 , 1 ≡ a → a } )
6 = (0 , { r 6 , 1 ≡ a → a } ) σ13 = (0 , { r 13 , 1 ≡ a → a } )
7 = (0 , { r 7 , 1 ≡ a → a } )

σG = (0 , { r G, 1 ≡ a → a } and σT = (0 , { r T, 1 ≡ a → a } with the

ynapses 

yn = 

{ 

(5 , 1) , (6 , 2) , (7 , 3) , (8 , 4) , (5 , 10) , (5 , 11) , 
(6 , 11) , (6 , 13) , (7 , 12) , (9 , 5) , (10 , 6) , (11 , 7) , 
(12 , 8) , (13 , 8) , (G, T ) , (T , G ) , (T , 9) 

}

The first steps of the computation are shown in Table 1 . 

Let us remark that 

T KB ↑ 0 = C 1 [1 , . . . , 4] = (0 , 0 , 0 , 0)

T KB ↑ 1 = C 3 [1 , . . . , 4] = (1 , 0 , 0 , 0)

T KB ↑ 2 = C 5 [1 , . . . , 4] = (1 , 1 , 0 , 0)

T KB ↑ 3 = C 7 [1 , . . . , 4] = (1 , 1 , 1 , 1)

. Dealing with negation

The use of negation in reasoning systems is a complex task (see

28] ) and a detailed discussion is out of the scope of this paper. In

rder to study the semantics of deductive databases with negation

n the body of the rules, we will use the immediate consequence

perator as defined in Def. 1 . In this case, Theorem 1 still holds,

ut the immediate consequence operator is not monotonic (i.e., I 1
I 2 does not implies T KB ( I 1 ) ⊆ T KB ( I 2 )), as the following example

llustrates 6 .

xample 3. Let us consider a set of variables V = { p 1 , p 2 , p 3 , p 4 }
nd the deductive database KB = { R 1 , R 2 , R 3 , R 4 } with

 1 ≡ → p1 R 2 ≡ p 1 ∧ ¬ p 2 → p 3 



Table 1

First steps in the computation of the SNPS in Example 2 .
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R 3 ≡ ¬ p 3 ∧ ¬ p 4 → p 3 R 4 ≡ ¬ p 1 → p 4 

Let us consider the interpretation T KB ↑ 0 = I ∅ = (−1 , −1 , −1 , −1) ,

then 

T KB ↑ 1 = T KB (T KB ↑ 0) = (1 , 1 , −1 , 1)
T KB ↑ 2 = T KB (T KB ↑ 1) = (1 , −1 , −1 , −1)
T KB ↑ 3 = T KB (T KB ↑ 2) = (1 , 1 , 1 , −1)
T KB ↑ 4 = T KB (T KB ↑ 3) = (1 , −1 , −1 , −1)

For k ≥ 1, 

• T KB ↑ 2 k = T KB ↑ 2 k + 2

• T KB ↑ 2 k + 1 = T KB ↑ 2 k + 3 .

As we will show below, the use of anti-spikes allows to deal

with negation. Theorem 4 claims that the immediate consequence

operator can be implemented with SN P systems with anti-spikes.

In such way, membrane computing also provides an efficient tool

for handling with the semantics of deductive databases even if

they include negative information. 

Theorem 4. For each deductive database KB on a set of propositional

variables { p 1 , −, p n } and an interpretation I = (i 1 , . . . , i n ) an SN P

system with anti-spikes can be constructed such that 

• It computes the immediate consequence operator T KB ( I ) .

• If I is the empty interpretation, it computes iteratively T KB ↑ k for

k ≥ 0 .

Proof. Let us consider a deductive database KB and let { p 1 , . . . , p n }
be the propositional variables and { r 1 , . . . , r k } be the rules of the

KB . Given a variable p i , we will denote as h i the number of rules

which have p i in the head and given a rule r j , we will denote as b j
the number of literals in its body. We will also denote by R 0 the

number of rules with empty body. Let us define 

b KB = R 

0 + 

j= k ∑ 

j=1

b j 

The SN P systems of degree 2 n + k + 3 + b KB 

�KB = (O, σ1 , σ2 , . . . , σ2 n + k +3+ b KB 
, syn )

can be constructed as follows: 

• O = { a } ;
• σ j = (0 , { a → λ, a → λ} ) for j ∈ { 1 , . . . , n }
• σn + j = (i j , R j ) , j ∈ { 1 , . . . , n } , where R j is the set of rules

R j = { a → a } ∪ { a k → a | k ∈ { 1 , . . . , 2 × h j − 1 }}
• σ2 n + j = (0 , R j ) , j ∈ { 1 , . . . , k } , where R j is the following rules

• R j = { a b j → a 2 } ∪ { a l → λ| l ∈ { 1 , . . . , b j − 1 } } if b j > 0
• R j = { a → a 2 } if b j = 0 .

For a better understanding, the neurons σ2 n + k +1 , σ2 n + k +2 and

2 n + k +3 will be denoted by σ T , σ G and σ H . 

• σG = (0 , { a → a } )
• σT = (−1 , { a → a } )
• σH = (0 , { a → a } )

As it will be shown below, the neurons

2 n + k +3+1 , . . . , σ2 n + k +3+ b KB 
have only an incoming synapse

rom a neuron σn + i , with i ∈ { 1 , . . . , n } (or σ T ), and only one

outgoing synapse to a neuron σ2 n + j , with j ∈ { 1 , . . . , k } . For a

etter understanding, we will denote by σ i, j the neuron from

2 n + k +3+1 , . . . , σ2 n + k +3+ b KB 
which has a synapse from a neuron

n + i and an outgoing synapse to a neuron σ2 n + j . The label of

uch neurons will be written as 〈 i, j 〉 and it will be said that such

eurons are double-labelled . 

• σT, j = (0 , { a → a } ) for j ∈ { 1 , . . . , k } and r j is a rule with empty

body.

• σi, j = (0 , { a → a, a → a } ) for i ∈ { 1 , . . . , n } , j ∈ { 1 , . . . , k } and the

variable p i occurs positively in the body of the rule r j .

• σi, j = (0 , { a → a , a → a } ) for i ∈ { 1 , . . . , n } , j ∈ { 1 , . . . , k } and the

variable p i occurs negatively in the body of the rule r j .

Finally, the synapses of the SN P systems are

• syn = { (n + i, i ) | i ∈ { 1 , . . . , n }}
∪ {( T, G ), ( G, H ), ( H, T )} ∪ { (H, n + i ) | i ∈ { 1 , . . . , n }}
∪ {( T , 〈 T, j 〉 ) | r j is a rule with empty body}

∪ { (〈 T , j〉 , 2 n + j) | r j is a rule with empty body}

∪ 

{
(n + i, 〈 i, j〉 ) | i ∈ { 1 , . . . , n } , j ∈ { 1 , . . . , k } 

and l i is a literal in the body of r j 

}

∪ 

{
(〈 i, j〉 , 2 n + j) | i ∈ { 1 , . . . , n } , j ∈ { 1 , . . . , k } 

and l i is a literal in the body of r j 

}

∪ 

{
(2 n + j, n + i ) | i ∈ { 1 , . . . , n } , j ∈ { 1 , . . . , k } 

and p i is the variable in the head of r j 

}

Before going on with the proof, let us note that the construc-

ion of this SN P system is illustrated in the Example 4 . As in

heorem 1 , we will prove different remarks which will be useful

n the proof of the theorem. �

emark 1. For each k ≥ 0 

• In the configuration C 3 k , the neuron σ T has only one anti-spike

and the neurons σ and σ have no spikes nor anti-spikes.
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• In the configuration C 3 k +1 , the neuron σ G has only one anti-

spike and the neurons σ T and σ H have no spikes nor anti-

spikes.

• In the configuration C 3 k +2 , the neuron σ H has only one anti-

spike and the neurons σ T and σ G have no spikes nor anti-

spikes.

roof. This remark can be easily checked since σ G has only an in-

oming synapse from σ T , σ H has only an incoming synapse from

G and σ T has only an incoming synapse from σ H . By construc-

ion, in C 0 , σ T has one anti-spike in the initial configuration, σ G 

nd σ H are empty and in the three neurons the unique rule is

 → a . So in, C 1 , σ G has one anti-spike in the initial configuration,

T and σ H are empty and in C 2 , σ H has one anti-spike in the ini-

ial configuration, σ G and σ T are empty. This situation is cyclic and

t is repeated each three computational steps. Let us also note that

he neurons σn + i with i ∈ { 1 , . . . , n } has an incoming synapse from

H , so these neurons receive one anti-spike at C 3 k +3 from σ H . �

emark 2. Let I = (i 1 , . . . , i n ) an interpretation for KB and let S =
(s 1 , . . . , s n ) be a vector with the following properties. For all j ∈
 1 , . . . , n } 
• If i j = −1 , then s j = −1 .

• If i j = 1 , then s j ∈ { 1 , . . . , 2 × h j − 1 }
Let us suppose that at the configuration C 3 t the neuron σn + j

ontains exactly s j spikes 7 . Then, the interpretation obtained by

pplying the immediate consequence operator T KB to the interpre-

ation I, T KB ( I ) is (q 1 , . . . , q n ) where q j , j ∈ { 1 , . . . , n } is the number

f spikes of the neuron σ j in the configuration C 3 t+4 . 

roof. Firstly, let us consider k ∈ { 1 , . . . , n } and T KB (I)(p k ) = 1 . Let

s prove that at the configuration C 3 t+4 there is exactly one spike

n the neuron σ k . 

If T KB (I)(p k ) = 1 , then there exists at least one rule

 l ≡ L d 1 ∧ · · · ∧ L d l → p k in KB such that I(L d 1 ∧ · · · ∧ L d l ) = 1 .

Case 1: Let us consider that there is only one such rule r l and

he body of r l is empty. By construction, the neuron σ2 n + l has

nly one incoming synapse from neuron σ 〈 T, l 〉 and σ 〈 T, l 〉 has only

ne incoming synapse from σ T . According to Remark 1 , at C 3 k 

he neuron σ T has one anti-spike, so σ 〈 T, l 〉 has one anti-spike at

 3 k +1 ; σ2 n + l has one spike at C 3 k +2 ; σn + k has one spike at C 3 k +3 

nd σ k has one spike at C 3 k +4 . 

Case 2: Let us now consider that there exists r l ≡
 d 1 

∧ · · · ∧ L d l → p k in KB such that I(L d 1 ∧ · · · ∧ L d l ) = 1 and

 l > 0. Without losing of generality, we can suppose that

 d 1 
∧ · · · ∧ L d l = p d 1 ∧ · · · ∧ p d f ∧ ¬ p d f+1 

∧ · · · ∧ ¬ p d l and therefore

• I(p d u ) = 1 if u ∈ { 1 , . . . , f }
• I(p d u ) = −1 if u ∈ { f + 1 , . . . , l}

According to the construction of the vector S = (s 1 , . . . , s n ) , at

he configuration C 3 k 

• σn + d u has an amount of spikes between 1 and 2 × h d u − 1 if u ∈
{ 1 , . . . , f }

• σn + d u has one anti-spike if u ∈ { f + 1 , . . . , l}
By application of the corresponding rules, at C 3 k +1

• σ〈 d u ,l〉 has one spike and the rule a → a can be applied , if u ∈
{ 1 , . . . , f }

• σ〈 d u ,l〉 has one anti-spike and the rule a → a can be applied, if

u ∈ { f + 1 , . . . , l}
At C 3 k +2 , the neuron σ2 n + l has b l spikes and sends 2 spikes

o σn + k . At C 3 k +3 , the neuron σn + k has received one anti-spike
7 If s j = −1 , then σn + j will contain one anti-spike. t
rom σ H , two spikes from σ2 n + l , and eventually, other spikes from

eurons σ2 n + p if p k is also the head of a rule r p and the interpre-

ation I satisfies the literals in their bodies of r p . Bearing in mind

he annihilation of the anti-spike with one of the spikes, at C 3 k +3 ,

n + k has an amount of spikes between 1 and 2 × h p k − 1 . Let us

emark that if none of the rules with p k in its head has the literals

n its body satisfied by I , then the neuron σn + k receives only

ne anti-spike from σ H which is not annihilated. The spikes at

 3 k +3 fire the corresponding rule in σn + k and σ k has one spike at

 3 k +4 . 

Let us consider now k ∈ { 1 , . . . , n } and T KB (I)(p k ) = −1 .

n this case, all the rules r l ≡ L d 1 ∧ · · · ∧ L d l → p k verifies

(L d 1 ∧ · · · ∧ L d l ) = −1 . Firstly, let us note that the body of

 l cannot be empty. Let us consider one of such rules

 l ≡ L d 1 ∧ · · · ∧ L d l → p k . Since I(L d 1 ∧ · · · ∧ L d l ) = −1 , there exists

 d e in the body of the rule such that I(L d e ) = −1 . Let us suppose

hat L d e is a negative literal (the reasoning in case of positive

iterals is analogous), L d e = ¬ p d e and I(p d e ) = 1 . By construction, in

 3 k the neuron σn + d e has s d e spikes with s d e ∈ { 1 , . . . , 2 × h d e − 1 } .
he corresponding rule is triggered and at C 3 k +1 , the neuron

〈 d e ,l〉 has one spike. Since p d e occurs negatively in the body of

 l , the rule a → a is applied and one anti-spike arrives to σ2 n + l 
t configuration C 3 k +2 . Since σ2 n + l has b l incoming synapses from

eurons which send at most one spike, in C 3 k +2 , the number

f spikes in such neuron does not reach b l and hence, no spike

s sent in the next step. This happens in all neurons σ2 n + l and

herefore, at C 3 k +3 , σn + k only has one anti-spike from σ H , the rule

 → a is applied and σ k has one anti-spike at C 3 k +4 . �

xample 4. Let us consider the KB in the Example 3 . The SNPS as-

ociated with this KB and the interpretation I ∅ is 

= (O, σ1 , σ2 , . . . , σ12 , σG , σT , σH , σT, 1 , σ1 , 2 ,

σ2 , 2 , σ3 , 3 , σ4 , 3 , σ1 , 4 , syn )

nd its graphical representation is shown in Fig. 2 . In such SN P

ystem O = { a } and the neurons 8 are 

σ1 = (0 , R 1 ) σ2 = (0 , R 2 ) σ3 = (0 , R 3 ) σ4 = (0 , R 4 ) 

σ5 = (−1 , R 5 ) σ6 = (−1 , R 6 ) σ7 = (−1 , R 7 ) σ8 = (−1 , R 8 ) 

σ9 = (0 , R 9 ) σ10 = (0 , R 10 ) σ11 = (0 , R 11 ) σ12 = (0 , R 12 ) 

σG = (0 , R G ) σT = (−1 , R T ) σH = (0 , R H ) 

T, 1 = (0 , R T, 1 ) σ1 , 2 = (0 , R 1 , 2 ) σ2 , 2 = (0 , R 2 , 2 ) σ3 , 3 = (0 , R 3 , 3 ) 

4 , 3 = (0 , R 4 , 3 ) σ1 , 4 = (0 , R 1 , 4 ) 

ith the following sets of rules 

R j = { a → a, a → a | j ∈ { 1 , . . . , 8 }}
R j = { a → a | j ∈ { T , G, H}}
R 9 = R 12 = { a → a 2 }
R 10 = R 11 = { a → λ, a 2 → a 2 }
R T, 1 = { a → a }
R 1 , 2 = { a → a, a → a }
R 2 , 2 = R 3 , 3 = R 4 , 3 = R 1 , 4 = { a → a , a → a } with the synapses

n = 

⎧ ⎪ ⎪⎪ ⎨ 

⎪ ⎪ ⎪ ⎩
(5 , 1) , (6 , 2) , (7 , 3) , (8 , 4) ,

(T, G ) , (G, H) , (H, T ) , (H, 5) , (H, 6) , (H, 7) , (H, 8) ,

(T , 〈 T , 1 〉 ) , (5 , 〈 1 , 2 〉 ) , (5 , 〈 1 , 4 〉 ) , (6 , 〈 2 , 2 〉 ) , (7 , 〈 3 , 3 〉 ) , (8 , 〈 4 , 3 〉 ) 
(〈 T, 1 〉 , 9) , (〈 1 , 2 〉 , 10) , (〈 2 , 2 〉 , 10) , (〈 3 , 3 〉 , 11) , (〈 4 , 3 〉 , 11) , (〈 1 , 4 〉 , 12) 

(9 , 5) , (10 , 7) , (11 , 6) , (12 , 8)

⎫ ⎪⎪⎪⎬
⎪⎪⎪⎭

Let us remark that 

 KB ↑ 0 = C 0 [1 , . . . , 4] = (−1 , −1 , −1 , −1)

 KB ↑ 1 = C 4 [1 , . . . , 4] = (1 , 1 , −1 , 1)
8 We will represent by t that there are t spikes in the neuron and by −t that 

here are t anti-spikes
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Fig. 2. Graphical representation of the synapses of the SN P system of Example 3 .

Table 2

First steps in the computation of the SNPS in Example 4 .

5

 

t  

a  

n  

t  
T KB ↑ 2 = C 7 [1 , . . . , 4] = (1 , −1 , −1 , −1)

T KB ↑ 3 = C 10 [1 , . . . , 4] = (1 , 1 , 1 , −1)

T KB ↑ 4 = C 13 [1 , . . . , 4] = (1 , −1 , −1 , −1)
The first steps of the computation are shown in Table 2 . 
. Conclusions

Biological neurons have a binary behavior depending on a

hreshold. If the threshold is reached, the neuron is triggered

nd it sends a spike to the next neurons. If it is not reached,

othing is sent. This binary behavior can be exploited in order

o design connectionist systems which are able to deal with
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wo-valued logic-based reasoning systems. The current efforts for

ridging both methods try to one approach to the other one by

he adaptation of some of the features. In this sense, SN P system

s a bio-inspired model whose features seem to fit to the target of

ixing both approaches. 

In this paper, we have proved that SN P systems are able to

eal with the semantics of deductive databases even when such

ystems use negation. Namely, we have proved that the immediate

onsequence operator can be iteratively computed with such

evices by using an appropriate representation. In the case of

eductive databases without negation, it is suffices to characterize

he fix point semantics, since the immediate consequence operator

s monotonic and the least Herbrand model can be computed by a

N P system in a finite number of steps. 

In the case of databases which involve negation, the semantics

s much more complex. In this paper we have shown that the

mmediate consequence operator can be computed with SN P sys-

ems, but it is not enough for dealing with a complex semantics

hat involves, e.g., supported, stable and perfect models (see [27] ). 

Considering the semantics of deductive databases in this bio-

nspired model open a new door to further research possibilities. In

articular, it should be explored if all the new SN P system variants

an offer improvements to the study of database semantics. From a

ore general point of view, the possibility of using other P system

odels (not only SN P systems) can be explored. Finally, the devel-

pment of new efficient membrane computing simulators, based

n GPU architectures [29] can be also considered. In such case, the

heoretical point of view shown in this paper, where the semantics

f databases is explore, would have a practical counterpart. 
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