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Ramsey numbers deal with conditions when a combinatorial object necessarily contains 
some smaller given objects. It is well known that it is very difficult to obtain the values of 
Ramsey numbers. In this work, a theoretical chemical/biological solution is presented in 
terms of membrane computing for the decision version of Ramsey number problem, that is, 
to decide whether an integer n is the value of Ramsey number R(k, l), where k and l are 
integers.
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1. Introduction

In 1930 the British mathematician Frank P. Ramsey published a paper that has
led to a research area called Ramsey Theory [8]. Ramsey-type theorems have roots
in different branches of mathematics and the theory developed from them influ-
enced such diverse areas as number theory, set theory, geometry, ergodic theory
and theoretical computer science [9]. Ramsey-type theorems are showing that a
total disorder is impossible. Specifically, Ramsey theory studies conditions when a
combinatorial object necessarily contains some smaller given objects. The role of
Ramsey numbers is to quantify some of the general existential theorems in Ramsey

theory.

For integers k, l ≥ 2, the classical 2-color Ramsey number R(k, l) is defined as
the least number n = n(k, l) such that for every 2-coloring (say red and green) of
the edges of the complete graph Kn on n vertices, Kn contains either a clique of
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order k with red edges or a clique of order l with green edges. It is well known 
that the clique problem is an NP-complete problem [2]. Furthermore, computing 
a lower bound L for R(k, l) usually requires exhibiting a red/green coloring of 
the complete graph KL−1 with no red Kk subgraph and no green Kl subgraph. 
Searching all colorings of a graph KL−1 becomes computationally extremely difficult 
as L increases; the number of colorings grows super-exponentially. So it is not easy 
to obtain the exact values of Ramsey numbers. The difficulty of computing Ramsey 
numbers was summed up quite nicely by the great Hungarian mathematician, Paul 
Erdös: Suppose an evil spirit would tell us, “Unless you tell me the value of R(5, 5) 
I will exterminate the human race.” Our best strategy would perhaps be to get all 
the computers and computer scientists to work on it. If he would ask for R(6, 6) our 
best bet would perhaps be to try to destroy him before he destroys us [1].

Until now, there are only nine known nontrivial values for Ramsey numbers 
R(k, l) [7], see Table 1. It is a great challenge for mathematician and computer 
scientists to compute the exact values of Ramsey numbers. In this work, a new way 
is given for computing Ramsey numbers based on a kind of “chemical/biological” 
computational devices, instead of physical computational devices.

Table 1. Known nontrivial values for R(k, l).

k 3 3 3 3 3 3 3 4 4

l 3 4 5 6 7 8 9 4 5

R(k, l) 6 9 14 18 23 28 36 18 25

Membrane systems (usually called P systems) are a class of distributed parallel

computing devices of a biochemical type, introduced in [3], which can be seen as a

general computing architecture where various types of objects can be processed by

various operations. The idea originates from the observation that certain processes

which take place in the complex structure of living organisms can be considered as

computations. We refer the reader to [5] for a motivation and detailed description

of various P system models. In this work, P systems with active membranes are

considered [4]. For a quick overview of P systems with active membranes, we refer

the reader to Chapter 11 in [6].

In this work, an algorithm is presented in terms of P systems with active mem-

branes to decide whether an integer number n is the value of Ramsey number R(k, l),

whose computation time is polynomial with respect to n. If a lower bound L and an

upper bound U of a Ramsey number R(k, l) are known and the gap U −L between

the lower bound and upper bound is not big, then the value of Ramsey number

R(k, l) can be obtained by running the above algorithm at most U − L times. For

example, 43 ≤ R(5, 5) ≤ 49, so it needs only to run the above algorithm at most 6

times in order to get the exact value of R(5, 5). Hence, the algorithm given in this

work looks attractive.
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2. Computing Ramsey Numbers by P Systems

Ramsey numbers R(k, l) (k, l ≥ 2) can be considered as a function from N
2 to N.

The decision version of Ramsey number problem can be expressed as follows: given

integers n, k, l, decide whether or not n is the value of Ramsey number R(k, l).

The resolution of Ramsey number problem given below is a brute force algo-

rithm, which consists of the following stages:

• Generation Stage (I): Using membrane division for non-elementary mem-

branes, all complete graphs Kn with different edge 2-colorings (say red and

green) are produced.

• Generation Stage (II): For each complete graph Kn with edges colored

by red or green, all subsets of vertices are generated by using membrane

division for non-elementary membranes.

• Checking Stage (I): For each complete graph Kn with edges colored by red

or green, we check whether there is a clique with k vertices and red edges.

• Checking Stage (II): For each complete graph Kn with edges colored by red

or green, if there is no clique with k vertices and red edges, then we check

whether there is a clique with l vertices and green edges.

• Output Stage: The system sends to the environment the right answer ac-

cording to the results of the previous stage. If in all complete graphs Kn

with edges colored by red or green, there is a clique with k vertices and red

edges or a clique with l vertices and green edges, then the answer is yes.

Otherwise, the answer is no.

Let us consider the (polynomial time computable and bijective) function 〈n, k, l〉

from N
3 onto N, where 〈n, k, l〉 = 〈n, 〈k, l〉〉, induced by 〈x, y〉 = ((x + l)(x +

y + 1)/2) + x. For given n, k, l, a P system with active membranes Π(〈n, k, l〉) is

constructed to decide whether n is the value of Ramsey number R(k, l).

Π(〈n, k, l〉) = (O(〈n, k, l〉), H, µ, w0, w1, w2, w3, w4, R),where

O(〈n, k, l〉) = {ai, ti, fi, t̄i, f̄i, f
′

i , f̄
′

i , yi, zi, ȳi, z̄i | 1 ≤ i ≤ n} ∪ {gi | 0 ≤ i ≤ n+ 3}

∪{di | 1 ≤ i ≤ n(n− 1)+ 3}∪ {hi, h
′

i | 0 ≤ i ≤ max{k, l}}∪ {ai,j |≤ i < j ≤ n}

∪{ei,j,s | 1 ≤ i ≤ n+ 2, 1 ≤ j ≤ n+ 2, 0 ≤ s ≤ 2l + 7}

∪{ēi,j,s | 1 ≤ i ≤ n+ 2, 1 ≤ j ≤ n+ 2, 0 ≤ s ≤ 2n+ 2k + 6}

∪{ci | 0 ≤ i ≤ n2 +5n+2k+2l+26}∪{a, b, g, h, p, q, u, yes, no, no1, no2, no3},

H = {0, 1, 2, 3, 4}, µ = [[[[[ ]
0
4]

0
3]

0
2]

0
1]

0
0, w0 = c0, w1 = w2 = w3 = λ, w4 = {{ai | 1 ≤

i ≤ n}} ∪ {{ai,j | 1 ≤ i < j ≤ n}} ∪ {{d1}}, and the set R contains the following

rules (the use of these rules during the computations is also explained):

(1) [ai,j ]
0
4 → [ei,j,2l+7]

+
4 [ēi,j,2n+2k+6]

−

4 , 1 ≤ i < j ≤ n.

(2) [[ ]
+
i+1[ ]

−

i+1]
0
i → [[ ]

0
i+1]

+
i [[ ]

0
i+1]

−

i , i = 2, 3. (3) [[ ]
+
2 [ ]

−

2 ]
0
1 → [[ ]

0
2]

0
1[[ ]

0
2]

0
1.

The objects ai,j corresponds to edges (vi, vj), 1 ≤ i < j ≤ n. Using the

rules of type (1), for non-deterministically chosen ai,j , two objects ei,j,2l+7

and ēi,j,2n+2k+6 are produced, placed in two separate copies of membrane 4,
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where ei,j,2l+7 denotes that edge (vi, vj) is colored with red, and ēi,j,2n+2k+6

denotes that edge (vi, vj) is colored with green. The rules of types (2) and (3)

are division rules for membrane with label 1, 2 and 3, to be used in steps which

follow the use of the rules of type (1). The division of a membrane with label 4

is propagated from lower levels to upper levels of the membrane structure and

the membranes are continuously divided. The membrane division stops at the

level where the membrane has the label 1. During the division, the charge of

the membranes with label 2, 3 and 4 first changes to positive or negative, then

returns to neutral, hence the process can continue. In this way, in n(n− 1)+2

steps all 2n(n−1)/2 graphs with different coloring of edges are generated, placed

in 2n(n−1)/2 separate copies of membrane 4. The structure of the system after

n(n− 1) + 2 steps is shown in Figure 1.

4
3

2
1

4
3

2
1

0

⋯

Fig. 1. The structure of system after step n(n− 1) + 2.

(4) [di → di+1]
α
4 , α ∈ {+,−, 0}, 1 ≤ i ≤ n(n− 1) + 2. (5) [dn(n−1)+3]

0
4 → d1.

At step n(n − 1) + 3, the counter dn(n−1)+3 dissolves the membrane with

label 4, and change to object d1. The object d1 is used as a counter again in

membranes with label 3. The computation passes to the next stage – for each

graph with different coloring of edges, all subsets of vertices will be generated

in order to check whether the corresponding graph has a clique Kk with red

edges or a clique Kl with green edges.

(6) [ai]
0
3 → [ti]

+
3 [fi]

+
3 , 1 ≤ i ≤ n. (7) [[ ]

+
3 [ ]

−

3 ]
0
2 → [[ ]

0
3]

0
2[[ ]

0
3]

0
2.

The objects ai correspond to vertices vi, 1 ≤ i ≤ n. Using the rules of type

(6), for non-deterministically chosen ai, two objects ti and fi are produced,

placed in two separate copies of membrane 3, where ti denotes that vertex

vi appears in some subset of vertices, and fi denotes that vertex vi does not

appear in some subset of vertices. The division rules of type (7) returns the

charge of membranes with label 3 to neutral, so the process can continue. In

2n steps, all 2n subsets of the vertex set V are generated for each graph. After

step n2 + n+ 3, the structure of the system is shown in Figure 2.

(8) [di → di+1]
0
3, 1 ≤ i ≤ n− 1. (9) [dn → qqh0]

0
3.

At step n2 + n, the subscript of the counter di reaches n − 1, and at step

n2+n+2, objects q and h0 are introduced; the objects q will exit the membrane

(at steps n2 + n+ 4, n2 + n+ 5), changing its polarization; the object h0 is a

new counter which will be used at the subsequent steps as shown below.
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The next stage of the computation now starts – counting the number of

objects ti (1 ≤ i ≤ n) in each membrane with label 3, which corresponds to

the cardinality of each subset; the subsets with cardinality exactly k will be

selected out.

3
2

1

0

⋯
3

2

⋯
3

2
1

⋯
3

2

Fig. 2. The structure of system after step n2 + n+ 3.

(10) [q]
0
3 → [ ]

−

3 u. (11) [q]
−

3 → [ ]
0
3u. (12) [ti → t̄iab]

−

3 , 1 ≤ i ≤ n.

(13) [fi → f̄if
′

i ]
−

3 , 1 ≤ i ≤ n. (14) [hi → h′

i]
0
3, 0 ≤ i ≤ k.

(15) [h′

i → hi+1]
+
3 , 0 ≤ i ≤ k − 1. (16) [a]

0
3 → [ ]

+
3 u. (17) [b]

+
3 → [ ]

0
3u.

At step n2 + n+4, h0 evolves to h′

0, and at the same time one copy of q exits

the membrane, changing its polarization to negative, where the object u is a

dummy object that will never evolve again. At step n2 + n + 5, ti evolves to

t̄iab, fi evolves to f̄if
′

i , and at the same time the other copy of q exits the

membrane, changing its polarization to neutral. The objects t̄i and f̄i have

the same meaning as objects ti and fi: the vertex vi appear or doesn’t appear

in some subset of vertices, respectively; they will be used in checking whether

there is a copy of clique kl with red edges or green edges (the process will take

place in membranes with label 2 as you will see below). At step n2 + n + 6,

one copy of a exits the membrane, changing its polarization to positive. At

step n2 + n + 7, h′

0 evolves to h1, at the same time one copy of b exits the

membrane, returning its polarization to neutral (this makes possible the use

of rules of types (14) and (16)).

The rules of types (14) – (17) are applied as many times as possible. Clearly,

at step n2 + n + 5 + 2k, a membrane contains object hk if and only if the

cardinality of the corresponding subset is at least k. At step n2 + n+ 6 + 2k,

in the membrane whose corresponding subset has cardinality more than k,

hk evolves to h′

k, and one copy of a changes its polarization to positive. This

membrane will no longer evolve, as no further rule can be applied to it. In the

membrane whose corresponding subset has cardinality exactly k, hk evolves to

h′

k, and its polarization remains neutral, because there is no copy of a which

can be used. The next stage of computation starts– checking whether a subset

with cardinality k is a clique.

(18) [h′

k → qqg]
0
3. (19) [f ′

i → yizi]
−

3 , 1 ≤ i ≤ n. (20) [g → g0]
−

3 .

(21) [ēi,j,r → ēi,j,r−1]
α
3 , 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2n+ 2k + 6, α ∈ {+,−, 0}.

At step n2 + n + 7 + 2k, in the membranes with label 3 and polarization 0,

h′

k evolves to qqg. At step n2 + n+ 8+ 2k, one copy of q exits the membrane,

changing its polarization to negative. At step n2 + n+ 9 + 2k, fi (1 ≤ i ≤ n)
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evolves to yizi, g evolves to g0, and an object ēi,j,0 appears for each edge

(vi, vj) with green color (note that the objects ēi,j,2n+2k+6 are released from

membranes with label 4 to membranes with label 3 at step n(n − 1) + 3 by

using the rule (5); from that time, the rules of type (21) start to work). At

same time, the other copy of q exits the membrane, changing its polarization

to neutral.

(22) [yi → yi+1]
0
3
, 1 ≤ i ≤ n− 1. (23) [zi → zi+1]

0
3
, 1 ≤ i ≤ n− 1.

(24) [ēi,j,0 → ēs(i),s(j),0]
0
3, 1 ≤ i < j ≤ n+ 1, where s(t) = min(t+ 1, n+ 2).

(25) [gi → gi+1]
0
3, 1 ≤ i ≤ n− 1. (26) [zn → p]

0
3. (27) [yn]

0
3 → [ ]

+
3 u.

At step n2+n+2k+10, yi, zi (1 ≤ i ≤ n−1) evolve to yi+1, zi+1, zn evolves to

p, ēi,j,0 (1 ≤ i < j ≤ n) evolve to ēs(i),s(j),0, where s(t) = min(t+ 1, n+ 2); at

same time, yn exits the membrane where it appears, changing the polarization

of that membrane to positive.

(28) [ēi,n+1,0 → u]
+
3 , 1 ≤ i ≤ n. (29) [p]

+
3 → [ ]

0
3u.

In the membranes with label 3 and positive polarization (i.e., the membranes

where yn appear in the last step, which means that vertex vn does not belong

to the corresponding subset), ēi,n+1,0 (1 ≤ i ≤ n) evolve to u; at the same

time, object p exits the membrane, returning the polarization of the membrane

to neutral (this makes possible the use of rules of types (22)–(27)).

In the membranes with label 3 and neutral polarization (i.e., the mem-

branes where yn do not appear in the last step, which means that vertex vn be-

longs to the corresponding subset), using rule of type (24), ēi,n+1,0 (1 ≤ i ≤ n)

evolve to ēi+1,n+2,0 (that is, the edge (vi, vn) with green color does not belong

to V × (V −A) ∪ (V −A)× V , where A is the corresponding subset).

The rules of types (22)–(29) are applied as many times as possible. After 2n

steps, a membrane contains an object ēn+2,n+2,0 if and only if that membrane

contains a green edge which does not belong to V × (V − A) ∪ (V − A) × V ,

where A is the corresponding subset. If the object ēn+2,n+2,0 does not appear

in a membrane with label 3 (that is, the corresponding subset of vertices is

a clique with k vertices and red edges), the object yes will appear, and it

eventually exits membrane with label 1. If the object ēn+2,n+2,0 appears in a

membrane with label 3 (that is, the corresponding subset of vertices is not a

clique with k vertices and red edges), this membrane is dissolved by the rule

(33), release its content to immediately outside membrane with label 2, and

the computation passes to the next stage – checking whether there exists a

clique with l vertices and green edges.

(30) [gn → gn+1q]
0
3. (31) [gn+1 → gn+2]

0
3. (32) [gn+2 → gn+3]

−

3 .

(33) [ēn+2,n+2,0]
−

3 → h. (34) [gn+3]
−

3 → [ ]
−

3 yes. (35) [yes]
0
2 → [ ]

0
2yes.

(36) [yes]
0
1 → [ ]

+
1 u.

At step n2+3n+2k+10, the object gn evolves to gn+1q. At step n2+3n+2k+11,

the object gn+1 evolves to gn+2q, and object q exits the membrane, changing

the polarization to negative (using rule of type (10)). At step n2+3n+2k+12,
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in the membranes which contain object ēn+2,n+2,0, gn+2 evolves to gn+3, and

ēn+2,n+2,0 dissolves the membrane with label 3. In the next step, the next

stage of computation starts – checking whether there exists a clique with l

vertices and green edges. At step n2 + 3n+ 2k + 12, in the membranes which

do not contain object ēn+2,n+2,0, gn+2 evolves to gn+3, the membranes with

label 3 are not dissolved and the polarization remains negative, in the next step

they produce the object yes. After two more steps, the object yes changes the

polarization of membrane with label 1 to positive, telling us that the associated

complete graph with the membrane labeled by 1 has a clique with k vertices

and red edges; after that, this membrane with label 1 will not send out objects

to membrane with label 0 any more.

(37) [h → qqh0]
0
2.

At step n2 +3n+2k+13, object h evolves to qqh0, where q is used to change

the polarization, and h0 is used to count the cardinality of subsets of vertices.

(38) [q]
0
2 → [ ]

−

2 u. (39) [q]
−

2 → [ ]
0
2u. (40) [t̄i → ab]

−

2 , 1 ≤ i ≤ n.

(41) [f̄i → f̄ ′

i ]
−

2
, 1 ≤ i ≤ n. (42) [hi → h′

i]
0
2
, 0 ≤ i ≤ l.

(43) [h′

i → hi+1]
+
2 , 0 ≤ i ≤ l − 1. (44) [a]

0
2 → [ ]

+
2 u. (45) [b]

+
2 → [ ]

0
2u.

As the rules of type (10)–(17), the rules of type (38)–(45) are used to check

whether the cardinality of the corresponding subset of vertices in each elemen-

tary membrane with label 2 equals to l. Note that the membranes with label 2

containing membrane with label 3 will not evolve anymore, their corresponding

subsets of vertices induce cliques with k vertices and red edges.

(46) [h′

l → qqg]
0
2. (47) [f̄ ′

i → ȳiz̄i]
−

2 , 1 ≤ i ≤ n. (48) [g → g0]
−

2 .

(49) [ei,j,r → ei,j,r−1]
α
2 , 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2l + 7, α ∈ {+,−, 0}.

At step n2+3n+2k+2l+17, in the membranes with label 2 and polarization 0,

h′

l evolves to qqg. At step n2+3n+2k+2l+18, one copy of q exits the membrane,

changing its polarization to negative. In the next step, f̄ ′

i (1 ≤ i ≤ n) evolves

to ȳiz̄i, g evolves to g0, ei,j,0 appears for each edge (vi, vj) with red color, and

the other copy of q exits the membrane, changing its polarization to neutral.

(50) [ȳi → ȳi+1]
0
2, 1 ≤ i ≤ n− 1. (51) [z̄i → z̄i+1]

0
2, 1 ≤ i ≤ n− 1.

(52) [ei,j,0 → es(i),s(j),0]
0
2, 1 ≤ i < j ≤ n+ 1, where s(t) = min(t+ 1, n+ 2).

(53) [gi → gi+1]
0
2, 1 ≤ i ≤ n− 1. (54) [z̄n → p]

0
2. (55) [ȳn]

0
2 → [ ]

+
2 u.

At step n2+3n+2k+2l+20, ȳi, z̄i (1 ≤ i ≤ n−1) evolve to ȳi+1, z̄i+1, z̄n evolves

to p, ei,j,0 (1 ≤ i < j ≤ n) evolve to es(i),s(j),0, where s(t) = min(t+1, n+2); at

same time, ȳn exits the membrane where it appears, changing the polarization

of that membrane to positive.

(56) [ei,n+1,0 → u]+2 , 1 ≤ i ≤ n. (57) [p]+2 → [ ]02u.

The rules of type (50)–(57) are used to check whether a subset of vertices with

l vertices induces a clique with green edges. In 2n steps a membrane contains

an object en+2,n+2,0 if and only if that membrane contains a red edge which

does not belong to V × (V −A) ∪ (V −A)× V , where A is the corresponding

subset. This process finishes after step n2 + 5n+ 2k + 2l + 19.
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(58) [gn → gn+1q]
0
2. (59) [gn+1 → gn+2]

0
2. (60) [gn+2 → gn+3]

−

2 .

(61) [gn+3]
−

2 → [ ]
−

2 yes. (62) [yes]
0
1 → [ ]

+
1 u. (63) [en+2,n+2,0]

−

2 → [ ]
+
2 no1.

(64) [no1 → no2]
0
1. (65) [no2 → no3]

0
1. (66) [no3]

0
1 → [ ]

+
1 no.

At step n2 + 5n + 2k + 2l + 20, gn evolves to gn+1q. In the next step, gn+1

evolves to gn+2q, and object q exits the membrane, changing the polarization

to negative.

At step n2+5n+2k+2l+22, in the membranes with label 2 which do not

contain object en+2,n+2,0, gn+2 evolves to gn+3, and the polarization remains

negative, in the next step they produce the object yes. At step n2+5n+2k+

2l+24, the object yes exits membrane with label 1 changing the polarization

to positive, telling us that the associated complete graph with the membrane

with label 1 has a clique with l vertices and green edges.

At step n2+5n+2k+2l+22, in the membranes with label 2 which contain

object en+2,n+2,0, gn+2 evolves to gn+3, and en+2,n+2,0 exit these membranes,

changing the polarization of these membranes to positive (the other copies of

en+2,n+2,0 cannot exit any more). After two more steps, no1 evolves to no3. At

step n2 + 5n+ 2k + 2l+ 25, if the polarization of a membrane with label 1 is

still neutral, then it means that the associated graph with the membrane with

label 1 has neither a clique with k vertices and red edges nor a clique with l

vertices and green edges. The object no3 exits, evolving to no, also changing

the polarization of membrane with label 1 to positive (in order that the objects

no remaining in it cannot continue to exit).

(67) [no]
0
0 → [ ]

+
0 no. (68) [ci → ci+1]

0
0, 0 ≤ i ≤ n2 + 5n+ 2k + 2l+ 25.

(69) [cn2+5n+2k+2l+26]
0
0 → [ ]

0
0yes.

If the object no appears in the skin membrane labeled by 0, then at step

n2 + 5n + 2k + 2l + 26, it is send out to the environment, telling us that

there exists a complete graph with n vertices and edges colored by red and

green that contains neither a clique with k vertices and red edges nor a clique

with l vertices and green edges; the computation stops. Note that if there is

no object no in the skin membrane, then it means that each complete graph

with n vertices and edges colored by red and green contains a clique with k

vertices and red edges or a clique with l vertices and green edges, and at step

n2 + 5n+ 2k + 2l+ 26 the polarization of the skin membrane is neutral. The

object cn2+5n+2k+2l+25 (originating from c0) evolves to cn2+5n+2k+2l+26, and

in the next step, cn2+5n+2k+2l+26 exits the skin membrane, evolving to the

object yes; the computation stops.

From the previous explanation of the use of rules, one can easily see how this P

system works. It is clear that the object yes exits the system if only if the integer n

is the value of Ramsey number R(k, l). If n is not the value of R(k, l), then at step

n2 + 5n+ 2k + 2l + 26 the system sends the object no to the environment.

The formal verification of the above computation is omitted, just pointing out

that the construction of the above P system can be done in polynomial time by a
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deterministic Turing machine. Because the sets of rules associated with the system

Π(〈n, k, l〉) are recursive, it is enough to note that the amount of necessary resources

for defining such system is polynomial with respect to n:

• Size of the alphabet: (n+ 2)2(2n+ 2k + 2l+ 13) + 2n2 + n(n− 1)/2 + 16n+

2k + 2l+ 2max{k, l}+ 44 ∈ O(n3);

• Initial number of cells: 5 ∈ O(1);

• Initial number of objects: n(n+ 1)/2 + 2 ∈ O(n2);

• Number of rules: n(n−1)(2n+2k+6)+n(n+1)(2l+7)+4n2+17n+4k+4l+70 ∈

O(n3);

• Maximal length of a rule: 7 ∈ O(1).

3. Discussion

Because it is very hard to get the exact values of Ramsey numbers, this is a good

way for examining the power of unconventional computing models. In this work,

an algorithm is presented in the framework of P systems to decide whether an

integer number n is the value of Ramsey number R(k, l), whose computation time

is polynomial with respect to n.

Even for small k and l, e.g., the case for R(5, 5) and R(6, 6), it is still very difficult

to obtain the values of Ramsey numbers. But “biochemical computers” or “artificial

cells” seem very suitable for computing Ramsey numbers. The Ramsey number

R(5, 5) has the bounds 43 ≤ R(5, 5) ≤ 49 [7]. The value of R(5, 5) can be obtained

after running our algorithm at most 6 times, one time for each integer from 43 to 48.

In each running of algorithm, the number of biochemical steps is not more than 2591

(computation steps n2+5n+2k+2l+27 ≤ 482+5×48+2×5+2×5+27 = 2591).

In general, there are a lower and upper bound of Ramsey number R(k, l)

2m ≤ R(k, l) ≤

(

k + l − 2

l − 1

)

,

where m = min{k, l}. In order to obtain the exact value of Ramsey number R(k, l),

the algorithm has to be run for each integer between the bounds of R(k, l). When

k, l are large integers and k >> l, the gap between the upper bound and the lower

bound can be very big. In these cases, the algorithm given in this work is not efficient

enough to obtain the value of Ramsey number R(k, l). It remains open to design

a P system such that the system outputs the value of Ramsey number R(k, l) in a

polynomial steps after the integers k, l are inputted into the system.

Although the algorithm presented in this work seems attractive from the the-

oretical point of view, the following analysis shows that it is not realistic. The

algorithm is a brute force one, which tests all possible colorings of Kn for a recom-

mended n. As shown in the above section, the amount of resources to construct the

P system is O(n3). But, during the computation, the P system generates 2n(n−1)/2

separate copies of membrane 4. This cannot happen in this universe for an integer n,

43 ≤ n ≤ 49. (One can imagine how big such space size is. The human being brain
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has about 233 neural cells. The size of 243(43−1)/2 cells is 2870 times of brain, which 
is beyond any philosophical limits.) The good time performance in the algorithm is 
achieved by trading space for time. In general, the brute force algorithm based on 
trading space for time is not realistic at least in the case of Ramsey numbers. It de-
serves to investigate how membrane computing leads to some improved algorithms, 
or new insights into attacking computationally hard problems.

It is worth pointing out that currently, nobody knows how to build a biochem-

ical computer or an “artificial cell” for computing, although it seems as though it 
might be possible within the biological/chemical principles. Even if no useful bio-
chemical computer is ever built, the research on membrane computing illuminates 
the problem of simulating biological systems on a classical computer.

The algorithm given in this work is in the framework of P systems. One can 
perhaps develop similar polynomial-time algorithms for Ramsey number problem on 
other massively parallel computation models such as DNA computers, alternating 
Turing machines and quantum computers. Of course, the real implementation of 
such algorithms is of great interest and a great challenge.

Acknowledgments

The work of L. Pan was supported by National Natural Science Foundation of China 
(Nos. 61033003, 30870826, and 60703047), and Natural Science Foundation of Hubei 
Province (2008CDB113 and 2008CDB180). The work of the last two authors was 
supported by Project of Excellence with Investigador de Reconocida Valı́a, from 
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