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Abstract. An appropriate generalization of the classical notion of
abstract cell complex, called primal-dual abstract cell complex (pACC
for short) is the combinatorial notion used here for modeling and analyz-
ing the topology of nD digital objects and images. Let D ⊂ I be a set of
n-xels (ROI) and I be a n-dimensional digital image. We design a theoret-
ical parallel algorithm for constructing a topologically meaningful asym-
metric pACC HSF (D), called Homological Spanning Forest of D (HSF
of D, for short) starting from a canonical symmetric pACC associated
to I and based on the application of elementary homotopy operations
to activate the pACC processing units. From this HSF-graph represen-
tation of D, it is possible to derive complete homology and homotopy
information of it. The preprocessing procedure of computing HSF (I) is
thoroughly discussed. In this way, a significant advance in understanding
how the efficient HSF framework for parallel topological computation of
2D digital images developed in [2] can be generalized to higher dimension
is made.
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1 Introduction

The problem of developing a topologically consistent framework for efficient 
parallel topological analysis and recognition of n-dimensional digital objects is
nowadays a major challenge. Intimately associated to this problem, we encounter 
the issue to find a suitable representation model from which the extraction of



topological features and characteristics of the object can be as fast and the most
complete as possible. A successful strategy for achieving these goals is to “cellu-
larize” the images. A primal-dual abstract cell complex [2] (or, pACCs for short),
an appropriate generalization of the notion of abstract cell complex [8,9] for
describing bitopological spaces, efficiently encodes local topological (incidences
between cells, working at sub-n-xel level) information of the digital object in
order to be promoted to global consistent topological information. We are mainly
interested in information related to “homology holes”, which are abstract gen-
eralizations at any dimension of the intuitive notion of curve bounding an arc
or surface bounding a volume [7]. Classically, the different homology holes of a
complex are obtained via linear algebra algorithms based on diagonalization of
incidence matrices to Smith Normal Form [17]. The technique employed here
for parallel processing is based on building asymmetric pACCs from symmet-
ric ones. The asymmetric and non-redundant output pACCs resulting from our
framework encompass the hierarchical graph notion of Homological Spanning
Forest (HSF, for short) developed in [10,11,14]. Roughly speaking, an HSF of a
digital object is a flexible topological model described by a kind of dense topo-
logical skeleton inside the object. Figure 1 shows two different HSFs of the same
2D digital object. The inclusion of an optimal vector field over each tree installed
“inside the object” allows us not only counting the different homological holes
of dimension 0 (connected components or CCs for short) and dimension 1 but
also to removing them via cutting or filling. Moreover, if we retain the vicinity
relations between these HSF graphs, we can reach homotopy-based represen-
tations of 2D digital images like the adjacency tree of a binary image or the
region-adjacency-graph of a grey-level image [13].

In this paper, we design a theoretical parallel algorithm for computing an
HSF-structure of a nD-digital object. Let us emphasize that: (a) the HSF-
approach can be considered as a Morse-based pre-homology computation method

Fig. 1. (Left) ROI consisting in the set of black pixels. The implicit cellularization of
the ROI -using 8-adjacency and being the 0-cells the square physical pixels- is super-
imposed; (Center) Visualization of an HSF of the ROI. The two trees spanning 0-cells
(in red) of the ROI mean that it has two 8-CCs. The yellow “trees” -derived from
the optimal vector field linking the rest of 1-cells with the set of 2-cells of the ROI-
containing a 1-cell marked with a thick yellow segment determine two one-dimensional
homological holes of the ROI or, equivalently, two 4-CCs of the background; (Right)
Another possible HSF. (Color figure online)



(e.g. [3,4]) in the sense that a discrete vector field is “optimally” installed over
the pACC. Its novelty lies in dealing with this issue as a pure combinatorial opti-
mization problem in a fully parallel way over a scenario subdivided space and
substituting the classical vector field language of homology by that of the new
dynamic notion of crack (called link in [2]); (b) the theoretical time complexity
of the parallel algorithm of [2] for computing an HSF structure of a binary digital
n × m image is approximately logarithmic (precisely, O(log(n + m))). It seems
that its generalization to nD image context can be done without excessive cost
in complexity; (c) another strength of this framework is its potentiality to gen-
erate new topological representation models of nD objects and images involving
homological holes (not only of dimension zero) and topologically strong relation-
ships between them (for instance, generalizing to nD the notions of adjacency
tree or RAG 2D models).

A flowchart of this nD-HSF algorithm is shown in Fig. 2.

Fig. 2. Workflow of nD-HSF Algorithm.

In what follows, after a section of technical definitions related to the concept
of primal-dual abstract cell complex, we formally describe the different stages of
the previous theoretical algorithm.

2 Primal-Dual Abstract Cell Complexes

A primal-dual abstract cell complex (pACC, for short) is a suitable generalization
of an abstract cell complex and a combinatorial model of a geometric subdivided
object as bitopological spaces.

A finite primal-dual abstract cell complex (pACC for short) C =
(C, CBp, CBd, dimC

p , dimC
d) is composed of:

– C
⋃{∅}, where C is a finite set of cells and ∅ is the empty set.

– two dimension functions: (primal dimension) dimC
p : C → {0, 1, 2, . . . , �p} and

(dual dimension) dimC
d : C → {0, 1, 2, . . . , �d}, where �p, �d ∈ N∪{0}. The set

Cp
i (resp. Cd

i ) is the set of cells such that their primal (resp. dual) dimension
is i.

– two bounding maps: (primal bounding map) a graded function CBp = {CBp
i }i,

such that CBp
i : Cp

i × Cp
i+1 → N ∪ {0} (∀0 ≤ i ≤ �p − 1) and (dual bounding

map) a graded function CBd = {CBd
i }i, such that CBd

i : Cd
i ×Cd

i+1 → N∪{0},
∀0 ≤ i ≤ �d − 1. We extend the respective definitions of CBp and CBd to



C × C by simply assigning value zero to the rest of ordered pairs of cells not
belonging to the original domains.

The set of values the bounding maps takes on as output is the semi-ring
N ∪ {0}. Of course, it is possible to change the images of the bounding maps to
a ring (like Z) or to a field (like Q o R).

The pACC C is called uniquely dimensional if its primal and dual dimensions
both depend on a unique dimension function dms : C → {0, 1, 2, . . . , �}, being
� = �p = �d. � is called the dimension of C. In fact, dimp = dms and dimd =
� − dms. Let us denote the set of cells Cp

i of primal dimension i simply by Ci

and an i-cell means a primal i-cell. A uniquely dimensional pACC C is called
symmetric if CBp

i (c, c′) = CBd
i (c′, c), ∀0 ≤ i ≤ � and ∀c, c′ ∈ C. In this case, the

bounding maps CBp and CBd are respectively denoted by CB and CB−1.
From now on, to simplify the notation, we drop the subindex i (corresponding

to primal dimension) and the superindex C (corresponding to the ACC name)
from the dimension and bounding maps, unless otherwise specified.

Given two cells c′ and c′′ of C, we say that the ordered pair (c′, c′′) is an
(i, i + 1) primal (resp. dual) vector (i = 0, 1, . . .) of the pACC C if its primal
(resp. dual) multiplicity Bp(c′, c′′) �= 0 (resp. if Bd(c′, c′′) �= 0), being c′ ∈ Cp

i

(resp. c′ ∈ Cd
i ). The cell c′ is called the tail and c′′ is the head of the primal

(resp. dual) vector (c′, c′′). We say that the set {c′, c′′} is an (i, i + 1) primal
(resp. dual) incidence set of the pACC if Bp(c′, c′′) �= 0 or Bp(c′′, c′) �= 0 (resp.
if Bd(c′, c′′) �= 0 or Bd(c′′, c′) �= 0), being c′ or c′′ a cell of Cp

i (resp. Cd
i ).

Given a pACC C = (C,Bp, Bd, dimp, dimd), let us define a sub-pACC D =
(D, DBp, DBd, dimp, dimd) of C as a new pACC with D ⊂ C whose: (a) primal
and dual dimension functions agree with those of C restricted to D; (b) the
primal (resp. dual) bounding map satisfies that if DBp(c′, c′′) = q �= 0 (resp.
DBd(c′, c′′) = q �= 0), then Bp(c′, c′′) ≥ q (resp. Bd(c′, c′′) ≥ q). If DBp =
Bp|D×D and DBd = Bd|D×D, the sub-pACC D of C is called complete.

The complete sub-pACC Stp(c,C) (resp. Std(c,C)) of C, consisting of c and
all elements c′ in C, such that Bp(c, c′) �= 0 (resp. Bd(c, c′) �= 0) is called the
primal (resp. dual) open star of c in C. It is exactly the same as the smallest
primal (resp. dual) neighborhood of c in C [9]. If C is an uniquely dimensional
symmetric pACC, so are Stp(c,C) and Std(c,C).

Any pACC can be expressed as a node-arc weighted graph. The incidence
graph G(C) associated to a pACC C is the graph such that its nodes are the
different cells of C and an edge {c, c′} of this graph is either a primal or dual inci-
dence set of the pACC or both. If C is symmetric, we propose as label for an edge
{c′, c′′} (c′ ∈ Ci, c′′ ∈ Ci+1) of G(C), the ordered pair (Bp(c′, c′′), Bd(c′′, c′)).
As weight for a node c ∈ C, we choose the number dms(c).

A primal (resp. dual) crack associated to the (i, i + 1)-primal (resp. dual)
vector (c, c′) is the set crkp(c, c′) (resp. crkd(c, c′)) of triplets (c, c′, c′′), for all
the cells c′′ such that (c′, c′′) is a dual (resp. primal) vector. A crack crack(c, c′)
can be considered as an uniquely dimensional asymmetric sub-pACC of C. For
example, for a primal crack crkp(c, c′), its bounding functions B̄p and B̄d satisfy
an “ortogonality” condition: for all the triplets (c, c′, c′′) of crkp(c, c′), B̄p(c, c′) =



Bp(c, c′) �= 0, B̄p(c′, c′′) = 0, B̄d(c′, c′′) = Bd(c′, c′′) �= 0, B̄d(c, c′) = 0. Let us
note that the crack notion is an extension of the term link in [2].

A geometric cell complex K can be represented by a uniquely dimensional
symmetric pACC K = (K,B,B−1, dms, � − dms), such that B(c′, c′′) ∈ {0, 1},
∀(c′, c′′) ∈ K × K. In fact, the primal and dual bounding relation maps can
automatically be obtained from the complete set of incidences between cells of
K which differ in one dimension and the dimension map dms of K agrees with
the dimension function of the cell complex K.

Finally, let us note that both bounding graded functions {Bp
i }i and {Bd

j }j of a
pACC C = (C,Bp, Bd, dimp, dimd) can be extended to C ×C in an asymmetric,
irreflexive and transitive way without difficulty, giving raise to two different
(primal and dual) classical ACCs associated to the pACC C. Due to the fact that
every finite topological space with the T0-separation property is isomorphic to an
abstract cellular complex [9], a pACC can be interpreted as a finite bitopological
space. The primal and dual ACC of a uniquely dimensional symmetric pACC
can be deduced one from each other by simply reversing the order of the factors
in the bounding relations.

3 pACC Homotopy Computation

First, we succinctly describe here the distinct steps of the theoretical nD-HSF
Algorithm (whose flowchart is (2)). The rest of this section is devoted to under-
stand the concept of elementary homotopy operation and the sequential algo-
rithm computing an HSF of a pACC.

(a) Input data: The pair (I,D). The nD digital image I : {1, . . . , m1} ×
{1, . . . , m2} × . . . × {1, . . . , mn} → {0, 1, ..., 2c − 1} is represented by a m1 ×
m2 × . . .×mn (m1,m2, . . . ,mn, c ∈ N) integer-valued matrix. The digital object
D, called region-of-interest (or ROI, for short), is formed by a set of pixels (rep-
resented by their corresponding (row,column) coordinates) of I. In fact, in order
to avoid the mathematical ill-posed problems of the segmentation and noise,
which are ubiquitous in the area of Digital Imagery, I is a pre-segmented digital
image, and D is a region of this previous segmentation.

(b) Extraction of the ROI: From I, we “isolate” the ROI D by means of new
digital binary image ID of the same dimension than I. The set of black pixels
(numbered by 1’s) of ID is exactly D.

(c) Generation of topological pACCs: In this phase, we compute two kinds
of pACCs in this order: (a) first, symmetric pACCs, modeling in a redundant
way the connectivity (incidence) information of D and I; (b) finally, asymmetric
pACCs, which are non-redundant sub-pACCs of the previous ones, specifying a
kind of dense homotopy graph-skeleton of them.

Some key notions for understanding our topological scaffolding are those of
primal and dual pACC-homotopy operations. Given a uniquely n-dimensional
symmetric pACC C = (C,B,B−1, dms, n − dms) and a primal vector (c, c′),



then the primal pACC-homotopy operation Opp(
−−−→
(c, c′)(C)) is a new symmetric

pACC (C\{c, c′}, B̃, B̃−1, dms, n − dms), such that the new bounding function
B̃ is defined by:

– ∀c̄ ∈ Std(c′,C)\{c}, ∀c̄′ ∈ Stp(c,C)\{c′},

B̃(c̄, c̄′) = B(c̄, c̄′) + B(c̄, c′)B−1(c′, c)B(c, c̄′);

– for the rest of pairs of cells (c, c′), B̃(c, c′) = B(c, c′)

Analogously, we can define elementary dual pACC-homotopy operations. We
emphasize that such kind of operations is not, in general, a map of pACCs (that
is, a map of sets compatible with the dimensions and bounding relations), but
it can be considered as a function Opp(

−−−→
(c, c′)(C)) : pACC × pACC → pACC.

For example, considering the primal crack pACC crk(c, c′), we can construct
a primal pACC-homotopy operation Opp(crk(c, c′),C) providing us the same
resulting pACC than Opp(

−−−→
(c, c′)(C)).

Fig. 3. Three different possible HSF outputs of Algorithm primal-HSF applied to a 2D
digital object X of black pixels, depending of the concrete ordered list of cells of X
chosen for sequential processing.

Now, we are able to design a sequential computational method for computing
an HSF of the pACC pACC(ID), based on an appropriate reduction of cells via
primal homotopy operations.

The output of the previous algorithm consists of a set of asymmetric pACCs
{Fk−1,k}nk=1 and a minimal pACC H formed by a set of isolated cells of different
primal dimension. Figure 3 shows some outputs of the algorithm for 2D objects.
The cells of H are called critical cells. These data can be reorganized and inter-
preted in terms of a set HSF (C) of connected sub-graphs spanning the set of cells
of C, called Homological Spanning Forest associated to C. In fact, these graphs
can not be trees in dimension higher than two but we use this name because
they appear as a suitable generalization to higher dimension of the notion of the
spanning forest as a tool for labeling connected components of a graph [6]. Let us
limit ourselves to say that the importance to save this combinatorial homology
information of nD digital objects in terms of cracks and graphs primarily lies in



its capacity of creating robust topological models involving homological holes of
the objects and strong homology (incidence) relations between them.

For a better understanding, we only work the three-dimensional case in the
rest of sections. The nD case is completely analogous.

Algorithm 1. (Sequential pACC-Homology Algorithm)
Input: A uniquely dimensional symmetric pACC C := {C, CB, CB−1, dms, n\dms}
A list of all the cells of C ordered by primal dimension c01 . . . c0�0 , c11, . . . , c

1
�1 , . . . cn

1 ,

. . . , cn
�n such that dimp(ck

j ) = k, ∀k, j.
1: H ← C
2: for k = 1 to n do
3: F(k−1,k) ← ∅
4: crk ← ∅
5: for j = 1 to �k do
6: if ∃c̄ ∈ Std(ck

j ,H)/ HB(c̄, ck
j ) = 1 then

7: H ← Opp(crk(c̄, ck
j ),H)

8: crk ← crk
⊕{crk(c̄, ck

j )};
9: F(k−1,k) ← the incidence graph G(crk)

10: Output: ((F(0,1), . . . , F(n−1,n)), H)

4 Generation of Symmetric pACCs and Parallel
Processing Units

The input of the Sequential pACC-Homology Algorithm is a uniquely dimen-
sional symmetric pACC. On the other hand, a fundamental step in the workflow
of nD-HSF Algorithm (Fig. 2) is the generation of such objects. Apart from
building these initial pACCs, we also create the parallel processing units of our
framework.

The scenario in which we need to “embed” the digital image ID is a uniquely
dimensional symmetric pACC intimately associated to the contractible set of
cells denoted by Cell(ID). Cell(ID) only depends on the dimensions of ID and
can be constructed in a straightforward way. The 0-cells are the voxels (elements
of the matrix) of ID (black or whites), the 1-cells are given by the set of two
6-adjacent voxels (x-frame, y-frame or z-frame adjacent), 2-cells are given by sets
of four mutually 6-adjacent voxels and, 3-cells are given by sets of eight mutu-
ally 6-adjacent voxels. Thus, a dimension function dms : Cell(ID) → {0, 1, 2, 3}
is well-defined in this way. In order to create topological coordinates (auto-
matically detecting incidences between cells) preserving the initial coordinate
system (row, colum, depth) existing for the voxels of ID, we use the following
geometric realization for the cells of Cell(ID): (a) 0-cells are points in R

3 with
natural-value coordinates; (b) a 1-cell is represented at sub-voxel level by the
coordinates of the barycenter of the segment determined by its corresponding
pair of voxels, (c) a 2-cell is represented at sub-voxel level by the coordinates of



the barycenter of the square formed by the 4-uple of voxels barycenters; (d) a
3-cell is represented at sub-voxel level by the coordinates of the barycenter of
the cube formed by its corresponding 8-uple of voxels. For instance, a 1-cell is
specified by topological coordinates of the type (x1, x2, x3), where two value of
them are natural numbers and the third is a natural number minus 1

2 (for exam-
ple, x3). The geometric boundary of this 1-cell which is formed by the set of two
0-cells {(x1, x2, x3 − 1

2 ), (x1, x2, x3 + 1
2 )} completely describes the dual bound-

ing relation of the 1-cell. Its geometric coboundary, formed by the set of four
2-cells {(x1 ± 1

2 , x2, x3), (x1, x2 ± 1
2 , x3 + 1

2 )} fully specifies its primal bounding
relation. Then, it is straightforward to construct the uniquely dimensional sym-
metric pACC pACC(ID) = (Cell(ID), BID , B−1

ID
, dimID

p , dimID
d ). Notice that

pACC(ID) = pACC(I), and, in consequence, pACC(ID) is independent of
D. We can also define another uniquely dimensional symmetric sub-pACC
pACC(D) of pACC(ID), being Cell(D) its set of cells. Cell(D) is the topologi-
cal hull of the set of black voxels D within ID, which means that the 0-cells of
Cell(D) are the black voxels of ID and its i-cells c (i = 1, 2, 3) can be recursively
defined in terms of (i − 1)-cells by imposing that Std(c) ⊂ Cell(D).

Any node (i-cell) (x, y, z) of the incidence graph G(pACC(ID)) has the num-
ber color(x, y, z) as weight. The function color : Cell(ID) → {0, 1

2 , 1} is defined
as follows: (a) for a 0-cell, it is the voxel value in ID; (b) for an i-cell c with
i ≥ 1, if all the values of the color function over the 0-cells of c is 0 (resp. 1),
then color(c) is 0 (resp. is 1). In another case, color(c) = 1

2 .
For creating the parallel processing units, the idea is to establish a regular

partition of the Cell(ID) into cellular units Cell(x, y, z). There are as many
cellular units as voxels the image has (equivalently, as 0-cells the pACC(ID) has).
The cellular unit Cell8(x, y, z) associated to the voxel of topological coordinates
(x, y, z) is the set {(x, y, z), (x+ 1

2 , y, z), (x, y+ 1
2 , z), (x, y, z+ 1

2 ), (x+ 1
2 , y+ 1

2 , z),
(x+ 1

2 , y, z+ 1
2 ), (x, y+ 1

2 , z+ 1
2 ), (x+ 1

2 , y+ 1
2 , z+ 1

2 )} (one 0-cell, three 1-cells, three
2-cells, one 3-cell). Considered as an uniquely dimensional asymmetric sub-pACC
of pACC(ID), the processing unit PE(x, y, z) is defined as the sum of pACCs⊕

(c′,c′′)∈U crkp(c′, c′′), where U = Cell8(x, y, z) × Cell8(x, y, z). Its underlying
set of cells involves 27 cells which belong to the topological hull generated by the
cells (x, y, z), (x+1, y, z), (x, y+1, z), (x, y, z+1), (x+1, y+1, z), (x+1, y, z+1),
(x, y+1, z+1) and (x+1, y+1, z+1). The number of primal vectors (see Fig. 4)
involved in PE(x, y, z) is twelve (three (0, 1) vectors, six (1, 2) vectors and three
(2, 3) vectors).

5 Generation of MrSFs

The next step in the Algorithm nD-HSF is the parallel building of an HSF of
the initial geometric symmetric pACC pACC(ID). This particular asymmetric
pACC MrSF (ID) is called Morse Spanning Forest (MrSF for short). An MrSF
has the property that the set of its elementary primal cracks applied in some
order in a sequential process of reduction based on primal homotopy operations
provides a final pACC consisting in only one 0-cell (critical cell). In this way,



a MrSF for ID is seen as a kind of “dense combinatorial skeleton” of the con-
tractible cell complex Cell(ID). This notion has been already developed in [12]
making use exclusively of homological arguments. Finally, the last process of the
pipeline of Fig. 2, called crack transport, consists in a “homotopy optimization”
of MrSF (ID) in order to get another MrSF, denoted by HSF (ID), such that its
restriction to Cell(D) is a true HSF HSF (D) of D. This optimization is done
by suitably “transporting” cracks of the MrSF (ID), with the objective to max-
imize the number of its primal bounding relations between cells of pACC(D).
We focus here in the parallel algorithmic techniques for MrSF construction; the
crack transport step of the algorithm will be studied in detail elsewhere.

A Morse Spanning Forest for a three dimensional digital image I of dimension
m1 × m2 × m3 is any output ((F(0,1),F(1,2),F(2,3)),H) of Sequential pACC-
Homology Algorithm applied to pACC(I). It is not difficult to prove that any
MrSF has only one (0, 1)-tree.

Fig. 4. An activation state (local MrSF rule: direction +Y) of the processing unit
PE(x, y, z) showing its eight active cells, primal and dual activation vectors and asso-
ciated cracks. The 0-cell (x, y, z) is drawn with a circle, the 1-cells with triangles, the
2-cells with squares and the 3-cell with a star. The active primal vectors are drawn
with an arrow and using different colors depending on its dimension.

Our algorithm of MrSF generation is divided into two main steps: (a) building
a MrSF at local (voxel’s neighborhood) level by means of a process of activation
of processing units; (b) building the MrSF at global level, specifying the mem-
bership of any cell to the corresponding tree of the MrSF. Afterwards, we can
proceed to the Final HSF determination via crack transports.

(a) MrSF building at local level: Activation of processing units. There
are nine possible activation states for any PE(x, y, z), each one associated to
a particular configuration of four disjoint primal vectors (called primal activa-
tion vectors) involving cells of Cell8(x, y, z). The sum of the crack pACCs of
PE(x, y, z) associated to these primal activation vectors fully defines the corre-
sponding activation state.



Fig. 5. A (4,3,4) binary 3D image showing active primal (0, 1)-vectors (red and green
colors) and dual (1, 0)-vectors (black thin vectors) of the MrSF. Thicker vectors indicate
possible critical 0-cells. (Color figure online)

For activating in parallel all the processing units of pACC(ID), we can use
local MrSF rules. For each PE(x, y, z), we choose an activation’s state depending
of giving preference to some order in the principal directions or the particular
configuration of the color function of the cells in PE(x, y, z) (Fig. 4).

In our current implementation of the algorithm of MrSF generation: (a) the
local MrSF rules are first defined for the lowest dimension cells and then pro-
gressively extended to higher dimension; (b) we give preference to +Z direction,
then to +Y , and finally to +X.

Once the primal (0, 1)-vector of the PE(x, y, z) is activated, the two primal
(1, 2)-vectors and the (2, 3)-vector are activated following the same direction
of the first one. This implies that only one 1-cell of Cell8(x, y, z) belong to the
(0, 1)-tree of the MrSF, and the other two 1-cells reside in the (1, 2)-tree. Figure 5
shows an example of the primal (0, 1) and (1, 2) vectors for a binary 3D image
that contains two black voxels in the center.

The above MrSF arrangement is one the many possible configurations. Its
main advantage is that it can be computed in a fully parallel manner for each
voxel. Other possibilities can be exploited, but the parallelism feature should be
preserved if we would want to process real 3D images in an efficient way.

(b) Global MrSF construction. Once a local MrSF has been defined it is
necessary to introduce global relations between the cells of the whole MrSF.
This process can be done in a similar way to that of [2]. That algorithm was
much easier since it was written only for two dimensional images. Nevertheless,
the idea is the same: to label each cell of the incidence graph (forest) G(MrSF )
of the MrSF, according to its membership to some connected subgraph (tree)
of G(MrSF ). At the end of this process, the different connected components of
G(MrSF ) must have been labeled (Fig. 6).



Fig. 6. The same (4,3,4) binary 3D image of Fig. 5 with the complete MrSF. Thicker
links indicate potential critical 0-cells.

(c) Final HSF determination via crack transports. This final step of the
nD-HSF Algorithm is aimed to minimize the number of critical cells. This would
produce the final HSF. As an example, the trees of Fig. 7(Left) would transform
into that of Fig. 7(Right). A graphical explanation of this process from the lower
dimensional MrSF trees to the higher ones is the following. Firstly, the (0, 1)-
crack marked as ‘D’ is transported to the right inferior crack in the (0, 1)-tree.
Secondly, the crack ‘C’ is laid to its left to continue the closing of the 0–1 tree.
Transports of ‘C’ and ‘D’ supposes the cancellation of one critical 0-cell and
one critical 1-cell. In fact, these cells should be detected as false critical cells
in the initial MrSF. This transport process is really a pairing of critical cells of
different dimensions going through the corresponding tree. Finally, cracks ‘A’ and
‘B’ must be also transported so as to “close” properly the 1–2 tree. This yields
to an equivalent set of trees, which composed the HSF for the ROI. Obviously
this final HSF indicates that the ROI contains only one critical 0-cell being the

Fig. 7. (Left) A ROI (composed of 6 voxels in ‘L’ shape) that contains only one CC,
and whose MrSF presents two separated 0–1 trees. Cracks that go out from the ROI
indicate possible critical cells. (Right) The same 3D image that contains only one 0–1
tree after the necessary transports that complete the HSF.



representative of the CC (connected component). The correct computation of
final HSF will yield to the homology of any CC inside a digital image. Some
examples are shown in the next section.

6 Examples of Homological Magnitudes of Several
Shapes Obtained Through 3-Dimensional HSFs

The topological nature of 3D digital images are much richer than that of
2-D images. Attending exclusively to homology groups, apart from cavities and
connected components of a digital object (somewhat comparable to holes and
connected components in 2D imagery context), tunnels appear in 3D. In a nut-
shell, each critical cell of any dimension is in direct relationship with a different
homology generator. Figure 8 and 9 shows different shapes and their correspond-
ing critical cells (those belonging to a crack of a MrSF “going out” of the ROI).
To ease the viewing of these figures, only ROIs are represented and axes are
not drawn. Cells belonging to the black ROI have been filled. These results are
summarized in Table 1. Table 1 shows the results of the different simple shapes of
Figs. 8 to 9 and their critical cells. Excepting Fig. 9 Left (due to its false critical
cells), the number of critical 0-cells agree with the number of CCs, the number of

Table 1. Results of the different simple shapes of Figs. 8 and 9 and their critical cells

Shapes # Critical 0-cells # Critical 1-cells # Critical 2-cells

Two perpendicular rings with
contact

1 2 0

Two perpendicular crossing
rings

2 2 0

An empty polyhedron (showing
its MrSF)

1 2 3

An emptypolyhedron (showing
its HSF)

1 2 0

Fig. 8. Left: Two perpendicular 3 × 3 rings with contact resulting in two critical 1-cells
(inferior right corner and superior left corner), representative of its two tunnels, and one
critical 0-cell (upper right corner), representative of the CC. Right: Two perpendicular
crossing 3 × 3 rings resulting in two critical 1-cells (inferior left corners), representative
of two tunnels, and two critical 0-cells (upper right corners), representative of the
two CCs.



Fig. 9. Left: A MrSF of an empty 3 × 3 × 3 polyhedron. There is one critical 0-cell
(upper right corner), representative of the CC. In addition, three critical 2-cells and
two 3 critical 1-cells (all of them in the inferior side) have appeared. Two pairs of them
are false critical cells. Right: After proper transports (marked with thicker dotted lines),
the HSF of the same empty polyhedron yields to only one critical 2-cell (representative
of the cavity), and the same critical 0-cell. Arrows indicates the position of these
resultant critical cells.

critical 1-cells indicates the number of tunnels and the number of critical 2-cells
represents the number of cavities.

7 Conclusions

Based on the notions of primal-dual abstract cell complex and homotopy opera-
tion, and generalizing to higher dimension the work developed in [2], a theoreti-
cal algorithm for computing combinatorial homology structures, called HSFs of
nD digital objects, has been sketched. Focusing in a topological pre-processing
step, called Morse Spanning Forest generation, we set a fully parallel algorithm
for determining a kind of dense topological skeleton associated to the image sce-
nario within which the digital object is embedded. Both to analyze the efficiency
of the procedure and to advance in increasing the degree of understanding on
HSF or pACC homology computation of digital objects, an unpretentious imple-
mentation done in Matlab is used for experimentation. Although a theoretical
complexity study of the parallel algorithm has not yet been carried out, the
encouraging results obtained in [2] allow us to be optimistic in computing the
HSF information in a fast way. Concerning the computation of algebraic homol-
ogy holes with coefficients in a ring or a field and that of “homotopy holes” of
objects (those related to generalized “parametrized and oriented closed curves”
[7]), they sound theoretically attainable from HSF-graph information. An argu-
ment supporting this idea is the fact that an HSF structure can be algebraically
interpreted (allowing formal sums of cells with coefficients in some ground ring
or field) as an operator controlling a chain homotopy equivalence between an
object and its homology [1,5,12,15,16]. Finally, the possibility to detect homo-
logical hole relationships (like adjacency or “to be surrounded by” between path
connected components in 2D) in an HSF allows holding high expectations in
achieving functional implementations of parallel algorithms of topological pat-
tern recognition based on HSF information.
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