
Departamento de Ciencias de la Computación
e Inteligencia Artificial

Knowledge Discovery in
Multi-relational Graphs

This dissertation has been submitted by
Pedro Almagro Blanco
in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy
by the University of Seville

Advisor

D. Fernando Sancho Caparrini

Seville, April 2017.





Contents

1 Introduction 1

1.1 Property Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Machine Learning on Graphs . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Conclusions and Future Work 9

2.1 PQG and its use for PQG-ID3 . . . . . . . . . . . . . . . . . . . 11

2.2 Semantic Embedding . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Bibliography 42

iii



Chapter 1

Introduction

Man’s curiosity to understand the environment in which he lives has allowed
him to advance in his way of dealing with the unknowns and day to day pro-
blems. This primary need to understand the behavior of the phenomena that
surround him leads him to create increasingly efficient methods used to disco-
ver and explain the workings of what he can perceive through his senses. For
example, the enunciation and understanding of universal laws of physics allows
him to emulate hypotheses about the past conditions of phenomena, to rea-
son about their relation to the present that he perceives, and to predict their
future evolution, going ahead in the decisions about events that have not yet
occurred. Without possessing a perfect system of inference, it is certainly the
capacity that differentiates him the most from the rest of living beings with
which he shares his existence.

However, he must repeatedly redo and expand the discovery mechanisms he
uses, adding new tools that allow him to continue to expand the frontiers of
knowledge. Among past tools, the Scientific Method, and the scientific para-
digms that are established by its application, stand out as great referents, being
that they are characterized by demanding a rational justification of principles
that needed to be proved and by rejecting absolute affirmations, assuming that
any of them is susceptible to being refuted. The oldest scientific paradigms are
the empirical (validate a hypothesis through experimental repetition) and the
theoretical ones (to prove something through logical derivations). Later on, im-
mersed in the computer age, a new scientific paradigm emerged that has come to
be called a computational paradigm (to validate something through computati-
onal simulations that complement experimental observations). In recent years,
and as a consequence of the use of computer systems for mass data processing,
a new paradigm of data-based inference has emerged, which is giving rise to an
emerging discipline called Data Science which, despite not being new, only in
the last few decades has an effort been made to endow it with solid theoretical
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2 Chapter 1. Introduction

foundations and viable implementations, which has placed it in the spotlight of
many economic, social and research interests.

Among the phenomena that can be approached with these types of mecha-
nisms, those in which both the description of the elements and the interactions
between them are important are especially interesting, especially when there
may be different types of interactions or when we have to consider the internal
properties that characterize them. The data structures that allow to express
this type of phenomena usually are oriented to the description of its elements,
to the relations between them, or have a hybrid orientation that allows a similar
level of expressiveness for both.

Most methods in Data Science are oriented to work with structures that
naturally express the properties of the elements, but usually have certain li-
mitations to express their interactions in a natural way. For example, vectors
or tables, with which the most widely used machine learning algorithms usu-
ally work, are well suited for describing elements, but not for expressing the
complex relationships between them. Classic databases provide mechanisms for
expressing complex relationships between elements, but the available query and
modification tasks are not optimized to work on features derived from these
relationships.

The mathematical structure that seems to better express the interactions
between elements of a system is the graph, and recently extensions of these
have started to appear, such as property graphs, that allow to express in a
natural way all the components that make up a system: its elements and the
relationships between them. Based on this conceptual structure graph databases
were developed, which allow to store the information in such a way that both
the storage process and the subsequent query process are efficient.

1.1 Property Graphs

As previously mentioned, mathematical objects usually used to model system’s
elements tend to have some linearity in their structure and have good compu-
tational implementations (vectors, registers, tables, ...). For those cases where
it has been necessary to have less linear structuring tools, ad-hoc implemen-
tations have been created that have covered the desired requirements (XML,
RDF, ...). In search of a common mathematical object that models this type
of data structures, property graphs stands out as a concept that provides a
good balance between correctly expressing the description of the elements of
the system and that of their relationships. This structure, which has not been
formally defined until a few years ago, does not yet have a robust theory to
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support it, although, as we shall see, a correct definition can make it contain
different types of abstract structures that support databases.

Historically, uni-relational graphs (those in which all relationships are of the
same type) formed the basis of classical mathematical graph theory. Multi-
relational graphs (those in which different relationships may have different ty-
pes) are closer to the intuitive description of a system. property graphs allow
each element (node or relation) to have an indeterminate number of associated
heterogeneous properties. With these premises, this structure is able to contain
practically any other relational structure and it can be adapted to the level of
detail required for the system according to the needs of later analysis.

For these reasons, in this work we will use this type of mathematical objects
as a base structure, both in the previous phase of modeling and storage of
information and in the later phase of analysis and inference about it.

1.2 Machine Learning on Graphs

Once we have selected a suitable mathematical structure to describe the systems
that interest us, we need tools that allow us to make inferences automatically
about them, usually to be able to predict them. Traditionally, the various scien-
tific paradigms have made use of tools based on logical, geometric, algebraic,
analytical, etc., and more recently they make extensive use of algorithmic tools.

In the same way as in the scientific method, the enunciation of hypotheses
after the observation of phenomena allows extracting general laws from expe-
rience, the use of computational techniques can be useful to obtain general laws
from examples analyzed with algorithmic tools. This process can be done at
various levels. We can make use of computational tools as a means to aid the
process of inference of the researcher, or we can try to create an algorithm ca-
pable to make the complete inference and enunciate laws itself, automatically.
In the latter case, we say that we are dealing with a machine learning process
(discussed more fully in Chapter 2).

Originally, most of these techniques had been devised to generalize from a
series of isolated examples, elements described through a series of predetermined
properties, usually expressed in the form of registers or tables. This way of
structuring the examples coincides with the first type of structures presented
in the previous section, those that allow to correctly express the properties
of the elements that make up a system, but not their relations. This limits
learning ability as it does not explicitly consider an important part. If in the
phenomenon under study (and which is intended to learn from) the interactions
seem to be determining in the understanding of the same, we must choose a
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mathematical structure that reflects them correctly. However, the efforts in the
development of machine learning seem to have left these considerations behind.

Designing algorithms that learn from structured data in the form of property
allows to learn in a more natural way both on the basis of the properties of the
elements of a system and the relationships between them. In addition, although
some information is always lost from the real phenomenon, the flexibility of
graphs allows a greater adaptation without making too many transformations
that would break from reality.

If we allow machine learning algorithms to work with graphs as the natural
structure from which to learn, they can manipulate relations explicitly in the
same way as they do with the properties of the elements. This type of lear-
ning has come to be called relational learning (multi-relational in case there
are several types of relationships between data) and luckily, despite not being a
focus of attention, has made great strides and has been an active research area
for many years. It is usual in literature to find relational learning divided into
three blocks: (1) Statistical Relational Learning (SRL), within which develop-
ments like the Markov logical networks would be included, that uses a coding
of multi-relational graphs making use of probabilistic models; (2) Path Ranking
Methods, which explicitly explore the relationship space through random paths;
And (3) Immersion Based Models, which obtain a vector representation of the
graph through matrix / tensor factorization, Bayesian clustering or neural net-
works. In addition to these three blocks, we can include the algorithms that
perform the discovery of relational patterns by refining a hypothesis through
a series of steps, in this last block we could include algorithms like Top-Down
Induction of Logical Decision Trees, Multi-Relational Decision Tree Learning
or Graph Based Induction Decision Tree, which we will detail in Chapter 4 of
this report. As can be observed, advances have been made in relational learning
using decision trees, neural networks and probabilistic models, among others,
but there is still a long way to go, and there are other algorithms that, even
though they have demonstrated great potential in learning from non relatio-
nal data, have not yet been exploited from this perspective, as is the case of
Random Forest.

Usually, according to various criteria, machine learning models are classified
in Supervised vs. Unsupervised (by type of learning carried out), Regression,
Calsification or Ranking (by the type of expected output), etc. In addition, and
with respect to the interpretability of the results by a human, we can classify
the models in those that are able to offer an explanation that accompanies and
justifies the result they provide (white box models) and those that sacrifice such
justification for better efficiency (black box models).

With regard to the white box methods, one of the most representative mo-



1.3. Thesis Goals 5

dels is the decision tree, which results in a succession of tests that explain the
prediction of each of the examples. With respect to the black box ones, one of
the most representative models are artificial neural networks, because although
they have proved to be very efficient in classification and regression tasks, they
present great difficulties in offering a justification interpretable by a human user.

1.3 Thesis Goals

Given the small number of methodologies that perform relational machine le-
arning, the main objective of this research has been to provide new methods
to carry it out, as well as to optimize some of the existing ones. In order to
carry out this task, and without naming objectives related to bibliographical or
comparative revisions between models and implementations, a series of concrete
objectives to be covered are proposed:

1. Define flexible and powerful structures that allow phenomena modeling
based on the elements that compose them and the relations established
between them. Such structures must be able to express naturally complex
properties (continuous or categorical values, vectors, matrices, dictiona-
ries, graphs,...) of the elements, as well as heterogeneous relationships
between them that in turn may possess the same level of complex pro-
perties. In addition, such structures must allow to model phenomena in
which the relationships between the elements do not only occur between
pairs, but also between any number of them.

2. Define tools to build, manipulate and measure such structures.
However powerful and flexible a structure is, it will be of little use if you do
not have the right tools to manipulate and study it. These tools should
be efficient in their implementation and should cover construction and
consulting tasks.

3. Develop new black box relational machine learning algorithms.
In tasks related to automatic classification and regression black box mo-
dels can be used, since the goal is not to obtain explanatory models, this
characteristic can be sacrificed for better efficiency.

4. Develop new white box relational machine learning algorithms.
When an explanation about the operation of the systems being analyzed
is needed we will look for white box models.

5. Improve query, analysis and repairing tools for databases. Some
of the queries in databases are computationally expensive, preventing us
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from proper analysis in some information systems. In addition, graph
databases lack methods that allow to normalize or to repair the data
automatically or under the supervision of a human. It is interesting to
develop tools that carry out this type of tasks increasing efficiency and
offering a new layer of query and standardization that allows to cure the
data for a more optimal storage and recovery.

All marked objectives must be developed on a solid formal basis usually
based on information theory, learning theory, artificial neural network theory
or graph theory. This basis will allow the results obtained to be sufficiently
formal so that the contributions made can be easily evaluated. It is also sought
that the developed abstract models be easily implemented on real machines
to be able to verify experimentally its operation and to offer to the scientific
community useful solutions of this type in a short space of time.

1.4 Contributions

The work carried out has meant an incursion into the formalization of graphs
and relational machine learning and, as reflected in this report, has allowed to
unify and condense different perspectives in these areas. In addition, it has
allowed the development of new techniques to carry out this type of tasks using
more general formalizations as well as making use of new learning methods that
are able to work with property graphs as basic structure from which to learn.

We describe below the contributions that can be found in this work:

1. Generalized Graph, simple mathematical structure that generalizes vir-
tually all classical definitions of graph, from uni-relational graph to pro-
perty hypergraph. In this paper, concepts belonging to graph theory are
redefined from this new perspective and a solid, simple and flexible ba-
sis is provided to support systems in which both the description of the
elements and that of the relations are important.

2. Extension of the measures already defined for uni-relational graphs to
the generalized graph concept. Because this structure generalizes most of
the range of definitions for graphs, this extension allows to make measu-
rements on the different types of graphs existing.

3. Property Query Graph, query tool for generalized graphs that allows
to evaluate structures based on their content and the elements with which
it is related. Query languages such as Cypher and other query tools such
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as Selection Graphs are specific cases of this tool. PQG are expressed
through a generalized graph, allowing to work with the same structure for
both the information source and the query.

4. PQG-ID3, relational machine learning algorithm that allows to discover
patterns in enriched structures of data, and to construct decision trees
to classify subgraphs from a set of classified examples. The relational
patterns extracted by this algorithm are expressed through a generalized
graph, allowing its easy interpretation by any human / machine.

5. Methodology for the embedding of generalized graphs in vector
spaces, maintaining the original semantics and allowing the discovery of
new information, retrieval of missing information, automatic classification
of data and providing improvements in other tasks such as long distance
queries.

6. Implementations of the tools developed throughout the work, and de-
tailed in the Implementation Appendix.

In addition to the points indicated, no less significant are the following con-
tributions: a first step towards a tool for the normalization of graph structured
data through analysis of vector structures obtained from embedding; A first
family of refinements that allow automatic manipulation of complex predicates
on graphs. In addition, throughout this report, you can find other minor con-
ceptual and technical contributions that have not been named in this section.

1.5 Thesis Structure

The content of this report is described below, describing the various chapters of
which it consists and that pretend to cover the research goals marked previously.

In Chapter 2, Fundamentals, we introduce the fundamental theories that
serve as a transversal axis to all the work done, we present the common struc-
tures for the different chapters of this report. We present a framework for
graphs that unifies definitions as a uni-relational graph or graph with proper-
ties through the concept of generalized graph, redefining concepts belonging to
Graph Theory. In addition, an introduction to machine learning is presented
and the models that will be used throughout the memory are briefly presented.

In Chapter 3, Property Graph Pattern Matching, a study about the
evaluation and extraction of information in relational structures is made, presen-
ting a review of the technologies and foundations that make this task possible.
In addition, we present the Property Query Graphs (PQG), our proposal to
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evaluate structures immersed in a property graph, and which works as predi-
cates on subgraphs, so that they are ideal as a basis for discovery tasks. The
chapter concludes by showing some concrete examples of PQG.

In Chapter 4, textbf Decision trees for property graphs, we face the problem
of automatically constructing subgraph classifying trees in property graphs. It
begins by reviewing the operation of decision tree induction algorithms, from
those that learn object (described through a set of properties) classifier trees,
to those who learn to classify records from a relational database taking into
account their relationships. The central part of the chapter presents the PQG-
ID3 algorithm, our proposal to build multi-relational decision trees based on
PQG. We conclude by showing a collection of examples of trees constructed
using this tool and analyzing the resulting semantic patterns.

Chapter 5, Semantic Embeddings of Property Graphs, makes a diffe-
rent approach to multi-relational learning, this time making use of neural net-
works to learn a vectorial encodings of property graphs. This encoding allows
to make use of the usual machine learning methods designed to work naturally
with objects described vectorially. A review is made of the learning methods
that make use of neural networks, and we analyze methods that have been used
to obtain encodings of other types of structures. We present a methodology
that makes use of neural encoders to carry out property graph embeddings in
vector spaces, experiments are carried out on real data to verify that the obtai-
ned projection allows to capture properties present in the original graph. In
addition an empirical demonstration is carried out, proving that the proposed
immersion methodology allows to successfully perform machine classification
tasks, information extraction, missing information retrieval and long-distance
queries.

Finally, in the chapter Conclusions and Future Work, we present the con-
clusions obtained from the research process structured in accordance with the
chapters of this report, as well as the conclusions obtained globally across the
work. In this last chapter we also present possible future lines of work, made
possible by this research and that are related to the formalization of graphs,
relational machine learning, graph pattern matching and discovery procedures
in databases.



Chapter 2

Conclusions and Future Work

As discussed in various sections of this report, and despite its potential, re-
lational machine learning has been in the background in relation to the more
standard machine learning, which makes use of non relational information, usu-
ally in form of tables and other regular structures. After the work done, we can
identify certain reasons that have led to this situation.

On the one hand, we have detected that the scientific community has some
inertia in its research, which leads it to prioritize the optimization and modifi-
cation of existing algorithms over the creation of new ones, or the use of new
data structures from which to learn. Certain scientific publications get impact
by overcoming well-founded earlier results and this may be a reason why ente-
ring a new method is not as fruitful (academically speaking) for the researcher
as continuing a methodology that has already proven to be well founded and
useful.The creation of completly new models usually does not find the adequate
platforms for the presentation of its work or simply requires a greater validation
effort.

On the other hand, the most commonly used information systems, in which
we store most of the studied phenomena, make use of schemas and systems
based on relational databases. As many studies have shown, these classical
databases do not show an optimal performance when working with complex
relationships, which is one more reason for the impediment of developing met-
hodologies oriented to work well with elements and their relations.

In addition, the greater expressive richness of the more complex information
imposes difficulty in making new algorithms and provides, at least in the first
approximations, results less striking than the more refined and more traditional
methods.

Finally, there is a Rich gets richer process, the more conventional methods
are better known by the scientific community and, therefore, are knowm by
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more researchers, which causes that the majority of them to work withs non
relational machine learning methods.

We would like to emphasize that to reason about the formal structures used
to store the information concerning the systems we analyze is essential if we want
to carry out this type of tasks in an optimal way. Researchers often transform
data obtained from a system into one of regular formats, usually vectors or
tables, missing facets of important relational information whose expression is
not natural in these formats. When analyzing a system through techniques
derived from Machine Learning can become as important the data structure
used to express the information as the algorithm used. After this research, we
consider that there is no proportional effort in the area between optimizing the
structures from which to learn and the chosen learning methods. In this paper
we have explored the learning capacity from structured data in the form of
property graphs.

With respect learning from property graphs, it is possible to emphasize that
there are several lines of work that transform the original data towards other
structures that algorithms are able to handle of more natural way (because they
were created to work specifically with such structures). This is the case of graph
embeddings in vector spaces. In our view, these are valid approximations that
should continue to be investigated, but other options should be considered, such
as working directly with the graph structure, which has been one of the lines of
research followed in this work and which has proved to be valid.

At times, efforts to work with data are focused on obtaining automatic pre-
dictions that quantitatively improve previous results, usually measured through
benchmarks. However, there are methods related to prediction that can provide
results (quantitative and qualitative) that are not easily measurable through this
type of techniques. In addition, there are other interesting tasks, not related
to prediction, that can be carried out with data and that have not received the
attention they deserve. For example, analyzes related to the semantic purity of
a data set can be interesting to evaluate the structure of the data set and to
detect inconsistencies such as overlap between data types or redundancy in the
data or schema, as well as improving the efficiency of queries on these datasets.

Another related task, is the discovery of information through white box mo-
dels. If we analyze the trend in learning, relational or not, we can observe that
in recent years many efforts have been invested in black box methods, with
explanatory methods remaining in the background. Explanatory algorithms
like MRDTL emerged at the end of the 1990s and it seems that their develop-
ment has stalled in recent years. Undoubtedly, black box models are showing
shocking, unexpected results, through their greatest exponent, Deep Learning,
but whose interpretation is too diffuse to be understood by a human (although
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there are many efforts to create tools that could narrow this gap). We con-
sider that this fact can be dangerous, black box methods allow us to predict
the evolution of systems to a certain extent,but prevents humans from realizing
real learning about how the system works, simply providing a tool that predicts
it but does not add additional knowledge to the researcher. In this way they
become useful tools for Engineering (which justifies the work done on them),
but not for Science. If we want to know the phenomena that surround us and
advance in the understanding of our surroundings, we must find ways to under-
stand it. Therefore, we consider that a superior effort should be made in the
study and development of white box machine learning methods.

We will now take a more detailed look at some conclusions that can be
derived from the different approaches in this work.

2.1 PQG and its use for PQG-ID3

Chapter 3 addressed the goal of obtaining a tool to evaluate subgraphs in pro-
perty graphs that can be used in discovery procedures in relational information.
To achieve this goal, several requirements had to be fulfilled. On the one hand,
it was necessary to have a grammar to express the queries in a way close to the
structures on which it is going to work. And thanks to the expressive capacity of
property graphs, we have presented a query tool that can be expressed naturally
by means of a property graph. In addition, it was necessary to provide queries
that when used as logical predicates on graphs, they behaved consistently and
robustly. In addition, it was necessary, since we will also use them to generate
machine learning methods, that the queries could be modified in a controlled
way by means of atomic operators that translated the topological control into
a logical control. In this sense, a first family of refinements (a refinement acts
as a query partition) has been introduced that allow an ordered collection of
queries to be constructed from an initial query (which may be empty).

Any relational data structure can be viewed as a graph and any query can
be viewed as pattern matching, thus, most query languages in databases can
be viewed as Graph Pattern Matching (perhaps primitive) tools in property
graphs. In Chapter 3 we have also analyzed some of the existing Graph Pattern
Matching tools as well as the feasibility to be used in automatic procedures.
One of the tools analyzed, Selection Graph, allows to evaluate registers in rela-
tional databases using acyclic patterns that can be refined through basic ope-
rations, allowing to obtain complementary patterns in each case. It does not
require an exact projection of the pattern representing the selection graph on
the subgraph to be evaluated, but rather the fulfillment of a series of predica-
tes expressed through said pattern. It should be noted that if a projection is
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required when carrying out the verification of a pattern, the task of evaluating
the non-existence of certain elements is complicated. Specifically, the selection
graphs evaluate the existence / non existence of paths that are incident to the
registry under evaluation (they are only able to evaluate individual records). It
is verified if a conjunction of predicates on paths that depart from the analyzed
registry is fulfilled, which can be seen as the evaluation of the existence of a
tree rooted in the node that represents the registry under evaluation.

Property Query Graph, the tool presented in Chapter 3, extends the concept
of Selection Graph allowing the evaluation of general subgraphs, beyond a single
node, using predicates through the definition of a language on the elements of
the graph and allowing cyclical patterns. As it becomes a requirement not to use
a projection for the verification of a pattern, these objectives have been achieved
by extending the form of evaluation, which can be seen as the evaluation of a
tree rooted by each node present in the pattern. Although each node of a
PQG evaluates the existence of a node that fulfills the conditions imposed by
its predicate and the edges in which it participates, by allowing the edges to
be identified with paths in the graph (Regular Pattern Matching) there is the
evaluation of one tree per node, not a single star. It is through the intersections
that occur between the various trees and the constraints imposed on the nodes
as the evaluation of cyclical patterns in PQGs is allowed.

Like the selection graphs, the PQG can be modified and constructed from
refinements, but unlike the simple case of selection graphs, refinements are
usually not binary, since their application can modify more of one predicate
in the pattern, resulting in sets of size 2k (where k is the number of modified
predicates). As shown in Chapter 4, this is not a problem when it comes to
building learning models, such as decision trees, since they do not have to
be binary. Through the definition of certain operations of simplification and
equivalence, the refinements shown can be simplified giving rise to simple tools
that allow to express complex queries in graphs.

In general, refinements result in partitions of the structures they evaluate,
making them ideal tools for white-box procedures. After carrying out a first (but
fully functional) proof-of-concept implementation, it has been experimentally
demonstrated that PQGs are viable under mild conditions and meet the stated
objectives.

An explicit use of these capabilities is shown in Chapter 4, with the pre-
sentation of the algorithm PQG-ID3, which makes use of the Property Query
Graphs as test tools for the construction of a decision tree following the foun-
dations of ID3 algorithm. In the results of the experiments carried out, it is
shown that PQG-ID3 is able to extract interesting patterns that can be used in
complex learning tasks. PQG contained in the leaves can be considered as new



2.1. PQG and its use for PQG-ID3 13

attributes discovered by the algorithm. In this way, in addition to constructing
a classifier tree, the algorithm is able to discover patterns that characterize dif-
ferent structures in the graph (Graph Pattern Mining) and that can be used as
attributes of the structures that classify in later tasks (Feature Extraction).

MRDTL algorithm can be seen as a particular case of the algorithm PQG-
ID3 in which only PQG with tree form are allowed (since they use selection
graphs) and where it learns only from structures formed by a single node. In
this sense, PQG-ID3 is a leap forward in a line of work started years ago and
considered open since then. As a curiosity, we have to say that the work done
on PQG-ID3 was done in a completely independent way, and it was only when
writing this memory that we could relate it to the selection graphs and the
MRDTL algorithm.

As we saw throughout the chapter, the main problem presented by multi-
relational decision tree construction algorithms is that the hypothesis space is
extremely large. To solve this problem several solutions can be proposed. On
the one hand (and as an extension to the proposal in MRDTL-2), the frequency
of occurrence of certain structures can be analyzed in a statistical way with the
purpose of reducing the number of possible refinements to be applied in each
case and thus to reduce the cost of the search for the best refinement. All of this
prior analysis makes use of the various measures introduced in Chapter 2 (and
which extend the simpler frequency measures used in the case of MRDTL-2). On
the other hand, you can create more complex refinement families (for example,
combining the refinement add edge with adding property to an edge in a single
step) to reduce the number of steps to get complexes PQG. If this last option
is carried out properly (unifying the refinements according to the frequency of
occurrence of structures in the graph), the algorithm can be brought closer to
the solution faster. In both cases, an improvement in efficiency is achieved by
sacrificing the possibility of covering a wider hypothesis space (but probably
offering alternatives in which the impurity reduction is smaller). In this sense,
a minimal set of well-constructed refinements has been offered in this paper,
but it should be borne in mind that they are not offered with the intention of
being optimal for all learning tasks.

The second major problem with the PQG-ID3 agorithm (and inherited by all
algorithms inspired by ID3) is the inability to undo the decisions made during
the construction of the tree. In such a way that the options of refinement in a
determined step of the algorithm depend on the refinements chosen in previous
steps. To solve this problem, it is usual to use some backtracking procedure
to undo decisions if they have resulted in a bad result or a use a Beam-Search
procedure as used in the GBI algorithm that allows you to make several decisions
in parallel and finally select the one that has resulted in a better solution.
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Consequently, queries on graph based on PQG allow us to obtain powerful
and simple tools suitable for automatic construction and to be used in white-box
tasks on multi-relational information with controlled complexity, due in part to
good properties related to complementarity and containment of queries. In
addition, the combination of the PQG decision tree type through an aggregate
model, such as Random Forest, can achieve very good results when performing
automatic classification (although this will reduce the interpretive capacity of
the models obtained).

2.2 Semantic Embedding

The purpose of this last chapter has been to offer the possibility of perfor-
ming relational machine learning tasks through more traditional algorithms by
making an automatic feature selection. In this way, and in addition to the ap-
proach presented in the two previous chapters, we try to analyze what options
traditional algorithms offer when we want to not lose the enriched structures of
relational information.

If there is an element (a subgraph) that is immersed in a database (a pro-
perty graph) the task of constructing attributes for learning from the relati-
onships that it presents in the global structure can be very complicated. The
approximation presented in this chapter consists of constructing a vector re-
presentation of each element in the system from a sampling of the information
present in the network. In this way, we avoid, on the one hand, the manual work
of selecting the attributes to be taken into account and, on the other hand, we
obtain a learning algorithm which feeds from a representation of the elements
of a graph obtained from global information.

Compared to other machine learning tasks, there are few jobs that have
used neural encoders to perform property graph embeddings in vector spaces.
Our methodology has sought to use simple architectures to obtain vector re-
presentations that maintain the semantic and topological characteristics of the
original graph. In addition, it has been demonstrated experimentally that with
the obtained embedding one can obtain semantic connections that do not ap-
pear explicitly in the original graph (due to incompleteness in the stored data,
or to inconsistencies), or even to optimize queries in databases.

We have verified that the geometric characteristics of the structures formed
by the nodes and edges in the new vector space can help to assign missing
types or properties to the original graph elements (using measures related to
distance, linearity, or clustering, among others), or may even help identify new
relationships between elements that are not explicitly present in the original
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graph. This functionality can be very useful in processes that work with large
sets of relational data, where incompleteness of data is a common obstacle.

In addition, as has been observed from the evaluation tests, the performance
and accuracy of machine learning tasks on these vector representations can
provide information about the semantic structure of the data set itself, and
not only about the algorithms in use. For example, the confusion of some
nodes / edges in classification tasks can give us information about the need to
make an adjustment in the data schema to reflect the semantic characteristics
correctly. A detailed report on how different types, properties, and clusters
overlap and confuse in the resulting embedding would be useful for making
decisions related to the standardization of data schemas, something that almost
all current analysis proposals lack.

It is evident that the size of the training set and of the selection window
positively influence the application capacity of the resulting embedding, but
these influences must be studied deeper, since they can throw keys for the
automation of the embedding parameters.

In addition, this chapter has explored how vector structures can be used to
retrieve information from property graphs, as shown in Entity Retrieval and
Typed Paths experiments. Looking for complex structures in the projected
space can be simpler than in the original one. In fact, the use of a second layer
of learning models after neural encoding can improve the results of various
tasks related to the retrieval of information in semantic graphs. The results
show that this is a line of research that is worth considering. Although not
enough experiments have been carried out on long-distance queries through the
representative vectors in the new space, the results obtained show that the
query times can be reduced considerably, sacrificing the optimality. This type
of queries are very expensive in the databases, and although graph databases
have helped to reduce their computational cost they continue to present great
problems of efficiency.

Compared to other approaches in the same direction, this paper presents
the novelty of working with more general semantic contexts, and not only with
random paths, which assume a linearization of the original graph structure. But
these are not the only options to carry out property graph embeddings through
neural networks. As will be discussed in 2.3, we can get continuous embeddings
of property graphs using neural autoencoders, so that the neuronal encoder will
learn the identity function for the elements of the graph, allowing the encoding
to work without any bias imposed by any function that relates the elements to
their context.

With this work we have given an initial framework to perform machine
learning tasks from property graphs in which we take into account information
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from the complete graph to encode each element. This new representation
of property graphs allows to work with relational data stored in almost any
system of persistence in a vectorial way, taking advantage of the power that the
processors and GPUs currently have to work with this type of structures.

It should be noted that during the review of this document new tools based
on the Word2Vec architectures have been published, they optimize the process
of learning latent semantics from natural language [34]. In spite of the proba-
ble improvement that these tools would suppose in our methodology, we have
decided not to take them into account since they do not imply a change in
the fundamental part of our results, although it would possibly improve the
associated computational cost.

2.3 Future Work

In this last section we want to show some of the new lines opened by this
research. Some are already being studied, while others represent simple ideas
that have emerged during the work and have been targeted to be addressed
whenever possible. As far as possible, we will try to maintain the natural order
that has been followed in this report.

The power obtained through the definition of a language on the elements
of a graph such as the one presented in this work has allowed to construct a
discovering tool that generalizes and enhances the standard in multi-relational
decision tree construction. However, the restriction that we have imposed that
such predicates can only evaluate nodes, edges or paths, implies that the global
pattern represents a predicate that is finally a conjunction of relatively simple
ones. These types of patterns are constructed through some structure in the
form of a graph that unifies said predicates, several trees in the case of PQG-
ID3. In a PQG, the predicates that compose it have a node perspective (the
PQG is constituted by a predicate for each node it owns), but PQG could be
constructed to evaluate another structure, for example, PQG in which assigns
a predicate for each cycle of length 3 (triangles perspective). This limitation
suggests that the concept of pattern, as hitherto conceived, is not general enough
to express powerful and flexible predicates about relational data. A recursive
definition of pattern, which could lead to a redefinition of the concept of graph
through the recursion of structures by levels, could allow to express a larger set
of patterns without losing power, flexibility, or the capacity to be constructed
through complementary refinements such as those presented.

In PQGs, the sign of nodes and edges have a clear intuitive interpretation:
positive elements are must be found in the graph under evaluation, and negatives
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impose non-existence constraints. Because adding constraints to a non-existence
condition resulting in a less restrictive condition, negative elements have not
been amenable to being refined through refinements presented. However, there
is no reason not to investigate possible ways of refinement through the negative
elements. For this, it would be enough to propose this type of predicates based
on disjunctions, in this way the situation would be the inverse and the negative
restrictions would be susceptible of being refined. Thus, in order to improve
the utility of PQGs and the tools derived from them, a way of working should
be in generating families of refinements that expand the expressive capacity of
PQGs that can be built automatically.

The advances made in multi-relational decision trees through PQG should
be used by the family of ensemble methods and in particular by Random Forest.
As we have discussed, the interpretative ability of decision trees is diluted when
several trees are combined to explain the same result, but they can greatly ex-
pand their predictive capacity. Another option derived from the use of methods
combined with decision trees using PQG is that the trees obtained have tests in
their leaf nodes that evaluate complete semantic patterns, so an option would
be combining them in a probabilistic way to give rise to combined patterns that
can be interpreted as probabilistic decision tools, opening up an interesting line
in white box relational machine learning.

PQG presented in chapter 3 represent predicates on property subgraphs
that are capable of evaluating characteristics beyond the structural and seman-
tic properties of the subgraph under evaluation, since they allow to express
restrictions in the surroundings of said subgraph (this surroundings can become
all the graph in which it is immersed, if the appropriate predicate is used).
This feature, in addition to the ones already discussed, make the PQG into
descriptors of relational structures (whether they were built automatically or
manually designed by experts in the area), erected as suitable candidates to be
used as additional attributes in relational learning tasks. In addition, as already
mentioned, the complexity in the PQG-ID3 method can be reduced by using
statistical analysis to evaluate the frequency of occurrence of different patterns
in the graph and in this way reduce the possible refinements available in each
step, or combine several refinements into one.

The efficiency improvements in long-distance queries deserve to be evalua-
ted in greater depth and compared with other similar methods. Some results
related to the semantic analysis of property graphs have not been carried out
in depth and have not been presented in this report although they are expected
to be presented in later works. Options such as sampling the context of the
edges, perform a embedding of the same and from this infer an embedding for
the nodes have not been taken into account and can offer interesting results.
With respect to property graph embeddings in vector spaces through neuronal
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encoders, it must be taken into account that, having inspired us in the architec-
tures corresponding to Word2Vec, the function that this encoder tries to learn
relates each node with its context and this therefore determines the distribution
of the obtained embedding. In this work it has not been considered that this
encoder could learn other functions, but we consider that it is a point to take
into account since the function that learns the encoder is determinant in the
use of the subsequent embedding. For example, if we use the identity function
(in this case the network would be an autoencoder) we could get an aseptic
immersion, not determined by any previous criteria. This would allow to avoid
the problems derived by the definition of the contexts and in other works related
to graph embeddings through random walks. Another option could be to use
patterns like PQG to perform the encoding. Given a structure, the function
to be learned by the coder will relate it to its associated PQG, so the obtai-
ned embedding would reflect the semantics associated with the PQG used, and
the resulting representation could be optimal if supervised (classification) or
non-supervised (clustering) learning is later related to the structure shown in
the PQG. Undoubtedly, the possibilities of mixing the expressiveness provided
by patterns such as PQG and the efficiency and performance provided by the
vectorial representations shown are broad and promising.

During the conception, implementation and experimentation of this work
new research lines have been opened that can be considered to analyze the
characteristics of the obtained embeddings.

A first consideration is how to construct the training set that is consumed by
the neuronal encoder to obtain the vector representation of a property graph. In
the experiments carried out the construction of the training set has been totally
random, that is, all nodes have the same probability of being sampled, as well as
all their properties and neighbors. This may not be the most appropriate way
depending on the type of activity to be performed with the resulting embedding.
For example, it may be beneficial to construct the training set so that those
nodes with a greater semantic richness are more likely to appear in it, which
may contribute to regions that are less likely to be considered.

Another line to take into account is to build a neural network that works with
the contexts of an element as input (in one-hot format) and learn to return a
particular property of the element as an output, i.e. connect a neuronal classifier
directly with the encoder, in order to learn the proper encoding and classification
simultaneously. Similarly, it would be interesting to think of neuronal encoders
that make use of recurrent neural networks to be able to analyze the behavior
of dynamic relational information.

It should also be noted that the possibility of working with continuous pro-
perties in nodes and edges is open, this feature is not present in the datasets
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used, but should be considered to expand the capacity of presented methodo-
logy. For both PQG and conttinuous embedding there are direct mechanisms
to include the presence of continuous properties, it is still a matter of work
to begin by testing these more obvious mechanisms and then to measure the
extent to which other approaches can be taken into account.

In summary, presented research has opened numerous lines of work in various
connected areas. The most evident have been in the formalization of relational
structures, formalization of procedures for constructing queries about them, re-
lational machine learning and relational knowledge discovery, feature extraction,
representation learning, and analysis and normalization of data. Some of them
have been presented here but, undoubtedly, new challenges will arise in the form
of ideas from this work. For this reason, we are pleased to present a thesis in
which, despite having meticulously addressed the initial objectives, more que-
stions have been opened that roads have closed. Undoubtedly, this profusion
of possible ways of continuity shows that the study of relational information
systems can become a fruitful line of research worth paying attention to.
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[70] Sašo Džeroski. Multi-relational data mining: An introduction. SIGKDD
Explor. Newsl., 5(1):1–16, July 2003.

[71] Frank Emmert-Streib and Matthias Dehmer. Information theoretic mea-
sures of uhg graphs with low computational complexity. Applied Mathe-
matics and Computation, 190(2):1783–1794, 7 2007.
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[112] Florian Holzschuher and René Peinl. Performance of graph query lan-
guages: Comparison of cypher, gremlin and native access in neo4j. In
Proceedings of the Joint EDBT/ICDT 2013 Workshops, EDBT ’13, pa-
ges 195–204, New York, NY, USA, 2013. ACM.

[113] Jiewen Huang, Kartik Venkatraman, and Daniel J. Abadi. Query optimi-
zation of distributed pattern matching. In ICDE, 2014.

[114] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog
and emerging applications: An interactive tutorial. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’11, pages 1213–1216, New York, NY, USA, 2011. ACM.

[115] Yann Jacob, Ludovic Denoyer, and Patrick Gallinari. Learning latent
representations of nodes for classifying in heterogeneous social networks.
In Proceedings of the 7th ACM International Conference on Web Search
and Data Mining, WSDM ’14, pages 373–382, New York, NY, USA, 2014.
ACM.

[116] Li Ji, Wang Bing-Hong, Wang Wen-Xu, and Zhou Tao. Network entropy
based on topology configuration and its computation to random networks.
Chinese Physics Letters, 25(11):4177, 2008.

[117] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mi-
kolov. Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759, 2016.



Bibliography 31

[118] Ian L Kaplan, Ghaleb M Abdulla, S Terry Brugger, and Scott R Kohn.
Implementing graph pattern queries on a relational database. Lammerce
Livermore National Laboratory, Tech. Rep, 2008.

[119] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–
103. Springer US, Boston, MA, 1972.

[120] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sam-
pling algorithm for estimating subgraph concentrations and detecting net-
work motifs. Bioinformatics, 20(11):1746–1758, 2004.

[121] G. V. Kass. An exploratory technique for investigating large quantities
of categorical data. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 29(2):119–127, 1980.

[122] Yusuf Kavurucu, Pinar Senkul, and Ismail Hakki Toroslu. Confidence-
based concept discovery in multi-relational data mining.

[123] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Ya-
mada, and Naonori Ueda. Learning systems of concepts with an infinite
relational model. In Proceedings of the 21st National Conference on Ar-
tificial Intelligence - Volume 1, AAAI’06, pages 381–388. AAAI Press,
2006.

[124] Nikhil S. Ketkar, Lawrence B. Holder, and Diane J. Cook. Subdue:
Compression-based frequent pattern discovery in graph data. In Pro-
ceedings of the 1st International Workshop on Open Source Data Mining:
Frequent Pattern Mining Implementations, OSDM ’05, pages 71–76, New
York, NY, USA, 2005. ACM.

[125] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[126] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. SCIENCE, 220(4598):671–680, 1983.
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[180] Nataliia Pobiedina, Stefan Rümmele, Sebastian Skritek, and Hannes
Werthner. Benchmarking Database Systems for Graph Pattern Matching,
pages 226–241. Springer International Publishing, Cham, 2014.
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