
 

Abstract— This paper presents the design and experimental 

validation of a Fault Detection, Identification and Recovery 

(FDIR) system intended for multi-UAV applications. The system 

exploits the information provided by internal position, attitude 

and visual sensors onboard the UAVs of the fleet for detecting 

faults in the measurements of the position and attitude sensors 

of any of the member vehicles. Considering the observations 

provided by two or more UAVs in a cooperative way, it is 

possible to identify the source of the fault, but also implement a 

Cooperative Virtual Sensor (CVS) which provides a redundant 

position and velocity estimation of the faulty UAV that can be 

used for replacing its internal sensor. The vision-based FDIR 

system has been validated experimentally with quadrotors in an 

indoor testbed. In particular, fault detection and identification 

has been evaluated injecting a fault pattern offline on the 

position measurements, while the CVS has been applied in real 

time for the recovery phase. 

I. INTRODUCTION

Safety and reliability become a critical issue in those tasks 
or applications carried out by multiple Unmanned Aerial 
Vehicles (UAVs) flying closely between them. Any fault on 
the internal position or attitude sensors of a UAV may cause 
deviations in its desired position or trajectory, and potentially, 
the collision of the affected UAV against other vehicle. Some 
representative examples involving close operations between 
two or more UAVs include autonomous aerial refueling [1], 
cooperative aerial transportation [2], or formation flights [3]. 
Having some method for detecting unexpected deviations in 
the normal operation of the multi-UAV system would then be 
useful for reducing the probability of accidents [4][5], and 
thus, the associated time and cost for repairing or replacing 
the affected vehicles. In this sense, if the UAVs of the fleet are 
capable to perceive partially the state of the other vehicles, 
then it would be possible to provide fault tolerance without 
requiring any addition vehicles, just exploiting the sensors 
onboard each UAV. 

Most Fault Detection and Identification (FDI) methods for 

single UAV case that appear in literature try to diagnose faults 

based on the redundancy of some mathematical description of 

system dynamics and sensors onboard UAV. Model-based 

Component Level-FDI has been applied to fixed wing UAVs 

[6] and to unmanned helicopters [7][8][9]. On the other hand,

Cooperative FDI makes use of all the sensors available in the

multi-UAV fleet for detecting the faults in any member of the

team. The usual approach is that each UAV estimates its own

state and broadcast it to the rest of fleet through the

communications channel [10]. What has not been thoroughly

explored is the use of the sensors onboard the other vehicles

of the fleet for detecting faults in an autonomous vehicle,
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which requires sensing the state of a vehicle from the other 

team components, using for example visual or range sensors. 

Visual tracking with cameras onboard a pair of quadrotors is 

considered in [11] for estimating the position of a ground 

vehicle. If the vision-based position estimation is intended to 

UAV control, then it is convenient to analyze the influence of 

typical perturbations such like delay, noise, outliers or packet 

loss over the position-trajectory controller performance [18]. 

Cooperative FDI with UAVs has been researched on [12], 

where the position of a UAV relative to another UAV is 

estimated from the images that both take from the same scene, 

using homography-based techniques for this purpose. Visual 

tracking is used in [13] for estimating the position of a ground 

robot from a fixed-wing UAV, sending this estimation to the 

ground robot as external position for FDI. Virtual Sensors [14] 

are software modules which utilize measurable signals in 

order to reconstruct a signal of interest, which may be useful 

in replacing physical sensors, reducing hardware redundancy 

and acquisition cost. Nonlinear Virtual Sensors in aerospace 

applications have been documented in [15][16][17], although 

they have primarily been applied to single aircraft problems. 

This paper is focused on the design and implementation of 
a FDIR system with quadrotors that exploits visual sensors 
onboard the UAVs for three tasks: detecting position and 
attitude sensor faults, identifying which is the affected UAV, 
and implementing a Cooperative Virtual Sensor (CVS) for 
replacing the affected position sensor. Two case studies are 
distinguished in the FDI process depending on if the UAVs 
that perform these tasks are reliable or not. The developed 
system has been experimentally validated in an indoor testbed 
with three quadrotors, although the proposed methods can be 
applied for an arbitrary number of UAVs. 

The paper is organized as follows. Section II describes the 
problem of position sensor fault detection, identification and 
recovery using the information provided by visual sensors 
onboard UAVs. Section III covers the design of the FDIR 
system, which comprises the Cooperative Virtual Sensor 
(CVS), the Fault Detection and Identification methods and 
strategies, and the recovery part. The implementation of the 
multi-UAV FDIR system developed with quadrotors is 
detailed in Section IV, while Section V presents the results of 
the experiments carried out in an indoor testbed. Finally, the 
conclusions of this work can be found on Section VI. 

II. COOPERATIVE MULTI-UAV FDIR

As there is a large variety of sensors and solutions for the 
localization problem, it is difficult to provide a general case 
explanation of all the possible situations where a sensor fault 
is involved. Since GPS is widely used for UAV localization, 
the case of GPS fault is considered as illustrative example. 
Figure 1 shows a scenario consisting in three quadrotors 
executing independent tasks. The field of view of two UAVs 
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has been represented too. As seen in the upper part of the 
figure, the Red quadrotor, acting as target UAV, enters into a 
zone without GPS visibility. Using model-based fault 
detection methods, it could be possible for the Red quadrotor 
to notice that its own GPS sensor is gone, so it has no way to 
navigate through that area. In that moment, it sends a help 
request message to the rest of UAVs of the fleet. In the lower 
part of Figure 1, Yellow and Green quadrotors have arrived to 
the limits of the area and start acting as observers, visually 
tracking target quadrotor. Every observer will send to the 
target a data packet containing the position and attitude of the 
observer and the position on its image plane of target UAV. 
With this information target UAV will be able to estimate its 
own position and use it for its control. 

From now on, it will be called target UAV to the vehicle 
that is under observation, and observers to the UAVs that are 
visually tracking the target. Any of the vehicles can be either 
target or observer. Note that internal position sensor of target 
UAV or any of the observer UAVs may or may not be 
working properly, what has to be solved during the fault 
detection phase in a cooperative way.  

 

Figure 1. Fault detection and recovery example. (a) Target UAV (red 

quadrotor) enters in a GPS denied area. Once GPS signal loss is internally 
detected, target request help from observers. (b) Green and yellow 

quadrotors start acting as observers visually tracking target and sending their 

observations for target localization and recovery. 

 

III. FDIR SYSTEM DESIGN 

A. Cooperative Virtual Sensor (CVS) 

Consider a system with one target UAV and two observers 
used simultaneously to estimate directly the 3D position of the 
target, creating an instance of the CVS. In normal conditions 
with no faults, the estimation provided by the observers 
should be quite similar to the estimation given by target 
sensor. If the distance between them exceeds a defined 
threshold, then a fault ia detected, although it is not possible to 
ensure if it is associated to target or observers.  

In general, two methods can be used to estimate target 
position from the measurements provided by the observers: 
geometrically considering the closest point between the 
projection rays, or using a non-linear probabilistic estimator as 
the Extended Kalman Filter (EKF) or the Unscented Kalman 
Filter (UKF). In the geometric method, the projection rays 
obtained from the projection points of target on the image 
plane of the observers should ideally intersect in a point 
corresponding to target’s position. If the projection rays do not 

cross, it is necessary to consider the closest points between 
these two lines. Intuitively, the distance between these points 
gives an idea of how reliable the estimation is. Furthermore, 
some errors in position or orientation measurements of 
observers’ sensors will cause the distance between these two 
points to increase, which can be exploited to detect faults on 
observers. This has been represented in Figure 2. The left side 
represents the ideal case in which the projection rays cross 
exactly in the target, while in the right side a fault on 
Observer-1 position sensor makes the projection ray to 
diverge, taking the midpoint between the closest points 
between both projection rays as estimated position. 

Let denote by 𝑷𝒊𝒌 and 𝑷𝒋𝒌 the closest points between the 

projection rays from observers i and j to target k. Target 
position given by internal sensor and estimated by the CVS 

will be represented by 𝒓𝒌 and �̂�𝒌 respectively. Finally, 𝐷𝑖𝑗𝑘
𝑡ℎ  

will be the fault detection threshold for observers i and j 

sensors when they are focused on target k, while 𝑑𝑖𝑗𝑘
𝑡ℎ  will be 

the fault detection threshold for target position sensors. Both 
thresholds will be defined taking into account the relative 
position between target and observers. Then, the following 
three situations are considered for the peer-observer fault 
detection case: 

 If ‖Pik − Pjk‖ ≥ Dijk
th  then a fault is detected in the 

position and/or attitude sensors of observer UAV-i or in 
observer UAV-j when they are focused on target UAV-k. 

 If ‖Pik − Pjk‖ < Dijk
th  AND ‖r̂k − rk‖ ≥ dijk

th  then a fault is 

detected on target UAV-k position sensor when it is 
observer by UAV-i and UAV-j. 

 If ‖Pik − Pjk‖ < Dijk
th  AND ‖r̂k − rk‖ < dijk

th  then no fault 

is detected. 

 
Figure 2. Ideal case of projection ray intersection on target (left) and 

estimation as midpoint between the closest points of the projection rays 

when there is a fault on Observer-1 (right). 

 
In the general case with 𝑁 observers (𝑁 ≥ 3), there are 

𝑀 = 𝑁 · (𝑁 − 1)/2 pairs of observers that can provide a 3D 
estimation of target UAV position using the geometric 
method. As in the previous case with two observers, fault 
detection on observers’ sensors should be done previously to 
fault detection on target sensor. Now, with three or more pairs 
of observers it is possible to identify the particular UAV 
affected by the fault. Consider a situation with four UAVs, 
where UAVs 1, 2 and 3 act as observers and UAV-4 as target. 

Imagine that ‖𝑷𝟏𝟒 − 𝑷𝟐𝟒‖ ≥ 𝐷124
𝑡ℎ  and therefore a fault is 

detected on observers’ pair 1-2. In order to identify which is 
the affected observer, the other two possible combinations are 

evaluated, obtaining that ‖𝑷𝟏𝟒 − 𝑷𝟑𝟒‖ ≥ 𝐷134
𝑡ℎ  and ‖𝑷𝟐𝟒 −

𝑷𝟑𝟒‖ < 𝐷234
𝑡ℎ , which implies that the faulty should be UAV-1. 

Image plane 

Observer-1 

Image plane 

Observer-2 

Target-k 

𝑷𝟏𝒌 ≡ 𝑷𝟐𝒌 
𝑿𝑬 

𝒀𝑬 

𝒁𝑬 

Image plane 

Observer-1 

(injected fault) 

Image plane 

Observer-2 𝑷𝟏𝒌 

𝑷𝟐𝒌 

Target-k 

𝑿𝑬 

𝒀𝑬 

𝒁𝑬 



  

B. Fault Detection and Identification Methods 

It is convenient to distinguish two case studies depending 
if the sensors of the observers are reliable or not. The worst 
case is that in which it is not possible to assume if the fault is 
in the target or in any of the observers, although depending on 
the particular application and features of the UAVs it may be 
possible to have an initial guess of where the fault is located. 
This paper proposes methods for detecting faults in both 
cases, assuming that the tracking algorithm is reliable. 

Let denote as 𝑟𝑖𝑛𝑡 and 𝑟𝐶𝑉𝑆 to the position estimation of the 
target UAV given by its internal (and possible faulty) sensors 
and by the CVS. Assuming that CVS estimation is reliable, 
that is, the internal position and orientation sensors of the 
observers are not affected by faults, then both estimations 
should be quite close in normal conditions. The simplest way 
of detecting a fault on target position sensors is evaluating the 
distance between both estimations with respect to a threshold: 

 ‖𝑟𝑖𝑛𝑡 − 𝑟𝐶𝑉𝑆‖ > 𝑑𝑡ℎ (1) 

This criterion can be extended to detect faults on particular 
axes: 

 

𝐹𝑎𝑢𝑙𝑡 𝑜𝑛 𝑋 − 𝑎𝑥𝑖𝑠: ‖𝑥𝑖𝑛𝑡 − 𝑥𝐶𝑉𝑆‖ > 𝑑𝑡ℎ,𝑋

𝐹𝑎𝑢𝑙𝑡 𝑜𝑛 𝑌 − 𝑎𝑥𝑖𝑠: ‖𝑦𝑖𝑛𝑡 − 𝑦𝐶𝑉𝑆‖ > 𝑑𝑡ℎ,𝑌

𝐹𝑎𝑢𝑙𝑡 𝑜𝑛 𝑍 − 𝑎𝑥𝑖𝑠: ‖𝑧𝑖𝑛𝑡 − 𝑧𝐶𝑉𝑆‖ > 𝑑𝑡ℎ,𝑍

 (2) 

The effectiveness of such a simple method relies on the 
selection of the appropriate detection threshold, taking into 
account that small values may introduce frequent false 
positives, while high distances imply higher amplitudes of 
errors and thus lower reaction times. If the observation 
conditions (relative position between target and observers, 
number of observers) remain constant during the FDIR phase, 
then the following constant threshold is well suited: 

 𝑑𝑡ℎ = 𝐾 · 𝑒𝑛 𝐾~2, 3 (3) 

where 𝐾 is the tolerance constant, and  𝑒𝑛 is the nominal 
estimation error in normal observation conditions without 
sensor faults. The best observation conditions are those in 
which the target and the observers move jointly with a zero 
relative speed between them, and the separation angles 
between the projection rays of the target on the image plane 
close to 90 deg [19]. Note that if the fault detection phase is 
based on the CVS, then at least two observers are necessary. 

The FDI process can be performed without computing the 
3-D CVS estimation, just evaluating the expected and 
measured position of the target on the image plane of the 

observer. Let �⃗�𝑚
𝑖𝑘 = [𝑥𝑚

𝑖𝑘 𝑦𝑚
𝑖𝑘]𝑇 be the measured centroid of 

target UAV-k projected on the image plane of observer UAV-

i, and �⃗�𝑒
𝑖𝑘 = [𝑥𝑒

𝑖𝑘 𝑦𝑒
𝑖𝑘]𝑇 the expected projection point 

computed from target position and from camera pose, where 

any of these measurements may be subject to failure. If �̃�𝑖𝑘 is 
the expected distance between observer UAV-i and target 
UAV-k and 𝑓 is the focal length of the camera, then the 
transversal projection error is defined: 

 휀⃗𝑖𝑘 = [�̃�𝑖𝑘 ·
𝑥𝑚

𝑖𝑘 − 𝑥𝑒
𝑖𝑘

𝑓
�̃�𝑖𝑘 ·

𝑦𝑚
𝑖𝑘 − 𝑦𝑒

𝑖𝑘

𝑓
]

𝑇

 (4) 

The above index can be interpreted in the following way. 
Consider a plane parallel to the image plane and centered on 

target expected position given by its internal sensor. The 
measured centroid given by the tracking algorithm is projected 
on this plane. The error is then the difference between the 
expected and measured points in the XY axes of the plane. 

Two relevant facts are derived from the definition of the 
transversal projection error. Firstly, as the expected projection 
point depends on camera pose measurements, any fault on the 
position or attitude sensors of the observer can be detected. 
On the other hand, position sensor faults on the direction of 
the projection ray from target to camera cannot be detected. 
However, in practice this limitation can be easily solved just 
changing the point of view or considering a second observer. 

Let 𝛿𝑖𝑘 be a binary variable taking value one if observer 
UAV-i detected a fault on target UAV-k, and zero otherwise. 
If the observers are properly positioned in different point of 
views around the target, then the identification of the fault can 
be done based on the following variable: 

 𝑆𝑘 = ∑ 𝛿𝑖𝑘

∀𝑖≠𝑘

 (5) 

If 𝑆𝑘 = 0 then no fault is detected by any of the observers; 
if 𝑆𝑘 = 𝑁 then a fault on target is confirmed by all observers; 
if 𝑆𝑘 = 1 then a fault is probably located in UAV-i such that 
𝛿𝑖𝑘 = 1. In other case, there might be multiple failures. 

C. Position Sensor Fault Recovery 

The geometric method based on ray intersection for 

obtaining an estimation of target UAV position can be more 

convenient than nonlinear Kalman filter estimators for the 

fault detection phase, as it is more intuitive and simple. 

However, if the CVS estimation is going to replace faulty 

position sensors for UAV control, then the second option is 

more suited for three main reasons. First of all, it makes 

possible to integrate the observations taken by an arbitrary 

number of UAVs in a quasi-optimal way, even these 

measurements are not periodic or synchronized between the 

observers. Note that the 3D position estimation problem 

using image sensors is nonlinear. Second, the definition of 

the state vector includes not only target UAV position, but 

also velocity, which cannot be obtained directly from the 

geometric method and can be useful for the UAV control. 

Finally, the state estimation provided by the Kalman filter is 

already filtered, reducing the influence of noise and outliers 

in observers measurements without requiring any additional 

filter. One important issue associated with the Kalman filter 

estimator is the initialization of the state vector. It was found 

during experiments that initial position estimation on state 

vector had to be relatively close to the real position of the 

target so the Kalman filter can numerically converge. This 

can be solved simply taking the geometric estimation for the 

initial guess. 

In this work, an Extended Kalman Filters has been used for 

the estimation of the position and velocity of a visually 

tracked object, taking as measurements its centroid projected 

on the image plane of each camera. The position and 

orientation of the observers are taken as known parameters in 

the estimation. A radial and tangential distortion model for 

the pin-hole camera is applied over the estimated output 



  

measurement to increase accuracy. Experimental results 

show that position estimation accuracy strongly depends on 

the relative position between the target and the observers. 

Uncertainty in the estimation can be minimized placing the 

observers around the target in such a way that projection rays 

orthogonal between them in the three directions of the space, 

maintaining a constant distance with respect the target. 

IV. FDIR SYSTEM IMPLEMENTATION 

This section describes some implementation details related 

with the FDIR system developed and tested with quadrotors 

in the CATEC indoor testbed. This testbed is equipped with a 

Vicon Motion Capture System that provides under-centimeter 

accuracy in the position and orientation of ground and aerial 

vehicles moving in a 15 x 15 x 5 meters volume. 

A. Aerial Platform 

Three Hummingbird quadrotors (two observers and one 

target) from Ascending Technologies were employed for the 

FDIR experiments. Observers were equipped with a tracking 

module system consisting in an Odroid U3 computer board, a 

Logitech C525 webcam and a USB-N53 adapter dual-band 

wireless-N600 from FAST networking solutions. Figure 3 

shows one of the quadrotors equipped with the tracking 

module and the three UAVs employed in the experiments in a 

synthetic urban environment. The target was endowed with a 

blue color marker in contrast with the colors of the floor so 

the tracking algorithm can easily detect it. 
 

 
Figure 3. Hummingbird quadrotor with equipped tracking module (left) and 

the three quadrotors employed in the experiment in a synthetic urban 

environment (right). The target in the middle is endowed with a blue marker. 

 

The tracking modules contain two software modules for 

two types of experiments. The first one is the data acquisition 

program which captures and stores the sequence of images 

and the Vicon measurements for offline data analysis and 

processing. The second program is the tracking algorithm for 

the real-time execution of the FDIR experiments. For every 

frame captured by the cameras where the target is detected by 

the tracking algorithm, a data packet containing the position 

of the target on the image plane and camera pose is sent to 

the CVS and FDIR modules for updating the fault detection 

report and the vision-based position estimation of the target. 

B. Tracking Algorithm 

A modified version of the CAMShift algorithm [20][21] 

was employed for obtaining the centroid of the target (or 

more precisely the centroid of the color marker attached to 

the target) on the image plane of the cameras. This algorithm 

was selected due to its low computation requirements in time 

and memory, and for its robustness against blurring, outliers, 

noise and changes in the illumination conditions. Its main 

limitation is that the color of the tracked marker should have 

sufficient contrast with the background. 

The basic implementation of the algorithm contained in 

the OpenCV library is not able to manage when the object 

selected as target goes out of the field of view of the camera 

or is lost due to occlusions. For that reason, tracking loss 

detection and object redetection capabilities were introduced, 

using geometric information related to the tracked marker 

such as expected dimensions or aspect ratio for this purpose. 

A model of the marker containing its color distribution, 

saturation and brightness thresholds and other geometric 

parameters is taken as input by the program embedded in the 

Odroid. This model is generated from a picture of the color 

marker obtained in the normal observation conditions. The 

computational time when executed in the Odroid U3 board is 

around 40-50 ms for a 640x480 pixels resolution, including 

the image capture from camera and image processing times. 

 

C. Functional Entities and Data Flow 

The FDIR experiments carried out in the CATEC testbed 

involved the resources in Figure 4. Two observers (UAV-1 

and UAV-2) are equipped with a tracking module that 

generates observations containing the projection of the target 

(UAV-3) on the respective image plane, along with the 

current position and orientation of the cameras and a global 

time stamp for data synchronization. These measurements are 

sent through a wireless network to the CVS and FDIR 

modules. The computational time associated to these modules 

is negligible with respect the image processing time. All the 

UAVs take as input the position references sent by the UAV 

Control Centre through the CATEC Network. A number of 

ROS (Robot Operating System) nodes control the different 

phases of the experiment (take-off and landing, trajectory 

tracking, UAVs positioning, target tracking and target 

recovery). The CVS estimation is introduced in the target 

recovery node replacing the internal position sensor. 

 

 
 

 

 

D. Target Controller in the Recovery Phase 

For safety and simplicity reasons in the development and 

experimental validation of the FDIR system, the application 

of the CVS estimation for controlling target UAV during the 

recovery phase was implemented according to the scheme 
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Figure 4. Functional entities and data flow involved in the implementation 

of the FDIR system with three quadrotors in the CATEC testbed. 



  

shown in Figure 5. As seen, the quadrotor takes the Vicon 

measurements in the inner control loop as position feedback. 

Instead of modifying the software of the controller, the idea 

is to synthesize a position reference in such a way that Vicon 

measurements are subtracted from the outside, introducing 

the CVS estimation with negative sign. In practice, this is the 

same as using Vicon but injecting the CVS estimation error 

in the control loop. However, the estimation error was kept 

monitored during the recovery experiments to prevent using 

the CVS if it exceeds a 0.15 m threshold. 

 

 

 

 

 

 

 

 

 

V. EXPERIMENTAL RESULTS 

V. EXPERIMENTAL RESULTS 

This section presents experimental results that validate the 

proposed fault detection and identification methods (offline 

fault injection) and the real-time application of the CVS for 

the recovery phase of a target quadrotor when it is visually 

tracked by two observer quadrotors. 

A. Trajectories and Phases in FDIR 

The 3D trajectories followed by target and both observers 

since the fault detection phase starts until all the quadrotors 

have landed has been represented in Figure 6, while target 

position ground truth and CVS estimation in XYZ axes are 

shown in Figure 7. The observation positions in the XYZ 

axes, considering target position as origin, were [−1, 1, 1]𝑇 

and [1, 1, 1]𝑇 for both observers. The observers have been 

positioned in such a way that the separation angles between 

the projection rays from the target to the cameras are close to 

90 deg (orthogonal configuration), so the uncertainty in the 

estimation is minimized [19]. 

 

 
Figure 6. Trajectories followed by the target and both observers during the 

FDIR phases, from initial observation points to landing points. 

 

 
Figure 7. Target position ground truth given by Vicon (black) and CVS 

estimation (blue) during the FDIR phases. Target speed was set to 0.2 m/s 

 

Figure 8 shows the results of the fault detection phase for 

one of the observers when several additive failures are 

injected in target quadrotor in the XYZ axes at different time 

instants. The projection error detected by both observers goes 

above the detection threshold, thus triggering the presence of 

a fault. Results for second observer are not shown as they are 

similar. Therefore, it can be concluded that the fault is in the 

position sensors of the target. 

 
Figure 8. Transversal projection error (blue) and detection threshold (red) 

when a fault pattern is injected on target position measurements. 

 

For the target recovery phase, the internal position sensor 

of target UAV is replaced by the CVS estimation according 

to the scheme shown on Figure 5. The configuration for this 

experiment is the same as in the previous case, changing only 

target speed to 0.1 m/s. Figure 9 shows CVS estimation error, 

taking Vicon as ground truth, while Figure 10 and Figure 11 

show respectively target velocity and speed given by the EKF 

(blue) and computed by differentiation of Vicon position with 

respect time (black). 

VI. CONCLUSION 

This paper has presented the design and experimental 

validation of a FDIR system for multi-UAV applications. The 

system takes advantage of the sensors onboard the UAVs to 

build a cooperative virtual sensor that estimates the position 

of another UAV that can be used for fault detection. When 
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Figure 5. Control scheme for replacing the Vicon system in the control loop 
with the CVS during the recovery phase in the experiments. 



  

there is a fault in the positioning sensors or a temporary loss 

(i.e. GPS loss), the CVS can be used to guide the UAV with 

the faulty sensor to a safe state. The experimental results 

obtained in an indoor testbed validate the system design. 

 

 
Figure 9. Target XYZ position estimation error during the recovery phase. 

  

 
Figure 10. Target XYZ velocity estimation computed from Vicon position 

differentiation (black) and given by the EKF implementing the CVS (blue). 

 

 
Figure 11. Target speed estimation computed from Vicon position 

differentiation (black) and given by the EKF implementing the CVS (blue). 
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