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Summary 

Kisspeptin, the product of the KISS1 gene, plays an essential role in the regulation of 

spermatogenesis acting primarily at the hypothalamic level of the gonadotropic axis. 

However, the presence of kisspeptin and its canonical receptor, KISS1R, in sperm has not 

been explored nor the direct effects of kisspeptin on sperm function have been studied so 

far. In the present study, we analyzed the expression of kisspeptin and its receptor in sperm 

cells by western blot and immunocytochemistry assays and evaluated the effects of 

exposure to kisspeptin on sperm intracellular Ca2+ concentration, [Ca2+]i, sperm motility, 

sperm hyperactivation and the acrosome reaction. Changes in [Ca2+]i were monitored using 

Fura-2, sperm kinematic parameters were measured using computer-assisted sperm analysis 

(CASA), and the acrosome reaction was measured using fluorescein-isothyocianate-coupled 

Pisum sativum agglutinin lectin (FITC-PSA method). We found that kisspeptin and its 

receptor are present in sperm cells, where both are mainly localized in the sperm head, 

around the neck and in the flagellum midpiedce. Exposure to kisspeptin caused a slow, 

progressive increase in [Ca2+]i. which reached a plateau about 3-6 min after kisspeptin 

exposure. In addition, kisspeptin modulated sperm progressive motility causing a biphasic 

(stimulatory and inhibitory) response and also induced transient sperm hyperactivation. The 

effects of kisspeptin on sperm motility and hyperactivation were inhibited by the antagonist 

of KISS1R, peptide 234. Kisspeptin did not induce the acrosome reaction in human sperm. 

These data show for the first time that kisspeptin and its receptor are present in human 

spermatozoa and modulate key parameters of sperm function. This may represent an 

additional mechanism for their crucial function in the control of male fertility. 

Keywords: kisspeptin, kisspeptin receptor, neurokinin B, human sperm. 



 3

Introduction 

Mammalian sperm acquire the ability to fertilize an egg during their transit through the 

female reproductive tract (Chang, 1951, Suarez & Pacey, 2006; Visconti, 2009). During this 

time, sperm cells undergo a series of morphological and functional modifications leading to 

activation of sperm motility, development of hyperactivated motility, binding to oocyte 

zona pellucida and the acrosome reaction (AR) (Roldan et al., 1994; Flesch & Gadella, 

2000; Visconti et al., 2002; Grasa et al., 2006; Bedu-Addo et al., 2008). For this 

capacitation to take place, sperm must send and receive specific signals from the 

environment, which must be properly decoded under a precise spatio-temporal regulation. 

This complex process involves activation of multiple signal transduction mechanisms which 

lead to increases in sperm [Ca2+]i, cAMP, pHi, and phosphorylation of some proteins at 

serine/threonine and tyrosine residues (Rossato et al., 2001; Visconti et al., 1999, 2002; 

Darszon et al., 2006; Lamirande & O’Flaherty, 2008; Publicover et al., 2008). However, the 

precise nature of sequentially activated receptors and channels in the sperm plasma 

membrane remains incompletely understood.  

During the past years, kisspeptins have emerged as essential regulators of reproductive 

function (de Roux et al., 2003; Seminara et al., 2003). Kisppeptins are primarily synthesized 

in discrete neuronal populations within the hypothalamus where they modulate GnRH 

secretion and, thereby, gonadotropin release (Navarro et al., 2004; Colledge, 2008; Tena-

Sempere, 2010). These peptides are encoded by the KISS1 gene which produces a C-

terminal amidated peptide of 54 amino-acids named kisspeptin-54 (formerly, also known as 

metastin). Kisspeptin-54 is further processed to generate C-terminal peptides of 14 
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(kisspeptin-14), 13 (kisspeptin-13) or 10 amino-acids (kisspeptin-10), all of them showing 

similar biological activities (Colledge, 2008; Tena-Sempere, 2010). 

Kisspeptin effects are mediated by activation of the KISS1 receptor (KISS1R), also known 

as GPR54, which is encoded by the KISS1R gene (Ohtaki et al., 2001, Colledge, 2008). 

Mutations of KISS1R are associated with hypogonadotrophic hypogonadism in humans 

(Seminara et al., 2003; de Roux et al., 2003), a phenotype which is also observed in mice 

carrying inactivating mutations of Kiss1 or Kiss1r genes (Tena-Sempere, 2010).  

In addition to their prominent expression at hypothalamic levels, fragmentary evidences 

suggest that KISS1 and/or KISS1R mRNAs or proteins are also present in several peripheral 

reproductive tissues including the ovary (Castellano et al., 2006; Gaytan et al., 2009), the 

oviduct (Gaytán et al., 2007) and the testes (Ohtaki et al., 2001). On the latter, however, the 

potential effects of kisspeptin on the male gonads and, particularly, its possible role in the 

regulation of ejaculated sperm function have not been studied to date. 

The aim of this work was to examine the presence of the kisspeptin system in human 

spermatozoa and its potential involvement in the regulation of human sperm function. 

Materials and methods 

Semen samples and sperm preparation 

This study was approved by the Ethics Committee of Consejo Superior de Investigaciones 

Científicas (CSIC) and informed written consent was obtained from all donors. Freshly 

ejaculated semen was collected from fifty-six healthy donors (18-35 years old) after 3-4 

days sexual abstinence. Samples used in the present study were normozoospermic and 

displayed the absence of leukocytospermia, abnormal morphology or viscosity. The samples 

were allowed to liquefy at 37ºC for 30 min and examined for concentration and motility 
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following World Health Organization (WHO) guidelines (1999). Liquefied semen samples 

were washed with modified human tubal fluid (mHTF, Irvine Scientific, Santa Ana, CA) 

supplemented with 10 mM HEPES and 0.5% bovine serum albumin (BSA) and processed 

as described previously (Ravina et al., 2007; Pinto et al. 2009). Briefly, sperm suspensions 

were centrifuged through a discontinuous density gradient (Spermgrad-125, Vitrolife, 

Kungsbacka, Sweden), allowed to swim-up for 1 hour at 37ºC and the supernatant carefully 

aspirated. Sperm motility and concentration were re-examined and the concentration 

adjusted to 50 x 106 cells/ml for subsequent experiments.  

Indirect immunofluorescence 

Immunolocalization of kisspeptin and its receptor was assessed by fluorescence microscopy. 

Sperm cells were washed, resuspended in phosphate-buffered saline (PBS) and smeared 

onto poly-L-lysine-coated slides. Spermatozoa were then fixed by incubation in cold 

methanol (-20ºC) for 20 min. Slides were washed thoroughly with PBS and incubated for 

120 min with 2% casein in PBS to block non-specific binding sites. Test slides were 

incubated overnight at 4ºC with a primary polyclonal antibody designed to recognize human 

kisspeptin (either sc-15400, from Santa Cruz Biotechnology, Santa Cruz, CA, dilution 

1:400, or T-4771, from Bachem, Bubendorf, CH, dilution 1:200), or KISS1R (sc-48220, 

Santa Cruz, dilution 1:600). The specificity of antibodies was previously established by one 

of us (Gaytán et al., 2007) or assessed by using sections of human ovary and oviduct as 

positive controls (Gaytán et al., 2007, 2009). We also found, in experiments performed with 

the kisspeptin primary antibody T-4771, that preincubation with an excess of kisspeptin 

immunogenic peptide caused a disappearance of the fluorescent signal. Negative control 

slides were not exposed to the primary antibody and were incubated with pre-immune 
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serum or PBS and processed in the same conditions as test slides. Samples were washed 

three times in PBS and incubated for 60 min with appropriate FITC-conjugated secondary 

antibodies (Santa Cruz). Slides were mounted using Prolong Gold antifade reagent 

(Invitrogen, Molecular Probes, Eugene, OR) with or without DAPI (Invitrogen) (for nuclear 

counterstaining) and examined with a Olympus BX-51 fluorescence microscopy (Tokyo, 

Japan). 

In some experiments we analyzed the immunolocalization of kisspeptin and its receptor, or 

kisspeptin and the tachykinin neurokinin B (NKB) in the same sperm cells. These double-

immunostaining experiments were performed essentially as described above, incubating 

sperm cells overnight with rabbit anti-human kisspeptin antibody (sc-15400, Santa Cruz, 

1:200 dilution) and either goat anti-human KISS1R (sc-48220, Santa Cruz, 1:600 dilution) 

or goat anti-human NKB antibody (sc-14109, Santa Cruz, 1:200 dilution). Secondary 

antibodies (1:400 dilutions of chicken anti-rabbit and donkey anti-goat) were conjugated to 

Tx-red or FITC (Santa Cruz) and used together.  

Western Blot experiments 

Western blotting was used to analyze the presence of KISS1R in spermatozoa and to assess 

the specificity of the KISS1R antibody. This procedure was performed as described 

previously, with slight modifications (Ravina et al., 2007; Pinto et al., 2009). We also 

studied the presence of KISS1R in human placenta, used as a positive control (Ohtaki et al., 

2001). For extraction of total proteins, the sperm cells were subjected to sonication in urea 

extraction buffer (1% w/v SDS, 9 M Urea, 1 mM EDTA, 0.7 M mercapto-ethanol, in 25 

mM Tris-HCl, pH 6.8), boiled and processed by polyacrylamide gel electrophoresis  

(PAGEprep Advance kit, Pierce, Rockford, IL). The protein content was measured using a 
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bicinchoninic acid (BCA) protein assay kit (Pierce) and 40 μg sperm or placenta protein 

were loaded on 10% sodium dodecyl sulphate (SDS)-PAGE gels. Proteins were separated 

by electrophoresis, transferred to polyvinyldifluoride (PVDF) membranes and processed 

according to the Amersham advance enhanced chemiluminescence (ECL) kit 

(Buckinghamshire, UK). Primary antibody dilution was 1:10000 and for the secondary 

antibody was 1:100000. 

[Ca2+]i Measurements 

Changes in [Ca2+]i were measured in sperm suspensions according to previously published 

procedures (Bedu-Addo et al., 2005; Pinto et al., 2009). Following swim-up, spermatozoa 

were incubated in mHTF with the acetoxymethyl ester form of Fura-2 (Fura-2/AM, 10 μM, 

Invitrogen) for 60 min at room temperature. After loading, the cells were washed and 

resuspended in mHTF or in a solution of the following composition (mM): NaCl 140; KCl 

4.7; CaCl2 2.0; MgCl2 0.3; glucose 10 and HEPES 10 (pH 7.4). Sperm aliquots (1 ml, 10 x 

106 cells/ml) were placed in the cuvette of a spectrofluorometer (SLM Aminco-Bowman, 

Series 2, Microbeam, Barcelona, Spain) and continuously stirred at 37ºC. The sperm 

suspension was alternatively illuminated with two excitations wavelengths (340 nm and 380 

nm) and the emitted fluorescence was measured at 510 nm. Changes in [Ca2+]i were 

monitored using the Fura-2 (F340/F380) fluorescence ratio as previously described (Pinto et 

al., 2009). 

Sperm Motility Studies 

Motility kinematics parameters were evaluated by computer analysis with Sperm Class 

Analyzer (SCA, Microptic, Barcelona, Spain) following WHO recommendations (1999). 

Aliquots of semen samples (5 μL) were placed into a Makler counting chamber (Sefi 



 8

Medical Instruments, Haifa, Israel) and at least 200 sperm cells and 5 fields were evaluated 

at each incubation time by phase contrast microscopy. Twenty-five consecutive digitalized 

images were analyzed for each single field. The movement of every encountered sperm was 

graded as: a: rapid progressive motility; b: slow progressive motility; c: non-progressive 

motility and d: immotility (WHO, 1999).  

Individual sperm samples were divided in several aliquots and each aliquot was treated with 

a single concentration of kisppeptin (kisspeptin-13, Bachem) (0.01-10 μM) or its solvent. In 

parallel experiments, we observed that the solvent does not alter sperm motility, in 

comparison with untreated, time-matched paired aliquots. Sperm motility was measured 5 

min before agent addition (initial value) and after 2, 15, 30, 60 and 120 min contact time 

periods. In additional experiments, the effect of kisspeptin (10 μM) or its solvent was 

investigated in aliquots pretreated for 15 min with the KISS1R-selective antagonist peptide 

234 (p234, Sigma) (0.3 μM) (Roseweir et al., 2009) or its solvent.  

Progressive motility (a+b), non-progressive motility (c) and immotility (d) were measured 

as percentage of the total (a+b+c+d), which was considered as 100%. Values of progressive 

motility, non-progressive motility and immotility were then expressed as the positive or 

negative increment produced by kisspeptin relative to the value observed at the same time in 

solvent-treated controls using the formula: (kisspeptin-treated at time x-initial value)-

(solvent-treated at time x-initial value).  

We also analysed the effects of kisspeptin or solvent on hyperactivation in sperm 

capacitated in vitro by incubation for 6 h in a humidified incubator at 37ºC in 5% CO2. The 

following kinematics parameters were measured: hyperactive motility; curvilinear velocity 

(VCL , μm/s); straight-line velocity (VSL, μm/s), average-path velocity (VAP , μm/s); 
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amplitude of lateral head displacement (ALH, μm); beat-cross frequency (BCF, Hz); 

linearity (LIN=VSL/VCL x 100) and straightness (STR=VSL/VAP x 100). These values 

were then expressed as percentage changes induced by kisspeptin using the formula: 

kisspeptin treated-solvent-treated/solvent-treated x 100. 

Acrosome reaction assays 

Acrosomal status was assessed with fluorescein isothyocianate-conjugated lectin from 

Pisum sativum (FITC-PSA) following previously described procedures (Mendoza et al., 

1992; Bedu-Addo et al., 2005). Following swim-up, sperm cells were adjusted to a 

concentration of 10 x 106 cells/ml and capacitated (6 h at 37ºC in 5% CO2). Sperm aliquots 

were then untreated (time-matched paired controls) or treated for different times with 

kisspeptin (10 μM), the ionophore A23187 (10 μM) or the corresponding solvent at 37ºC, 

5% CO2. At the end of each incubation period, cells were centrifuged, the supernatant 

removed and spermatozoa resuspended in hypo-osmotic swelling (HOS) medium (0.74% 

sodium citrate and 1.35% fructose in ultra-pure H2O) as described by Bedu-Addo et al. 

(2005). Sperm cells were washed (400 g for 5 min) and supernatants partially removed. The 

remaining pellets were spotted onto poly-L-lysine-coated slides, fixed/permeabilized in 

methanol and air-dried. The slides were incubated with 50 μl of FITC-PSA (50 μg/ml) for 

30 min in a humid chamber, washed, air-dried and mounted with Citifluor Solid Mountant 

Kit (Agar Scientific, Essex, UK). The acrosomal status was evaluated by fluorescence 

microscopy. Spermatozoa displaying an intact acrosome are strongly labeled with the 

fluorescent lectin at the acrosomal region whereas AR reacted cells show no labeling in this 

region, with or without labeling of the equatorial region. At least 200 cells were counted for 

each experimental condition and only HOS-positive (viable) cells were scored. Percentage 



 10

AR values were calculated by the formula: (%AR reacted spermatozoa in treated aliquots)-

(%AR reacted spermatozoa in the corresponding solvent-treated aliquots). The spontaneous 

AR range in control, untreated aliquots was 10-15% and neither A23187 nor kisspeptin 

solvent modified the AR status of the samples.  

Statistical analysis  

Results shown represent means ± SEM and n indicates number of experiments in sperm 

amples from n different donors. Kisspeptin responses were observed in 65-70% of sperm 

preparations assayed and only these samples were considered for mean calculation. 

Statistical analyses were made using Mann-Whitney’s U test (for comparison of mean ranks 

between two groups) or Kruskal-Wallis test (to compare more than two groups) 

nonparametric tests. These procedures were undertaken using GRAPHPAD PRISM (version 

5.0). P<0.05 values were considered significant. 

Results 

Immunodetection of kisspeptin and its receptor in human sperm 

Immunocytochemistry studies showed the presence of kisspeptin and KISS1R 

immunoreactivity (IR) in human spermatozoa (Figs. 1, 2, 3). For kisspeptin, positive 

immunolabeling was found in 100% of cells in all samples assayed (n= 6). Kisspeptin IR 

was localized in the post-acrosomal region of the sperm head and, in most cells, it was 

particularly intense in the equatorial segment (Figs. 1, 3). In many spermatozoa, an 

additional positive labeling was observed around the neck (Figs. 1, 3). In some sperm 

preparations (n=2), kisspeptin IR was restricted to the equatorial segment and the neck 

while in other preparations (n=4) kisspeptin-positive labeling was also observed in the 
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flagellum midpiece (Figs. 1, 3). We used two different kisspeptin antibodies and found 

comparable results with both of them.  

Fig. 1 

The kisspeptin receptor showed a distribution similar to that of kisspeptin; KISS1R IR was 

mainly found in the equatorial segment of the sperm head and around the neck (Figs. 2, 3). 

Strong immunostaining for KISS1R in these two regions was found in approximately 95% 

of cells (n=6, Fig. 2). In addition, approximately a 30-40 % of spermatozoa showed positive 

immunolabeling in the flagellum midpiece and this was observed in all preparations assayed 

(n=6, Figs. 2, 3). Control assays incubated only with secondary antibodies showed no 

signal.  

Western blot analysis of sperm homogenates confirmed the presence of KISS1R in 

spermatozoa. The KISS1R antibody recognized a band with the expected molecular weight 

of approximately 43 kDa (Fig. 2) and also labeled other bands of similar size, which may be 

the result of post-translational modifications (Fig. 2). The immunoreactive bands for 

KISS1R were also observed in the human placenta, used as positive control (Fig. 2). No 

band was observed in control assays, where primary antibodies were omitted (not shown).  

Fig. 2 

Co-localization of kisspeptin and neurokinin B in human sperm 

In a previous study we showed the presence of positive immunoreactivity for NKB in 

human spermatozoa (Pinto et al., 2010). In this study, we performed double 

immunolabeling experiments with anti-kisspeptin and anti-NKB antibodies to analyze the 

localization of NKB and kisspeptin in the same sperm cells. We found, in agreement with 

our previous results (Pinto et al., 2010), that NKB immunofluorescence was localized in the 
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sperm head and was particularly intense in the equatorial region (Fig. 1). Double 

immunofluorescence analysis confirmed the co-localization of both peptides in sperm cells, 

where kisspeptin and NKB appeared to uniformly merge, particularly over the equatorial 

segment (yellow signal, Fig. 1). 

Co-localization of kisspeptin and its receptor in human sperm 

Double immunolabeling experiments showed co-expression of kisspeptin and KISS1R in 

human sperm cells (Fig. 3). Fluorescence images show that co-localization of both proteins 

was mostly confined to the equatorial segment (Fig. 3).  

Fig. 3 

Effects of kisspeptin on intracellular free Ca2+ concentration, [Ca2+]i 

The presence of kisspeptin and its cognate receptor in human spermatozoa strongly suggests 

a local role of kisspeptin system in the modulation of sperm functions, many of which are 

associated with changes in [Ca2+]i levels. Therefore, we analyzed the effects of kisspeptin 

on [Ca2+]i in sperm cells. Kisspeptin (≥ 1 μM) caused a slowly developed, progressive 

increase in [Ca2+]i in Fura-2-loaded human spermatozoa (Fig. 4). This increase was initiated 

rapidly and reached a plateau about 3-6 min after kisspeptin exposure. The mean resting 

[Ca2+]i was 104 ± 2 nM in the absence of kisspeptin (n=16) and raised to 108 ± 3 nM (n=3, 

P>0.05), 114 ± 4 nM (n=5 , P<0.01) and 124 ± 8 nM (n=8, P<0.01) in the presence of 

kisspeptin 1, 10 and 20 μM, respectively. The peptide solvent had no effects (not shown). In 

parallel sperm aliquots, progesterone (1 μM) caused the typical biphasic [Ca2+]i response 

consisting in a rapid transient peak that raised [Ca2+]i from a basal value of 101 ± 1 nM to 

232 ± 16 nM (n=11 , P<0.001). This was followed by a decay to [Ca2+]i levels slightly over 

basal levels and a lower, sustained plateau phase (141 ± 5 nM, n=11, P<0.001) which 
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persisted during the time of stimulation with progesterone. The sex steroid induced virtually 

identical responses when added to sperm suspensions previously exposed to kisspeptin (Fig. 

4) or its solvent (not shown). Similarly, kisspeptin induced a full [Ca2+]i response in the 

presence of progesterone (not shown).  

Fig. 4 

The [Ca2+]i response was observed in 3/8 sperm suspensions with 1 μM kisspeptin, in 5/9 

with 10 μM and in 8/9 with 20 μM kisspeptin. In contrast, the response to progesterone was 

observed in 100% of samples assayed. Kisspeptin and progesterone induced [Ca2+]i 

responses of similar kinetics in sperm suspensions maintained in HTF or HEPES-based 

medium. 

Effects of kisspeptin on human sperm motility 

Kisspeptin (0.01 and 0.1 μM) did not modify sperm motility. At 1 μM, kisspeptin caused a 

transient increase in the percentage of a grade spermatozoa and a concomitant decrease in 

the percentage of b grade spermatozoa, but failed to produce a net modification in the 

percentage of progressive (a+b grades) motile spermatozoa (Fig. 5A). At a higher 

concentration (10 μM), kisspeptin caused a rapid stimulation of sperm progressive motility 

and increased both a grade and b grade spermatozoa (Fig. 5B), which result in a net increase 

in sperm progressive motility (Fig. 5C). This lasted for approximately 15 min, and was 

followed by a decrease in the percentage of a+b grade sperm cells (Fig. 5C). A new phase 

of stimulation of progressive motility was observed at more prolonged times of incubation 

(60-120 min, Figs. 5B and 5C). The effects of kisspeptin on sperm motility were inhibited in 

the presence of the KISS1R antagonist, p234 (Fig. 5C).  

Fig. 5 
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With regard to sperm kinematics parameters, kisspeptin increased ALH and BCF causing a 

parallel decrease in straightness and linearity (P<0.05 vs. solvent-treated aliquots, Fig. 6). 

This led to a motility pattern characteristic of hyperactivated sperm which was transiently 

maintained (Fig 6). The effects of kisspeptin on hyperactive motility were reduced in the 

presence of the antagonist p234 (Fig. 6). 

There were considerable variations between samples with respect to i) their ability to 

respond to kisspeptin and ii) the time needed to reach maximal responses. Hence, the effects 

of kisspeptin 1 μM on sperm motility were observed in 4 of 5 experiments. The effects of 10 

μM kisspeptin were observed in 5 of 7 sperm samples in experiments performed in the 

absence of the antagonist, and in 8 of 14 experiments in the presence of p234 or its solvent. 

Sperm hyperactivation was observed in 9 of 14 experiments. Within these 9 responsive 

samples, 5 showed hyperactivation at 2 min, all were hyperactivated at 15 min, 7 remained 

hyperactive at 30 min and 4 displayed hyperactive motility at 60 min. 

Fig. 6 

Effect of kisspeptin on the acrosome reaction 

We then analyzed whether kisspeptin was able to induce the AR in human sperm 

capacitated for 6 h and then exposed to kisspeptin (10 μM) for different times. As shown in 

Fig. 7, kisspeptin did not induce the AR at any of the times assayed (2-120 min, Fig. 7). 

Conversely, A23187 (10 μM) induced the AR in time-matched paired sperm aliquots (Fig. 

7) while its solvent had no effect.  

Fig. 7 
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DISCUSSION 

To date, the effects of kisspeptin on reproduction have been mainly studied at the 

hypothalamic-pituitary levels (Colledge, 2008, Tena-Sempere, 2010). In this sense, it 

remains undisputed that kisspeptin act through its receptor, KISS1R, in hypothalamic 

neurons and play an essential role in the regulation of sexual maturation, gametogenesis and 

fertility (de Roux et al., 2003; Seminara et al., 2003; Navarro et al., 2004, Colledge, 2008, 

Tena-Sempere, 2010). Evidence for the expression of KISS1 and KISS1R genes in the 

human testis had been presented preliminarily (Ohtaki et al., 2001), suggesting that 

kisspeptin could exert direct actions in the male gonads. Our present data are fully 

compatible with this possibility as we show, for the first time, that kisspeptin and its 

receptor are present in mature human spermatozoa, with specific patterns of cellular 

distribution. The strongest immunolabeling for both kisspeptin and KISS1R was found in 

the equatorial segment, a region with an important role in oocyte-sperm fusion (Bedford et 

al., 1979; Flesch & Gadella, 2000). In most cells, kisspeptin and its receptor were also 

localized around the neck, a region that participates in the regulation of flagellar activity 

(Publicover et al., 2008; Bedu-Addo et al., 2008). In a smaller population of spermatozoa, 

kisspeptin and KISS1R were also found in the midpiece, a region involved in the control of 

energetic requirements, Ca2+-buffering and motion (Suarez et al., 2007; Publicover et al., 

2008).  

Kisspeptin is expressed in discrete populations of neurons within the hypothalamus, 

including the arcuate nucleus, where it is co-expressed with two other bioactive peptides, 

the tachykinin NKB and the opioid dynorphin A (Rance, 2009; Lehman et al., 2010; Tena-

Sempere, 2010). These are named KNDy neurons, and play a crucial role in the pathway 
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through which the brain regulates reproduction (Topaloglu et al., 2009; Lehman et al., 

2010). The present data show that NKB co-localizes with kisspeptin also in human 

spermatozoa, particularly in the equatorial region. Dynorphin is also present in human 

sperm and is mainly localized in the equatorial segment (N. Subiran, personal 

communication). Thus, spermatozoa represent the first known type of non-neuronal KNDy 

cell. In hypothalamic neurons, kisspeptin, NKB and dynorphin appear to act in a 

coordinated manner to modulate pulsatile GnRH secretion and hence gonadotropin release 

(Lehman et al., 2010). It may thus be tempting to propose that some of the effects of 

kisspeptin in sperm, modulated by the concerted actions of NKB and dynorphin, may stem 

from its ability to locally modulate GnRH secretion. Previous studies have demonstrated the 

presence of GnRH and the GnRH receptor in many extrahypothalamic tissues including the 

human oviduct, ovarian granulosa cells and spermatozoa (Izumi et al., 1985; Morales, 1998; 

Lee et al., 2000). Experimental data have shown that GnRH increases the ability of sperm to 

bind to the zona pellucida, whereas it is unable to induce the AR or to modify the motility 

pattern in human sperm (Morales, 1998). In any event, our current data suggest that 

kisspeptin, alone or in concert with NKB (and dynorphin) is capable to modulate important 

sperm functions. The physiological relevance of such a local role of kisspeptin, as well as 

NKB and dynorphin, in human sperm awaits further investigation.  

The presence of kisspeptin and its receptor in spermatozoa strongly suggest a regulatory 

role of the kisspeptin system. Because [Ca2+]i signaling plays a central role in the control of 

many different sperm functions (Rossato et al., 2001; Darszon et al., 2006; Publicover et al., 

2008), we analyzed the ability of kisspeptin to induce changes in sperm [Ca2+]i. Our data 

show that kisspeptin induced a slowly developed, sustained increase in [Ca2+]i. The [Ca2+]i 
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response induced by kisspeptin was very different in time-course and kinetics to that 

induced by progesterone. Moreover, both kisspeptin and progesterone were able to induce a 

full response in sperm preparations previously exposed to the other compound (see Fig. 4), 

suggesting that kisspeptin and progesterone increase [Ca2+]i acting by different mechanisms. 

The observed modifications in [Ca2+]i prompted us to investigate the effect of kisspeptin on 

motility, hyperactivation and the acrosome reaction, since all these functions have been 

associated to changes in [Ca2+]i levels in sperm. We found that kisspeptin induced small, but 

significant changes in sperm motility. These effects were reduced in the presence of the 

KISS1R antagonist, p234, providing further support for the presence of functional 

kisspeptin receptors in human sperm. Kisspeptin, acting via KISS1R, could activate 

different signal transduction pathways leading to its modulatory role on sperm movement. 

Sperm motility is essential for natural reproduction, and spermatozoa show different 

motility patterns at different functional states. Initially, sperm cells develop a progressive 

motility with relative regular and linear trajectories, which is necessary for swimming and 

transport through the female reproductive tract (Mortimer, 1997; Turner, 2006; Subiran et 

al., 2008). When sperm cells arrive to the oviduct, they develop a hyperactivated motility 

characterized by the appearance of asymmetric trajectories, which is necessary for sperm to 

leave their reservoirs in the oviductal isthmus, in order to find and fuse with the oocyte 

(Mortimer, 1997; Suarez & Pacey, 2006; Chang & Suarez, 2010). Previous studies have 

shown that kisspeptin is present in the oviduct, it being particularly abundant in the luminal 

surface of the isthmus segment (Gaytan et al., 2007). Kisspeptin could thus participate in 

some of the important processes that occur in the oviduct, such as sperm hyperactivation, 

the acrosome reaction and/or oocyte fertilization (Roldan et al., 1994; Visconti,. 2009; 
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Chang & Suarez, 2010). The present data show that the effects of kisspeptin on motility 

were characterized by an increase in flagellar beating and in ALH with a concomitant 

decrease in straightness and linearity, leading to motility trajectories that are characteristics 

of hyperactivated spermatozoa. The transient nature of kisspeptin-induced hyperactivation is 

consistent with the hypothesis that sperm flagellar beat pattern must turn intermittently 

between asymmetrical and symmetrical swimming patterns in order to reach the oocyte 

(Chang & Suarez, 2010). On the contrary, kisspeptin was unable to induce the AR, which is 

consistent with the very different [Ca2+]i response elicited by kisspeptin in comparison with 

that of progesterone, a well-known AR inducer (Roldan et al., 1994; Bedu-Addo et al., 

2005). Further studies will help to clarify the role of kisspeptin and KISS1R in oocyte 

fertilization.  

In this study, kisspeptin immunoreactivity was found in 100% of sperm cells and KISS1R 

immunoreactivity was found in approximately 95% of cells, indicating a wide distribution 

of both kisspeptin and its receptor in sperm cells. In addition, there were differences in 

subcellular immunolocalization between sperm cells, which is an usual fact when working 

with spermatozoa (see Agirregoitia et al., 2006; Subiran et al., 2008; Colas et al., 2009). At 

the moment, the most accepted explanation is that these differences may reflect changes in 

the capacitation stage of the sperm cell (Colas et al., 2009). KISS1R, the protein that would 

mediate functional responses to kisspeptin, was found in both the equatorial segment and 

around the neck in more than 95% of cells and was additionally found in the flagellum 

midpiece in about 30-40% of cells, and this occur in all preparations assayed. With respect 

to functional experiments, we found that approximately a 30% of sperm preparations did no 
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respond to kisspeptin. These data do not permit actually to establish a correlation between 

changes in immunolocalization and the functional responses to kisspeptin. 

In conclusion, this study shows for the first time that kisspeptin and its receptor are present 

in human spermatozoa. Moreover, we document that kisspeptin, acting through KISS1R, is 

able to modulate some human sperm functions. The physiological significance of this novel 

facet of kisspeptin action upon the male reproductive axis warrants further investigation.  
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FIGURE LEGENDS 

Fig. 1. Immunofluorescence and corresponding differential interference contrast images of 

human sperm cells stained with anti-kisspeptin and/or anti-neurokinin B antibodies. (A) 

Immunolocalization of kisspeptin (green staining). (B) Double immunofluorescence 

analysis of kisspeptin (red signal), neurokinin B (green signal) and merged image showing 

the co-localization of kisspeptin and neurokinin B (yellow signal). Experiments were 

performed at least six times with similar results. Scale bar, 20 μm. 

Fig. 2. Analysis of the presence of the kisspeptin receptor (KISS1R) in human sperm. (A) 

Immunofluorescence and corresponding differential interference contrast images of human 

sperm cells stained with a primary antibody against the kisspeptin receptor, KISS1R. Sperm 

nuclei were stained with DAPI. Experiments were performed at least six times with similar 

results. Scale bar, 20 μm. (B) Western Blot analysis showing the presence of KISS1R in 

sperm homogenates (SPZ) and in human placenta (PLC), used as a positive control. Results 

are representative of at least five separate protein preparations, each from 5 different donors. 

Fig. 3. Immunofluorescence and corresponding differential interference contrast images of 

human sperm cells stained with primary antibodies against kisspeptin and its receptor, 

KISS1R. Double immunofluorescence analysis of kisspeptin (green signal), KISS1R (red 

signal) and merged image showing the co-localization of kisspeptin and its receptor (yellow 

signal). Experiments were performed at least six times with similar results. Scale bar, 20 

μm. 

Fig. 4. Effects of kisspeptin (10 μM) and progesterone (1 μM) on intracellular free Ca2+ 

levels, [Ca2+]i, in human sperm loaded with Fura-2. The trace is representative of typical 

results obtained in 6 different experiments. The X Axis shows time in seconds with respect 
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to addition of kisspeptin and progesterone and the Y axis shows [Ca2+]i data expressed by 

the ratio of F340/F380 signals. 

Fig. 5. Time- and concentration-dependent effects of kisspeptin on human sperm motility. 

(A) Effects of kisspeptin (1 μM) on rapid progressive (a grade) and slow progressive (b 

grade) motility at different times of incubation. (B) Effects of kisspeptin (10 μM) on rapid 

progressive (a grade) and slow progressive (b grade) motility at different times of 

incubation. (C) Effects of kisspeptin (10 μM) on sperm progressive motility (a+b grades) in 

the presence of the selective KISS1R antagonist peptide 234 (p234, 0.3 μM) or its solvent at 

different times of incubation. Progressive motility (a and b), non-progressive motility (c) 

and immotility (d) were measured as percentage of the total (a+b+c+d) that was considered 

as 100%. Values of a, b, c, d or a+b were then expressed as the positive or negative 

increment produced by the drug relative to the value observed at the same time in solvent-

treated paired controls Bars are means with SEM of 4-8 different experiments. *P<0.05, 

significant difference vs. values of progressive motility (grade a, b or a+b sperm) at time=0, 

Kruskal-Wallis test. aP<0.05, significant difference vs. kisspeptin responses at times 2, 15 

and 60, Kruskal-Wallis test. bP<0.05, significant difference vs. kisspeptin responses in the 

presence of p234 solvent, Mann-Whitney U test. 

Fig. 6. Effects of kisspeptin (10 μM) on sperm kinematic parameters at 2, 15, 30, 60 and 

120 min of incubation. (A) Effects on linearity index (LIN) and on the amplitude of lateral 

head displacement (ALH). (B) Effects on straightness index (STR) and on beat cross 

frequency (BCF). (C) Effects on hyperactivated motility. Values are means with SEM of 9 

experiments and represent percentage changes relative to the response observed at the same 

time in paired, solvent-treated controls. *P<0.05, significant difference vs. responses in 
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solvent-treated controls at the corresponding time, Mann-Whitney U test. aP<0.05, 

significant difference vs. kisspeptin responses in the presence of p234 solvent, Mann-

Whitney U test. 

Fig. 7. Effects of kisspeptin on the acrosome reaction (AR). Capacitated sperm samples 

were treated with kisspeptin (10 μM) or A23187 (10 μM) for 2, 15, 30, 60 or 120 min and 

the acrosomal status was assessed by staining with fluorescein isothyocianate-conjugated 

lectin from Pisum sativum (FITC-PSA). Bars are means with SEM of 6 different 

experiments and were calculated as: (%AR reacted spermatozoa in kisspeptin- or A23187-

treated aliquots)-(%AR reacted spermatozoa in the corresponding solvent-treated aliquots at 

the same time). *P<0.05, significant difference vs. values at time=0, Kruskal-Wallis test. 


