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ABSTRACT 

A comparative study of both conventional rising temperature and smart temperature control 

methods, like Constant Rate Thermal Analysis (CRTA), is carried out after analysing a set of 

solid state reactions using both methods. It is shown that CRTA avoids the influence of heat 

and mass transfer phenomena for a wide range of sample sizes leading to reliable kinetic 

parameters. On the other hand,conventional rising temperature methods yield α-T plots 

dependent on experimental conditions, even when using samples sizes smaller than 2 mg. 

Moreover, it is shown that the discrimination of overlapping processes is dramatically 

improved by using smart temperature control methods instead of conventional heating 

procedures. An advanced method for performing the kinetic analysis of complex processes 

from a single CRTA experiment is proposed.  

 

INTRODUCTION 

Smart temperature methods for studying chemical reactions imply controlling the 

temperature in such a way that the reaction itself follows a trend previously designed 

by the user. The most widely used smart temperature control method is the Constant 

(or Controlled) Rate Thermal Analysis (CRTA), independently developed by Rouquerol 

[1, 2] and the Paulik brothers [3]. This method involves controlling the temperature in 

such a way that the reaction rate is maintained constant all over the process. CRTA has 

been used by several authors for the synthesis of different materials, such as catalysts 

and sorbents with controlled porosity [4-24], structural ceramics [25-28] or 

electroceramics [29-32] and for binder burnout [33-35]. Besides it has many 

applications in analytical chemistry [36-39]. CRTA has been also extensively applied to 

the kinetic analysis of solid state reactions [40-61], after Criado et al. [62, 63]  showed  
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the advantages of this method as compared to conventional rising temperature ones 

for discriminating among the different kinetic models. It was demonstrated that, while 

conventional rising temperature α-T(t) plots always present a sigmoidal shape 

independently of the reaction mechanism, the shape of the CRTA curves is strongly 

dependent on the reaction mechanism. Thus, the curves corresponding to “n order” 

models are convex with regards to the T axis, while those following diffusion kinetic 

equations present an inflection point and, finally, curves obeying an Avrami-Erofeev 

kinetic model show a minimum in temperature for certain value of α. Thus, CRTA 

experiments corresponding to reactions following this latter mechanism start with a 

rise in temperature until reaching the preset value of the reaction rate. This step is 

immediately followed by a temperature fall until reaching a determined value of the 

reacted fraction that depends on the n coefficient of the Avrami-Erofeev equation; 

then the temperature rises again until the reaction is over. 

On the other hand, it has been claimed [61, 64] that CRTA has higher resolution power 

than conventional non-isothermal methods for discriminating mutually independent 

overlapping reactions . This behavior can be understood as a consequence of the high 

level of control provided by CRTA, i.e. the reaction rate is measured with a great 

accuracy (since it is constant), the uncertainty about the sample temperature is 

reduced by imposing a low reaction rate that minimize the temperature gradients 

while the surrounding atmosphere is also well controlled because of the reduction of 

the pressure gradients. In other words, CRTA provides almost automatically the 

experimental conditions required for meaningful and reliable kinetic experiments. 

Three different examples are presented, which illustrate the ability of CRTA for 

avoiding the influence of heat and mass transfer phenomena leading to reliable kinetic 

data and for discriminating overlapping processes in complex reactions (blended 

materials).  

 

EXPERIMENTAL PART 

The following materials were used: PbCO3 supplied by Merck, PVC fine powder (with 

average Mn = 47000 and average Mw = 80.000) supplied by Aldrich and a sample of PVC 
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blended with a 33% of DINCH (1,2cyclohexane dicarbocylic acid, diisononyl ester) as 

plasticizer. 

For thermal analysis experiments, a homemade system that allows working under a 

vacuum better than 2 10-6 mbar or under a controlled flow of any inert or reactive 

permanent gas and in the temperature range from room temperature to 1250 K has 

been attached to a CI Electronic electrobalance. 

The thermal decomposition of PbCO3 was studied under both conventional linear 

heating rate and CRTA conditions in vacuum.  Samples were outgassed at room 

temperature until reaching the best vacuum available (4.10-5 mbar). For linear heating 

rate experiments sample sizes smaller than 5 mg were used. CRTA experiments were 

carried out using the Rouquerol approach [65]. It consists on monitoring the furnace 

temperature in such a way that the pumping rate and the residual pressure in the 

close vicinity of the sample is maintained constant all over the process. The CRTA 

diagrams were recorded using a constant CO2 residual pressure of 4.10-5 mbar and a 

constant decomposition rate of about 1.6.10-3 min-1. A starting sample size of 20 mg 

was used. In addition, a cyclic CRTA experiment was performed using a sample size of 

100 mg. In such case two decomposition rates were set at 1.6.10-3 min-1 and 1.9.10-3 

min-1 and they were maintained constant during alternative periods of 1 hour. These 

conditions allow performing about 15 cycles during the decomposition of the PbCO3. 

For PVC and PVC blend, experiments were performed under 100 ml min-1 nitrogen flow 

using both linear heating rate and CRTA experiments. For the CRTA experiments, the 

temperature was controlled in such a way that the mass change as a function of time 

fits a predefined linear function. A detailed description of this temperature control 

system can be found in a previous reference [66].  

 

THEORETICAL PART 

 

The reaction rate of a solid state reaction can be represented by the following 

equation: 

 

        (1), 
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where α is the reacted fraction, t is the time, dα/dt is the reaction rate, T is the 

temperature, A is the preexponential factor of Arrhenius,  E is the activation energy, R 

is the gas constant and f(α) is a function representing the kinetic model.   

Eq. (1) must be accomplished whatever would be the thermal pathway followed for 

achieving a particular point of the triplet (dα/dt)-α-T. If the α-T (or t) plot is obtained at 

a constant decomposition rate (C = dα/dt), Eq. (1) can be rearranged, after taking 

logarithms, in the form: 

  

                       (2). 

 

The plot of the left hand side of Eq. (2) as a function of 1/T leads to a straight line, 

where the slope leads to the activation energy and the intercept to the pre-

exponential factor of the Arrhenius expression of the process, provided that the 

proper f() function is selected, except if the kinetic model is represented by the 

function f() = (1-)n , i.e. R2, R3 and F1 models, frequently referred as “n order” 

reactions. In such a case, Eq. (2) becomes: 

 

                                             (3) 

 

E an n cannot be simultaneously determined from a single experiment unless one of 

these two parameters is known from other source.  The method of Cyclic Reaction 

Rate also named Rate Jump method proposed by Rouquerol [67] would allow 

overcoming this limitation. This method imposes periodical jumps between two pre-

set decomposition rates and compares the state of the sample immediately before the 

rate jump, at which the reaction rate is C1 and the temperature is T1, with the state 

immediately after the jump, at which the reaction rate and the temperature have 

moved to C2 and T2, respectively. Taking into account that the two states of the sample 

to be compared have practically the same reacted fraction, one gets 

 

                    (4). 

 

Equation (4) permits to obtain the activation energy of the process without any 

assumption regarding the kinetic law obeyed by the reaction. The value of the 

“reaction order” n can be determined from Eq. (3) once the activation energy has been 

determined from Eq. (4).    
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RESULTS AND DISCUSSION 

CRTA and control of the heat and mass transfer phenomena 

The study of the thermal decomposition of lead carbonate illustrates the advantages 

of CRTA for minimizing the influence of mass and/or heat transfer phenomena on the 

forward reaction in order to get reliable kinetic information. The study of this reaction 

from rising temperature thermogravimetric experiments recorded under high vacuum 

has shown that it is not possible to obtain TG curves independent of the starting 

sample mass, not even for sample sizes smaller than 2 mg and heating rates as low as  

0.5 K min-1, as illustrated in Fig. 1. These results clearly demonstrate that it is not 

possible to derive reliable kinetic data of the thermal decomposition of this carbonate 

from conventional TG, even under high vacuum, which is expected to minimize the 

influence of the CO2 self-generated in the thermal decomposition. 

Figure 2 shows the α-T CRTA curve obtained at constant decomposition rate, i.e. C = 

1.6.10-3 min-1, for a starting sample size of 20 mg. The concave shape of the plot 

suggests that the thermal decomposition of PbCO3 obeys an “n order” reaction and, 

therefore, as stated in the theoretical section, it is not possible to determine 

simultaneously the activation energy and the exponent n. However, the value of E/n 

can be obtained from the slope of the plot of the left hand side of Eq. (3) versus 1/T  as 

indicated in the theoretical section, yielding a value of E/n= 122 kJ mol-1. An additional 

cyclic CRTA experiment has been carried out under the experimental conditions 

described in the experimental section, for calculating the activation energy. Fig. 3 

shows a detail of a tooth taken from the cyclic CRTA curve. The activation energy 

determined from this cycle is E = 121 kJ mol-1, while very similar values were obtained 

for each of the 15 cycles recorded from α = 0.05 up to α = 0.95, leading to an average 

value of E = 120 ± 10 kJ mol-1. The comparison of this E value with the E/n value, 

obtained for the CRTA curve in Fig. 2, shows that the thermal decomposition of PbCO3 

fits a F1 kinetic model, i.e. n=1.  It is noteworthy to remark that the α-T points taken 

from the traces of the cyclic CRTA curve at which the decomposition rate is equal to 

1.6. 10-3 min-1 matches the CRTA of Fig. 2 recorded at the same constant 

decomposition rate, as shown in Fig. 2 with the superimposed points. This behavior 

clearly demonstrates that the α-T plots here obtained by the CRTA method are quite 

independent of the starting sample mass, unlike those obtained under rising 

temperature experiments, as it was previously shown in Fig. 1. 

 

Advanced kinetics procedure for complex reactions 

 

The kinetics of the thermal dehydrochlorination of polyvinyl chloride (PVC) was carried 

out in a previous paper [56]. In such work, it was concluded that the reaction takes 

place in two independent steps that were separated using and advanced kinetic 

analysis procedure, which involves the simultaneous analysis of a set of TG curves 
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obtained at different heating rates. It was shown [56] that the first step fits an Avrami-

Erofeev kinetic model, followed by a second overlapping step that obeys a diffusion 

kinetic model. The microscopic observations support that the reaction follows an 

Avrami-Erofeev kinetic model (formation and growth of nuclei) and that part of the HCl 

formed in the dehydrochlorination reaction is trapped into bubbles and later released 

as the temperature increases. This latter process accounts for the second diffusion 

step.  

The use of CRTA simplifies the kinetic analysis by improving the resolution of 

overlapping processes. This method provides a much better discrimination power of 

the solid state reaction kinetic models than conventional linear heating or isothermal 

experiments, because the shape of the CRTA α-T curve is dependent on the kinetic 

model followed by the process, unlike curves recorded under linear heating rate 

conditions, that always have a sigmoidal shape [61-63]. 

Figure 4 shows the α-T plot obtained at a constant decomposition rate, i.e. C = 6.10-3 

min-1, for the thermal dehydrochlorination of PVC.  Two overlapping steps are clearly 

observed in this figure. At the initial part, temperature sharply rises, until reaching the 

preset value of the reaction rate. At this point temperature immediately drops, until 

reaching a certain conversion value, followed by a new temperature rise. Thus, the 

curve falls back on itself upon achieving the preset constant rate. This shape is 

characteristic of a nucleation and growth of nuclei mechanism [61-63]. The shape of 

the second part of the curve is more difficult to discriminate because of the 

overlapping, but it seems to have a sigmoidal shape characteristic of diffusion 

processes [61-63]. 

A complete kinetic analysis of this complex reaction requires deconvoluting the overall 

curve into its individual processes and determining their kinetic parameters, i.e. 

activation energies, preexponential factors and kinetic models. No solution is found if 

the deconvolution of the overlapping curves is attempted by assuming two parallel 

competitive reactions, in agreement with the conclusion of  Sánchez-Jiménez et al. 

[56], where two independent reactions are considered. Thus, the deconvolution has 

been carried out by resolving the following system of differential equations: 

 

               (5) 

 

                   (6) 

      

                             (7), 
 

where the subscripts 1 and 2 correspond to the first and second process, respectively, 

l1 and l2 being the contribution fraction of each process. It has been shown in a 

previous paper [68] that the f(α) functions of all the different kinetic models proposed 

in literature can be represented by the following modified Sestak-Berggren equation, 
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i.e. f(α) = c αm(1-α)n. This empirical approximation also accounts for deviations from 

the ideal kinetic models due to inhomogenities in shape and particle size distribution. 

Thus, the modified Sestak-Berggren equation has been used for f1(α1) and f2(α2) in Eq. 

(5).  

All the kinetic parameters are determined by comparing the experimental curve with 

the theoretical one obtained from Eqns. (5), (6) and (7) using iterative optimization.  

Considering the CRTA shape analysis discussed before, the experimental curve was 

fitted assuming Avrami-Erofeev and tridimensional diffusion mechanisms for the 

beginning and the end of the reaction, respectively, while the resulting kinetic 

parameters were used as starting values for the optimization process. The iterative 

optimization procedure yielded the following kinetic parameters: l1  = 0,66, E1 = 113 

kJ/mol, c1A1 = 5,8.1010 min-1, n1  =1,17, m1 = 0,68; l2 = 0,34, , E2 = 202 kJ/mol, c2A2 = 1,1. 

1017 min-1, n2 = 1.37 and m2 = -1.89. These values are in very good agreement with 

those previously reported [69] for the same sample from the simultaneous kinetic 

analysis of a set of TG diagrams obtained under different heating rates. Moreover, the 

theoretical curve constructed with these parameters matches quite well the 

experimental curve, as shown in Fig. 4. 

The values of n1 and m1 agree with the values expected for an A2 Avrami-Erofeev 

kinetic model, while the values obtained for n2 and m2 agree with the values expected 

for a tridimensional diffusion controlled reactions as shown in previous references [56, 

69]. In summary, the results here reported show that CRTA method considerably 

simplifies the kinetic analysis of complex processes. 

 

Applications of the resolution power of CRTA methods in Analytical Chemistry 

 

Elastomers often contain an appreciable amount of oil as a plasticizer. Hammer [70] 

has shown that in many cases, accurate determination of oil and polymer content is 

difficult because oil vaporization and elastomer thermal decomposition overlap. CRTA 

method is a powerful tool for overcoming this problem. 

The higher resolution power of CRTA with regards to conventional rising temperature 

methods is of great interest for increasing the efficiency of thermogravimetry as an 

analytical tool. It has been shown in a recent paper [37] that CRTA allows to perform 

compositional analysis of multicomponent polymeric materials by means of 

thermogravimetric experiments. Fig. 5 shows the conventional linear heating rate and 

CRTA curves obtained for PVC blended with DINCH plasticizer (1,2cyclohexane 

dicarbocylic acid diisononyl ester). It can be observed that the CRTA curve leads to a 

complete separation of both the evaporation of the plasticizer and the thermal 

decomposition of the polymer. This is not achieved in the curve recorded under linear 

heating rate conditions where both processes totally overlap. Besides, the shape of α-T 

plot corresponding to the dehydroclorination of PVC, as shown in Fig. 4, is observed in 

the second step of the CRTA curve of Fig. 5, after the plasticizer is released. Thus, it can 
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be concluded that CRTA constitutes a powerful tool for determining the percentage of 

plasticizers contained in blended polymers, avoiding the use of chromatographic 

techniques that are rather cumbersome and time consuming [71, 72]. 
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Captions of figures 

 

Fig. 1. Curves obtained under high vacuum at a linear heating rate of 0.5 K min-1 

for 4.5 mg (a) and 1.9 mg (b) of  PbCO3. 

 

Fig. 2. CRTA curve of PbCO3 obtained under high vacuum at a constant 

decomposition rate C = 1.6.10-3 min-1. The superimposed black points have 

been taken from the part of the cyclic CRTA experiment that is running at C = 

1.6.10-3  min-1. 

 

Fig. 3. A tooth in a cyclic CRTA for PbCO3, showing the evolution of temperature 

and mass loss.  Values of T1 and T2 corresponding to the C1 and C2 reaction rates 

have been marked in the figure. 

 

Fig. 4. CRTA curve resulting from the thermal dehydroclorination of PVC sample 

at a constant reaction rate of 6.10-3 min-1. Experimental curve is represented by 

points while the theoretical reconstructed one is represented by a line. 

 

 

Fig. 5 Experimental mass loss against temperature recorded under flowing 

nitrogen atmosphere at a constant reaction rate of 3.10-3 min-1 for a blend PVC-

DINCH (solid line). The linear heating rate experiment recorded at 1 K min-1 has 

been included for comparison (dotted line). 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

400 450 500 550 600

0.0

0.2

0.4

0.6

0.8

1.0



T / K

b a

 

Figure 1. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

400 500 600

0.0

0.2

0.4

0.6

0.8

1.0



T / K

 

 

Figure 2 
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