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Abstract

The use of composite materials in structural applications has been con-
siderably increased in the last years. This increment has introduced the
use of composite laminates in complex components including highly curved
zones. Highly curved laminates are prone to unfolding failure, a delamina-
tion caused by a bending moment which tries to flatten the curvature.

Unfolding failure is classically associated to the Interlaminar Normal
Stress (INS), which is characterized by the InterLaminar Tensile Strength
(ILTS). The ILTS is typically obtained by a four-point bending test ap-
plied to an L-shaped specimen with all the plies oriented at 0o. If this test
procedure is applied to composite laminates with differently oriented plies
an apparent ILTS is obtained. The apparent ILTS exhibits a thickness-
dependence which has not been physically explained yet.

INS may be obtained by using FEM. Notwithstanding, analytical models
are desirable for obtaining lower modelling and calculation times. Nowadays,
analytical models have shown high errors in the calculation of the INS for
some kinds of geometries and loading states. These errors are due to a
free-edge effect associated with the curvature changes, e.g., in the joint of a
curved part with a straight arm. Differences in INS values due to a change
of curvature may be even of a 100% with respect to the actual value.

The PhD project has studied, in a first stage, the four-point bending
test, which is the one typically employed for ILTS determination, obtaining
a non-linear model for the calculation of the load-displacement and load-
bending moment distributions. The model has been successfully correlated
with experimental results.

The second stage of the PhD has been focused to the INS calculation,
developing two different bi-dimensional models based on a series expansion
of the displacement and a higher-order moments definition in the stresses.
The first model is based in monomials, with very low computational times
and a good accuracy, and the second model is based in Legendre polyno-
mials, with still low computational times and a very high accuracy. Both
models have allowed the change-of-curvature problem to be solved and to
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analyse in detail the different parameters involving the stresses distribution
near to free-edges.

The third stage of the PhD has been focused on the expansion of the bi-
dimensional models to obtain a three-dimensional model in order to consider
also the effect of the torsion and the anticlastic effect combined with the
curvature, as well as the effect of the finite width of the specimens. This
model let us also to calculate accurately the out-of-plane stress state.

Finally, in the fourth stage of the PhD, the stress calculation method-
ologies developed have been used for the data reduction of an existing test
campaign. Results suggest that in laminates with a low apparent ILTS,
intralaminar failures in the matrix direction may have taken place before
delamination. Comparing the load causing the failure with the predictions
made for the first intralaminar/interlaminar failure, and observing the crack
locations in tested coupons, a feasible explanation for the thickness depen-
dence has been found. This explanation consists in distinguishing two kinds
of unfolding failures: first, the traditional unfolding initiated by the INS
and, second, the newly defined induced unfolding, which is initiated by a
failure associated to intralaminar stresses that propagates as a delamination
due to the presence of the high INS.

Based in the previous results, some optimization guidelines have been
defined for the design and sizing of curved composite laminates based in the
unfolding failure.
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I wish to thank Federico Paŕıs and Enrique Graciani for their support
which has made possible this project.

Special thanks and recognition are also due to FIDAMC, the Spanish
Foundation for the Development, Application and Research on Composite
Materials, whose support has contributed to the development of the project.

A special recognition goes to Airbus Group Innovations (AGI) for the
opportunity of working in one of its main researching centres in Germany,
the Airbus Group Chair of Seville for its support and Airbus Operations S.L.
for its collaboration in the project.

Finally, I wish to thank my family, my friends and my partners in FI-
DAMC for their support.



6



Contents

List of Figures 11

List of Acronyms 15

1 Introduction 17
1.1 Motivations and aims of the project . . . . . . . . . . . . . . 19
1.2 State of the art in stresses calculation in curved laminates . 22
1.3 State of the art in failure criteria . . . . . . . . . . . . . . . 26

1.3.1 Failure initiation criteria . . . . . . . . . . . . . . . . 27
1.3.2 Failure propagation criteria . . . . . . . . . . . . . . 29

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Analysis of the four-point bending test 33
2.1 Standardized testing procedure for assessment of ILTS . . . 34
2.2 Non-linear model for obtaining the bending moment . . . . . 36
2.3 Simplification of the non-linear model . . . . . . . . . . . . . 48
2.4 Comparison of the non-linear model with experimental results 50
2.5 Comparison of the non-linear model with the ASTM procedure 53

3 Bi-dimensional models for evaluating interlaminar stresses 55
3.1 Theoretical basis of the regularized models . . . . . . . . . . 56
3.2 Approximations of the regularized models . . . . . . . . . . 61
3.3 Theoretical basis of the non-regularized models . . . . . . . 67
3.4 Monomials based model (MBM) . . . . . . . . . . . . . . . . 71

3.4.1 Development of the MBM for straight beams . . . . . 72
3.4.2 Development of the MBM for curved beams . . . . . 82
3.4.3 MBM numerical limitations . . . . . . . . . . . . . . 90

3.5 Legendre polynomials based model (LPBM) . . . . . . . . . 91
3.5.1 Characteristics of the Legendre polynomials . . . . . 92
3.5.2 Development of the LPBM for straight beams . . . . 95
3.5.3 Development of the LPBM for curved beams . . . . . 99



8 CONTENTS

3.6 Resolution of the regularized problem by using the non-regularized
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Resolution of the homogeneous problem . . . . . . . . . . . 107
3.8 Resolution of the joints between components . . . . . . . . . 109

3.8.1 Continuity of the circumferential stresses between com-
ponents . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.8.2 Continuity of the shear stresses between components 111
3.8.3 Continuity of the circumferential displacements be-

tween components . . . . . . . . . . . . . . . . . . . 112
3.8.4 Continuity of the transverse displacements between

components . . . . . . . . . . . . . . . . . . . . . . . 114
3.8.5 Application of the boundary conditions and the con-

tinuity conditions . . . . . . . . . . . . . . . . . . . . 116
3.9 Results of the non-regularized models and validation by FEM 117

3.9.1 L-shaped beam under bending moment . . . . . . . . 117
3.9.2 L-shaped beam under a compressive load . . . . . . . 119
3.9.3 Joggle under a tensile load . . . . . . . . . . . . . . . 121

3.10 Numerical characteristics of the MBM and LPBM non regu-
larized models . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.11 Regularization distance . . . . . . . . . . . . . . . . . . . . . 125
3.12 Off-topic applications of the non regularized models . . . . . 129

3.12.1 Joint of beams with different material properties . . . 129
3.12.2 Non-regularized effects due to the boundary conditions 131
3.12.3 Non-regularized effects due to punctual loads . . . . . 133

4 Three-dimensional models for evaluating interlaminar stresses137
4.1 3D model with double regularization for singly-curved beams

under bending moment and residual strains . . . . . . . . . 139
4.1.1 Theoretical development . . . . . . . . . . . . . . . . 141
4.1.2 Loads application and boundary conditions . . . . . . 149
4.1.3 Particular cases . . . . . . . . . . . . . . . . . . . . . 156

4.2 Analysis of the effect of residual stresses in the unfolding failure161
4.2.1 Homogeneous anisotropic materials . . . . . . . . . . 162
4.2.2 Composite laminates . . . . . . . . . . . . . . . . . . 164
4.2.3 Finite elements comparison . . . . . . . . . . . . . . 166

4.3 Analysis of the three-dimensional effects over the unfolding
failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3.1 Homogeneous anisotropic materials . . . . . . . . . . 167
4.3.2 Composite laminates . . . . . . . . . . . . . . . . . . 169
4.3.3 Finite elements comparison . . . . . . . . . . . . . . 170

4.4 Three-dimensional non-regularized models . . . . . . . . . . 173



CONTENTS 9

4.4.1 Development of the 3D non-regularized model in flat
laminates . . . . . . . . . . . . . . . . . . . . . . . . 175

4.4.2 Development of the 3D non-regularized model in curved
laminates . . . . . . . . . . . . . . . . . . . . . . . . 190

4.5 Applications of the 3D non-regularized models . . . . . . . . 209
4.5.1 Through-the-width distributions . . . . . . . . . . . . 209
4.5.2 Free-edge effects . . . . . . . . . . . . . . . . . . . . . 211

5 Failure mechanisms involved in the unfolding failure 215
5.1 The concept of the induced unfolding failure mechanism . . 216
5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . 218

5.2.1 Traditional unfolding . . . . . . . . . . . . . . . . . . 219
5.2.2 Induced unfolding . . . . . . . . . . . . . . . . . . . . 220

6 Design recommendations 227
6.1 Evaluation of the maximum bending moment with the com-

bination of traditional and induced unfolding . . . . . . . . . 228
6.2 Optimization recommendations based on both failure mech-

anisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

7 Concluding remarks and future developments 237

A Matrices of the differential equation of the 2D non-regularized
models 243
A.1 MBM matrices for the straight beam . . . . . . . . . . . . . 243
A.2 MBM matrices for the curved beam . . . . . . . . . . . . . . 244
A.3 LPBM matrices for the straight beam . . . . . . . . . . . . . 245
A.4 LPBM matrices for the curved beam . . . . . . . . . . . . . 246

B Matrices expressions of the 3D non-regularized models 247
B.1 Stiffness matrices for the flat laminate . . . . . . . . . . . . 247
B.2 Auxiliary matrices for the flat laminate . . . . . . . . . . . . 249
B.3 Stiffness matrices for the curved laminate . . . . . . . . . . . 250
B.4 Auxiliary matrices for the curved laminate . . . . . . . . . . 256

Bibliography 263

Curriculum Vitae 275



10 CONTENTS



List of Figures

1.1 When the laminate is opened by a bending moment the plies
try to separate. . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Example of thickness dependence of the apparent ILTS ob-
tained from quasi-isotropic laminates. . . . . . . . . . . . . . 20

1.3 INS colour plot in a L-shaped beam loaded under end bending
moment. (a) Regularized stresses. (b) Non-regularized stresses. 22

1.4 Comparison between the Kim and Soni criterion and the
Brewer and Lagace criterion. . . . . . . . . . . . . . . . . . . 28

2.1 Four-point bending test set-up. . . . . . . . . . . . . . . . . 34

2.2 Beam approximation of the specimen in a four-point bending
test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Deformed configuration of beam 1. . . . . . . . . . . . . . . 37

2.4 Deformed configuration of beam 2 and beam 3. . . . . . . . 42

2.5 Numerical and experimental force-displacement relations in
SP1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Numerical and experimental force-displacement relations in
SP2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Geometry and loads considered in the regularized models of
a curved beam. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Loads considered in the approximation of the regularized
models of a curved beam. . . . . . . . . . . . . . . . . . . . 62

3.3 Definition of the curvilinear coordinate system. . . . . . . . 68

3.4 Examples of geometries where the non-regularized models can
be applied. Global coordinate system definition. . . . . . . . 70

3.5 Decomposition of the section in several constant-curvature
beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Straight beam. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 (a) Clockwise curved beam. (b) Counter-clockwise curved
beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



12 LIST OF FIGURES

3.8 Condition number of K̂σ depending on the thickness. . . . . 91
3.9 Legendre polynomials up to i = 5. . . . . . . . . . . . . . . . 93
3.10 Regularized solution of the non-regularized models for the

bending moment loading. . . . . . . . . . . . . . . . . . . . . 105
3.11 Regularized solution of the non-regularized models for the

axial force loading. . . . . . . . . . . . . . . . . . . . . . . . 106
3.12 Regularized solution of the non-regularized models for the

shear force loading. . . . . . . . . . . . . . . . . . . . . . . . 107
3.13 L-shaped beam under bending moment. . . . . . . . . . . . . 117
3.14 Maximum INS in the L-shaped beam under bending moment. 118
3.15 Maximum ISS in the L-shaped beam under bending moment. 119
3.16 L-shaped beam under a compressive load. . . . . . . . . . . 120
3.17 Maximum INS in the L-shaped beam under compressive load. 120
3.18 Maximum ISS in the L-shaped beam under compressive load. 121
3.19 Joggle under a tensile load. . . . . . . . . . . . . . . . . . . . 121
3.20 Maximum INS in the joggle under tensile load. . . . . . . . . 122
3.21 Maximum ISS in the joggle under tensile load. . . . . . . . . 123
3.22 Computational times of the MBM. (a) Depending on Np for

n = 9. (b) Depending on n for Np = 8. . . . . . . . . . . . . 124
3.23 Computational times of the LPBM. (a) Depending on Np for

n = 20. (b) Depending on n for Np = 1. . . . . . . . . . . . 124
3.24 Complex plane representation of

√
λmin. . . . . . . . . . . . 128

3.25 Regularization distances for a single-ply laminate depending
on the orientation. . . . . . . . . . . . . . . . . . . . . . . . 128

3.26 Joint of two beams with different material properties, axially
loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.27 Axial stress at the joint of two different materials. . . . . . . 130
3.28 Stresses in the joint of two different materials. (a) Shear

stress. (b) Through-thickness stress in both sides. . . . . . . 131
3.29 Axial stress in an embedment under tensile load. . . . . . . . 132
3.30 Stresses in an embedment under tensile load. (a) Shear stress.

(b) Through-thickness stress. . . . . . . . . . . . . . . . . . . 132
3.31 Axial stress in an embedment under bending moment. . . . . 133
3.32 Stresses in an embedment under bending moment. (a) Shear

stress. (b) Through-thickness stress. . . . . . . . . . . . . . . 134
3.33 Three-point bending test configuration. . . . . . . . . . . . . 134
3.34 Axial stress in the top and bottom of a three-point bending

test sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.35 Shear stress in a three-point bending test. . . . . . . . . . . 136

4.1 Geometry of the studied problem and parameters definition. 140



LIST OF FIGURES 13

4.2 Deformations associated to the strain constant parameters. . 149
4.3 Residual stresses in a 45o single ply laminate with ∆T =

−160oC. (a) Circumferential, axial and shear stresses. (b)
Interlaminar normal stress. . . . . . . . . . . . . . . . . . . . 163

4.4 Residual stresses in a 45o single ply laminate with ∆T =
−160oC expressed in the material axes. (a) Stress in the fibre
direction. (b) Stresses in the orthotropic matrix directions
and shear stress. . . . . . . . . . . . . . . . . . . . . . . . . 163

4.5 Maximum radial stress for ∆T = −160oC depending on the
orientation of the single ply laminate. . . . . . . . . . . . . . 164

4.6 Radial stresses due to the temperature increment in different
stacking sequences. . . . . . . . . . . . . . . . . . . . . . . . 165

4.7 Radial stresses due to the temperature increment in differ-
ent geometries. (a) Increment of the number of plies. (b)
Increment of the mean radius. . . . . . . . . . . . . . . . . . 166

4.8 Validation of the model (continuous line) with finite elements
results (asterisks) in the homogeneous case of 45o. (a) In-
plane stresses. (b) Interlaminar stresses. . . . . . . . . . . . 167

4.9 Maximum radial stress for M0 = −1 Nm/m depending on the
orientation of the single ply laminate. . . . . . . . . . . . . . 168

4.10 Stresses in a 35o single ply laminate under M0 = −1 Nm/m
for (a) the free torsion model and (b) the constrained model. 169

4.11 Differences between 45o plies and -45o plies when both are
used in a laminate, showed in a [45 -45 -45 45] stacking se-
quence. (a) Free torsion model, (b) Constrained model. . . . 170

4.12 Validation of the models (continuous and discontinuous lines)
by using M0 = −1 N with finite elements results (asterisks)
in the homogeneous case of 45o. . . . . . . . . . . . . . . . . 171

4.13 Validation of the models (continuous and discontinuous lines)
by using M0 = −1.2 N and comparing with FE results (as-
terisks) in the homogeneous case of 45o. . . . . . . . . . . . . 172

4.14 Section studied with the 3D model. . . . . . . . . . . . . . . 174
4.15 Distributed forces and moments distribution through the width:

(a) bending moment Ms(y), (b) axial force Ns(y). . . . . . . 210
4.16 Distributed forces and moments distribution through the width:

(a) anticlastic bending moment My(y), (b) torsional moment
Mys(y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.17 INS obtained in the interface between a 0o and a 90o ply in
a laminate [0,90]S under axial load. . . . . . . . . . . . . . . 212

4.18 INS obtained in the interface between a 0o and a 90o ply for
different model orders. . . . . . . . . . . . . . . . . . . . . . 213



14 LIST OF FIGURES

4.19 ISS obtained in the interface between a 0o and a 90o ply in a
laminate [0,90]S under axial load. . . . . . . . . . . . . . . . 213

5.1 Propagation of intralaminar cracks as delaminations causing
the induced unfolding. . . . . . . . . . . . . . . . . . . . . . 217

5.2 Induced unfolding initiated by a fibre compressive failure. . . 218
5.3 Apparent ILTS of the coupons respect to the thickness. . . . 220
5.4 Maximum stress in the matrix direction of the coupons re-

spect to the thickness. . . . . . . . . . . . . . . . . . . . . . 221
5.5 Location of the delaminations in a CP1 coupon. . . . . . . . 222
5.6 Location of the delaminations in a CP2/CP3 coupon. . . . . 223
5.7 Location of the delaminations in a CP4 coupon. . . . . . . . 223
5.8 Location of the delaminations in a CP5 coupon. . . . . . . . 224
5.9 Location of the delaminations in a CP6 coupon. . . . . . . . 225

6.1 Analytical bending moment in the traditional unfolding, MTU ,
for R = t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.2 Analytical bending moment in the induced unfolding, MIU ,
for R = t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.3 Analytical bending moment, Mmax, for R = t. . . . . . . . . 230
6.4 Analytical bending moment in the traditional unfolding, MTU ,

for R = 2t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.5 Analytical bending moment in the induced unfolding, MIU ,

for R = 2t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.6 Analytical bending moment, Mmax, for R = 2t. . . . . . . . . 232
6.7 Analytical bending moment in the traditional unfolding, MTU ,

for R = 3t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.8 Analytical bending moment in the induced unfolding, MIU ,

for R = 3t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.9 Analytical bending moment, Mmax, for R = 3t. . . . . . . . . 234



List of Acronyms

2D — Bi-dimensional.
3D — Three-dimensional.
CBS — Curved Beam Strength.
CBT — Classical Beam Theory.
CFRP — Carbon fibre reinforced plastic.
CLT — Classical Laminate Theory.
FE — Finite Elements.
FEM — Finite Elements Method.
FSDT — First-order Shear Deformation Theory.
ILCS — Interlaminar compressive strength.
ILSS — Interlaminar shear strength.
ILTS — Interlaminar tensile strength.
INS — Interlaminar normal stress.
ISS — Interlaminar shear stresses.
LPBM — Legendre polynomials based model.
MBM — Monomials based model.
RD — Regularization distance.
UD — Unidirectional.



List of Acronyms 16



Chapter 1

Introduction

Nowadays, composite materials are used in many different sectors and
applications, from the aeronautical and automotive sectors to the rail and
marine sectors. In their origins, composite materials were used mainly in
lightweight structures involving thin laminates where the curvature radius
is much higher than the thickness and the interlaminar stresses are typi-
cally neglected due to their extremely low values. Notwithstanding, in the
last years the use of this kind of materials has been considerably increased,
requiring to incorporate the use of composite laminates in more complex
components, where thicker laminates and highly-curved laminates are in-
cluded. The introduction of the composite materials in this kind of compo-
nents and structures has caused the apparition of new failure mechanisms
which were not previously considered. The unfolding failure is found within
those failure mechanisms.

The unfolding failure consists in a delamination given in highly-curved
and moderately-curved oriented-fibre composite laminates which is pro-
duced preliminarily by the interlaminar stresses induced by the curvature.
This kind of failure is generally associated with an opening bending moment.
When a curved component is loaded under a bending moment which tries
to open the curvature trying to give a flatter geometry to the curved lami-
nate the plies try to separate like the pages of a book, see Figure 1.1. This
effect is due to the different length between the plies located at the lowest
and at the highest radius. Interlaminar normal stresses (INS) appear as the
opposition of the plies to be separated, and, when they are high enough, the
delamination involving the unfolding failure is produced. Some examples
of composite laminates including the aforementioned highly-curved parts
and, therefore, prone to the unfolding failure, are the L-shaped beams, the
T-shaped beams, the Ω-shaped beams, the joggles or the corrugated lami-
nates [1, 2].
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Figure 1.1: When the laminate is opened by a bending moment the plies
try to separate.

The unfolding failure is a failure mechanism, mainly characteristic of the
composite laminates. This fact is due to the low strength of these materials
in the interlaminar direction (typically in the range of 40-80 MPa in CFRP
with epoxy resins) respect to the intralaminar direction (which, for CFRP
in the fibre direction, is typically in the range of 2000-3000 MPa). Thus,
through-the-thickness failures are considerably more probable in this kind
of materials than in isotropic materials in which strength is the same in all
directions.

The unfolding failure prediction is typically carried out in three different
steps. The first step consists in obtaining the loads and boundary conditions
of the curved laminate. This step is conditioned by the model used in the
second step, which consists in the stress calculation. The stress calculation
may be done by a Finite Element (FE) model or by analytical procedures.
Thus, if a bi-dimensional analytical model is considered for the stress cal-
culation, the loads obtained in the first step must be compatible with this
model. In many cases non-linearities must be considered for the loads cal-
culation, e.g., in the four-point bending test [3]. Finally, once the stresses
have been calculated, a failure criterion is applied.

The current PhD project is focused mainly in the second step. Different
analytical stress calculation methodologies are developed in the context of
the interlaminar stresses in curved laminates in order to reduce the com-
putational times (in comparison with the FE models) and to improve the
accuracy (in comparison with the nowadays analytical procedures which
present high errors). The third step, relative to the failure criteria, is also
studied with the detailed analysis of the failure mechanism involving the
delamination of the unfolding failure, which is validated with some experi-
mental results.

The state of the art for the second and third steps in the unfolding
failure prediction is analysed individually in the following sections, after
introducing the motivations and aims of the project. The first step is not



19 Introduction

commented in those sections while its analysis depends on each kind of
problem. Notwithstanding, in the present document the particular case
of the four-point bending problem is analysed in further chapters due to
its importance for the experimental estimation of the InterLaminar Tensile
Strength (ILTS).

1.1 Motivations and aims of the project

The Thesis is oriented to analyse two main problems that have been
found in the calculation of the unfolding failure reserve factor in typical
components used in the aeronautical industry. The first problem is a thick-
ness dependence of the ILTS, which is typically obtained with a four-point
bending test over a curved composite laminate. This thickness dependence
is widely observed in the unfolding calculations in the aeronautical compa-
nies and it is not demonstrated physically. The second problem is the lack
of accuracy of the analytical models when applied to some kinds of load-
ing states. These loading states are dominated by non-regularized effects
which are not taken into account in the traditional analytical calculations,
and nowadays are obtained typically by using a detailed FE model. How-
ever, an analytical or semi-analytical procedure is desired to improve the
computational times allowing to reduce times in design problems.

When a quasi-isotropic composite laminate is tested according to the
four-point bending test standardized in the procedure ASTM D 6415/D
6415M [3], a curved beam strength (CBS) is obtained as the bending mo-
ment per unit of width applied to the curved zone of the L-sectioned beam
at the instant of the failure. Considering this bending moment and by us-
ing a certain analytical or numerical calculation method for calculating the
stresses (e.g., Ko and Jackson’s equations [4] or Kedward’s formula [1]), a
maximum INS may be obtained at the instant of failure. The four-point
bending test has neglectable interlaminar shear stresses (ISS) in the curved
zone, an then, the traditional delamination failure criteria (e.g., the Kim and
Soni criterion [5]), which depends generally on the INS and the ISS, may be
applied as a maximum stress failure criterion. Therefore, considering that
the failure is due to the INS as has been traditionally done, the maximum
INS at the instant of failure may be considered as an apparent ILTS.

The apparent ILTS, obtained as commented before from quasi-isotropic
laminates, has typically shown a thickness dependence as shown in the exam-
ple of Figure 1.2, where thinner specimens have lower strengths than thicker
ones. This thickness dependence is shown by Edwards and Thompson [6].
In the Figure, the apparent ILTS has been expressed non-dimensionally re-
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spect to the strength in direction 2 (matrix in-plane direction of a ply), S22.
The cause of this thickness dependence has not been physically explained
yet although it is widely observed in the aeronautical sector. In this way,
nowadays applications obtain the apparent ILTS from the four-point bend-
ing test depending on the thickness, and it is used when it is applied to
other loading states and other kind of specimens (such as T-shaped beams
or joggles). The application of this dependency to this other kind of spec-
imens has not been demonstrated to be valid and it may cause errors in
the estimation of the final failure. Hence, it requires a deeper study of the
stresses and the failure mechanisms to determine the cause of the thickness
dependence.

Figure 1.2: Example of thickness dependence of the apparent ILTS obtained
from quasi-isotropic laminates.

The thickness dependence has not been shown in unidirectional lami-
nates [0]n, as can be seen in the unidirectional specimens of Hoffmann et
al. [7]. Furthermore, it is neither observed in some fabric composites, as
can be seen in the results of the maximum INS obtained by Avalon and
Donaldson [8].

The thickness dependence is against the size effects explained by Wisnom
[9]. In accordance with the size effects, thicker laminates should have lower
ILTS. Hoffmann et al. [7] tried to demonstrate the size effects in the ILTS.
Notwithstanding, the ILTS obtained in the composite laminates was not that
expected, obtaining the lowest strength in the thinnest specimens and the
highest strength in the medium thickness specimens, which is also against
the apparent ILTS distribution of Figure 1.2, where a decrement of the ILTS
is obtained also in the medium thickness specimens.

Edwards and Thompson [6] attributed the thickness dependence to the
fact that, due to manufacturing defects, the curved specimens have small
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interlaminar cracks or delaminations prior to the tests, and these delamina-
tions propagate at a lower load than the corresponding to the ILTS value,
causing the apparent ILTS to become lower than the real one.

Makeev et al. [10] studied the role of the porosity in the delamination,
showing that, with a small increment in the porosity and in the void size, the
strength may decrease significantly. In this way, other possible explanation
for the decrease in the strength in thinner laminates may be given by con-
sidering the presence of a more significant void content in those specimens.

Fletcher et al. [11,12] and Kim et al. [13] assumed that the delamination
is highly dominated by the free-edge effects, using a resin edge to reduce
the free-edge effects and to improve the strength. Following their reasoning,
other possible explanation consists in the free-edge effect, it requiring a
deeper study on these stress concentrators respect to the thickness.

Regarding the second motivation of the Thesis, consisting in the lack
of accuracy in the stress state obtained by the analytical methodologies for
some loading states, it may be due to several causes. Traditional analytical
methodologies calculate only the regularized stress state, which consists in
considering the curved laminate isolated, and generally loaded only under
end loads, although some authors consider also distributed loads. However,
there are some effects which may cause perturbations in the stresses ob-
taining a non-regularized stress state. This is the case, e.g., of the free-edge
effects, where the free-edge boundary condition causes a stress concentration
in a localized zone near to the edge.

Other cause for the appearance of non-regularized stresses is the change
of curvature of the laminate. Highly curved laminates are commonly linked
with flat laminates. This is the case of the L-shaped beam, where the curved
part of the L is joined to two straight arms, or the case of a joggle, where
several curvature changes are given along the section.

Considering the particular case of a L-shaped beam loaded under an end
bending moment, if a traditional stress calculation method is used, such as
the Ko and Jackson’s equations [4], the curved part of the section has a
constant INS in the circumferential direction, while null INS are given in
the straight arms. Therefore, a discontinuity is given at the joint of the
curved part with the arms, see Figure 1.3(a), where the solution obtained
with Ko and Jackson’s equations is depicted. This discontinuity is given
in all the components of stresses and displacements, and not only in the
INS. Hence, the stress tensor is modified by non-regularized effects causing
a smooth variation of the stresses between the straight arm and the curved
part in order to accomplish the equilibrium equations and the compatibility
of the displacements, see Figure 1.3(b). This effect has been shown by Most
et al. [14] and it is studied in the current Thesis.
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(a) (b)

Figure 1.3: INS colour plot in a L-shaped beam loaded under end bending
moment. (a) Regularized stresses. (b) Non-regularized stresses.

The non-regularized effects due to the change of curvature are localized
near to the section where it takes place, modifying the stresses respect to the
regularized ones only in this zone. Therefore, they are especially important
in laminates with a short curved part respect to the thickness, or when the
maximum regularized value is obtained near to the change of curvature.

The aims of the Thesis are oriented to improve the calculation and pre-
diction of the unfolding failure in curved composite laminates. The first aim
of the project is oriented to develop a novel analytical procedure for obtain-
ing the stresses in curved laminates, in order to predict the non-regularized
effects without requiring a FE model. The use of an analytical procedure
allows the stresses to be obtained with a satisfactory accuracy in smaller
computational times than FE, which is especially useful for optimization
problems where many evaluations of the stresses have to be done. Second,
an explanation for the thickness dependence is looked for, trying to find
the real failure mechanism involving the unfolding failure, in order to de-
velop a new, more realistic, failure criterion. Moreover, the first objective
helps to the resolution of the second one, as a satisfactory accuracy in the
stress calculation is required for understanding the failure mechanism of the
component.

1.2 State of the art in stresses calculation in

curved laminates

The calculation of composite laminates is based on the Classical Lami-
nate Theory (CLT) [15, chap. 4] and on the First-order Shear Deformation
Theory (FSDT) [16], which consist in a plate theory where the composite
laminate is approximated by homogeneous equivalent material through the
stiffness matrix A-B-D, and where the INS is neglected. Therefore, this
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theory cannot be applied directly to the highly-curved laminates for obtain-
ing the interlaminar stress. Notwithstanding, the CLT may be applied to
curved laminates for obtaining the intralaminar stresses with a good ac-
curacy (see [17], for instance), or for obtaining the deformation of curved
laminates under different kind of loads (see [18], for instance).

Lekhnitskii et al. [19, chap. 3] obtained the closed-form solution of
the through-the-thickness stresses in curved bi-dimensional beams made by
homogeneous anisotropic material under end load and bending moment.
Hence, it cannot be applied to composite laminates while composite lami-
nates are heterogeneous at a laminate level (non-homogeneities associated
with the presence of fibre and matrix inside each ply are not considered
in the present document). Notwithstanding, many authors have approxi-
mated the laminate by homogeneous equivalent material and have applied
the Lekhnitskii’s equations [20–23] to determine the INS.

The maximum INS for a curved beam under bending moment obtained
by using the Lekhnitskii’s equations has been approximated by a closed
form equation given by Kedward et al. [1]. This equation is independent
of the stiffness properties of the material, depending only on the bending
moment and on the geometrical parameters, and being only accurate when
the circumferential stiffness is lesser than 20 times the radial stiffness. The
INS caused by an axial force may be neglected while the dominant load for
those stresses is the bending moment. With reference to the shear problem,
the maximum of the ISS may be approximated by the maximum ISS in a
flat laminate, given by Cui et al. [24].

The extension of the Lekhnitskii’s equations to a laminate problem was
solved by Ko and Jackson [4], allowing the effect of the stacking sequence
over the INS distribution to be obtained. Ko and Jackson’s equations con-
stitute a linear system of equations where the number of equations depends
on the number of plies Np, so that it requires to solve 3Np equations for
the bending moment and 8Np equations for the end load (which may be
decomposed in end axial force and end shear force). Smidt [25] and Shenoi
and Wang [26] developed a similar model to the Ko and Jackson’s equations,
applied to curved sandwich beams under bending load.

Some authors have been working in the last years in the development of
simpler models to solve the INS in curved laminates considering the stacking
sequence. One of the main objectives of those models is to obtain approx-
imations of the Ko and Jackson’s equations which may be implemented in
a FE software to calculate the INS in curved laminates. Other objectives
for obtaining approximated models are to calculate problems which can-
not be solved with Ko and Jackson’s equations, such as double-curvature
problems, three-dimensional cases or distributed loads (e.g., pressure), or to
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reduce computational times, e.g., for solving optimization problems.
The CLT may be extended for calculating the INS from the in-plane

stresses by using the equilibrium equations. Notwithstanding, the CLT ap-
plied to curved laminates requires a modification of the A-B-D matrix so
that considering the different lengths of the plies in the inner and outer ra-
dius. This modification implies logarithmic expressions in the terms of the
stiffness matrix which has been presented by several authors as Qatu [27],
Kress et al. [28] or Guedes and Sá [29].

Other approximated models begin with the Kirchoff assumption used in
the CLT and consider different hypothesis. That is the case of Kress [30]
and Kress et al. [28], who used the aforementioned assumption only in the
circumferential displacements, calculating the expression of the through-the-
thickness displacements.

Some authors have considered the hypothesis of thin laminates t � R
(where t is the thickness and R is the mean radius) in the development
of an approximated model for curved beams, as Rodŕıguez de la Cruz et
al. [31] for sandwich curved beams, Lin and Hsieh [17] for variable curvature
beams, Vargas et al. [32] for studying the thermal and mechanical stresses
in unsymmetrical curved laminates or Bruno et al. [33] for studying the
delamination propagation in curved laminates. Those models have a high
accuracy when the t� R hypothesis is accomplished.

The series expansion in the displacements and/or the stresses is one of
the most used approximations for calculating the stresses in thicker curved
laminates where t ∼ R. Carrera et al. [34] presented a compilation of several
methods based on series expansions in the displacements, not only for curved
laminates. Those models usually start from the Timoshenko theory [35,36]
expanding the displacements with additional terms.

The most basic series expansion is done by using monomial functions in
the thickness, as is the case of Matsunaga [37,38]. Other authors have pre-
ferred a Fourier series as Ren [39], who expanded the INS by using a Fourier
series of sines, or the use of zig-zag functions as Carrera [40] and Icardi
and Ferrero [41]. More advanced models including series expansions are
based in more complex numerical techniques as the differential quadrature
method [42,43] or the higher-order shear deformation theory [44,45].

Those analytical procedures have been compared with experimental re-
sults in several loading states and geometries. For example, Cui and Ruiz
[46] and Wisnom et al. [47] tested C-specimens under combined shear, axial
and bending loads, Cui et al. [24] tested curved beams under pure bend-
ing, and McRobbie et al. [48] tested open-rings of composite laminates and
sandwiches under bending due to end loads.

Many of the mentioned analytical approximations are oriented to develop
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elements for a FE software. Finite elements allows the INS in curved lami-
nates to be accurately obtained, but they require to refine the mesh in the
interlaminar direction in a three-dimensional model [49]. The refinement of
the mesh in the interlaminar direction requires also refining the mesh in the
intralaminar plane in order to maintain the aspect ratio, so the final model
has an excessive number of elements consuming too much computational
time to obtain the solution.

In that way, many authors have worked in the development of new el-
ements for curved composites which do not require so much interlaminar
refinement to obtain accurate INS. Rattanawangcharoen [50] developed a
three-dimensional element with the main aim of analysing weakly bonded
cylindrical panels. Kress and Winkler [51] developed a shell element for cor-
rugated laminates. Cinefra and Carrera [52] and Vidal et al. [53] developed
cylindrical shell elements using a layerwise theory. Finally, Fraternali and
Bilotti [54] developed non-linear elements for curved laminates.

The calculation of the INS may be also influenced by the residual stresses
due to the manufacturing process and the cooling of the laminate after the
curing process. The different mechanisms producing residual stresses are
summarized by Wisnom et al. [55]. The residual stresses have been typi-
cally associated to the in-plane stresses and interlaminar residual stresses
have been typically neglected, except in the free-edges. However, when the
laminate is curved, residual INS appear due, as the residual in-plane stresses,
to the different expansion coefficients between the plies. Those residual INS
in curved laminates were shown experimentally and numerically by Kim and
Lee [56] and by Takagaki et al. [57] in the case of cylindrical laminates, and
analytically by Huang and Tauchert [58] in doubly-curved laminates.

Notwithstanding, the aforementioned analytical and numerical proce-
dures do not consider other effects which may influence in a high percentage
the stress distributions. Those procedures consider typically the curved
laminate isolated, calculating only the regularized stresses. However, some
factors may cause a non-regularized distribution near to a particular focus.
One of those focuses is the change of curvature, as shown by Most et al. [14].
The compatibility and equilibrium in a joint between two laminates with dif-
ferent curvature cause a perturbation over their stress distributions, which is
especially important in the case of INS. Therefore, the change of curvature
is an important factor to be considered in the unfolding calculation.

The change of curvature is related also with the laminates of variable
curvature or with the doubly-curved laminates. The double curvature in
thick laminates has been widely studied in the literature, where the works
of Qatu [59], Asadi et al. [60,61] and Tornabene et al. [62] may be mentioned.

The most well-known non-regularized focus is the free-edge of the lami-



1.3. State of the art in failure criteria 26

nate. The free-edge effect is the result of the null stresses boundary condi-
tion in the free-edge of the laminates, which, due to the different stiffnesses
between the different plies causes a stress concentration with theoretically
infinite stresses near to the edge, in order to accomplish the equilibrium and
displacements compatibility.

The free-edge effects have been highly studied in the literature. The
typical cases considered in the study of the free-edge effects are the cross-
ply laminate [0,90]S and the angle-ply laminate [±45]S. First mentions of
the existence of the free-edge was commented by Pipes and Pagano [63]. A
closed form approximation for the calculation of these free-edge effects in the
cross-ply laminate was developed by Pipes and Pagano [64], Pagano [65] and
Becker [66]. A closed form approximation for the cross-ply and also for the
angle-ply laminates was developed by Kassapoglou and Lagace [67]. A wider
study of the free-edge in composite laminates may be found in Mittelstedt
and Becker [68]. Finally, another model for the free-edge calculation, based
on a series expansion of the displacements by using Legendre polynomials
but oriented to a finite element modelling, has been developed by Wenzel
et al. [69].

The delamination of composite materials has been traditionally associ-
ated with the free-edge effects (see Kant and Swaminathan [70] for instance).
It is considered that when the free-edge effect is dominant enough the crack
initiated at the free-edge may propagate interlaminarly in an unstable way
causing the final delamination in the laminate. This effect applied to the
unfolding failure in curved laminates is analysed by Fletcher et al. [11, 12]
and Kim et al. [13], who have studied the influence of introducing a resin
edge in the free boundary to reduce the free-edge effects.

1.3 State of the art in failure criteria

Once the stresses have been obtained by using one of the different analyt-
ical or numerical models presented in the previous section, a failure criteria
must be applied to predict when the failure is initiated and, when applicable,
to predict if the crack will propagate.

Therefore, two kind of failure criteria may be differentiated: the failure
initiation criteria and the failure propagation criteria. Those different failure
criteria are summarized by Orifici et al. [71]. The free-edge effects are usually
treated using failure propagation criteria since they have associated singular
stresses similar to those associated with a crack in the linear elastic fracture
mechanics theory.
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1.3.1 Failure initiation criteria

The failure initiation criteria may be expressed depending on stresses
or depending on strains. However, the stresses-based failure criteria have
imposed over the strain-based failure criteria. In this way, the most basic
failure criterion consists in the maximum stress criterion, where each stress
is considered independently and compared to its corresponding allowable.
In this way, a maximum stress delamination criterion considers that the
delamination is produced when the INS reach its allowable value or when
any of the two ISS reaches its corresponding interlaminar shear strength.

Hashin [72] developed a quadratic criterion, given by an ellipsoid in terms
of the INS and the two ISS. This failure criterion is valid only for the tensile
zone of the INS, the strength being required to be changed in the criterion for
the compression zone. Brewer and Lagace [73] developed a similar criterion,
which distinguishes the tensile and compressive zones of the INS by two
independent ellipsoids. This criterion was reformulated by Most et al. [14].

Other quadratic criterion is given by Kim and Soni [5], who used a
translated ellipsoid for the INS and the ISS, considering the different tensile
and compressive strengths. The Kim and Soni criterion in the interlaminar
tensile zone is highly dependent on the interlaminar compressive strength
(ILCS), which is difficult to obtain experimentally. The Brewer and Lagace
criterion does not have this dependency while it considers two independent
ellipsoids in the tensile and compressive sides. For comparison reasons, the
Kim and Soni criterion and the Brewer and Lagace criterion are depicted in
Figure 1.4 for a bi-dimensional case (considering only one ISS, the ellipsoids
being then depicted as ellipses). The shear stress has an allowable given by
Sτ , the ILTS is defined as St33 and the ILCS is defined as Sc33.

Other authors have considered in their criteria that the in-plane stresses
may affect to the delamination failure. On the one hand, some of those
criteria are based on the consideration of the fibre direction stress in the
delamination. Several criteria considering the fibre direction stress are ex-
posed by Tong [74]. These criteria are applied, in particular, for adhesively
bonded composite double lap joints. The application of these criteria in sce-
narios different to those in which they were developed, may imply a wrong
prediction, as when applying to the present studied problem of curved lami-
nates. On the other hand, other authors have considered the stresses in the
resin in all the directions for predicting the delamination. This is the case of
Wisnom et al. [75], who considered a matrix effective stress for estimating
the through-the-thickness failure. This effective stress is calculated from the
matrix principal stresses, which are obtained by considering that the matrix
stress in the fibre direction is obtained by factoring down the composite
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Figure 1.4: Comparison between the Kim and Soni criterion and the Brewer
and Lagace criterion.

stress by the ratio of matrix modulus to the fibre direction modulus, and
that the rest of stresses remains the same than in the ply. This criterion has
been used by several authors, such as Hélénon et al. [76], who applied the
criterion to a T-shaped beam to estimate the delamination load.

For the application of the different initiation failure criteria the different
strengths are required. The interlaminar shear strength (ILSS) is typically
obtained by using a three point bending test, which is standardized by the
testing procedure ASTM D 2344/D 2344M [77]. The ILTS may be obtained
by different procedures, which are summarized by Makeev et al. [10].

The typical experimental procedure to obtain the ILTS consists in a
four-point bending test applied to a curved beam, which is standardized by
the testing procedure ASTM D 6415/D 6415M [3]. The testing procedure
establishes a L-shaped specimen with all the plies oriented at 0o (defining
the 0o direction as the curved direction and the 90o direction as the through-
the-width direction) for obtaining the ILTS. In the case of different stacking
sequences than the [0]n laminate the CBS is obtained as the maximum
bending moment that the curved laminate can bear.

The ILTS may be obtained also by a three-point bending test [78] using
a thick enough laminate so that the specimen is bent in the interlaminar
direction. The use of the three-point bending test to obtain the ILTS is
explained by Makeev et al. [10, 79], and it requires to modify the geometry
respect to the geometry specified by the procedure ASTM D 2344/D 2344M
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[77] in order to obtain the desired failure mechanism. However, to the
author knowledge, this method has not been used for characterizing the
interlaminar properties of the material.

Finally, the ILTS may be also obtained by using a tensile test in the
interlaminar direction. The tensile test in the interlaminar direction is stan-
dardized by the testing procedure ASTM D 7291/D 7291M [80], and it is
carried out by adhesively bonding the composite specimen to the metal
tabs and applying a tensile force in the bonded faces, perpendicular to the
through-the-thickness direction. It requires analysing carefully that the fail-
ure is produced in the through-the-thickness direction of the laminate and
not in the adhesive joint with the tabs. A similar kind of specimen for de-
termining the ILTS through a tensile test but without adhesive bondings
was developed by Hoffmann et al. [81, 82].

However, the results of the ILTS obtained with the tensile test are very
different to the results of the ILTS obtained with the curved beam in the
four-point bending test. This is due to the size effect. The tensile test has
a volume of material under high stresses higher than the curved beam has,
and then the ILTS obtained by using a tensile test is lower than the ILTS
obtained in the four-point bending test of a curved beam.

The size effect affects to the strength of the materials depending on the
volume of material under high stresses (see [9, 83, 84] for instance). The
size effect is usually modelled by the Weibull distribution [85]. The Weibull
distribution is usually used for representing the strength of brittle materials,
where the failure is dominated by the presence of defects which are statis-
tically distributed. The size effects in the through-the-thickness strength
properties were analysed by Hoffmann et al. [7]. However, he obtained a
big difference in the case of the tensile INS at failure load, not obtaining a
satisfactory correlation with the size effects predictions.

1.3.2 Failure propagation criteria

The crack propagation problem requires a different kind of study based
in fracture mechanics, with the concept of the strain energy release rate.
The crack propagation has been analysed also in the last years by using
FEM with cohesive elements.

Although the crack propagation is not studied in the present document,
as a reference, Lu et al. [86] studied the crack propagation in curved beams
under pure bending moment, Wimmer and Pettermann [87] studied the
crack propagation and the stability of the propagation in composite lami-
nates applying it to the particular case of a L-shaped laminate, Wimmer et
al. [88, 89] studied the initiation and propagation of the cracks in L-shaped
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laminates, Gözlüklü and Coker [90] studied the dynamic delamination of L-
shaped laminates using cohesive elements and Gözlüklü et al. [91] used also
the cohesive elements in L-shaped beams and compared it with experimen-
tal results obtained with a high-speed camera. Additionally, Gözlüklü et
al. [91] showed that the delamination process in L-shaped laminates is very
quick. The L-shaped laminate is completely delaminated in only 20µs.

The free-edge effect may be analysed by using also the strain energy
release rate and cohesive elements, but some authors have developed stress
based criteria for the failure propagation from a free-edge effect. This is the
case of Kim and Soni criterion [92], which considers that the failure appears
when the integral of the INS from a distance of the free-edge defined as the
ply thickness, until a distance defined as the laminate thickness divided by
the ply thickness, reaches the ILTS.

1.4 Thesis overview

The thesis is ordered following the three main steps in the unfolding
calculation. The first step, consisting in the load calculation, is studied
in Chapter 2. In particular, the four-point bending test standardized by
the procedure ASTM D 6415/D 6415M [3], analysing the calculation of the
bending moment in the angular part of the sample from the load applied in
the test, is studied.

The bending moment is the input parameter used later in the stress
calculation methods, the accuracy in the calculation of this parameter being
then extremely important. Furthermore, the test is highly non-linear due to
the change in the contact-point of the rollers with the coupons. Therefore,
a new non-linear methodology to analyse the test and to obtain the force-
displacement and the force-bending moment relations is developed. The
force-displacement relation may be used also to correlate the accuracy of
the model with experimental results. This model has been presented by the
author in [93]. With this study, a deeper knowledge about the four-point
bending test is obtained.

The second step in the unfolding calculation consists in the calculation
of the stresses. The stresses calculation is divided in two different Chapters.
Chapter 3 is based in bi-dimensional models. It includes, first, a summary
of the theoretical bases of the traditional methods (Lekhnitskii’s equations
and Ko and Jackson’s equations). After that, an approximated model for
calculating the regularized stresses in an isolated curved laminate is devel-
oped. This regularized model has been published in [94], and it is developed
in the present document with a matrix notation which lets us to expand it



31 Introduction

later to obtain the non-regularized model.

The last part of Chapter 3 is dedicated to develop the bi-dimensional
non-regularized models. Two different non-regularized models are developed
based on a series expansion of the displacements by using different functions.
The first model uses monomial functions in the development [95], similarly
to the model developed by Matsunaga [38] but using a different definition
of the transverse displacements, whereas the second model uses Legendre
polynomials [96].

Chapter 4 develops different three-dimensional models for the stress cal-
culation including the residual stresses due to the manufacturing process.
The first model, consisting in a regularized three-dimensional model, is an
extension of the model developed by Spencer et al. [97] for the calculation of
the thermal residual stresses in curved laminates, including also the stresses
due to the bending moment and other loading states. The model has been
explained by the author in [98], and results of the model have been pre-
sented in [99]. The second model is an extension of the bi-dimensional non-
regularized model developed in Chapter 3 to the three-dimensional problem.
This non-regularized model enables including effects such as the free-edge
effects or the anticlastic effect.

Both Chapters 3 and 4 are mainly oriented to get an efficient and reli-
able model to evaluate the INS in highly-curved laminates considering the
non-regularized effects due to the change of curvature and three-dimensional
effects. These non-regularized effect may be obtained also with FEM. How-
ever, FEM requires complex models for obtaining a satisfactory accuracy,
requiring high computational times and, therefore, it is not practical for a
design of components point of view. However, detailed FEM models have
been used in this Thesis for the validation of the developed solutions.

The last step in the unfolding calculation consists in the application
of a failure criterion. In this way, the failure mechanisms involving the
unfolding failure are studied in Chapter 5. A new failure mechanism is
explored, called induced unfolding, where the delamination is not initiated
by the INS. The induced unfolding is produced by an intralaminar failure
that, when propagating, produce the delamination of the laminate.

Therefore, two kind of unfolding failures are defined: the traditional
unfolding, initiated by an interlaminar failure, and the induced unfolding,
initiated by an intralaminar failure. The induced unfolding applied to the
experimental results permits explaining the thickness dependence of the
ILTS in composite laminates. Furthermore, it is consistent with the results
obtained over fabric CFRP and UD laminates. The idea of the induced
unfolding has been presented by the author in [100]. Chapter 5 shows some
experimental evidences of the existence of the aforementioned induced un-
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folding.
Finally, Chapter 6 summarizes the main results obtained in the previ-

ous Chapters in order to develop some design recommendations for curved
composite laminates prone to unfolding failure.

The PhD project has been developed in the facilities of FIDAMC, the
Spanish Foundation for Research, Development and Application of Compos-
ite Materials, with the academic supervision of the University of Seville.



Chapter 2

Analysis of the four-point
bending test

The traditional unfolding failure is associated with the interlaminar nor-
mal stresses (INS). The unfolding failure is generally caused by a bending
moment which tries to open the curvature, causing that the different plies
try to separate and inducing interlaminar tensile stresses.

Hence, the traditional unfolding failure is mainly characterized by the
interlaminar tensile strength (ILTS). There are several procedures to as-
sess the ILTS property, which are summarized by Makeev et al. [10]. The
simplest method to obtain this strength consists in a tensile test in the in-
terlaminar direction, which is standardized by the test procedure ASTM
D7291 [80]. Several authors, such as Hoffmann et al. [81], have character-
ized the ILTS using this procedure. Makeev et al. [10] showed that the
ILTS obtained using this procedure is highly dominated by the size effects,
it being different from the one obtained using different procedures and not
being very representative for a curved specimen.

The curved beam ILTS is obtained by using a four-point bending test,
which is standardized by the test procedure ASTM D6415 [3]. This test
procedure is complexer than the tensile test [80] but it is more widely used
since it is less affected by the size effects. Notwithstanding, the curved beam
is prone to manufacturing defects in form of porosity. Several authors such
as Makeev et al. [10] and Jackson and Martin [101] have commented the
effect of the porosity over the ILTS. Furthermore, this testing procedure has
shown a thickness dependence of the ILTS, which have not been physically
explained yet (see Edwards and Thompson [6]). The topic of the thickness
dependence is dealt with in Chapter 5.

The present Chapter studies the four-point bending test since it is the
most common testing procedure for obtaining the ILTS, which is a key
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parameter in the analysis of unfolding failure. After analysing the testing
procedure, a non-linear model for obtaining the bending moment in the
curved part of the sample from the applied load is developed and finally it
is compared with the methodology proposed by the ASTM procedure and
compared with some experimental results.

2.1 Standardized testing procedure for as-

sessment of ILTS

The most widely used testing procedure for assessment of ILTS of com-
posite materials is the four-point bending test, whose testing configuration
is schematically depicted in Figure 2.1. The geometry of the specimen is
determined by the mean radius of the curved part R, the thickness t and
the angle in the undeformed configuration ϕi. The opening angle of the
L-shaped section is obtained as Θi = 180o−2ϕi, so for a typical shape with
Θi = 90o the angle ϕi has a value of 45o.

Figure 2.1: Four-point bending test set-up.

The testing set-up is defined by the radius of the rollers Rr, the distance
between the upper rollers Ls and the horizontal distance between one upper
roller and the nearest downer roller dx. The distance l0 (indicated in Figure
2.1) is calculated from the previous values as follows:
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l0 =
dx + (2Rr + t) sinϕi

cosϕi
. (2.1)

The total applied load per unit of width is denominated as P and the
relative displacements of the rollers is denominated as δ.

This testing procedure includes the complexity of being highly non-linear
due to the change of the position of the points where the rollers contact
the sample when the load is increased, so a large displacements model is
required. This non-linearity affects to the calculation of the bending moment
in the curved part of the sample, which is required for calculating the INS
and therefore for obtaining the ILTS from the failure load.

The testing procedure ASTM D 6415/D 6415M [3] estimates this non-
linearity by using the hypothesis of considering that the arms of the L-
shaped specimens remain straight during the loading process and turn to
an angle ϕ (which for a null load has a value of ϕi) which is obtained from
the experimental displacement δ. Therefore, the bending moment obtained
from the testing procedure at the failure load does not depend only on this
failure load, it depending also on the displacement measured at failure. In
this way, the procedure does not need the stiffness property of the material
as an input while both load and displacements are obtained experimentally.

Considering the undeformed shape, the bending moment (per unit of
width) is obtained from the applied load (per unit of width) as follows:

Mus
0 = − P

2 cosϕi
l0 = − P

2 cosϕi

dx + (2Rr + t) sinϕi
cosϕi

. (2.2)

Considering that the straight arm remains straight and turn to a new
angle ϕ, the corrected bending moment yield:

M0 = − P

2 cosϕ

dx + (2Rr + t) sinϕ

cosϕ
, (2.3)

where the new angle ϕ is obtained from the displacement δ as follows:

dy = dx tanϕi +
2Rr + t

cosϕi
− δ, (2.4a)

ϕ = arcsin

(
−dx(2Rr + t) + dy

√
d2x + d2y − 4R2

r − 4Rrt− t2

d2x + d2y

)
. (2.4b)

Once the bending moment is obtained the stresses are calculated typi-
cally by using the Lekhtniskii’s equations [19, chap. 3] or the Ko and Jackson
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equations [4]. The calculation of the stresses from the loads are analysed in
further chapters.

The testing procedure ASTM D 6415/D 6415M [3] recommends the use
of the Kedward’s formula [1], an approximation of the Lekhnitskii’s INS
maximum value:

σr,max = − 3M0

t
√

4R2 − t2
. (2.5)

The approach of considering that the straight arms remain straight may
be very conservative when the non-linearity is very pronounced, like in the
thinner specimens. Therefore, for improving the calculation of the bending
moment, a novel non-linear model is developed in the following sections.

2.2 Non-linear model for obtaining the bend-

ing moment

In order to improve the calculation of the bending moment in a four-
point bending test a novel model considering the non-linearities due to the
large displacements is developed. The non-linearities are considered by cal-
culating the contact point of the rollers with the specimen in the deformed
configuration.

The specimen is modelled by using a Timoshenko beam model [35, 36]
and considering the symmetry of the problem according to Figure 2.2.

Figure 2.2: Beam approximation of the specimen in a four-point bending
test.
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The whole beam is divided in 3 different beams. Beam 1 is defined as
the part of the beam located between the two rollers, beam 2 is defined as
the part of the beam located between the inner roller and the beginning of
the curved part, and beam 3 is defined as the curved part. Furthermore,
point 0 is defined as the point of contact with the outer roller, point 1 is
defined as the point of contact with the inner roller, point 2 is defined as the
point of joint between beam 2 and 3, and point 3 is defined as the symmetry
point of the whole beam.

Beginning with the analysis of beam 1, the deformed configuration is
depicted in Figure 2.3.

Figure 2.3: Deformed configuration of beam 1.

Let us assume that when the upper roller is displaced a distance δ in the
vertical direction, the deformed shape has an angular change in the slope of
the mean line at point 0 defined by ϕ0 and an angular change in the slope at
point 1 defined by ϕ1. The initial horizontal distance between the contact
points translated to the mean line of the beam is called L0. This horizontal
distance in the deformed shape, translated to the undeformed one according
to Figure 2.3, is called L. The translation from the undeformed shape to
the deformed shape is done by using the displacements at point 0, u0 and
w0, and the displacements at point 1, u1 and w1.

In accordance with Timoshenko beam theory and defining the coordi-
nate system (s, z) shown in Figure 2.3, the displacements are approximated
considering that plane sections remain plane:
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u(s, z) = u0(s) + zφ(s), w(s, z) = w0(s). (2.6)

In this way, considering the displacements given in equation (2.6) and
considering large displacements the angles ϕ0 and ϕ1 are calculated as:

ϕ0 = arctanφ0, ϕ1 = arctanφ1, (2.7)

where φ0 = φ(0) and φ1 = φ(L), with φ(s) being the slope change of the
section. Considering a large displacements model, φ(s) is the tangent cor-
responding to ϕ(s).

By using the definition of the displacements (2.6), the strains can be
written as:

εs =
du0(s)

ds
+ z

dφ(s)

ds
, εz = 0, (2.8a)

γsz = φ(s) +
dw0(s)

ds
. (2.8b)

In accordance with Figure 2.3, distance L may be calculated as:

L = dx + R̂r(sin(ϕi−ϕo) + sin(ϕi−ϕ1)) + (w1−wo) sinϕi + (uo−u1) cosϕi,
(2.9)

where the parameter R̂r is defined as:

R̂r = Rr +
t

2
. (2.10)

Substituting (2.7) into (2.9):

L = dx + R̂r

(
sinϕi − φo cosϕi√

1 + φ2
o

+
sinϕi − φ1 cosϕi√

1 + φ2
1

)
+

(w1 − wo) sinϕi + (uo − u1) cosϕi, (2.11)

The vertical force applied by the rollers is P/2, and then considering
that the applied load in the outer roller has an angle ϕi − ϕo and applying
the load translated to the undeformed configuration, it holds that:

N(s) = − P sinϕo
2 cos(ϕi − ϕo)

, Q(s) = − P cosϕo
2 cos(ϕi − ϕo)

, (2.12a)

M(s) = − P cosϕo
2 cos(ϕi − ϕo)

s, (2.12b)



39 Analysis of the four-point bending test

where N(s) is the axial force, Q(s) is the shear force and M(s) is the bending
moment.

Substituting (2.7) into (2.12):

N(s) = − Pφo
2(cosϕi + φo sinϕi)

, Q(s) = − P

2(cosϕi + φo sinϕi)
, (2.13a)

M(s) = − P

2(cosϕi + φo sinϕi)
s. (2.13b)

The constitutive equations of the material in a 2D approach yield for a
ply p (with p = 1, 2, ..., Np):

σs = Cp
11εs + Cp

13εz, σz = Cp
13εs + Cp

33εz, (2.14a)

τsz = Cp
55γsz, (2.14b)

where Cp
ij, for i, j = 1, 3 and i = j = 5, are the stiffnesses of a ply p in the

local coordinate system (s,z) considering a bi-dimensional assumption.
Introducing the definition of the strains (2.8) and integrating the consti-

tutive equations (2.14), the classical stiffness matrix A-B-D and the stiffness
C are obtained (see Jones [15], Chapter 4) applied to a bi-dimensional prob-
lem: [

N(s)
M(s)

]
=

[
A B
B D

] [
du0(s)/ds
dφ(s)/ds

]
, (2.15a)

Q(s) = C

(
φ(s) +

dw(s)

ds

)
, (2.15b)

where the components A, B and D are given by:

A =

Np∑
p=1

Cp
11(zp − zp−1), (2.16a)

B =

Np∑
p=1

Cp
11

1

2
(z2p − z2p−1), (2.16b)

D =

Np∑
p=1

Cp
11

1

3
(z3p − z3p−1), (2.16c)

and the stiffness C is modified by considering a parabolic distribution of the
shear stress:
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C =

Np∑
p=1

Cp
55

3

2

(
zp − zp−1 −

4

3t2
(z3p − z3p−1)

)
. (2.17)

For the sake of simplicity only symmetrical laminates are considered,
and, as a consequence, B = 0.

Hence, the displacement component φ(s) is obtained integrating equa-
tion (2.15a), considering (2.13b), as follows:

dφ(s)

ds
=
M(s)

D
−→ φ(s) =

P

4D(cosϕi + φo sinϕi)

(
L2

cos2 ϕi
− s2

)
+ φ1,

(2.18)

where φ1 is the value of φ(s) at point 1 (φ1 = φ(L/ cosϕi)).

Considering that φ(0) = φ0 the next equation for the force P is obtained:

P =
4D(φo − φ1) cos2 ϕi(cosϕi + φo sinϕi)

L2
. (2.19)

The displacement component u(s) is obtained integrating equation (2.15a),
considering (2.13a), as follows:

du(s)

ds
=
N(s)

A
−→ u(s) =

Pφo
2A(cosϕi + φo sinϕi)

(
L

cosϕi
− s
)

+u1, (2.20)

where u1 is the value of u(s) at point 1.

Considering that u(0) = u0 the following expression is obtained:

(u0 − u1) cosϕi =
PLφo

2A(cosϕi + φo sinϕi)
. (2.21)

Finally, integrating equation (2.15b), the transversal displacement yields:

w(s) =
P

2C(cosϕi + φo sinϕi)

(
L

cosϕi
− s
)

+ φ1

(
L

cosϕi
− s
)

+

+
P

4D(cosϕi + φo sinϕi)

(
2L3

3 cos3 ϕi
− L2

cos2 ϕi
s+

s3

3

)
+ w1, (2.22)

where w1 is the value of w(s) at point 1.

Considering that w(0) = w0 the following expression is obtained:



41 Analysis of the four-point bending test

w1 − w0 = − P

2C(cosϕi + φo sinϕi)

L

cosϕi
−

P

4D(cosϕi + φo sinϕi)

2L3

3 cos3 ϕi
− φ1

L

cosϕi
. (2.23)

Substituting (2.19) in (2.23), yields:

(w1 − w0) sinϕi = − PL tanϕi
2C(cosϕi + φo sinϕi)

− L

3
(2φo + φ1) tanϕi. (2.24)

Therefore, the length L is obtained by substituting (2.21) and (2.24) into
(2.9), yielding:

L =

dx + R̂r

(
sinϕi−φo cosϕi√

1+φ2o
+ sinϕi−φ1 cosϕi√

1+φ21

)
1 + 1

3
(2φo + φ1) tanϕi + P

2(cosϕi+φo sinϕi)

(
tanϕi

C
− φo

A

) . (2.25)

Notice that considering a null load P and, therefore, null values of φ0

and φ1, the initial length yield:

L0 = dx + 2R̂r sinϕi. (2.26)

Beam 2 is defined between point 1, with a change in the slope of ϕ1 as
seen previously, and point 2, with a change in the slope of ϕ2. The deformed
configuration is depicted in Figure 2.4.

A local coordinate system (s2,z) is defined in accordance with Figure
2.4, where s2 = s− (L/ cosϕi).

According to Figure 2.4, the length of beam 2, given by the length of
the projection of the deformed beam 2 onto the undeformed configuration,
is given by L2 as follows:

L2 =
Ls
2
−R sinϕi − R̂r sin(ϕi − ϕ1)− w1 sinϕi + u1 cosϕi. (2.27)

Substituting (2.7) into (2.27):

L2 =
Ls
2
−R sinϕi −

R̂r(sinϕi − φ1 cosϕi)√
1 + φ2

1

− w1 sinϕi + u1 cosϕi. (2.28)
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Figure 2.4: Deformed configuration of beam 2 and beam 3.

Considering that the applied load in the inner roller has an angle ϕi −
ϕ1, that the vertical force applied by the roller is P/2, and applying the
load projected to the undeformed configuration the forces and the bending
moment can be written as:

N(s2) = − P (φo − φ1) cosϕi
2(cosϕi + φo sinϕi)(cosϕi + φ1 sinϕi)

, (2.29a)

Q(s2) =
P (φo − φ1) sinϕi

2(cosϕi + φo sinϕi)(cosϕi + φ1 sinϕi)
, (2.29b)

M(s2) = − P

2(cosϕi + φo sinϕi)

L

cosϕi
+

P (φo − φ1) sinϕi
2(cosϕi + φo sinϕi)(cosϕi + φ1 sinϕi)

s2. (2.29c)

Defining N2, Q2 and M2 as the axial force, the shear force and bending
moment, respectively, evaluated at s2 = L2/ cosϕi (which coincides with
the beginning of the curved part), yields:

N2 = − P (φo − φ1) cosϕi
2(cosϕi + φo sinϕi)(cosϕi + φ1 sinϕi)

, (2.30a)

Q2 = −N2 tanϕi, (2.30b)

M2 =
P

2(cosϕi + φo sinϕi) cosϕi

(
(φo − φ1) sinϕi

(cosϕi + φ1 sinϕi)
L2 − L

)
. (2.30c)
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Substituting (2.30) in (2.29):

N(s2) = N2, Q(s2) = −N2 tanϕi, (2.31a)

M(s2) = M2 −N2 tanϕi

(
s2 −

L2

cosϕi

)
. (2.31b)

Hence, the displacement component φ(s2) is obtained integrating equa-
tion (2.15a), considering (2.31b), as follows:

dφ(s2)

ds2
=
M(s2)

D
−→ φ(s2) =

M2

D

(
s2 −

L2

cosϕi

)
−

N2 tanϕi
D

(
s22
2
− L2

cosϕi
s2 +

L2
2

2 cos2 ϕi

)
+ φ2. (2.32)

Considering the boundary condition φ(0) = φ1 in (2.32), the following
expression is obtained:

φ1 = φ2 −
M2

D

L2

cosϕi
− N2

D

L2
2 tanϕi

2 cos2 ϕi
. (2.33)

The displacement component u(s2) is obtained integrating equation (2.15a),
considering (2.31a), as follows:

du(s2)

ds2
=
N(s2)

A
−→ u(s2) =

N2

A

(
s2 −

L2

cosϕi

)
+ u2. (2.34)

Considering the boundary condition u(0) = u1 in (2.34), the following
expression is obtained:

u1 cosϕi = u2 cosϕi −
N2L2

A
. (2.35)

Finally, integrating equation (2.15b) the transversal displacement can be
written as:

dw(s2)

ds2
=
Q(s2)

C
− φ(s2) −→ w(s2) =

N2 tanϕi
C

(
L2

cosϕi
− s2

)
−

M2

D

(
s22
2
− L2

cosϕi
s2 +

L2
2

2 cos2 ϕi

)
+ φ2

(
L2

cosϕi
− s2

)
+

N2 tanϕi
D

(
s32
6
− L2

cosϕi

s22
2

+
L2
2

2 cos2 ϕi
s2 −

L3
2

6 cos3 ϕi

)
+ w2. (2.36)
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Considering the boundary condition w(0) = w1 in (2.36), the following
expression is obtained:

w1 = w2 +
N2 tanϕi

C

L2

cosϕi
− M2

D

L2
2

2 cos2 ϕi
−

N2 tanϕi
D

L3
2

6 cos3 ϕi
+ φ2

L2

cosϕi
. (2.37)

Beam 3 is defined as the curved part. The deformed shape of beam 3
is observed also in Figure 2.4. A local coordinate system (θ, z) is defined,
where θ is an angular coordinate with origin at point 2, and z is the through-
thickness coordinate with origin at the mean line.

The equilibrium equations of the forces and the bending moment in beam
3 give a distribution of the forces and the bending moment as follows:

N(θ) = N2 cos θ −Q2 sin θ, (2.38a)

Q(θ) = N2 sin θ +Q2 cos θ, (2.38b)

M(θ) = M2 +R (N2(1− cos θ) +Q2 sin θ) , (2.38c)

where R is the mean radius of the curved part.
Therefore, evaluating the forces and the bending moment at θ = ϕi and

substituting (2.30), the central point of the beam has the following loads:

N3 = − P (φo − φ1)

2(cosϕi + φo sinϕi)(cosϕi + φ1 sinϕi)
, Q3 = 0, (2.39a)

M3 =
P

2(cosϕi + φo sinϕi)

(
− L

cosϕi
+

(L2 tanϕi +R(1− cosϕi))
φo − φ1

cosϕi + φ1 sinϕi

)
. (2.39b)

Considering the definition of the displacements (2.6), the strains can be
written as:

εs =
R

R + z

(
1

R

du0(θ)

dθ
+
z

R

dφ(θ)

dθ
+
w0(θ)

R

)
, εz = 0, (2.40a)

γsz =
R

R + z

(
φ(θ)− u0(θ)

R
+

1

R

dw0(θ)

dθ

)
. (2.40b)
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Introducing the definition of the strains (2.40) in the constitutive equa-
tions (2.14) and integrating the circumferential stress to obtain the axial
force and the bending moment, the stiffness matrix Â-B̂-D̂ and the stiffness
Ĉ are obtained (see [94]):

[
N(θ)
M(θ)

]
=

[
Â B̂

B̂ D̂

] 1

R

du0(θ)

dθ
+
w0(θ)

R
1

R

dφ(θ)

dθ

 , (2.41a)

Q(θ) = Ĉ

(
φ(θ)− u0(θ)

R
+

1

R

dw0(θ)

dθ

)
, (2.41b)

where the components Â, B̂ and D̂ are given by:

Â =

Np∑
p=1

[
RCp

11 log

(
R + zp
R + zp−1

)]
, (2.42a)

B̂ =

Np∑
p=1

[
RCp

11

(
zp − zp−1 −R log

(
R + zp
R + zp−1

))]
, (2.42b)

D̂ =

Np∑
p=1

[
RCp

11

(
R2 log

(
R + zp
R + zp−1

)
+
zp
2

(zp − 2R)− zp−1
2

(zp−1 − 2R)

)]
,

(2.42c)
and the stiffness Ĉ is modified by considering a parabolic distribution mul-
tiplied by R/(R + z) of the shear stress:

Ĉ =

Np∑
p=1

[
3

2
RCp

55

(
log

(
R + zp
R + zp−1

)
−

4

t2

(
R2 log

(
R + zp
R + zp−1

)
+
zp
2

(zp − 2R)− zp−1
2

(zp−1 − 2R)

))]
. (2.43)

Notice that the curvature implies a not null B̂ matrix even in symmetric
laminates.

The compliance equation (2.41a) is inverted and yields: 1

R

du0(θ)

dθ
+
w0(θ)

R
1

R

dφ(θ)

dθ

 =

 1

EA
− 1

EV

− 1

EV

1

EI

[N(θ)
M(θ)

]
, (2.44)
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where:

EA =
D̂

ÂD̂ − B̂2
, EV =

B̂

ÂD̂ − B̂2
, EI =

Â

ÂD̂ − B̂2
. (2.45)

Integrating the second equation of (2.44) associated with φ(θ) and con-
sidering the boundary condition φ(0) = φ2 it yields:

φ(θ) = R
M2θ +R (N2(θ − sin θ) +Q2(1− cos θ))

EI
−

R
N2 sin θ +Q2(cos θ − 1)

EV
+ φ2. (2.46)

Considering the global boundary condition φ(ϕi) = 0 and using (2.30b),
the angle φ2 can be written as:

φ2 =
RN2 tanϕi

EV
− R

EI
(M2ϕi +RN2(ϕi − tanϕi)). (2.47)

Substituting w0(θ) obtained from the first equation of (2.44) into (2.41b)
yields:

u0(θ) +
d2u0(θ)

dθ2
= R

(
φ(θ)− Q(θ)

Ĉ
+

1

EA

dN(θ)

dθ
− 1

EV

dM(θ)

dθ

)
. (2.48)

Substituting (2.46) and (2.38) into (2.48) and integrating the remaining
equation and the first equation of (2.44), the mean-line displacements can
be written as:

u0(θ) = R

(
(M2 +RN2)

(
R

EI
θ −

(
R

EI
+

1

EV

)
sin θ

)
+(

φ2 +

(
R

EV
+
R2

EI

)
Q2

)
(1− cos θ)−

(
R2

EI
+

R

EV
+

1

Ĉ

)
N2 sin θ+(

R2

EI
+

2R

EV
+

1

EA
+

1

Ĉ

)
θ

2
(N2 cos θ −Q2 sin θ)

)
+ u2 cos θ − w2 sin θ,

(2.49a)

w0(θ) = R

((
R

EI
+

1

EV

)
(M2 +RN2)(cos θ − 1) +

(
Q2

Ĉ
− φ2

)
sin θ+(

R2

EI
+

2R

EV
+

1

EA
+

1

Ĉ

)
θ

2
(N2 sin θ +Q2 cos θ)

)
+ u2 sin θ + w2 cos θ,

(2.49b)
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where the boundary conditions applied are u0(0) = u2 and w0(0) = w2.
The global boundary condition of u0(θ) is given by u0(ϕi) = 0. How-

ever, the remaining global boundary condition is given by the null vertical
displacement of the outer roller. For the sake of simplicity, this boundary
condition is changed by doing a solid rigid displacement of the model so that
w0(ϕi) = 0. In this way, applying both boundary conditions and considering
(2.30b) and (2.47), u2 and w2 yield:

u2 = R

(
(M2 +RN2)

((
R

EI
+

1

EV

)
sinϕi −

R

EI
ϕi

)
+(

R2

EI
+

R

EV
+

1

Ĉ

)
N2 tanϕi −

(
R2

EI
+

2R

EV
+

1

EA
+

1

Ĉ

)
ϕi
2
N2

)
,

(2.50a)

w2 = R

(
(M2 +RN2)

(
R

EI
+

1

EV

)
(cosϕi − 1)+(

R2

EI
+

2R

EV
+

1

EA
+

1

Ĉ

)
ϕi
2
N2 tanϕi

)
, (2.50b)

Hence, the problem resolution is closed with the non-linear equations sys-
tem defined by (2.19), (2.25), (2.28), (2.30a), (2.30c), (2.33), (2.35), (2.37),
(2.47), (2.50a) and (2.50b). The problem is solved beginning with the value
of a parameter, e.g., beginning with a given value of the applied force P .

Once the problem has been solved, the vertical displacement between
the rollers, δ, can be written as:

δ = dx tanϕi +
2R

cosϕi
−Rr (cos(ϕi − ϕo) + cos(ϕi − ϕ1))−

− L tanϕi + (uo − u1) sinϕi + (wo − w1) cosϕi, (2.51)

where, substituting (2.7), (2.21) and (2.24) yields:

δ = dx tanϕi +
2R

cosϕi
−Rr

(
cosϕi + φo sinϕi√

1 + φ2
o

+
cosϕi + φ1 sinϕi√

1 + φ2
1

)
−

− L tanϕi +
PL

2(cosϕi + φo sinϕi)

(
φo tanϕi

A
+

1

C

)
+
L

3
(2φo + φ1) (2.52)
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2.3 Simplification of the non-linear model

The model developed in the previous section is complex to solve due
to the non-linearity of the equations. In the present section, several hy-
potheses are applied, which have been verified previously to be applicable
in typical configurations using CFRP laminates, in order to obtain a closed-
form solution of the model. Considering the hypothesis A � C � D/t2,
R2N2 � M2, EV � REI, (φ0 − φ1)L2 � L and φ2

1 � 1, the equations are
simplified as follows:

P =
4D(φo − φ1) cos2 ϕi(cosϕi + φo sinϕi)

L2
, (2.53a)

L =

dx + R̂r

(
sinϕi−φo cosϕi√

1+φ2o
+ sinϕi − φ1 cosϕi

)
1 + 1

3
(2φo + φ1) tanϕi

, (2.53b)

L2 =
Ls
2
−R sinϕi − R̂r(sinϕi − φ1 cosϕi)− w1 sinϕi + u1 cosϕi, (2.53c)

N2 = − P (φo − φ1) cosϕi
2(cosϕi + φo sinϕi)(cosϕi + φ1 sinϕi)

, (2.53d)

M2 =
−PL

2(cosϕi + φo sinϕi) cosϕi
, (2.53e)

φ1 = φ2 −
M2

D

L2

cosϕi
, (2.53f)

w1 = w2 −
M2

D

L2
2

2 cos2 ϕi
+ φ2

L2

cosϕi
, (2.53g)

φ2 = − R

EI
M2ϕi, (2.53h)

u1 = u2 = M2
R2

EI
(sinϕi − ϕi) , (2.53i)

w2 = M2
R2

EI
(cosϕi − 1). (2.53j)

Substituting (2.53h) and (2.53j) in (2.53g) and (2.53f):

φ1 = −M2

(
R

EI
ϕi +

1

D

L2

cosϕi

)
, (2.54)

w1 = M2

(
R2

EI
(cosϕi − 1)− 1

D

L2
2

2 cos2 ϕi
− Rϕi

EI

L2

cosϕi

)
. (2.55)



49 Analysis of the four-point bending test

Substituting (2.53a) in (2.53e):

φ1 =
M2L

2D cosϕi
+ φo. (2.56)

For typical test configurations, the distance L2 is very small compared
with the distance L and it may be approximated by being invariant with
the value of the initial length:

L2 =
Ls
2
−R sinϕi − R̂r sinϕi. (2.57)

Dividing (2.53d) between (2.53e) and substituting (2.56):

N2 =
−M2

2 cosϕi
2D(cosϕi + φ1 sinϕi)

. (2.58)

Therefore, neglecting the angle φ1 and substituting in (2.39a), the axial
force in the central point may be approximated by:

N3 = − M2
2

2D cosϕi
. (2.59)

Substituting (2.56) in (2.54) and in (2.53b):

φo = −M2

(
R

EI
ϕi +

1

D cosϕi

(
L2 +

L

2

))
, (2.60)

L =

dx + R̂r

(
sinϕi−φo cosϕi√

1+φ2o
+ sinϕi − φo cosϕi − M2L

2D

)
1 +

(
φo + M2L

6D cosϕi

)
tanϕi

. (2.61)

Using the Taylor expansion in φ0 = 0 in the numerator of (2.61) and
neglecting the powers higher or equal than two (considering φ0 � 1):

L =
dx + R̂r

(
2 sinϕi − 2φo cosϕi − M2L

2D

)
1 +

(
φo + M2L

6D cosϕi

)
tanϕi

. (2.62)

Substituting (2.60) in (2.62) and developing the equation:

L = dx +

(
R

EI
ϕi +

1

D cosϕi

(
L2 +

L

3

))
M2L tanϕi+

R̂r

(
2 sinϕi + 2M2

(
R

EI
ϕi cosϕi +

1

D

(
L2 +

L

4

)))
. (2.63)
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which constitutes a second-order equation in L which may be solved ana-
lytically:

L =
−BL −

√
B2
L − 4ALCL

2AL
, (2.64)

AL =
M2

3D cosϕi
tanϕi, (2.65)

BL =
L2M2

D cosϕi
tanϕi +

RM2

EI
ϕi tanϕi +

R̂rM2

2D
− 1, (2.66)

CL = dx + 2R̂r

(
sinϕi +

RM2

EI
ϕi cosϕi +

M2L2

D

)
. (2.67)

Therefore, the resolution of the model is reduced to consider a given
value of the bending moment in the symmetry point M3

∼= M2 < 0 and
calculating the length L from (2.64), where the length L2 is given by (2.57).
Once L has been obtained the angle φ0 is obtained from (2.60) and the angle
φ1 from (2.54). Finally, the load necessary to obtain the bending moment
M3 is calculated from (2.53a), and the displacement of the rollers is given
by (2.52). If desired, the axial force at the central point is given by (2.59).
If the input parameter is the load P instead of the bending moment M3, it
is necessary to do an iterative process to obtain the desired load.

2.4 Comparison of the non-linear model with

experimental results

For the validation of the non-linear model, the results obtained with
it are compared with experimental results. The experimental tests have
been carried out by Ramı́rez [102]. The tests have been carried out over
a standard CFRP which has been previously characterized, obtaining the
material properties given in Table 2.1.

E11 152 GPa E22 8.7 GPa
ν12 0.37 G12 10 GPa

Table 2.1: Ply properties

Two kinds of specimens are considered:

• Specimen SP1: [45,0,0,0,-45]S, t = 2 mm, R = 6 mm, W = 27 mm.
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• Specimen SP2: [45,0,0,-45,90,45,0]S, t = 2.7 mm, R = 6.35 mm, W =
27 mm.

The 0o direction is defined as the curved direction, while the 90o direction
is defined as the through-the-width direction.

The test configuration is defined by a roller radius of Rr = 5 mm, and
the distances are Ls = 22 mm and dx = 7 mm.

Three coupons of each kind of specimen are tested, which are numbered
as SPx.y, where x indicates the type of the specimen (1 or 2) and y indicates
the number of coupon (from 1 to 3).

The numerical evaluation has been carried out by considering the hy-
potheses of Plane Strain and Plane Stress for obtaining the constitutive
equations (2.14) from the 3D constitutive equations. Additionally, the Clas-
sic Laminate Theory (CLT) has been applied to obtain the classical 6x6
A-B-D matrix (see for instance [15], Chapter 4) and, considering that the
out-of-plane forces and moments are null (the forces and moments associated
to the transverse stress σy and the shear stress τsy, where y is the through-
the-width coordinate), so that an equivalent 2x2 A-B-D matrix for equation
(2.15a) may be obtained by using the aforementioned consideration.

Figures 2.5 and 2.6 show for SP1 and SP2 specimens respectively the
numerical results obtained with the Plane Strain assumption, the Plane
Stress assumption and with the 2x2 A-B-D matrix obtained from the 6x6
A-B-D matrix of the CLT. Those numerical results are compared with the
experimental results obtained in the tests.

Notice that the Plane Stress assumption is not physically realistic as
it implies discontinuities in the through-the-width normal strain. Further-
more, in laminates with ±45o, Plane Strain assumption is also non realistic
as implies discontinuities in the through-the-width interlaminar shear stress.
Therefore, only the model based on the CLT A-B-D matrix is physically re-
alistic.

It may be observed that the results of the model evaluated with the
stiffness properties of the CLT are always located between the results of the
Plane Strain assumption and the Plane Stress assumption. The Plane Strain
assumption is the stiffest assumption, and the Plane Stress assumption is the
less stiff assumption. It can be obtained that the range between both Plane
Strain and Plane Stress assumptions is higher when higher is the number of
±45o plies. Notwithstanding, the model based on the CLT is usually nearer
to the Plane Stress model.

The experimental results show a high agreement with the model based
on the CLT approximation. It shows a high accuracy of this assumption
compared with the Plane Strain and the Plane Stress assumptions, especially
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Figure 2.5: Numerical and experimental force-displacement relations in SP1.

Figure 2.6: Numerical and experimental force-displacement relations in SP2.

in laminates with a high percentage of ±45o plies.

The non-linearity and the slope of the curves modified by the change of
the point of contact of the specimen with the rollers are captured with a
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high accuracy by the analytical model.

2.5 Comparison of the non-linear model with

the ASTM procedure

The model developed may be used to monitor the test in real time, val-
idating that the experimental results are according to the analytical results
and detecting if any kind of defects or errors are present during the test.
However, the main utility of the model is not the monitoring of the test,
but the calculation of the bending moment from the applied load.

The calculation of the stresses involving the unfolding failure is done by
means of the bending moment, so high errors in this calculation implies a
poor estimation of the unfolding failure and, according to it, a poor estima-
tion of the ILTS by using the four-point bending test, which is normalized
by the procedure ASTM D6415 [3].

The ASTM procedure requires both load and displacement experimental
parameters to estimate the ILTS. However, the analytical procedure devel-
oped in the present Chapter only requires one of the two parameters (force
or displacement), and the other parameter can be calculated. This is useful
for comparison with the experimental load-displacement distribution and
validation of the accuracy of the model.

In this way, both analytical and ASTM procedures are applied to the ex-
perimental specimens SP1 and SP2 commented in the previous section. For
introducing the data in the ASTM procedure, specimens SP1 are considered
to fail, based on the experimental results, at a mean load of P1 = 790 N
with a displacement δ1 = 3.4 mm, and specimens SP2 are considered to fail,
based on the experimental results, at a mean load of P2 = 1270 N with a
displacement δ2 = 2.8 mm.

The analytical procedure developed in the present document applied to
the specimens SP1 using the load P1 results in an slope φ0 = 0.124, an slope
φ1 = 0.041 and a total bending moment MSP1 = 11.7 Nm. These slopes, by
using (2.7), imply an angle ϕ0 = 0.123 rad and ϕ1 = 0.041 rad. By using
the ASTM procedure, the angle φ obtained is 0.698 rad, which implies an
increment ϕi − φ = 0.0982 rad, which is located between the angles ϕ0 and
ϕ1. Therefore, by using 2.3, the bending moment obtained according to the
ASTM procedure yields MASTM

SP1 = 12.1 Nm, which is a 3% higher than the
one obtained from the non-linear model developed in the present document.

The analytical procedure developed in the present document applied to
the specimens SP2 using the load P2 results in an slope φ0 = 0.0965, an
slope φ1 = 0.0289 and a total bending moment MSP1 = −20.6 Nm. These
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slopes, by using (2.7), imply an angle ϕ0 = 0.0962 rad and ϕ1 = 0.0289 rad.
By using the ASTM procedure, the angle φ obtained is 0.7221 rad, which
implies an increment ϕi − φ = 0.0764 rad, which is located between the
angles ϕ0 and ϕ1. Therefore, by using (2.3), the bending moment obtained
according to the ASTM procedure yields MASTM

SP1 = 21.1 Nm, which is a 2%
higher than the one obtained from the non-linear model developed in the
present document.

Therefore, for the present specimens, the ASTM procedure has very low
errors in the calculation of the bending moment applied to the curved zone,
presenting a high accuracy. These errors may be higher for specimens with
a lower bending stiffness. Notwithstanding, the ASTM procedure requires
to obtain the experimental displacement, which is a difficult task in view
of the test set-up. An inaccurate experimental measurement of the failure
displacement may imply errors in the bending moment calculation higher
than the ones presented in the aforementioned experimental results. In
contrast, the present analytical method requires only the experimental load,
which is easily obtained with a high accuracy from the experimental tests.



Chapter 3

Bi-dimensional models for
evaluating interlaminar stresses

The unfolding failure, which is traditionally associated to the interlam-
inar tensile stresses, is typically calculated using two different techniques.
The fist technique consists in the use of a FE software, which requires a
highly refined mesh in the thickness of the laminate. If the mesh in the
thickness has to be refined for obtaining a good accuracy in the interlami-
nar stresses it implies also a refinement in the in-plane direction. This fact
causes that a very high number of elements are needed in the numerical
model and, hence, high calculation times are required for obtaining a good
estimation of the interlaminar stresses. Furthermore, the high calculation
times hinder the optimization of geometries and stacking sequences.

The second technique consists in the use analytical solutions. The typ-
ical analytical solutions are based in bi-dimensional approximations, which
reduce the scope of applications. Furthermore, traditional calculation meth-
ods for the interlaminar stresses are regularized models. Regularized stresses
and strains are defined as the stresses and strains far enough from a per-
turbation. A typical example of a perturbation is given by the free edge
effect, where a stress concentrator is given. However, this is not the only
perturbation present. In the case of the traditional sections prone to un-
folding failure, another kind of perturbation is given by curvature changes,
e.g., in a L-sectioned beam where the curved zone is joint to the straight
arms. This effect has been observed numerically by Most et al. [14].

The perturbation due to the change of curvature allows equalling the
displacements and stresses between both parts, while the regularized solu-
tions are not similar. Respect to the interlaminar normal stress (INS), the
INS has a through-the-thickness distribution in the section of the change of
curvature given approximately (for the case of a bending moment loading)
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by the average distribution between the regularized one of one side and the
regularized one of the adjacent side. When another kind of load is applied,
the INS distribution is also reduced in the side where the highest values are
given. It implies that when the maximum regularized value of the INS is
given just at the joint, the non-regularized value is actually much lower due
to the change of curvature perturbation and, therefore, regularized models
may underestimate the failure.

Accordingly, there is a necessity to introduce a non-regularized analytical
model which allows calculating in a quicker and more accurate way the
non-regularized stresses, getting a similar accuracy that of the detailed FE
models, but with lower computational times. This chapter develops two
non-regularized models based on a series expansion of the displacements
and on the definition of higher-order moments in the stresses. Before that,
the basis of the regularized models developed by Lekhnitskii [19, chap. 3]
and Ko and Jackson [4] are presented, as well as an approximation of the
regularized model based on the Timoshenko beam theory developed by the
authors [94], which constitutes the first-order model of the non-regularized
models.

3.1 Theoretical basis of the regularized mod-

els

The models developed by Lekhnitskii [19, chap. 3] and Ko and Jackson
[4] are developed in the present section to make the notation uniform with
the notation used in the project.

Regularized models developed by Lekhnitskii [19, chap. 3] and Ko and
Jackson [4] constitute the solution of an isolated curved beam loaded under
end axial and shear forces, N(0) = N0 and Q(0) = Q0, and bending moment,
M(0) = M0, see Fig. 3.1. These forces and moment are defined from the
circumferential and shear stresses, σθ(r, θ) and τrθ(r, θ), as follows:

N(θ) =

∫ R+

R−
σθ(r, θ)dr, M(θ) =

∫ R+

R−
(r −R)σθ(r, θ)dr, (3.1a)

Q(θ) =

∫ R+

R−
τrθ(r, θ)dr, (3.1b)

where r is the radial coordinate, θ the circumferential coordinate, R is the
mean radius, R− is the inner radius, R+ is the outer radius and t is the
thickness. Notice that forces and the moment are integrated only across the
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thickness and not along the width (defining the width as the out-of-plane
dimension), so they are actually forces and moment per unit width.

Figure 3.1: Geometry and loads considered in the regularized models of a
curved beam.

Boundary conditions at the ends of the curved beam assure only that the
mean value and the bending moment of the stress distribution are equals
to the applied loads. Therefore, the solution is only accurate at a partic-
ular distance from the ends. That distance is denominated Regularization
Distance (RD) and is analysed in a further section.

The forces and the moment have a circumferential distribution due to
the equilibrium equations as follows:

N(θ) = N0 cos θ −Q0 sin θ, (3.2a)

Q(θ) = Q0 cos θ +N0 sin θ, (3.2b)

M(θ) = M0 +R(N0 −N(θ)). (3.2c)

Lekhnitskii’s equations were developed for anisotropic homogeneous ma-
terials, considering the stress-strain relations of the material given by the
following equations:

εθ(r, θ) =
1

Eθ
σθ(r, θ)−

νθr
Eθ
σr(r, θ), (3.3a)

εr(r, θ) = −νθr
Eθ
σθ(r, θ) +

1

Er
σr(r, θ), (3.3b)

γrθ(r, θ) =
1

Grθ

τrθ(r, θ), (3.3c)

where Er is the radial stiffness, Eθ the circumferential stiffness, Grθ is the
shear stiffness in the bi-dimensional plane and νθr is the Poisson ratio. These
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stiffness constants are obtained from the three-dimensional properties of the
material by doing a bi-dimensional assumption such as plane stress or plane
strain.

Ko and Jackson’s equations are developed for a composite laminate,
where the plies are anisotropic and homogeneous, considered orthotropic
when expressed in the polar coordinate system in the bi-dimensional plane.
The stress-strain relations for each ply p are given also by equations (3.3)
but with different stiffness properties for each ply, yielding:

εθ(r, θ) =
1

Ep
θ

σpθ(r, θ)−
νpθr
Ep
θ

σpr (r, θ), (3.4a)

εr(r, θ) = −ν
p
θr

Ep
θ

σpθ(r, θ) +
1

Ep
r
σpr (r, θ), (3.4b)

γrθ(r, θ) =
1

Gp
rθ

τ prθ(r, θ). (3.4c)

The strain-stress relations given in (3.4) are inverted as follows:

σpθ(r, θ) = Cp
θθεθ(r, θ) + Cp

rθεr(r, θ), (3.5a)

σpr (r, θ) = Cp
rθεθ(r, θ) + Cp

rrεr(r, θ), (3.5b)

τ prθ(r, θ) = Gp
rθγrθ(r, θ), (3.5c)

where Cp
ij (i, j = r, θ) are defined as the stiffness constants of the bi-

dimensional ply p.
The resolution of the equations consists, first, in expressing (by using

the polar coordinate system) the stresses in a ply p depending on the Airy
function Fp(r, θ), ensuring that equilibrium equations are automatically ac-
complished:

σpθ(r, θ) =
∂2Fp(r, θ)

∂r2
, (3.6a)

σpr (r, θ) =
1

r

∂Fp(r, θ)

∂r
+

1

r2
∂2Fp(r, θ)

∂θ2
, (3.6b)

τ prθ(r, θ) = − ∂2

∂θ∂r

(
Fp(r, θ)

r

)
. (3.6c)

The compatibility equation in the bi-dimensional problem expressed in
polar coordinates yields:

∂

∂r

(
r2
∂εθ(r, θ)

∂r

)
+
∂2εr(r, θ)

∂θ2
− r∂εr(r, θ)

∂r
− ∂2(rγrθ(r, θ))

∂θ∂r
= 0. (3.7)
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The compatibility equation can be expressed, depending on the stresses,
substituting (3.3) in (3.7), which yields:

1

Ep
θ

r2
∂2σpθ(r, θ)

∂r2
− νpθr
Ep
θ

r2
∂2σpr (r, θ)

∂r2
− νpθr
Ep
θ

∂2σpθ(r, θ)

∂θ2
+

1

Ep
r

∂2σpr (r, θ)

∂θ2

+
2 + νpθr
Ep
θ

r
∂σpθ(r, θ)

∂r
− Ep

θ + 2νpθrE
p
r

Ep
rE

p
θ

r
∂σpr (r, θ)

∂r
− 1

Gp
rθ

∂2(rτ prθ(r, θ))

∂θ∂r
= 0.

(3.8)

Substituting (3.6) in (3.8), a single equation is obtained for the Airy func-
tion Fp(r, θ), which has to be solved introducing the boundary conditions of
the problem.

The simplification done by Lekhnitskii and Ko and Jackson consists in
considering that stresses and strains depends only on the radial coordinate
when the curved beam is loaded under a bending moment, and considering
that stresses and strains depends also on the circumferential coordinate
with the shape of cos θ and sin θ when it is loaded also under an end axial
and shear forces. It implies that the resulting stresses are the regularized
ones. The simplification is carried out supposing an Airy function Fp(r, θ) =
F p
0 (r) + F p

1 (r) cos θ + F p
2 (r) sin θ, which is introduced into (3.6) and (3.8)

obtaining the following equations:

d

dr

(
r2
d3F p

0 (r)

dr3

)
− κ2pr

d

dr

(
1

r

dF p
0 (r)

dr

)
= 0, (3.9a)

d

dr

(
r2
d3F p

i (r)

dr3

)
−
(
β2
p − 1

) d
dr

(
r
d

dr

(
F p
i (r)

r

))
= 0, i = 1, 2, (3.9b)

where:

κp =

√
Ep
θ

Ep
r

=

√
Cp
θθ

Cp
rr
, (3.10a)

βp =

√
Ep
θ

Gp
rθ

+
Ep
θ − 2νpθrE

p
r

Ep
r

+ 1

=

√
Cp
θθ(C

p
rr +Gp

rθ)− (Cp
rθ)

2 − 2Cp
rθG

p
rθ

Cp
rrG

p
rθ

+ 1. (3.10b)

The solution of equations (3.9), neglecting the terms which do not affect
to the stresses, yields:
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{
F p
0 (r) = F p

0,0r
2 + F p

0,1r
1+κp + F p

0,2r
1−κp , if κp 6= 1,

F p
0 (r) = F p

0,0r
2 + F p

0,1r
2 log r + F p

0,2 log r, if κp = 1,
(3.11a)

F p
i (r) = F p

i,0r log r + F p
i,1r

1+βp + F p
i,2r

1−βp , i = 1, 2. (3.11b)

Finally, Ko and Jackson closed their equations by the calculation of Fi,j,
with i, j = 0, 1, 2, by applying the boundary conditions. Considering that
the laminate is composed by Np plies, there are 3Np unknown variables
in the θ non-dependant terms, 3Np terms in the cos θ terms and 3Np un-
known variables in the sin θ terms, so 9Np equations are required to close
the problem.

The first block of equations is given by the compatibility between plies,
with establishes the continuity of the radial and circumferential displace-
ments, ur(r, θ) and uθ(r, θ), constituting a total of 2Np − 2 equations for
each kind of θ-dependant term, i.e., 6Np − 6 equations.

The second block of equations is given by the equilibrium equations
between plies, which establishes the continuity of shear and radial stresses,
τrθ(r, θ) and σr(r, θ). Notice that, as it is demonstrated in [4], the shear stress
equilibrium is accomplished if the radial one is accomplished. Therefore,
these equations constitute a total of 3Np − 3 equations.

The third block of equations is given by the null radial boundary con-
ditions of the radial stress, given by σr(R

−, θ) = σr(R
+, θ) = 0 (the shear

stress boundary condition τrθ(R
−, θ) = τrθ(R

+, θ) = 0 is automatically ac-
complished if the radial stress one is accomplished). Applying these equa-
tions to each kind of term a total of 6 equations is given.

Finally, the last 3 equations are given by the applied axial and shear
loads, N(0) and Q(0), and the bending moment, M(0).

These 9Np linear equations can be implemented in a numerical software
so that stresses and strains can be easily obtained in very short computa-
tional times.

Lekhnitskii’s equations can be obtained by considering a single-ply lam-
inate (Np = 1), so that the stresses yield, if κ 6= 1:

σθ(r, θ) =
N(θ)

rgN

(
(1 + β)

( r

R+

)β
+ (1− β)

(
R−

r

)β
− 1−

(
R−

R+

)β)

+
M(θ) +RN(θ)

(R+)2gM

(
1− 1− cκ+1

1− c2κ
κ
( r

R+

)κ−1
+

1− cκ−1

1− c2κ
κ

(
R−

r

)κ+1
)
,

(3.12a)
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σr(r, θ) =
N(θ)

rgN

(( r

R+

)β
+

(
R−

r

)β
− 1−

(
R−

R+

)β)

+
M(θ) +RN(θ)

(R+)2gM

(
1− 1− cκ+1

1− c2κ
( r

R+

)κ−1
− 1− cκ−1

1− c2κ

(
R−

r

)κ+1
)
,

(3.12b)

τrθ(r, θ) =
Q(θ)

rgN

(( r

R+

)β
+

(
R−

r

)β
− 1−

(
R−

R+

)β)
, (3.12c)

where:

gM =
1− c2

2
− κ

κ+ 1

(1− cκ+1)2

1− c2κ
+

κc2

κ− 1

(1− cκ−1)2

1− c2κ
, c =

R+

R−
, (3.13a)

gN =
2

β

(
1−

(
R−

R+

)β)
+

(
1 +

(
R−

R+

)β)
log

R−

R+
. (3.13b)

3.2 Approximations of the regularized mod-

els

The previously presented regularized models are very difficult to extend
to the non-regularized cases. The author has developed an approximated
model of the regularized problem [94] which provides the basis for the fol-
lowing non-regularized models.

In the literature, the most used approximation of the regularized model
was given by Kedward et al. [1], who estimate with the following expression
the maximum radial stress in a section loaded mainly by a bending moment
per unit of width, M :

maxσr(r) '
3M

2t
√
R+R−

. (3.14)

This approximation is widely used, even in composite laminates, e.g., in
the four point bending test ASTM procedure [3], where it is indicated that
the approximation is accurate only in the cases with κ2p < 20.

Other examples of approximations of the regularized models were devel-
oped by Qatu [27] and Kress et al. [28], as beam models or extensions of
the Classical Laminate Theory. The model developed by the author [94]
is based also on a beam model, by considering a layerwise model. In [94]
two kinds of models are developed, one for thin laminates (t� R) and one
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for thick laminates (t ∼ R). The thin laminates model let us to obtain
the following approximation of the maximum radial stress in the case of a
homogeneous material:

maxσr(r) '
12M

t3
(R−

√
R+R−). (3.15)

Equations (3.15) and (3.14) give similar results for thin laminates. Notwith-
standing, differences are lower than 3% for R/t < 1.5.

Respect to the thick beam model, it is developed in the present section
with a matrix notation, which is easier to implement numerically and con-
stitutes the first order model of the non-regularized models developed in the
following sections.

The problem exposed in [94] consists in an isolated 2D curved composite
beam (see Fig. 3.2) under end axial and shear forces per unit of width, N0 =
N(0) and Q0 = Q(0), and an end moment per unit of width, M0 = M(0).
The beam is also under non-uniform external pressure per unit of width,
σ+(θ) and σ−(θ), and shear distributed loads per unit of width, τ+(θ) and
τ−(θ), in the outer and inner radius, R+ and R−. The consideration of these
distributed loads is an improvement respect to the Lekhnitskii’s equations
and Ko and Jackson’s equations, which do not include them.

Figure 3.2: Loads considered in the approximation of the regularized models
of a curved beam.

A circumferential coordinate, θ, and a radial coordinate, r, are consid-
ered as shown in Fig. 3.1. The curved beam has a mean radius R and a
thickness t.

The axial and shear forces and the bending moment are defined from the
circumferential and shear stresses, σθ and τrθ, by equations (3.1).
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Mean line distributed loads are calculated from the distributed outer and
inner radius boundary conditions as follows:

q(θ) =
1

R

(
R+τ+(θ)−R−τ−(θ)

)
, (3.16a)

p(θ) =
1

R

(
R+σ+(θ)−R−σ−(θ)

)
, (3.16b)

m(θ) =
t

2R

(
R+τ+(θ) +R−τ−(θ)

)
, (3.16c)

where q(θ) is the mean line shear distributed load, p(θ) is the mean line radial
distributed load and m(θ) is the mean line distributed bending moment.

In this way the equilibrium equations of the forces and the bending
moment are given by:

dN(θ)

dθ
+Q(θ) +Rq(θ) = 0, (3.17a)

dM(θ)

dθ
+R

dN(θ)

dθ
+Rm(θ) +R2q(θ) = 0, (3.17b)

dQ(θ)

dθ
+Rp(θ) = N(θ). (3.17c)

Forces N(θ), Q(θ) and M(θ) are obtained directly from these equations.
The forces vector, MT (θ), is defined as follows:

MT (θ) =

[
N(θ)
M(θ)

]
. (3.18)

The model developed in [94] considered the Timoshenko hypothesis ap-
plied over each lamina, and the conclusion obtained was that this hypothesis
is applied then over the whole section, so the displacements are approached
by:

uθ(θ, r) = uo(θ) + (r −R)u1(θ), ur(θ, r) = w1(θ), (3.19)

where uθ(θ, r) is the circumferential displacement and ur(θ, r) the radial one.
The elasticity strain equation for the circumferential strain in polar co-

ordinates is given by:

εθ(θ, r) =
1

r

∂uθ(θ, r)

∂r
+
ur(θ, r)

r
. (3.20)

Substituting (3.19) in (3.20), the circumferential strain yield:

εθ(θ, r) =
R

r
eN(θ) +

R

r
(r −R)eM(θ), (3.21a)
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eN(θ) =
1

R

duo(θ)

dθ
+
w1(θ)

R
, eM(θ) =

1

R

du1(θ)

dθ
, (3.21b)

where eN(θ) and eM(θ) are the Classical Beam Theory (CBT) axial and
bending strains.

The strains vector, eT (θ), is defined as follows:

eT (θ) =

[
eN(θ)
eM(θ)

]
. (3.22)

Therefore, equation (3.21a) can be expressed in matrix notation as fol-
lows:

εθ(θ, z) = T T (r)eT (θ), T T (r) =
[
R
r

R
r
(r −R)

]
. (3.23)

Neglecting the radial strain (due to the hypothesis of the constant value
of the radial displacement) the relation between the circumferential stress
and the strains in a ply p, according to (3.5), depends on the stiffness of the
ply, Cp

θθ, as follows:

σpθ(θ, z) = Cp
θθεθ(θ, z) = Cp

θθT
T (r)eT (θ) = (Spθ (r))TeT (θ). (3.24)

Plies are enumerated beginning with p = 1 in the ply situated in the
lower radius up to p = Np located in the outer radius.

Couplings between shear and axial stresses and strains are not given,
since the material is considered to be orthotropic in the θ-r axes. Therefore,
the relation between the circumferential stress and the strain vector is given
by Spθ (r), defined according to (3.24) as follows:

Spθ (r) = Cp
θθT (r) =

R

r
Cp
θθ

[
1

r −R

]
. (3.25)

Integrating the circumferential stress in order to obtain the forces vector,
next expression is obtained:

MT (θ) =

∫ R+

R−

[
1

r −R

]
σpθ(r, θ)dr

=

∫ R+

R−

[
1

r −R

]
(Spθ (r))TeT (θ)dr = K̂σeT (θ), (3.26)

where the equivalent homogeneous material stiffness matrix is given by:

K̂σ =

[
A′ B′

B′ D′

]
, (3.27)
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with:

A′ =

Np∑
p=1

(
Cp
θθR log

(
R+
p

R−p

))
, (3.28a)

B′ =

Np∑
p=1

(
Cp
θθR

(
R+
p −R−p −R log

(
R+
p

R−p

)))
, (3.28b)

D′ =

Np∑
p=1

(
Cp
θθR

(
R2 log

(
R+
p

R−p

)
+
R+
p −R−p

2
(R+

p +R−p − 4R)

))
, (3.28c)

where R+
p and R−p are the values of r at the outer and inner radius respec-

tively for the ply p and Np is the number of plies. Notice that R+
p = R−p+1.

The curvature radius causes a coupling effect between the axial and bending
parameters (B′ 6= 0) even when a symmetric laminate is given.

Substituting (3.26) in (3.24), the circumferential stress can be calculated
from the axial force and the bending moment as follows:

σpθ(θ, r) = (Spθ (r))TK̂σ
−1
MT (θ). (3.29)

Once the circumferential stress has been obtained, the other stresses can
be calculated by equilibrium. The equilibrium equations of the elasticity in
polar coordinates are given by:

∂σθ
∂θ

+
1

r

∂(r2τrθ)

∂r
= 0, (3.30a)

∂(rσr)

∂r
+
∂τrθ
∂θ

= σθ. (3.30b)

Thus, substituting (3.29) in (3.30) and integrating, the shear and radial
stresses are given by:

τ prθ(θ, r) = τ prθ(R
−
p , θ)

(
R−p
r

)2

− (Sprθ(r))
TK̂σ

−1dMT (θ)

dθ
, (3.31a)

σpr (θ, r) = σpr (R
−
p , θ)

R−p
r

+
dτ prθ(R

−
p , θ)

dθ

R−p
r

(
R−p
r
− 1

)
+ (Spr,1(r))TK̂σ

−1
MT (θ) + (Spr,2(r))TK̂σ

−1d2MT (θ)

dθ2
, (3.31b)
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where:

Sprθ(r) =
1

r2

∫ r

R−
p

r′Spθ (r′)dr′ =
Cp
θθR

r2

[
r −R−p

r−R−
p

2
(r +R−p − 2R)

]
, (3.32a)

Spr,1(r) =
1

r

∫ r

R−
p

Spθ (r′)dr′ =
Cp
θθR

r

[
log r

R−
p

r −R−p −R log r
R−

p

]
, (3.32b)

Spr,2(r) =
1

r

∫ r

R−
p

Sprθ(r
′)dr′

=
Cp
θθR

r

 log r
R−

p
+

R−
p

r
− 1

r
2
−R−p −

(
R− R−

p

2

)
R−

p

r
+R

(
1− log r

R−
p

) , (3.32c)

where Sprθ(r) relates the shear stress with the derivative of the strains vector,
Spr,1(r) relates the radial stress with the strain vector and Spr,2(r) relates the
radial stress with the second derivative of the strain vector.

The boundary conditions for τ prθ(R
−
p , θ) and σpr (R

−
p , θ) are obtained from

the previous lamina p−1 so that τ prθ(R
−
p , θ) = τ p−1rθ (R+

p−1, θ) and σpr (R
−
p , θ) =

σp−1r (R+
p−1, θ), beginning with a boundary condition for the first ply p = 1

of σ1
r(R

−, θ) = σ−(θ) and τ 1rθ(R
−, θ) = τ−(θ). The boundary conditions of

σ
Np
r (R+, θ) = σ+(θ) and τ

Np

rθ (R+, θ) = τ+(θ) are automatically satisfied.
In conclusion, the equations of the method may be easily solved to cal-

culate the stresses in two simple steps. The first step consists in the cal-
culation of the axial force and the bending moment from equations (3.17).
For example, in the case of constant distributed loads (q(θ) = q0, p(θ) = p0,
m(θ) = m0) the forces and the bending moment yield:

N(θ) = (N0 −Rp0) cos θ − (Q0 +Rq0) sin θ +Rp0, (3.33a)

Q(θ) = (Q0 +Rq0) cos θ + (N0 −Rp0) sin θ −Rq0, (3.33b)

M(θ) = M0 +R(N0 −N(θ))−R(m0 +Rq0)θ. (3.33c)

Once forces and moment have been obtained, the second step is to cal-
culate stresses. Circumferential stress is directly obtained from equation
(3.29). Shear stress is calculated recursively from (3.31a), beginning with
a boundary condition of τrθ(R

−, θ) = τ−(θ). Deriving equation (3.31a)
respect to θ, dτrθ(r, θ)/dθ is obtained recursively too, beginning with a
boundary condition of dτrθ(R

−, θ)/dθ = dτ−(θ)/dθ. Finally, the radial stress
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is obtained recursively from (3.31b) beginning with a boundary condition
σr(R

−, θ) = σ−(θ).
In the resolution procedure it is necessary to define three important

matrices and vectors:

• MT (θ) vector, containing the axial force and the bending moment.

• Stiffness matrix K̂σ, relating the axial force and the bending moment
with the mean section strains.

• Sp(r) vectors, relating the stresses with the mean section strains and
their derivatives. They are calculated from the stress-strain relations
and the T (r) vector, which relates the strain with the mean section
strains.

If the matrix equations are developed in conventional form by multiply-
ing the matrices, equations of the model given by [94] are obtained, as the
same hypotheses have been considered. Therefore, results of the present
model are the same than those presented in the aforementioned reference.
Some comparisons with the Lekhnitskii’s equations, the Ko and Jackson’s
equations and FE results can be found in [103].

3.3 Theoretical basis of the non-regularized

models

The non-regularized models developed in the present project are based
on a series expansion of the displacements. Several authors have tried to
model several kinds of structural problems based also in series expansions.
Carrera et al. [34] presented a compilation of several methods based on series
expansions in the displacements applied to vibration analysis. Several kinds
of those models are commented in Chapter 1.

Among the models based on monomials, the one developed by Mat-
sunaga [37] is of special interest in the present work. Matsunaga considers,
for flat laminates, a series expansion with monomial functions in the in-plane
displacements, including n + 1 terms in these displacements, and another
series expansion with monomial functions in the out-of-plane displacement,
including n terms in this displacement. The approximation by using one or-
der less in the out-of-plane displacement than in the in-plane ones is typical
also in the first order models, such as the Timoshenko beam theory [35,36] or
the CLT [15]. Later, Matsunaga applied his model to curved laminates [38]
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by using also a series expansion with monomial functions in the two dis-
placements.

Matsunaga’s model uses a series expansion based on monomial functions
in the displacements in the next way:

us(s, z) = uo(s) + zu1(s) +
∞∑
i=2

ziun(s), (3.34a)

uz(s, z) = w1(s) +
∞∑
i=2

zi−1wn(s), (3.34b)

where a curvilinear coordinate system (s, z) is used (see Fig. 3.3), defined
by the axial coordinate s and the through-thickness coordinate z. This
curvilinear coordinate system is related with the previously defined polar
coordinate system (θ, r) by the relations s = Rθ and z = r −R.

Figure 3.3: Definition of the curvilinear coordinate system.

Approximating the displacements by a n-order model instead of the in-
finite summation:

us(s, z) = uo(s) + zu1(s) +
n∑
i=2

ziui(s), (3.35a)

uz(s, z) = w1(s) +
n∑
i=2

zi−1wi(s). (3.35b)

Notice that the through-thickness displacement, uz(s, z), is approxi-
mated with one order less than the axial displacement, us(s, z).

The present model is based on a similar series expansion but by using dif-
ferent functions in the series expansion in the different displacements, which
allows an easier and a more efficient numerical resolution of the problem to
be performed. Furthermore, Matsunaga used a secondary series expansion
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in the parameters that has been suppressed in the present model. In this
way, axial displacement is expanded by using functions f si (z), and though-
thickness displacements are expanded by using different functions f zi (z), so
they yield:

us(s, z) = uo(s) + zu1(s) +
n∑
i=2

f si (z)ui(s), (3.36a)

uz(s, z) = w1(s) +
n∑
i=2

f zi (z)wi(s). (3.36b)

Different kinds of non-regularized models can be chosen depending on
the functions used in the series expansion of the axial displacements, f si (z).
The present document develops two kind of models. The first one is based
on monomial functions (f si (z) = zi), and is called monomials based model
(MBM). Due to numerical instabilities in the stiffness matrix of the MBM, a
second model is developed based on Legendre polynomials (f si (z) = pi(2z/t),
where pi(2z/t) is the i-th Legendre polynomial), and is called Legendre
polynomials based model (LPBM).

The functions used for the through-thickness displacement, f zi (z), are
determined by the shear strains. In the CBT, which constitutes the first
order model, axial strain depends on two CBT 1D strain components given
in (3.21b), shear strain depends only on one CBT 1D strain component and
the through-thickness strain is neglected. If a n-th order model is chosen it
is desirable to increment in n− 1 components each strain, so that the axial
strain is defined by n+1 components, the through-thickness strain is defined
by n − 1 components and the shear strain is defined by n components. In
that way, the condition to determine the functions for the series expansion
in the through-thickness displacement is that shear strain depends only on
n components.

The aim of developing these non-regularized models is to estimate the
perturbation introduced by a change of curvature, so that a more accurate
stresses distribution may be obtained in this kind of geometries. The geome-
tries considered consist in a section of a curved composite laminate, treated
as a chain of constant curvature beams. Each beam may be composed by
different materials or different stacking sequences, but all beams must have
the same thickness, which is constant along the axial coordinate. In that
way, some examples of geometries in which the model can be applied are sec-
tions of L-shaped components, Ω-shaped components, joggles or corrugated
laminates (see Fig. 3.4).

Notice that typically the sections end in a long enough straight part
in which stresses tend to their regularized values. Therefore, they can be
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Figure 3.4: Examples of geometries where the non-regularized models can
be applied. Global coordinate system definition.

considered semi-infinite. Another kind of boundary conditions can be chosen
at the ends of the chain, e.g., an embedded end.

A global coordinate system (sG,zG) is considered in the whole section as
shown in Fig. 3.4. The axial coordinate sG is a curvilinear coordinate along
the mean line of the section. The origin is located in the first joint of the
chain in the case of a semi-infinite end beam, and it is oriented towards the
following joint. The through-thickness coordinate zG has its origin in the
mean line and the orientation of it can be chosen by the user.

The section can be decomposed in several constant-curvature beams, and
a local coordinate system (sk,zk) is considered for each component k (see
Fig. 3.5), where sk has the same sense than sG but with its origin in the joint
with the previous beam, and zk coincides with the global through-thickness
coordinate zG. Therefore, three kinds of components can be considered:

• Straight beams (Beams 1, 3 and 5 in Fig. 3.5).

• Clockwise curved beams, which have a local through-thickness coor-
dinate zk defined in the same sense than the radial coordinate (Beam
2 in Fig. 3.5).

• Counter-clockwise curved beams, which have a local through-thickness
coordinate zk defined positive towards the center of curvature (Beam
4 in Fig. 3.5).

The problem is solved by considering each component isolated and con-
sidering arbitrary stresses boundary conditions applied at both ends of the
components (or applied at the only one end for the case of the semi-infinite
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Figure 3.5: Decomposition of the section in several constant-curvature
beams.

end components). Displacements and stresses are obtained in the compo-
nent depending on the arbitrary boundary conditions. Finally, the arbitrary
boundary conditions are calculated by imposing continuity of the displace-
ments and the stresses at both sides of every joint of the chain of beams.

3.4 Monomials based model (MBM)

The first model developed in this Thesis can be obtained by choosing
the monomials functions as f si (z) functions, similarly to what is done in the
Matsunaga models [37,38]. The difference with these models is given in the
definition of the f zi (s) functions, which are not necessarily monomials.

Therefore, the MBM is based on an approximation of the displacements
as follows:

us(s, z) = uo(s) + zu1(s) +
n∑
i=2

ziui(s), (3.37a)

uz(s, z) = w1(s) +
n∑
i=2

f zi (z)wi(s). (3.37b)

However, as will be seen later, for a better numerical resolution it is rec-
ommendable to use non-dimensional parameters, at least non-dimensional
displacements and lengths and optionally non-dimensional stresses and pres-
sures. Numerical errors are minimized when displacements and lengths are
adimensionalized with the half of the thickness. Non-dimensional parame-
ters are marked with an upper bar in the magnitude, so if u is a generic
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displacement/length and σ is a generic stress/pressure, the non-dimensional
parameters ū and σ̄ respectively are defined as:

ū =
2u

t
, σ̄ =

σ

Eref

, (3.38)

where t is the thickness and Eref is a reference stiffness, e.g., the stiffness in
the fibre direction.

Hence, the series expansion using non-dimensional parameters can be
developed alternatively to 3.37 as follows:

ūs(s̄, z̄) = ūo(s̄) + z̄ū1(s̄) +
n∑
i=2

z̄iūi(s̄), (3.39a)

ūz(s̄, z̄) = w̄1(s̄) +
n∑
i=2

f̄ zi (z̄)w̄i(s̄). (3.39b)

For the sake of simplicity, the bar indicating the non-dimensional mag-
nitudes is obviated in the present section while all the magnitudes used are
non-dimensional unless it is said otherwise. Nevertheless, the model can
be implemented also with the dimensional magnitudes, obtaining a worse
numerical behaviour.

The model is developed for the isolated beam under arbitrary boundary
conditions, and in the next sections the joint to other beams will be analysed.
The model is developed first for the case of straight beams, and after that
it is developed for curved beams, jointly for both clockwise and counter-
clockwise curved beams.

This model has been published by the author in [95] considering only end
loads applied. However, the model developed here considers also distributed
loads in the transverse boundaries.

3.4.1 Development of the MBM for straight beams

A straight beam with thickness t (considered non-dimensional with value
t = 2) and length Lk is studied (see Figure 3.6). A local non-dimensional
coordinate system sk and zk is used as defined in Figure 3.5.

The beam is loaded under distributed transverse and shear loads in the
positive boundary of zk, σ

+(sk) and τ+(sk), and under distributed transverse
and shear loads in the negative boundary of zk, σ

−(sk) and τ−(sk). Arbitrary
stresses boundary conditions are applied in sk = 0, given by σ0

s(zk) and
τ 0s (zk), and in sk = Lk, given by σLs (zk) and τLs (zk).

For the sake of simplicity, the index k indicating the component is sup-
pressed in the following.
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Figure 3.6: Straight beam.

Displacements

The longitudinal and through-thickness displacements approximation of
the straight beam is given by equations (3.39), where the axial displacements
have been approximated by a series expansion by using monomial functions.
The functions f zi (z) used for the through-thickness displacements have to
be determined.

The series expansion can be expressed in matrix notation by the defini-
tion of the following vectors of length n− 1:

uT (s) =
[
u2(s) u3(s) ... un(s)

]
, (3.40a)

wT (s) =
[
w2(s) w3(s) ... wn(s)

]
, (3.40b)

fs
T (z) =

[
z2 z3 ... zn

]
, (3.40c)

fz
T (z) =

[
f z2 (z) f z3 (z) ... f zn(z)

]
. (3.40d)

Therefore, equation (3.39) can be expressed as follows:

us(s, z) = uo(s) + zu1(s) + fs
T (z)u(s), (3.41a)

uz(s, z) = w1(s) + fz
T (z)w(s). (3.41b)

Strains

Strains equations in the local Cartesian coordinate system yield:

εs(s, z) =
∂us(s, z)

∂s
, εz(s, z) =

∂uz(s, z)

∂z
, (3.42a)

γsz(s, z) =
∂us(s, z)

∂z
+
∂uz(s, z)

∂s
. (3.42b)
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First, functions f zi (z) may be determined by the aforementioned condi-
tion which imposes that the shear strain depends only on n 1D components.
Substituting (3.41) in (3.42b) shear strain yields:

γsz(s, z) = u1(s) +
dfs

T (z)

dz
u(s) +

∂w1(s)

∂s
+ fz

T (z)
∂w(s)

∂s
. (3.43)

The derivative of functions fs(z) can be expressed as follows:

dfs(z)

dz
= Hγ f̂s(z), (3.44)

where f̂s(z) is a vector similar to fs(z) but with all components being a
monomial one order lower:

f̂s
T

(z) =
[
z z2 ... zn−1

]
, (3.45)

and matrix Hγ is a diagonal matrix defined by its components Hγ
ij, with

i, j = 2, 3, ..., n:

Hγ
ij = iδij, (3.46)

where δij denotes the Kronecker delta, equal to 1 when i = j and to 0
otherwise.

Hence, choosing fz
T (z) = f̂s

T
(z), the shear strain can be expressed de-

pending only on n 1D components. Accordingly, the series expansion in
the through-thickness displacement is done also by using monomial func-
tions, and the approximation of the displacements employed in the straight
beam case remains the same than in the Matsunaga model for this kind of
beams [37].

Therefore, strains may be expressed as follows:

εs(s, z) = eN(s) + zeM(s) + fs
T (z)es(s), (3.47a)

γsz(s, z) = eQ(s) + f̂s
T

(z)eγ(s), (3.47b)

εz(s, z) = ˆ̂fs
T

(z)ez(s), (3.47c)

where eN(s), eM(s) and eQ(s) are the CBT 1D strain components, and es(s),
eγ(s) and ez(s) are the higher-order 1D strain components, which yield:
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eN(s) =
du0(s)

ds
, (3.48a)

eM(s) =
du1(s)

ds
, (3.48b)

eQ(s) = u1(s) +
dw1(s)

ds
, (3.48c)

es(s) =
du(s)

ds
, (3.48d)

eγ(s) =
dw(s)

ds
+Hγ

Tu(s), (3.48e)

ez(s) = Hz
Tw(s), (3.48f)

where ˆ̂fs(z) is a vector similar to f̂s(z) but with all components being a
monomial one order lower, and matrix Hz is a diagonal matrix defined by
its components Hz

ij, with i, j = 2, 3, ..., n:

ˆ̂fs
T

(z) =
[
1 z ... zn−2

]
, (3.49a)

Hz
ij = (i− 1) δij. (3.49b)

Matrix Hz has been obtained from the derivative of f̂s(z) as follows:

df̂s(z)

dz
= Hz

ˆ̂fs(z). (3.50)

Equilibrium

The 2D equilibrium equations expressed in the local Cartesian coordinate
system yield:

∂σs(s, z)

∂s
+
∂τsz(s, z)

∂z
= 0, (3.51a)

∂σz(s, z)

∂z
+
∂τsz(s, z)

∂s
= 0. (3.51b)

In the CBT, axial stress is approximated from the axial force N(s) and
the bending moment M(s), shear stress is approximated from the shear force
Q(s) and the through-thickness stress is neglected. The higher-order model
extends the approximation of the stresses by including n − 1 additional
terms in each stress, similarly to what has been done in the strains side.
CBT forces and moment and higher-order moments expressed directly in
matrix notation are defined by:
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N(s) =

∫ t/2

−t/2
σs(s, z) dz , M(s) =

∫ t/2

−t/2
σs(s, z) z dz , (3.52a)

Q(s) =

∫ t/2

−t/2
τsz(s, z) dz , (3.52b)

Ms(s) =

∫ t/2

−t/2
σs(s, z)fs(z) dz , (3.52c)

Mτ (s) =

∫ t/2

−t/2
τsz(s, z)fτ (z) dz , (3.52d)

Mz(s) =

∫ t/2

−t/2
σz(s, z)fσ(z) dz . (3.52e)

Notice that the axial higher-order moments have been defined by using
the monomial functions included in fs(z), but the shear and the transverse
higher-order moments are defined by using different functions, included in
vectors fτ (z) and fσ(z), respectively, that have to be determined.

Equilibrium equations of the CBT forces can be obtained by integrating
in the thickness both 2D equilibrium equations (3.51) and considering the
boundary conditions in z = ±t/2:

dN(s)

ds
+ τ+(s)− τ−(s) = 0, (3.53a)

dQ(s)

ds
+ σ+(s)− σ−(s) = 0. (3.53b)

The CBT bending moment equilibrium equation can be obtained by
integrating in the thickness equation (3.51a), multiplied by z:

dMs(s)

ds
+
t

2

(
τ+(s) + τ−(s)

)
= Q(s). (3.54)

The CBT forces, N(s) and Q(s), and moment, M(s), are obtained di-
rectly by integrating equations (3.53) and (3.54) and introducing the bound-
ary conditions given by:

N(0) = N0 =

∫ t/2

−t/2
σ0
s(z) dz, M(0) = M0 =

∫ t/2

−t/2
σ0
s(z) z dz, (3.55a)

Q(0) = Q0 =

∫ t/2

−t/2
τ 0sz(z) dz. (3.55b)
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Boundary conditions of these CBT forces and moment in s = L are in
equilibrium with the boundary conditions in s = 0 and, therefore, they are
automatically accomplished with equations (3.53) and (3.54) if boundary
condition in s = 0 are given.

The higher-order moments equilibrium equation in the axial direction is
obtained by integrating equation (3.51a) multiplied by fs(z):

dMs(s)

ds
+ fs

(
t

2

)
τ+(s)− fs

(
− t

2

)
τ−(s)

=

∫ t/2

−t/2

dfs(z)

dz
τsz(s, z)dz. (3.56)

Considering equation (3.44) and defining fτ (z) as the same functions
used in the series expansion of the shear strain (3.47b), fτ (z) = fz(z) =
f̂s(z), equation (3.56) yields:

dMs(s)

ds
+ fs

(
t

2

)
τ+(s)− fs

(
− t

2

)
τ−(s) = HγMτ (s). (3.57)

Similarly, the higher-order moments equilibrium equation in the trans-
verse direction is obtained by integrating in the thickness equation (3.51b)
multiplied by f̂s(z):

dMτ (s)

ds
+ f̂s

(
t

2

)
σ+(s)− f̂s

(
− t

2

)
σ−(s)

=

∫ t/2

−t/2

df̂s(z)

dz
σz(s, z)dz. (3.58)

Considering equation (3.50) and defining fσ(z) as the same functions
used in the series expansion of the through-thickness strain (3.47c), fσ(z) =
ˆ̂fs(z), equation (3.58) yields:

dMτ (s)

ds
+ f̂s

(
t

2

)
σ+(s)− f̂s

(
− t

2

)
σ−(s) = HzMz(s). (3.59)

Therefore, higher-order moments equilibrium is given by equations (3.57)
and (3.59), which cannot be directly solved as in the case of the CBT forces
and moment. The boundary conditions at both ends for these higher or-
der moments may be obtained from the arbitrary boundary conditions, by
integrating them according to the higher-order moments definition given in
(3.52).
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Constitutive law

The laminate is constituted by Np plies. The 2D constitutive law of a ply
p, with z varying from z−p to z+p , can be expressed depending on the stiffness
constants of the ply in the local coordinate system, Qp

ij, with i, j = 1, 3, 5.
The material is considered orthotropic in the local coordinate system, and
then Qp

15 = Qp
35 = 0.

σps(s, z) = Qp
11 εs(s, z) +Qp

13 εz(s, z), (3.60a)

σpz(s, z) = Qp
13 εs(s, z) +Qp

33 εz(s, z), (3.60b)

τ psz(s, z) = Qp
55 γsz(s, z). (3.60c)

The stiffness constants Qp
ij have to be calculated from the ply properties,

considering the orientation of the ply and the bi-dimensional approximation.
This 2D approximation is typically done by considering plane stress or plane
strain in the ply, see 2.4.

Using the bi-dimensional constitutive law given in (3.60), the strains
approximations given in (3.47) and the forces and moments definition given
in (3.52), constitutive equations yield:

N(s)
M(s)
Ms(s)
Mz(s)

 = K̂σ


eN(s)
eM(s)
es(s)
ez(s)

 , (3.61a)

[
Q(s)
Mτ (s)

]
= K̂τ

[
eQ(s)
eγ(s)

]
, (3.61b)

where K̂σ and K̂τ are respectively the normal and shear stiffness matrices
of the model. The components of the stiffness matrices K̂σ and K̂τ are
shown in [95] for the non-dimensional case, and they can be summarized as
follows:

K̂σ =

∫ t
2

− t
2


Qp

11 Qp
11z Qp

11fs
T (z) Qp

13
ˆ̂fs
T

(z)

Qp
11z Qp

11z
2 Qp

11zfs
T (z) Qp

13z
ˆ̂fs
T

(z)

Qp
11fs(z) Qp

11zfs(z) Qp
11fs(z)fs

T (z) Qp
13fs(z) ˆ̂fs

T
(z)

Qp
13

ˆ̂fs(z) Qp
13z

ˆ̂fs(z) Qp
13

ˆ̂fs(z)fs
T (z) Qp

33
ˆ̂fs(z) ˆ̂fs

T
(z)

 dz
(3.62a)

K̂τ =

∫ t
2

− t
2

Qp
55

[
1 f̂s

T
(z)

f̂s(z) f̂s(z)f̂s
T

(z)

]
dz (3.62b)
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The compliance matrices can be defined by inverting the stiffness ma-

trices, Ǩσ = K̂σ
−1

and Ǩτ = K̂τ
−1

, so that decomposing the compliance
matrices in several components as seen in [95], compliance equations yield:


eN(s)
eM(s)
es(s)
ez(s)

 = Ǩσ


N(s)
M(s)
Ms(s)
Mz(s)



=


ǍNN ǍNM ǎNs

T b̌Nz
T

ǍNM ǍMM ǎMs
T b̌Mz

T

ǎNs ǎMs Ǎss B̌sz

b̌Nz b̌Mz B̌sz
T

Ďzz




N(s)
M(s)
Ms(s)
Mz(s)

 , (3.63a)

[
eQ(s)
eγ(s)

]
= Ǩτ

[
Q(s)
Mτ (s)

]
=

[
ČQQ čQτ

T

čQτ Čττ

] [
Q(s)
Mτ (s)

]
. (3.63b)

Solution procedure

The solution procedure is similar to the one developed in [95] but includ-
ing the distributed loads. First, substituting (3.57) in (3.59) the transverse
higher-order moments yield:

Mz(s) = Hz
−1
(
Hγ

−1
(
d2Ms(s)

ds2
+ fs

(
t

2

)
dτ+(s)

ds
− fs

(
− t

2

)
dτ−(s)

ds

)
+f̂s

(
t

2

)
σ+(s)− f̂s

(
− t

2

)
σ−(s)

)
. (3.64)

Introducing (3.63b) into (3.48e) longitudinal higher-order displacements
yield:

Hγ
Tu(s) = ČττMτ (s) + čQτ Q(s)− dw(s)

ds
, (3.65)

Substituting (3.63a) into (3.48d) and (3.48f), using (3.65) to eliminate
the derivative of the longitudinal displacement u(s), using (3.57) to elim-
inate the higher-order shear moments Mτ (s), and using equation (3.53b)
to eliminate the derivative of the shear force Q(s), the following differential
equation may be obtained (see [95] and [96] for more details):



3.4. Monomials based model (MBM) 80

d2x(s)

ds2
= Gx(s) + gNN(s) + gMM(s)

+ gσ+σ+(s) + gσ−σ−(s) + gτ+

dτ+(s)

ds
+ gτ−

dτ−(s)

ds
, (3.66a)

x(s) =

[
Ms(s)
w(s)

]
, (3.66b)

where the auxiliary matrices appearing in the previous equation (G, gN ,
gM ,...) are given in Appendix A.1.

The resolution of the previous equation is divided in two parts: obtain-
ing a particular solution and solving the homogeneous equation. Notice that
the axial force, the bending moment and the distributed loads affect only
to the particular solution, which constitutes the regularized solution of the
problem. This regularized solution coincides with the CLT solution. The
homogeneous equation let us to calculate the perturbations over the regu-
larized values so that the continuity conditions of stresses and displacements
at the joint are satisfied.

Constant distributed loads case

Considering the straight beam under constant distributed loads σ+(s) =
σ+
0 , σ−(s) = σ−0 , τ+(s) = τ+0 and τ−(s) = τ−0 as a particular case, using

equilibrium equations (3.53) and (3.54) and using the boundary conditions
(3.55), the axial force, shear force and bending moment yield:

N(s) = N0 − (τ+0 − τ−0 )s, (3.67a)

Q(s) = Q0 − (σ+
0 − σ−0 )s, (3.67b)

M(s) = M0 +

(
Q0 −

t

2
(τ+0 + τ−0 )

)
s− (σ+

0 − σ−0 )
s2

2
. (3.67c)

Therefore, substituting (3.67) in (3.66a) the particular/regularized solu-
tion yields:

xreg(s) = qN N(s) + qMM(s) + qσ+ σ+
0 + qσ− σ−0 , (3.68)

where auxiliary vectors qN , qM , qσ+ and qσ− are defined by:

qN = −G−1gN , qM = −G−1gM , (3.69a)

qσ+ = G−1(G−1gM − gσ+) , qσ− = −G−1(G−1gM + gσ−) . (3.69b)
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The derivative of xreg(s), substituting (3.53a) and (3.54), yields:

dxreg(s)

ds
= qQQ(s) + qτ+ τ+0 + qτ− τ−0 , (3.70)

where the auxiliary vectors are given by:

qQ = qM , qτ+ = −qN − qM
t

2
, qτ− = qN − qM

t

2
. (3.71)

The resolution of the homogeneous equation is analysed in section 3.7.
If a not constant distributed loads is applied, a similar procedure may

be developed for obtaining the solution of the homogeneous equation.

Stresses calculation

The stresses calculation is developed in detail in [95]. In summary, the
stresses calculation in the MBM is similar than the calculation in the model
of order 1 developed in section 3.2. Once the vector x(s), given in (3.66b),
has been calculated, the axial higher order moments Ms(s) are directly
obtained as the first n−1 components of x(s). Shear higher-order moments
and transverse higher-order moments may be obtained from the equilibrium
equations (3.57) and (3.59), respectively. Strains may be obtained by using
the compliance equations (3.63). Once strains are obtained, stresses can be
calculated in each ply by using the 2D constitutive equations (3.60).

Notwithstanding, only axial stress calculated with the aforementioned
procedure results accurate. Therefore, similarly than in the CBT, the other
two stresses (the shear stress and the transverse stress) are obtained from
the axial stress by using the equilibrium equations (3.51).

In that way, stresses can be written as:

σpθ(s, z) = Sps (z)TǨσMT (s), (3.72a)

τ psz(s, z) = τ psz(s, z
−
p )− Spsz(z)TǨσ

dMT (s)

ds
, (3.72b)

σpz(s, z) = σpz(s, z
−
p )−

dτ psz(s, z
−
p )

ds

(
z − z−p

)
+Spz,2(z)TǨσ

d2MT (s)

ds2
, (3.72c)

where MT (s) is a vector containing the axial and transverse moments:

MT (s) =


N(s)
M(s)
Ms(s)
Mz(s)

 , (3.73)
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and the shape vectors Sps (z) (defined by its components
(
Sps
)
i
(z) for i =

0, 1, ..., 2n− 1), Spsz(z) and Spz,2(z) are given by:(
Sps
)
i
(z) = Qp

11z
i, i = 0, 1, ..., n, (3.74a)(

Sps
)
i+n−1 (z) = Qp

13z
i−2, i = 2, 3, ..., n, (3.74b)

Spsz(z) =

∫ z

z−p

Sps (z′)dz′, (3.74c)

Spz,2(z) =

∫ z

z−p

Spsz(z
′)dz′. (3.74d)

Notice that the shear stress and the transverse stress are obtained by in-
tegration of the equilibrium equations, which implies that boundary condi-
tions for these stresses are required. In the case of the shear stress, τ psz(s, z

−
p )

is required at the bottom of each ply p, which is obtained by the correspond-
ing value at the top of the previous ply τ psz(s, z

−
p ) = τ p−1sz (s, z+p−1), beginning

with a boundary condition for the first ply of τ 1sz(s,−t/2) = τ−(s). The

boundary condition τ
Np
sz (s, t/2) = τ+(s) is automatically accomplished.

The same case is given in the transverse stress, where the boundary con-
dition is obtained from the previous ply σpz(s, z

−
p ) = σp−1z (s, z+p−1) beginning

with a boundary condition σ1
z(s,−t/2) = σ−(s). The boundary condition

σ
Np
z (s, t/2) = σ+(s) is automatically accomplished.

3.4.2 Development of the MBM for curved beams

A curved beam with thickness t (considered non-dimensional with value
t = 2) and length Lk = RkΘk (where Rk is the mean radius and Θk is
the angular length of the beam) is studied (see Figure 3.7). A local non-
dimensional coordinate system sk and zk is used, similarly to that used for
the straight beam. Notice that the only difference between the clockwise
and the counter-clockwise curved beam lies in the direction of the zk axis.

The beam is loaded under distributed transverse and shear loads in the
positive boundary of zk, σ

+(sk) and τ+(sk), and under distributed transverse
and shear loads in the negative boundary of zk, σ

−(sk) and τ−(sk). Arbitrary
stresses boundary conditions are applied in sk = 0, given by σ0

s(zk) and
τ 0s (zk), and in sk = Lk, given by σLs (zk) and τLs (zk). These stresses must be
in equilibrium.

For the sake of simplicity, the index k indicating the component is sup-
pressed in this section.
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(a)

(b)

Figure 3.7: (a) Clockwise curved beam. (b) Counter-clockwise curved beam.

Displacements

The displacements approximation for this case is analogous to that made
in the straight beam:

us(s, z) = uo(s) + zu1(s) + fs
T (z)u(s), (3.75a)

uz(s, z) = w1(s) + fz
T (z)w(s), (3.75b)

where vector fs(z) contains the monomials with orders from 2 to n as given
in (3.40c). Vector fz(z) has to be obtained from the shear strain similarly
as done in the straight beam model. The calculation of this vector can be
found in [95], and its components f zi (z), with i = 2, 3, ..., n, are given by:

f zi (z) = zi−1 ± i− 1

iR
zi, i = 2, 3, ..., n. (3.76)

When a symbol ± or ∓ is used in the present section, the upper symbol
is used for the clockwise beam, and the lower symbol is used for the counter-
clockwise beam.
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Notice that the derivative of vector fz(z) yields:

dfz(z)

dz
=
R± z
R

Hz
ˆ̂fs(z), (3.77)

where matrix Hz and vector ˆ̂fs(z) are the same than in the straight beam,
given by equations (3.49).

Furthermore, according to (3.76), vector fz(z) can be expressed depend-
ing on vector fs(z) as follows:

fz(z) = ±R (Hsfs(z) + hMz) , (3.78)

where matrix Hs is defined by its components Hs
ij, with i, j = 2, 3, ..., n,

and vector hM is defined by its components hMi , with i = 2, 3, ..., n:

Hs
ij =

(i− 1) δij
i R2

±
δ(i−1)j
R

, hMi = ± δi2
R
. (3.79)

Strains

Strains definitions in the local polar coordinate system are given by:

εs(s, z) =
R

R ± z

(
∂us(s, z)

∂s
± uz(s, z)

R

)
, (3.80a)

γsz(s, z) =
R

R ± z

(
R ± z

R

∂us(s, z)

∂z
∓ us(s, z)

R
+
∂uz(s, z)

∂s

)
, (3.80b)

εz(s, z) =
∂uz(s, z)

∂z
. (3.80c)

Substituting (3.75) in (3.80) and considering (3.77) and (3.78), strains
can be written as:

εs(s, z) =
R

R ± z

[
eN(s) + zeM(s) + fs

T (z)es(s)
]
, (3.81a)

γsz(s, z) =
R

R ± z

[
eQ(s) + fz

T (z)eγ(s)
]
, (3.81b)

εz(s, z) =
R ± z

R

[
ˆ̂fs
T

(z)ez(s)
]
, (3.81c)

where eN(s), eM(s) and eQ(s) are the CBT 1D strain components, and
es(s), eγ(s) and ez(s) are the higher-order 1D strain components, which
are defined as:
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eN(s) =
du0(s)

ds
± w1(s)

R
, (3.82a)

eM(s) =
du1(s)

ds
+ hM

Tw(s), (3.82b)

eQ(s) = u1(s) ∓
u0(s)

R
+
dw1(s)

ds
, (3.82c)

es(s) =
du(s)

ds
+Hs

Tw(s), (3.82d)

eγ(s) =
dw(s)

ds
+Hγ

Tu(s), (3.82e)

ez(s) = Hz
Tw(s). (3.82f)

Equilibrium

As in the straight beam case, the distributed loads appear only in the
equilibrium equations, being the main difference with respect to the model
developed in [95].

The 2D equilibrium equations expressed in the local polar coordinate
system yield:

R
∂σs(s, z)

∂s
+

1

R ± z

∂

∂z

[
(R ± z)2τsz(s, z)

]
= 0, (3.83a)

∂

∂z
[(R ± z)σz(s, z)] +R

∂τsz(s, z)

∂s
= ±σs(s, z), (3.83b)

The CBT forces and moment and the higher-order moments are defined,
as in the straight beam, by equations (3.52). It is demonstrated in [95] that
functions fτ (z) and fσ(z) yield for the present case:

fτ (z) = fz(z), fσ(z) =

(
R ± z

R

)2
ˆ̂fs(z). (3.84)

In that way, integrating the equilibrium equations (3.83) and also the
first one of them multiplied by z, the CBT forces and moment equilibrium
equations yield:

R
dN(s)

ds
± Q(s) +R+τ+(s)−R−τ−(s) = 0, (3.85a)

R
dQ(s)

ds
+R+σ+(s)−R−σ−(s) = ±N(s), (3.85b)

dM(s)

ds
+

t

2R

(
R+τ+(s) +R−τ−(s)

)
= Q(s). (3.85c)
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where R+ is the radius in the positive boundary of z and R− is the radius
in the negative boundary of z, given by:

R+ = R± t

2
, R− = R∓ t

2
. (3.86)

The CBT forces, N(s) and Q(s), and moment, M(s), are obtained di-
rectly by integrating equations (3.85) and introducing the boundary condi-
tions given by equations (3.55).

Prescribed values of these CBT forces and moment in s = L must be
in equilibrium with the prescribed values in s = 0 and, therefore, boundary
conditions in s = L are automatically accomplished.

The higher-order moments equilibrium equation in direction s can be
obtained by integrating equation (3.83a) multiplied by fs(z), which yields:

dMs(s)

ds
+
R+

R
fs

(
t

2

)
τ+(s)− R−

R
fs

(
− t

2

)
τ−(s) = HγMτ (s). (3.87)

Finally, the higher-order moments equilibrium equation in direction z
can be obtained by integrating equation (3.83b) multiplied by fz(z) and
using properties (3.77) and (3.78), which yields:

dMτ (s)

ds
+
R+

R
fz

(
t

2

)
σ+(s)− R−

R
fz

(
− t

2

)
σ−(s)

= HzMz(s) +HsMs(s) + hMM(s). (3.88)

Therefore, higher-order moments equilibrium is given by equations (3.87)
and (3.88), which cannot be directly solved as in the case of the CBT forces
and moment. The boundary conditions at both ends for these higher or-
der moments may be obtained from the arbitrary boundary conditions, by
integrating them according to the higher-order moments definition given in
(3.52).

Constitutive law

As in the straight beam case, the 2D constitutive law for an individ-
ual ply is given by equations (3.60). Substituting in these equations the
strains, given by (3.81), and integrating the equations in order to obtain the
forces and moments (including the higher-order one), relations (3.61) are
obtained. However, in this case the components of matrices K̂σ and K̂τ are
influenced by the curvature. Expressions of these matrices can be found in
the Appendices of [95].
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The compliance matrices can be defined by inverting the stiffness ma-

trices, Ǩσ = K̂σ
−1

and Ǩτ = K̂τ
−1

, so that decomposing the compliance
matrices in several components as seen in [95], compliance equations yield
(3.63).

Solution procedure

The solution procedure is analogous to the one developed in [95] but in-
cluding the distributed loads. First, substituting (3.87) in (3.88) the trans-
verse higher-order moments yield:

Mz(s) = Hz
−1
(
R+

R
fz

(
t

2

)
σ+(s)− R−

R
fz

(
− t

2

)
σ−(s)

+Hγ
−1
(
d2Ms(s)

ds2
+
R+

R
fs

(
t

2

)
dτ+(s)

ds
− R−

R
fs

(
− t

2

)
dτ−(s)

ds

)
−HsMs(s)− hMM(s)) . (3.89)

Introducing (3.63b) into (3.82e) longitudinal higher-order displacements
yield:

Hγ
Tu(s) = ČττMτ (s) + čQτ Q(s)− dw(s)

ds
, (3.90)

Substituting (3.63a) into (3.82d) and (3.82f), using (3.90) to eliminate
the derivative of the longitudinal displacement u(s), using (3.87) to elim-
inate the higher-order shear moments Mτ (s), and using equation (3.85b)
to eliminate the derivative of the shear force Q(s), the following differential
equation may be obtained (see [95] and [96] for more details):

d2x(s)

ds2
= Gx(s) + gNN(s) + gMM(s)

+ gσ+σ+(s) + gσ−σ−(s) + gτ+

dτ+(s)

ds
+ gτ−

dτ−(s)

ds
, (3.91)

where the matrices of the previous equation are given in Appendix A.2 and
vector x(s) is defined in (3.66b).

The resolution of the previous equation is divided in two parts: obtaining
a particular solution and solving the homogeneous equation. Notice that
the axial force, the bending moment and the distributed loads affect only
to the particular solution, which constitutes the regularized solution of the
problem. This regularized solution converges to Ko & Jackson solution [4]
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when the order increases. The homogeneous equation let us to calculate
the perturbations over the regularized values so that the axial boundary
conditions (the arbitrary boundary conditions) are satisfied.

Constant distributed loads case

Considering the curved beam loaded under constant distributed loads
σ+(s) = σ+

0 , σ−(s) = σ−0 , τ+(s) = τ+0 and τ−(s) = τ−0 as a particular
case, using equilibrium equations (3.85) and using the boundary conditions
(3.55), the axial force, shear force and bending moment can be written as:

N(s) = (N0 ∓R+σ+
0 ±R−σ−0 ) cos

s

R
− (±Q0 +R+τ+0 −R−τ−0 ) sin

s

R
±R+σ+

0 ∓R−σ−0 , (3.92a)

Q(s) = ±(N0 ∓R+σ+
0 ±R−σ−0 ) sin

s

R
± (±Q0 +R+τ+0 −R−τ−0 ) cos

s

R
∓R+τ+0 ±R−τ−0 , (3.92b)

M(s) = M0 ±R(N0 ∓R+σ+
0 ±R−σ−0 )

(
1− cos

s

R

)
±R(±Q0 +R+τ+0 −R−τ−0 ) sin

s

R
∓
(
(R+)2τ+0 − (R−)2τ−0

) s
R
. (3.92c)

Therefore, substituting (3.92) in (3.91), the particular/regularized solu-
tion yields:

xreg(s) = qN N(s) + qMM(s) + qσ+ σ+
0 + qσ− σ−0 , (3.93)

where auxiliary vectors qN , qM , qσ+ and qσ− are defined by:

qN = −(R2G+ I)−1(R2gN ±RG−1gM ) , (3.94a)

qM = −G−1gM , (3.94b)

qσ+ = −G−1gσ+ + (R2G+ I)−1G−1(∓gN +RgM )R+ , (3.94c)

qσ− = −G−1gσ− + (R2G+ I)−1G−1(±gN −RgM )R− . (3.94d)

The derivative of xreg(s), substituting (3.85a) and (3.85c), yields:

dxreg(s)

ds
= qQQ(s) + qτ+ τ+0 + qτ− τ−0 , (3.95)
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where the auxiliary vectors are given by:

qQ = qM ∓
qN
R
, (3.96a)

qτ+ =
R+

R

(
−qN − qM

t

2

)
, qτ− =

R−

R

(
qN − qM

t

2

)
. (3.96b)

The resolution of the homogeneous equation is analysed in section 3.7.
If a non constant distributed loads is applied, a similar procedure may

be developed for obtaining the solution of the homogeneous equation.

Stresses calculation

The stresses calculation is developed in detail in [95]. With a proce-
dure analogous to the one employed in the straight beam case, once the
vector x(s) given in (3.66b) has been calculated, the axial higher order
moments Ms(s) are directly obtained as the first n − 1 components of
x(s). Shear higher-order moments and transverse higher-order moments
may be obtained from the equilibrium equations (3.87) and (3.88) respec-
tively. Strains may be obtained by using the compliance equations (3.63).
Once strains are obtained, circumferential stress can be calculated in each
ply by using the 2D constitutive equations (3.60). Finally, the shear and
through-thickness stresses are obtained by integration of the equilibrium
equations (3.83). In that way, stresses can be written as:

σps(s, z) = Sps (z)TǨσMT (s), (3.97a)

τ psz(s, z) = τ psz(s, z
−
p )

(
R± z−p
R± z

)2

− Spsz(z)TǨσ
dMT (s)

ds
, (3.97b)

σpz(s, z) =
R± z−p
R± z

(
σpz(s, z

−
p )±R

dτ psz(s, z
−
p )

ds

(
R± z−p
R± z

− 1

))
± Spz,1(z)TǨσMT (s) + Spz,2(z)TǨσ

d2MT (s)

ds2
, (3.97c)

where the vector MT (s) is given in (3.73) and the shape vectors Sps (z)
(given by its components

(
Sps
)
i
(z) for i = 0, 1, ..., 2n − 1), Spsz(z), Spz,1(z)

and Spz,2(z) are given by:(
Sps
)
i
(z) =

R

R± z
Qp

11z
i, i = 0, 1, ..., n, (3.98a)

(
Sps
)
i+n−1 (z) =

R± z
R

Qp
13z

i−2, i = 2, 3, ..., n, (3.98b)



3.5. Legendre polynomials based model (LPBM) 90

Spsz(z) =
R

(R± z)2

∫ z

z−p

(R± z′)Sps (z′)dz′, (3.98c)

Spz,1(z) =
1

R± z

∫ z

z−p

Sps (z′)dz′, (3.98d)

Spz,2(z) =
R

R± z

∫ z

z−p

Spsz(z
′)dz′. (3.98e)

Shear and through-thickness stresses have to be calculated iteratively
as explained in the straight beam case, starting with the boundary condi-
tions τ 1sz(s,−t/2) = τ−(s) and σ1

z(s,−t/2) = σ−(s). The boundary condi-

tions τ
Np
sz (s, t/2) = τ+(s) and σ

Np
z (s, t/2) = σ+(s) are automatically accom-

plished.

3.4.3 MBM numerical limitations

MBM let us to estimate the interlaminar and in-plane stresses in highly
curved laminates obtaining very accurate results. Results are more accurate
when using higher orders. However, the order of the model cannot indef-
initely be increased in this model. The model order is limited in practice
due to the need of inverting stiffness matrices K̂σ and K̂τ to obtain the
compliance matrices. Numerical inversion of the matrices is not accurate
if the condition number of them is too high and when the model order is
increased, the condition number of the matrix increases very fast, limiting
the order to a maximum which depends on the thickness to mean radius
ratio t/R and, in the dimensional case, on the thickness.

Considering the dimensional stiffness matrix K̂σ of a curved beam, the
condition number has been evaluated for several thicknesses, stacking se-
quences and orders in a conventional CFRP, obtaining the condition num-
bers depending on the thickness depicted in Figure 3.8. Stiffness matrix K̂τ

have a similar thickness dependence of the condition number. However, it
has not been depicted since matrix K̂τ is smaller than K̂σ, the condition
number being lesser.

Notice that the condition number has an optimal value typically located
in a thickness between 2 and 2.5. This is the reason why the problem
has been adimensionalized with one half of the thickness, so that the non-
dimensional thickness is t̄ = 2, trying to minimize the condition number in
the thickness dependence.

Once the problem is expressed in a non-dimensional notation, the straight
beam problem is limited (depending on the numerical software character-
istics) by a maximum order of n ∼ 12, while the curved beam limitation
depends on the R/t ratio as seen in Table 3.1.
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Figure 3.8: Condition number of K̂σ depending on the thickness.

R/t 0.55 0.6 0.8 1 1.2 1.5 2 3
nmax 18 17 14 12 10 9 8 6
R/t 4 5 10 20 50 100 1000 . . .
nmax 6 5 5 4 3 3 3 . . .

Table 3.1: Maximum order of the MBM depending on the R/t ratio.

3.5 Legendre polynomials based model (LPBM)

As shown previously, the condition number of the stiffness matrices K̂σ

and K̂τ in the MBM increases very fast when the order n increases and, as a
consequence, the compliance matrices Ǩσ and Ǩτ are obtained numerically
with higher errors. This fact limits the order of the MBM to a maximum
value in which errors in the calculation of the compliance matrix are not
excessively high. The maximum order depends on the thickness to mean
radius ratio t/R as shown in Table 3.1.

The increase of the condition number is due to the use of monomial
functions in the series expansion. Monomial functions constitute a linearly
independent base of functions in the domain of z ∈ [−t/2, t/2] (or z̄ ∈ [−1, 1]
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for the non-dimensional case). However, this base is not an orthogonal
base in this interval, this being the main cause of the high increase in the
condition number of the stiffness matrices.

Hence, the solution to this limitation of the MBM is the use of orthogonal
polynomials, pi(z), instead of monomials. The definition of the orthogonal-
ity in an interval z ∈ [−t/2, t/2] establishes that the L2 inner product of
two different polynomials must be zero:∫ t/2

−t/2
pi(z)pj(z)dz = 0, i 6= j. (3.99)

Orthogonal polynomials have been widely studied by several authors
[104,105]. For the present case, the adequate polynomials are the Legendre
polynomials, pi(z̄), which are orthogonal polynomials in z̄ ∈ [−1, 1]. There-
fore, the model is being developed by using non-dimensional parameters.

Thereby, the LPBM is based on a series expansion of the non-dimensional
displacements as follows:

ūs(s̄, z̄) = ūo(s̄) + z̄ū1(s̄) +
n∑
i=2

pi(z̄)ūi(s̄), (3.100a)

ūz(s̄, z̄) = w̄1(s̄) +
n∑
i=2

f̄ zi (z̄)w̄i(s̄). (3.100b)

where functions f̄ zi (z̄) are determined by the number of terms in the series
expansion of the shear strain, following a similar procedure to that used in
the MBM.

For the sake of brevity, the bar indicating the non-dimensional parame-
ters are not represented in the present section, since all the magnitudes used
in the model are considered non-dimensional.

The theoretical basis of the LPBM are developed in [96]. The main
features of the model are summarized in the present section.

3.5.1 Characteristics of the Legendre polynomials

Legendre polynomials, denoted pi(z) with −1 6 z 6 1, are defined by
the Legendre’s differential equation, which constitutes a Sturm–Liouville
problem [106]:

d

dz

[
(1− z2)dpi(z)

dz

]
+ i(i+ 1)pi(z) = 0, −1 < z < 1, i = 0, 1, 2, ...

(3.101)
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These polynomials may be expressed as a summation of binomial ex-
pressions [107]. However, the easier way to obtain the polynomials consists
in a three term recurrence relation, known as Bonnet’s recursion formula,
beginning with the known polynomials p0(z) = 1 and p1(z) = z:

pi(z) =
2i− 1

i
z pi−1(z)− i− 1

i
pi−2(z). (3.102)

Legendre polynomials up to order 5 are depicted in Figure 3.9.

Figure 3.9: Legendre polynomials up to i = 5.

These polynomials, as commented previously, are orthogonal on the in-
terval −1 6 z 6 1 with an unitary weighting function [104]:∫ 1

−1
pi(z)pj(z)dz =

2

2i+ 1
δij, (3.103)

The integrals of the Legendre polynomials are calculated typically de-
pending on the polynomials themselves by using the following expression:

(2i+ 1)pi(z) =
d

dz
[pi+1(z)− pi−1(z)] . (3.104)

The derivative of the polynomials are calculated by the next expression:

dpi(z)

dz
= (2(i−1)+1)pi−1(z)+(2(i−3)+1)pi−3(z)+(2(i−5)+1)pi−5(z)+ ...

(3.105)
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Another interesting property is that the values of the polynomials in the
interval limits are given by:

pi(1) = 1, pi(−1) = (−1)i. (3.106)

To develop the LPBM non-regularized model, as in the MBM, it is useful
to express the equations in matrix notation. Firstly, vectors fs(z), f̂s(z) and
ˆ̂fs(z) are defined in the LPBM as follows:

fs
T (z) =

[
p2(z) p3(z) . . . pn(z)

]
, (3.107a)

f̂s
T

(z) =
[
p1(z) p2(z) . . . pn−1(z)

]
, (3.107b)

ˆ̂fs
T

(z) =
[
p0(z) p1(z) . . . pn−2(z)

]
. (3.107c)

Notice that vectors given in (3.107) are similar but with the terms shifted
in some orders, so they are related by the following expressions:

f̂s(z) = p1(z)υ + Υfs(z), ˆ̂fs(z) = p0(z)υ + Υf̂s(z), (3.108)

where the auxiliary vector υ and the auxiliary matrix Υ are given by:

υ =


1
0
0
0
...

 , Υ =


0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .

 . (3.109)

Property (3.105) let us to obtain the derivatives of vectors fs(z) and
f̂s(z), which yield:

dfs(z)

dz
= ρ+Hγ f̂s(z),

df̂s(z)

dz
= Hz

ˆ̂fs(z), (3.110)

where matrices Hγ and Hz and vector ρ are given by:

ρ =



0
1
0
1
0
...


, Hγ =



3 0 0 0 0 . . .
0 5 0 0 0 . . .
3 0 7 0 0 . . .
0 5 0 9 0 . . .
3 0 7 0 11 . . .
...

...
...

...
...

. . .


, (3.111a)
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Hz =



1 0 0 0 0 . . .
0 3 0 0 0 . . .
1 0 5 0 0 . . .
0 3 0 7 0 . . .
1 0 5 0 9 . . .
...

...
...

...
...

. . .


. (3.111b)

By using the property (3.102) the vectors of (3.107) are related by:

zf̂s(z) = Ξ1fs(z) + Ξ2
ˆ̂fs(z), (3.112)

where Ξ1 and Ξ2 are diagonal matrices defined as:

Ξ1,ij =
i

2i− 1
δij, Ξ2,ij =

i− 1

2i− 1
δij, i, j = 2, 3, ..., n. (3.113)

3.5.2 Development of the LPBM for straight beams

A straight beam with thickness t (considered non-dimensional with value
t = 2) and length Lk is studied (see Figure 3.6), in the same way as in
the MBM. A local non-dimensional coordinate system sk and zk is used as
defined previously.

The beam is loaded under distributed transverse and shear loads in the
positive boundary of zk, σ

+(sk) and τ+(sk), and under distributed transverse
and shear loads in the negative boundary of zk, σ

−(sk) and τ−(sk). Arbitrary
stresses boundary conditions are applied at sk = 0, given by σ0

s(zk) and
τ 0s (zk), and at sk = Lk, given by σLs (zk) and τLs (zk).

For the sake of simplicity, the index k indicating the component is sup-
pressed in this section.

Displacements

The longitudinal and through-thickness displacements approximation of
the straight beam is given by equations (3.100), where the axial displace-
ments have been approximated by a series expansion by using Legendre
polynomials. Introducing the matrix notation as in the MBM, the non-
dimensional displacements can be written as:

us(s, z) = uo(s) + zu1(s) + fs
T (z)u(s), (3.114a)

uz(s, z) = w1(s) + fz
T (z)w(s), (3.114b)
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where fs(z) is given in equation (3.107a) and it can be demonstrated, fol-
lowing the same procedure employed in the straight beam case of the MBM,
that fz(z) = f̂s(z), given in equation (3.107b).

Strains

By using the strain-displacement relations in Cartesian coordinates (3.42)
and the Legendre polynomials properties (3.110), strains can be written as:

εs(s, z) = eN(s) + zeM(s) + fs
T (z)es(s), (3.115a)

γsz(s, z) = eQ(s) + f̂s
T

(z)eγ(s), (3.115b)

εz(s, z) = ˆ̂fs
T

(z)ez(s), (3.115c)

where eN(s), eM(s) and eQ(s) are the non-dimensional CBT 1D strain com-
ponents, and es(s), eγ(s) and ez(s) are the non-dimensional higher-order
1D strain components, which are defined by:

eN(s) =
du0(s)

ds
, (3.116a)

eM(s) =
du1(s)

ds
, (3.116b)

eQ(s) = u1(s) +
dw1(s)

ds
+ hQ

Tu(s), (3.116c)

es(s) =
du(s)

ds
, (3.116d)

eγ(s) =
dw(s)

ds
+Hγ

Tu(s), (3.116e)

ez(s) = Hz
Tw(s), (3.116f)

where for the present case of a straight beam hQ = ρ. Notice that ex-
pressions (3.115) are the same than in the MBM but considering different
matrices Hγ and Hz and considering a null vector ρ in the MBM case.

Equilibrium

The non-dimensional higher-order moments in the LPBM are defined as
follows:

N(s) =

∫ 1

−1
σs(s, z) dz , M(s) =

∫ 1

−1
σs(s, z) z dz , (3.117a)
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Q(s) =

∫ 1

−1
τsz(s, z) dz , (3.117b)

Ms(s) =

∫ 1

−1
σs(s, z)fs(z) dz , (3.117c)

Mτ (s) =

∫ 1

−1
τsz(s, z)fτ (z) dz , (3.117d)

Mz(s) =

∫ 1

−1
σz(s, z)fσ(z) dz . (3.117e)

where it can be demonstrated with a similar procedure to that employed in

the MBM that fτ (z) = f̂s(z) and fσ(z) = ˆ̂fs(z).

Therefore, integrating the equilibrium equations (3.51), the forces and
bending moment equilibrium equations yield as given in (3.53) and (3.54)
considering the non-dimensional thickness t = 2, those equations being in-
dependent of the kind of model. The higher-order moments equilibrium
equations yield:

dMs(s)

ds
+ fs (1) τ+(s)− fs (−1) τ−(s) = HγMτ (s) + hQQ(s), (3.118a)

dMτ (s)

ds
+ f̂s (1)σ+(s)− f̂s (−1)σ−(s) = HzMz(s). (3.118b)

Constitutive law

As in the straight beam case of the MBM, the 2D constitutive law for an
individual ply is given by equations (3.60). Substituting in these equations
the strains, given by (3.115), and integrating the equations in order to obtain
the forces and moments (including the higher-order ones), relations (3.61)
are obtained. However, in this case matrices K̂σ and K̂τ are given by

equations (3.62) using the functions fs(z), f̂s(z) and ˆ̂fs(z) corresponding
to the LPBM. Some integrals of these functions are solved in the Appendices
of [96].

The compliance matrices can be defined by inverting the stiffness ma-

trices, Ǩσ = K̂σ
−1

and Ǩτ = K̂τ
−1

, so that decomposing the compliance
matrices in several components as seen in [96], compliance equations yield
(3.63).
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Solution procedure

The solution procedure is similar to the one developed in the MBM.
Introducing (3.63b) into (3.116e), longitudinal higher-order displacements
yield:

Hγ
Tu(s) = ČττMτ (s) + čQτ Q(s)− dw(s)

ds
, (3.119)

Substituting (3.63a) into (3.116d) and (3.116f), using (3.119) to elim-
inate the derivative of the longitudinal displacement u(s), using (3.118a)
to eliminate the higher-order shear moments Mτ (s), and using equation
(3.53b) to eliminate the derivative of the shear force Q(s), the following
differential equation may be obtained (see [96] for more details):

d2x(s)

ds2
= Gx(s) + gNN(s) + gMM(s)

+ gσ+σ+(s) + gσ−σ−(s) + gτ+

dτ+(s)

ds
+ gτ−

dτ−(s)

ds
, (3.120)

where the auxiliary matrices employed in the previous equation are given in
Appendix A.3 and vector x(s) is defined in (3.66b).

If a non constant distributed loads is applied, a similar procedure may
be developed for obtaining the solution of the homogeneous equation.

Constant distributed loads case

Considering the straight beam loaded under constant distributed loads
σ+(s) = σ+

0 , σ−(s) = σ−0 , τ+(s) = τ+0 and τ−(s) = τ−0 as a particular
case, using equilibrium equations (3.53) and (3.54) and using the boundary
conditions (3.55), the axial force, shear force and bending moment yield
(3.67).

Therefore, as the forces and the bending moment are the same as in the
straight beam of the MBM, and the differential equation (3.120) is the same
as in the MBM, using appropriate values of the auxiliary matrices (Hγ ,
Hz,. . .), the solution of this problem is the same than in the MBM, given
by equations (3.68)-(3.71).

The resolution of the homogeneous equation is analysed in section 3.7.

Stresses calculation

With an analogous development to that carried out in the straight beam
case of the MBM, once the vector x(s) given in (3.66b) has been calculated,
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the axial higher order momentsMs(s) are directly obtained as the first n−1
components of x(s). Shear higher-order moments and transverse higher-
order moments may be obtained from the equilibrium equations (3.118a)
and (3.118b) respectively. Strains may be obtained by using the compliance
equations (3.63). Once strains are obtained, circumferential stress can be
calculated in each ply by using the 2D constitutive equations (3.60). Finally,
the shear and through-thickness stresses are obtained by integration of the
equilibrium equations (3.51). In that way, stresses yield:

σpθ(s, z) = Sps (z)TǨσMT (s), (3.121a)

τ psz(s, z) = τ psz(s, z
−
p )− Spsz(z)TǨσ

dMT (s)

ds
, (3.121b)

σpz(s, z) = σpz(s, z
−
p )−

dτ psz(s, z
−
p )

ds

(
z − z−p

)
+ Spz,2(z)TǨσ

d2MT (s)

ds2
,

(3.121c)
where the vectorMT (s) is given in (3.73) and the shape vectors Sps (z) (given
by its components

(
Sps
)
i
(z) for i = 0, 1, ..., 2n− 1), Spsz(z) and Spz,2(z) are

given by: (
Sps
)
i
(z) = Qp

11pi(z), i = 0, 1, ..., n, (3.122a)(
Sps
)
i+n−1 (z) = Qp

13pi−2(z), i = 2, 3, ..., n, (3.122b)

Spsz(z) =

∫ z

z−p

Sps (z′)dz′, (3.122c)

Spz,2(z) =

∫ z

z−p

Spsz(z
′)dz′. (3.122d)

Shear and through-thickness stresses have to be calculated iteratively as
explained in the MBM, beginning with the boundary conditions τ 1sz(s,−1) =

τ−(s) and σ1
z(s,−1) = σ−(s). The boundary conditions τ

Np
sz (s, 1) = τ+(s)

and σ
Np
z (s, 1) = σ+(s) are automatically accomplished.

3.5.3 Development of the LPBM for curved beams

A curved beam with thickness t (considered non-dimensional with value
t = 2) and length Lk = RkΘk (where Rk is the mean radius and Θk is
the angular length of the beam) is studied (see Figure 3.7). A local non-
dimensional coordinate system sk and zk is used, defined as in the MBM.
Notice that the difference of the clockwise and the counter-clockwise curved
beam lies in the direction of the zk axis.
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The beam is loaded under distributed transverse and shear loads in the
positive boundary of zk, σ

+(sk) and τ+(sk), and under distributed transverse
and shear loads in the negative boundary of zk, σ

−(sk) and τ−(sk). Arbitrary
stresses boundary conditions are applied at sk = 0, given by σ0

s(zk) and
τ 0s (zk), and at sk = Lk, given by σLs (zk) and τLs (zk).

For the sake of simplicity, the index k indicating the component is not
used in the model development.

The model development for a curved beam in the LPBM is detailed
in [96]. Consequently, only the main equations of the model are shown
below.

Displacements

The displacements in matrix notation are expressed by a series expansion
according to equations (3.114). In the LPBM for a curved beam, functions
fz(z) yield:

fz(z) = f̂s(z)± 1

R

(
Ξ2fs(z) + Ξ1

ˆ̂fs(z)
)
, (3.123)

which accomplish property (3.77) and can be expressed also as follows:

fz(z) = ±R (Hsfs(z) + hMz + hN ) , (3.124)

where matrix Hs and vectors hN and hM are given by:

Hs = ± 1

R
Υ +

1

R2
(Ξ2 + Ξ1ΥΥ), (3.125a)

hM = ± 1

R
υ +

1

R2
Ξ1Υυ, (3.125b)

hN =
1

R2
Ξ1υ. (3.125c)

Strains

Strains are given by:

εs(s, z) =
R

R± z
(
eN(s) + zeM(s) + fs(z)Tes(s)

)
, (3.126a)

γsz(s, z) =
R

R± z
(
eQ(s) + fz(z)Teγ(s)

)
, (3.126b)

εz(s, z) =
R± z
R

ˆ̂fs(z)Tez(s), (3.126c)
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the components of the strains being defined as:

eN(s) =
du0(s)

ds
± w1(s)

R
+ hN

Tw(s), (3.127a)

eM(s) =
du1(s)

ds
+ hM

Tw(s), (3.127b)

eQ(s) = u1(s)∓
u0(s)

R
+
dw1(s)

ds
+ hQ

Tu(s), (3.127c)

es(s) =
du(s)

ds
+Hs

Tw(s), (3.127d)

eγ(s) =
dw(s)

ds
+Hγ

Tu(s), (3.127e)

ez(s) = Hz
Tw(s), (3.127f)

where auxiliary vector hQ is given by:

hQ = ρ∓ 1

R
HγΞ2υ. (3.128)

Equilibrium

The forces, bending moment and higher-order moments are defined, as
in the straight beam, by equations (3.117), by using functions fτ (z) and
fσ(z) given by equations (3.84) with the corresponding functions fz(z) and
ˆ̂fs(z) to the LPBM.

The equilibrium equations for the forces and the bending moment remain
the same than in the MBM, given by (3.85) with a non-dimensional thickness
of t = 2. The equilibrium equations for the higher-order moments yield:

dMs(s)

ds
+
R+

R
τ+(s)fs(1)− R−

R
τ−(s)fs(−1) = HγMτ (s) + hQQ(s),

(3.129a)

dMτ (s)

ds
+
R+

R
σ+(s)fz(1)− R−

R
σ−(s)fz(−1)

= HzMz(s) +HsMs(s) + hMM(s) + hNN(s). (3.129b)

Constitutive law

As in the straight beam case of the MBM, the 2D constitutive law for an
individual ply is given by equations (3.60). Substituting in those equations
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the strains, given by (3.115), and integrating the equations in order to obtain
the forces and moments (including the higher-order ones), relations (3.61)
are obtained. However, in this case components of matrices K̂σ and K̂τ

are different to those of the straight beam case due to the influence of the
curvature. Expressions of these matrices can be found in [96].

The compliance matrices can be defined by inverting the stiffness ma-

trices, Ǩσ = K̂σ
−1

and Ǩτ = K̂τ
−1

, so that decomposing the compliance
matrices in several components as seen in [96], compliance equations yield
(3.63).

Solution procedure

Introducing (3.63b) into (3.127e) longitudinal higher-order displacements
yield:

Hγ
Tu(s) = ČττMτ (s) + čQτ Q(s)− dw(s)

ds
, (3.130)

Substituting (3.63a) into (3.127d) and (3.127f), using (3.130) to elim-
inate the derivative of the longitudinal displacement u(s), using (3.129a)
to eliminate the higher-order shear moments Mτ (s), and using equation
(3.85b) to eliminate the derivative of the shear force Q(s), the following
differential equation is obtained:

d2x(s)

ds2
= Gx(s) + gNN(s) + gMM(s)

+ gσ+σ+(s) + gσ−σ−(s) + gτ+

dτ+(s)

ds
+ gτ−

dτ−(s)

ds
, (3.131)

where the matrices of the previous equation are given in Appendix A.4 and
vector x(s) is defined in (3.66b).

Constant distributed loads case

Considering the curved beam loaded under constant distributed loads
σ+(s) = σ+

0 , σ−(s) = σ−0 , τ+(s) = τ+0 and τ−(s) = τ−0 as a particular
case, using equilibrium equations (3.85) and using the boundary conditions
(3.55), the axial force, shear force and bending moment yield (3.92).

Therefore, as the forces and the bending moment are the same than
in the curved beam of the MBM, and the differential equation (3.131) is
analogous to that in the MBM, the solution of this problem can be written
as in the MBM, given by equations (3.93)-(3.96), but using the appropriate
values of the auxiliary matrices (Hγ , Hz,. . .).
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The resolution of the homogeneous equation is analysed in section 3.7.

If a not constant distributed loads is applied, a similar procedure may
be developed for obtaining the solution of the homogeneous equation.

Stresses calculation

Stresses are obtained from the higher-order moments as follows:

σps(s, z) = Sps (z)TǨσMT (s), (3.132a)

τ psz(s, z) = τ psz(s, z
−
p )

(
R± z−p
R± z

)2

− Spsz(z)TǨσ
dMT (s)

ds
, (3.132b)

σpz(s, z) =
R± z−p
R± z

(
σpz(s, z

−
p )±R

dτ psz(s, z
−
p )

ds

(
R± z−p
R± z

− 1

))
± Spz,1(z)TǨσMT (s) + Spz,2(z)TǨσ

d2MT (s)

ds2
, (3.132c)

where the vector MT (s) is given in (3.73) and the shape vectors Sps (z)
(given by its components

(
Sps
)
i
(z) for i = 0, 1, ..., 2n − 1), Spsz(z), Spz,1(z)

and Spz,2(z) are given by:

(
Sps
)
i
(z) =

R

R± z
Qp

11pi(z), i = 0, 1, ..., n, (3.133a)

(
Sps
)
i+n−1 (z) =

R± z
R

Qp
13pi−2(z), i = 2, 3, ..., n, (3.133b)

Spsz(z) =
R

(R± z)2

∫ z

z−p

(R± z′)Sps (z′)dz′, (3.133c)

Spz,1(z) =
1

R± z

∫ z

z−p

Sps (z′)dz′, (3.133d)

Spz,2(z) =
R

R± z

∫ z

z−p

Spsz(z
′)dz′. (3.133e)

Shear and through-thickness stresses have to be calculated iteratively as
explained in the MBM, beginning with the boundary conditions τ 1sz(s,−1) =

τ−(s) and σ1
z(s,−1) = σ−(s). The boundary conditions τ

Np
sz (s, 1) = τ+(s)

and σ
Np
z (s, 1) = σ+(s) are automatically accomplished.
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3.6 Resolution of the regularized problem by

using the non-regularized models

Both non-regularized models, MBM and LPBM, have been developed
following the same procedure. Therefore, both models are reduced to a
set of differential equations that can be written in the same manner, using
different constant vectors and matrices. In this way, e.g., the regularized
values of vector x(s), defined in (3.66b), for constant distributed loads case
are given by equation (3.68) for the straight beam in both MBM and LPBM,
and (3.93) for the curved beam in both MBM and LPBM. If another kind
of distributed load is given the particular solution have to be obtained in a
similar way.

As described previously, once the regularized solution xreg(s) has been
obtained, regularized higher order moments, displacements, strains and
stresses can be also obtained. In the present section, results of the afore-
mentioned regularized solutions are compared for several orders with the
regularized solution given by Ko & Jackson [4] in the case of null distributed
loads, showing the convergence of the models when the order increases. Fur-
ther comparisons may be found in [95,108,109]. The problem with constant
distributed loads cannot be solved with Ko & Jackson’s solution, then, it will
be compared with finite elements solutions (for the non-regularized case) in
a following section.

Both models, MBM and LPBM, are developed by a polynomial series
expansion until an order n, and consequently, both models have almost the
same accuracy for the same order, except when the MBM is used with any
order above its limitation, given in Table 3.1. However, as it will be shown
later, LPBM requires higher computational times, therefore for low orders
(under the limit seen in Table 3.1) it is preferable to use the MBM and for
higher orders it is preferable to use the LPBM. Hence, the results presented
in this and the following sections are valid for both models while the order
is under the limit shown in Table 3.1, and only for the LPBM for higher
orders.

The model is applied to a L section forming 90o between the straight
arms with a radius to thickness ratio of R/t = 1.5 at the corner. The
material selected is a conventional UD-CFRP with a ply thickness of 0.2
mm and the ply properties summarized in Table 3.2. The stacking sequence
chosen is a quasi-isotropic lay-up of 16 plies, defined by [45,0,-45,90]2S.

The regularized solution depends only on the forces, bending moment
and distributed loads. In the present section, stresses due to the forces and
the bending moment will be analysed and compared with Ko & Jackson’s



105 Bi-dimensional models for evaluating interlaminar stresses

E11 150 GPa E22 10 GPa E33 10 GPa
ν12 0.3 ν13 0.3 ν23 0.3
G12 6 GPa G13 6 GPa G23 3.85 GPa

Table 3.2: Ply properties for the numerical examples

solution. First, stresses due to an unitary bending moment, M0 = 1 N, are
depicted in Figure 3.10 by applying the non-regularized model for n = 1, 2,
4 and 8.

Figure 3.10: Regularized solution of the non-regularized models for the
bending moment loading.

Notice that the shear stresses due to the bending moment are null, and
they have not been depicted in Figure 3.10. Results of the model are very
accurate for the regularized stresses due to the bending moment even for
low orders, showing a fast convergence towards Ko and Jackson’s solution.

Stresses due to an unitary axial force, N0 = 1 N/mm, are depicted in
Figure 3.11 by applying the non-regularized model for n = 1, 3, 6 and 12.
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Figure 3.11: Regularized solution of the non-regularized models for the axial
force loading.

Higher orders have been chosen for this case due to a lower convergence
speed. Notice that the shear stresses due to the axial force are null, and
they have not been depicted in Figure 3.11. For a given model order, stresses
due to the axial force have the highest errors respect to the Ko & Jackson’s
solution, and a slower convergence. However, very accurate results may be
obtained by using the maximum order of the MBM for the selected R/t ratio.
Therefore, the maximum order of the MBM yields an accurate estimation
of the regularized stresses, LPBM not being necessary in this case.

Stresses due to an unitary shear force, Q0 = 1 N/mm, are depicted in
Figure 3.12 by applying the non-regularized model for n = 1, 2, 4 and 8.
Notice that the axial and transverse stresses due to the axial force are null,
and they have not been depicted in Figure 3.12. Errors of the shear stress
due to the shear force are slightly higher than in the normal and through-
the-thickness stresses due to the bending moment. However, results are still
very accurate even using very low orders, presenting a very fast convergence
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Figure 3.12: Regularized solution of the non-regularized models for the shear
force loading.

towards Ko and Jackson’s solution.

3.7 Resolution of the homogeneous problem

Non-regularized stresses and strains are determined by the superposition
of the regularized values, analysed in the previous section, and the perturba-
tions, calculated from the homogeneous equation. The homogeneous equa-
tion is determined by separating the solution vector, x(s), into its regular-
ized value, xreg(s), and the perturbations, x̂(s), using x(s) = xreg(s)+x̂(s),
yielding:

d2x̂(s)

ds2
= Gx̂(s). (3.134)

The finite beam problem is defined by a (straight or curved) beam with
non-dimensional length L, so that s varies from 0 to L. Boundary conditions
in the through-the-thickness direction are given by the distributed loads,
which are included in the regularized value. Equation 3.134 needs 4n − 4
boundary conditions in the axial direction, while the number of components
of vector x̂(s) is 2n−2. These boundary conditions are determined by 2n−2
boundary conditions at s = 0 and 2n − 2 boundary conditions at s = L.
The boundary conditions in each end are expressed in displacements, in
stresses or by a combination of both. Therefore, boundary conditions may
be expressed with the pairs (Ms,Mτ ), (u,w), (Ms,w) or (u,Mτ ) evaluated
at s = 0 and s = L. When a joint between different components is given,
an arbitrary stresses boundary condition is applied in the joint, so the pair
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(Ms,Mτ ) is used and it must be determined by imposing continuity of
stresses and displacements at the joint between both components.

As seen in [95], matrix G is decomposed in the eigenvalues matrix Λ and
the eigenvectors matrix Φ, according to GΦ = ΦΛ, where Λ is a diagonal
matrix with the eigenvalues λi (i = 1, 2, ..., 2n−2) in the diagonal, and Φ is
composed in its columns by the eigenvectors φi (i = 1, 2, ..., 2n− 2). Notice
that the eigenvalues and the components of the eigenvectors are, generally,
complex numbers.

Equation 3.134 is solved using a change of variable of the form x̂(s) =
Φŷ(s), so that the equation can be written as:

d2ŷ(s)

ds2
= Λŷ(s). (3.135)

The solution of equation 3.135 is given by the following expression:

ŷ(s) = Y0(s) c0 + YL(s) cL, (3.136)

where c0 and cL are vectors of constants to be determined by the boundary
conditions and Y0(s) and YL(s) are diagonal matrices, whose components
are respectively Y 0

ij(s) and Y L
ij (s), with i, j = 1, ..., 2n− 2:

Y 0
ij(s) =

sinh
(

(L− s)
√
λi

)
sinh

(
L
√
λi

) δij, Y L
ij (s) =

sinh
(
s
√
λi

)
sinh

(
L
√
λi

) δij. (3.137)

Therefore, reverting the change of variable, vector x̂(s) yields:

x̂(s) =
[
X0(s) XL(s)

] [c0
cL

]
, (3.138)

where matrices X0(s) and XL(s) are given by:

X0(s) = ΦY0(s), XL(s) = ΦYL(s). (3.139)

Matrix X0(s) can be divided in the first n− 1 rows Xs0(s) and the last
n−1 rows Xz0(s). Similarly, matrix XL(s) can be divided in the first n−1
rows XsL(s) and the last n − 1 rows XzL(s). Considering this decompo-
sition, circumferential higher-order moments and transverse displacements
may be obtained by using the definition of vector x̂(s) for the perturbation
problem, yielding: [

M̂s(s)
ŵ(s)

]
=

[
Xs0(s) XsL(s)
Xz0(s) XzL(s)

] [
c0
cL

]
. (3.140)
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Shear higher-order moments may be also expressed depending on the
unknowns c0 and cL by using equation (3.57) in the straight beams with the
MBM, (3.118a) in the straight beams with the LPBM, (3.87) in the curved
beams with the MBM or (3.129a) in the curved beams with the LPBM.
Circumferential displacements are obtained by using equation (3.65). If
those equations have to be used in the perturbations problem they have
to be considered with null forces and bending moment and null distributed
loads.

Therefore, any of the four pairs of boundary conditions (Ms,Mτ ), (u,w),
(Ms,w) or (u,Mτ ) may be applied at each end of the finite beam, obtaining
the unknowns c0 and cL depending on those boundary conditions.

If a component of the problem under consideration is very long, stresses
and strains are regularized in the central part of the component, so one end
does not affect to the other end, being both non-regularized effects inde-
pendent and separable. Therefore, when analysing the component from one
side it can be considered as being semi-infinite, which consists in considering
that stresses and strains tend to their regularized value in the semi-infinite
direction, suppressing the unknowns associated to one end.

In this case, the solution of equation 3.135 is given by the following
expression:

ŷ(s) = Y0(s) c0, (3.141)

where Y0(s) is defined by its components Y 0
ij(s), with i, j = 1, ..., 2n− 2:

Y 0
ij(s) = exp

(
∓ s

√
λi

)
δij, (3.142)

with the ∓ sign being positive if the beam is infinite in the negative s
direction and viceversa.

Therefore, reverting the change of variable, vector x̂(s) yields:

x̂(s) = X0(s)c0, X0(s) = ΦY0(s). (3.143)

In the present case, boundary conditions are applied at the unique ex-
isting end, obtaining the unknowns given in c0.

3.8 Resolution of the joints between compo-

nents

The beam section studied is supposed composed by Nc components in-
cluded in the three kinds previously studied. If all the components are finite
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beams, (4n − 4)Nc unknown constants included in the vectors ck0 and ckL
(k = 1, 2, ..., Nc) have to be determined by using the boundary conditions,
where ck0 and ckL are vectors c0 and cL, respectively, in the component k. If
one or both end beams in the chain are approximated by semi-infinite, this
or these beams have only 2n − 2 unknown constants included in only one
vector ck0.

Boundary conditions at the ends of the chain are determined. They
can be displacements or stresses boundary conditions (constituting 2n − 2
equations as will be commented later) or they can be a semi-infinite approx-
imation.

As stated in the previous section, boundary conditions at the joints of
components are calculated by supposing an arbitrary stress boundary con-
dition with the given axial and shear force and bending moment. This is
equivalent to consider arbitrary values of Ms(s) and Mτ (s) in the s coor-
dinate. These arbitrary values are determined by imposing the continuity
of the displacements and the stresses at the joint between both beams.

Therefore, in each component k the unknown constants are the arbitrary
values of Ms(s) and Mτ (s) at both ends: Mk

s (0), Mk
s (L), Mk

τ (0) and
Mk

τ (L) or, in fact, the perturbations of them since the regularized values are
known. By using equation (3.140) and equation (3.118a), which is common
for all the components types:

[
ck0
ckL

]
=


Xk
s0(0) Xk

sL(0)

Hγ
−1 dXk

s0

ds
(0) Hγ

−1 dXk
sL

ds
(0)

Xk
s0(L) Xk

sL(L)

Hγ
−1 dXk

s0

ds
(L) Hγ

−1 dXk
sL

ds
(L)


−1 

M̂k
s (0)

M̂k
τ (0)

M̂k
s (L)

M̂k
τ (L)

 =

[
Γk0
ΓkL

]
M̂k

s (0)

M̂k
τ (0)

M̂k
s (L)

M̂k
τ (L)

 .
(3.144)

Notice that the distributed loads and the shear force are null in the
perturbation problem as they are included only in the regularized problem.

For the semi-infinite beam, equation (3.144) can be written as follows:

ck0 =

[
Xk
s0(0) Xk

sL(0)

Hγ
−1 dXk

s0

ds
(0) Hγ

−1 dXk
sL

ds
(0)

]−1 [
M̂k

s (0)

M̂k
τ (0)

]
= Γk0

[
M̂k

s (0)

M̂k
τ (0)

]
. (3.145)

3.8.1 Continuity of the circumferential stresses be-
tween components

The continuity of circumferential stresses between components k and
k − 1 is imposed by equalling the higher-order moments:
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Mk−1
s (L) = Mk

s (0). (3.146)

Notice that the continuity is imposed using the non-regularized values,
which includes the regularized values, which are known, and the perturba-
tions, which depend on the unknowns ck0 and ckL according to (3.144).

3.8.2 Continuity of the shear stresses between com-
ponents

Continuity of the shear stresses in the joint between two adjacent beams
they cannot be imposed term by term, since the definitions of these pa-
rameters depend on the mean radius and, therefore, shear higher-order mo-
ments are differently defined in beams with different curvature or direction
(clockwise or counter-clockwise). Therefore, a change-of-basis matrix is re-
quired to impose the continuity in the shear stresses. It is recommended
to change the basis for the curved beams and to express them in the ba-
sis of the straight beam. Therefore, if a joint between two curved beams
is given, higher-order moments in both beams are expressed according to
the straight beam and equalled, and if a joint between a curved beam and
a straight one is given only the higher-order moments in the curved beam
requires to change the basis and are equalled to those of the straight beam.

The definitions of the shear higher-order moments in the straight beam,
M̄τ (s), and for a curved beam of non-dimensional mean radius R, Mτ (s),
are given by:

Q̄(s) =

∫ 1

−1
τsz(s, z)dz, M̄τ (s) =

∫ 1

−1
f̂s(z)τsz(s, z)dz, (3.147a)

Q(s) =

∫ 1

−1
τsz(s, z)dz, Mτ (s) =

∫ 1

−1
fz(z)τsz(s, z)dz. (3.147b)

Notice that fz(z) (which depends on the mean radius R) tends to f̂s(z)
when R→∞. A change-of-basis matrix between the two definitions of shear
moments is the same than a change-of-basis matrix between both functions
fz(z) and f̂s(z):

[
Q(s)
Mτ (s)

]
'KM

[
Q̄(s)
M̄τ (s)

]
=

[
1 oT

k̂o K̂M

] [
Q̄(s)
M̄τ (s)

]
−→

[
1

fz(z)

]
'KM

[
1

f̂s(z)

]
. (3.148)
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The matrix KM is calculated by using least squares in both sides of
equation (3.148):

∂

∂KM

(∫ 1

−1

([
1

fz(z)

]
−KM

[
1

f̂s(z)

])2

dz

)
= 0, (3.149)

where the derivative yields:

2

∫ 1

−1

([
1

fz(z)

]
−KM

[
1

f̂s(z)

]) [
1 f̂s(z)T

]
dz = 0. (3.150)

Considering that KM does not depend on z, it can be expressed as
follows:

KM = BMAM
−1, (3.151a)

AM =

∫ 1

−1

[
1

f̂s(z)

] [
1 f̂s(z)

]
dz, (3.151b)

BM =

∫ 1

−1

[
1

fz(z)

] [
1 f̂s(z)

]
dz. (3.151c)

Therefore, continuity of shear stresses is imposed in a weak sense equalling
the higher-order moments expressed in the common basis:

M̄k−1
τ (L) = M̄k

τ (0). (3.152)

where M̄k−1
τ (L) and M̄k

τ (0) are obtained using (3.148).

3.8.3 Continuity of the circumferential displacements
between components

To impose continuity, circumferential higher-order displacement vector
have to be equalled between both components: uk−1(L) = uk(0). Using
equation (3.65) the equality can be written as:

− dwk−1

ds
(L) + Čk−1

ττ Mk−1
τ (L) + čk−1

Qτ Q
k−1(L)

= −dw
k

ds
(0) + Čk

ττM
k
τ (0) + čkQτQ

k(0). (3.153)

Notice that matrices Hγ do not depend on the typology of the compo-
nent, so it has been cancelled at both sides of the previous equation.
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Considering, for the sake of simplicity, the constant distributed loads
case, the derivative of w(s) can be expressed depending on Mτ (s) and
Ms(s) by using the derivative of equation (3.140), equation (3.144), equation
(3.95) and considering that the non-regularized value is the regularized value
plus the perturbation, what results in:

dwk(sk)

ds
=
[
dXk

z0(sk)

ds

dXk
zL(sk)

ds

] [Γk0
ΓkL

]

Mk

s (0)
Mk

τ (0)
Mk

s (L)
Mk

τ (L)

−

Mk

s,reg(0)

Mk
τ,reg(0)

Mk
s,reg(L)

Mk
τ,reg(L)




+ qkzQQ
k(sk) + qkzτ+τ

k
0+(sk) + qkzτ−τ

k
0−(sk), (3.154)

where qkzQ, qk
zτ+ and qk

zτ− are respectively the last n − 1 components of
vectors qQ, qτ+ and qτ− in the component k.

Considering equations (3.129a), (3.93) and (3.95), vectors Mk
s,reg(sk)

and Mk
τ,reg(sk) can be written as:

[
Mk

s,reg(sk)

Mk
τ,reg(sk)

]
= KF

Nk(sk)
Mk(sk)
Qk(sk)

+Kσ


σk0+
σk0−
τ k0+
τ k0−

 , (3.155a)

KF =

[
qksN qksM o
o o Hγ

−1(qksQ − hkQ)

]
, (3.155b)

Kσ =

[
qk
sσ+ qk

sσ− o o

o o Hγ
−1(qk

sτ+ + R+

R
fs(1)) Hγ

−1(qk
sτ− − R−

R
fs(−1))

]
,

(3.155c)

where the constants σk0+, σk0−, τ k0+ and τ k0− are the constant distributed loads
σ+
0 , σ−0 , τ+0 and τ−0 respectively in the component k.

Substituting (3.154), (3.155a) and (3.148) in (3.153) the continuity con-
dition of the circumferential displacements is obtained:
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Kk−1
sL


Mk−1

s (0)
M̄k−1

τ (0)
Mk−1

s (L)
M̄k−1

τ (L)

+ K̂k−1
sL


Nk−1(0)
Mk−1(0)
Qk−1(0)
Nk−1(L)
Mk−1(L)
Qk−1(L)

+ ˆ̂Kk−1
sL


σk−10+

σk−10−
τ k−10+

τ k−10−



= Kk
s0


Mk

s (0)
M̄k

τ (0)
Mk

s (L)
M̄k

τ (L)

+ K̂k
s0


Nk(0)
Mk(0)
Qk(0)
Nk(L)
Mk(L)
Qk(L)

+ ˆ̂Kk
s0


σk0+
σk0−
τ k0+
τ k0−

 . (3.156)

If one of the two adjacent beams is considered semi-infinite it affects to
the corresponding side of the equal sign in equation (3.156). This is due
to the dependence of equation (3.156) with the value of the higher-order
moments at both ends sk = 0 and sk = Lk.

3.8.4 Continuity of the transverse displacements be-
tween components

As in the case of the shear moments, it is recommended to express the
transverse displacement vector in the straight beam basis for imposing con-
tinuity of transverse displacements. The transverse displacements expressed
in the straight beam basis and in the component own basis are given by:

uz(s, z) = w̄1(s) + f̂s
T

(z)w̄(s), uz(s, z) = w1(s) + fz
T (z)w(s). (3.157)

The continuity of displacements is imposed in a weak manner by using
least squares. In the theoretical model w1(s) has been calculated indepen-
dently of the rest of parameters, w1(s) being calculated once the rest of the
problem has been solved, and, therefore, it is not considered in the least
squares problem.

∂

∂w̄

(∫ 1

−1

(
f̂s

T
(z)w̄(s)− fzT (z)w(s)

)2
dz

)
= 0. (3.158)

The derivative yield:
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∫ 1

−1
f̂s(z)

(
f̂s

T
(z)w̄(s)− fzT (z)w(s)

)
dz = 0. (3.159)

Therefore, Kw is obtained as following the same procedure used in the
shear higher-order moments case:

w̄(s) = Kww(s), Kw = Aw
−1Bw (3.160a)

Aw =

∫ 1

−1
f̂s(z)f̂s

T
(z)dz, Bw =

∫ 1

−1
f̂s(z)fz

T (z)dz. (3.160b)

Aw,ij = ÂL,i+1,j+1, i, j = 1, 2, ..., n− 1. (3.160c)

Bw,ij = B̂L,j+1,i+1, i, j = 1, 2, ..., n− 1. (3.160d)

Equalling w̄k−1(L) = w̄k(0), substituting equations (3.140), (3.144) and
(3.93) and knowing that Xk

z0(L) = 0 and Xk
zL(0) = 0, the continuity of the

transversal displacements is imposed with:

Kk−1
w

Xk−1
zL (L)Γk−1

L


M̂k−1

s (0)

M̂k−1
τ (0)

M̂k−1
s (L)

M̂k−1
τ (L)

+
[
qk−1
zN qk−1

zM

] [Nk−1(L)
Mk−1(L)

]

= Kk
w

Xk
z0(0)Γk0


M̂k

s (0)

M̂k
τ (0)

M̂k
s (L)

M̂k
τ (L)

+
[
qkzN qkzM

] [Nk(0)
Mk(0)

] . (3.161)

Separating the perturbations as the non-regularized value minus the reg-
ularized one, and using equations (3.155a) for the regularized values, the
previous equation can be expressed as follows:
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Kk−1
zL


Mk−1

s (0)
M̄k−1

τ (0)
Mk−1

s (L)
M̄k−1

τ (L)

+ K̂k−1
zL


Nk−1(0)
Mk−1(0)
Qk−1(0)
Nk−1(L)
Mk−1(L)
Qk−1(L)

+ ˆ̂Kk−1
zL


σk−10+

σk−10−
τ k−10+

τ k−10−



= Kk
z0


Mk

s (0)
M̄k

τ (0)
Mk

s (L)
M̄k

τ (L)

+ K̂k
z0


Nk(0)
Mk(0)
Qk(0)
Nk(L)
Mk(L)
Qk(L)

+ ˆ̂Kk
z0


σk0+
σk0−
τ k0+
τ k0−

 . (3.162)

If one of the two adjacent beams is considered semi-infinite it affects to
the corresponding side of the equal sign in equation (3.162).

3.8.5 Application of the boundary conditions and the
continuity conditions

Each component has 4n−4 unknown variables given by the higher-order
moments (radial and circumferential) at each end of the component, so (4n−
4)Nc unknown variables are given. Continuity conditions of stresses, (3.146)
and (3.152), allows the unknown variables to be reduced to (2n−2)(Nc+1).

Boundary conditions at both ends of the chain of beams, which can be
given in displacements or in stresses, provide 4n − 4 equations, so (2n −
2)(Nc − 1) additional equations are required. If one end component is con-
sidered semi-infinite, the number of unknowns in the component is reduced
to 2n− 2 unknowns. Therefore, if semi-infinite components are assumed at
both ends (2n − 2)(Nc − 1) additional equations are also required. These
(2n − 2)(Nc − 1) equations are given by the continuity conditions of the
displacements, (3.156) and (3.162).

Notice that all the boundary conditions and continuity conditions are
linear with the unknown variables, and, consequently, they can be solved
easily as a problem of the form of Ax = b, where b depends on the applied
forces, bending moment and distributed loads. In the present case, vec-
tor x includes all the circumferential higher-order moments Mk

s (0) and/or
Mk

s (L), and all the shear higher-order moments expressed in the functions
base of the straight beam M̄k

τ (0) and/or M̄k
τ (L). Notice also that the forces

and the bending moment at the end of one component are the same than
these at the beginning of the following component.
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3.9 Results of the non-regularized models and

validation by FEM

In the present section several geometries and loading states are analysed
and compared with appropriate FE models to validate the semi-analytical
model. First, a L-sectioned beam is analysed with two different loading
states: a bending moment loading, similarly to a four-point bending test
and a compression loading in one arm of the section. Finally, a joggle is
analysed under tensile loading. The models can be also applied to other
geometries including changes of curvature with constant thickness, such as
Ω-shaped beams, C-shaped beams or corrugated laminates.

3.9.1 L-shaped beam under bending moment

The typical loading state associated to the unfolding failure is the bend-
ing moment of a corner. A L-shaped section loaded under a pure bending
moment calculated with a regularized model has a constant stress distri-
bution in the circumferential direction due to the constant value of the
bending moment in that direction. However, the change of curvature due to
the straight arms cause a non-constant stress distribution in the zone where
the change of curvature takes place (see [14]).

For the numerical implementation, a material with ply properties of Ta-
ble 3.2 is considered. The laminate considered is a quasi-isotropic laminate
with stacking sequence [45 0 -45 90]S. The L-shaped section is determined
by the thickness t = 1.6 mm and by the mean radius of the curved part
R = 2.4 mm, see Figure 3.13. The applied load is M0 = 1 Nm/m.

Figure 3.13: L-shaped beam under bending moment.

In the FE model, the straight arms are taken of length L = 10 mm, which
has been considered long enough to avoid that the non-regularized effects of
the end of the arms do no affect to the stresses distribution in the zone near
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the change of curvature. Linear shell elements with four nodes have been
used in the FE model with five elements per ply in the thickness direction.
The ply properties are introduced considering a plane strain state. The
hypotheses used for modelling the FE model are similar to the hypotheses
employed in the semi-analytical model, and, consequently, similar solutions
must be obtained.

The results of the maximum INS depending on the axial coordinate s
by using the LPBM with an order of n = 50, Ko & Jackson’s solution
and the FEM results are depicted in Figure 3.14. The same solutions for
the maximum/minimum ISS are depicted in Figure 3.15, where the Ko &
Jackson’s model solution has been suppressed as the regularized shear stress
in the problem is null in the whole section.

Figure 3.14: Maximum INS in the L-shaped beam under bending moment.

Notice that the FE model agrees well with the results of the LPBM,
clearly showing the existence of the non-regularized effects due to the change
of curvature and validating the non-regularized models developed in the
present project.

The shear stresses appear even without the presence of a shear force
due to the non-regularized effects in order to accomplish the equilibrium
equations. These shear stresses present their maximum value in the change
of curvature point, with a discontinuity in their derivative in the aforemen-
tioned section.

Notice that in the view of the obtained results, non-regularized models
are not necessary to predict the unfolding failure in this case, as the maxi-
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Figure 3.15: Maximum ISS in the L-shaped beam under bending moment.

mum value of the INS is predicted accurately by the regularized model given
by Ko & Jackson. The reason is that the maximum regularized INS is con-
stant in the whole curved beam. Notwithstanding, in a problem where the
maximum INS is given near to a change of curvature non-regularized effects
are more relevant, as in the case of a L-shaped beam under a compressive
load shown in the next section.

3.9.2 L-shaped beam under a compressive load

A compressive loading in an arm of a L-shaped beam induces that the
maximum bending moment is given at the change of curvature of the op-
posite arm. Therefore, the maximum INS is affected by the non-regularized
effects and the use of a regularized model is not accurate in this kind of
loading states.

For the numerical implementation, the same material, configuration and
FE model characteristics are used, since the loading state is changed as
depicted in Figure 3.16.

The results of the maximum INS depending on the axial coordinate s
by using the LPBM with an order of n = 50, Ko & Jackson’s solution and
the FE model predictions are depicted in Figure 3.17. The results of the
maximum/minimum ISS are depicted in Figure 3.18, where the maximum
value of the Ko & Jackson’s solution has been suppressed as the maximum
value of the regularized shear stress in the problem is null in the whole beam.
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Figure 3.16: L-shaped beam under a compressive load.

Figure 3.17: Maximum INS in the L-shaped beam under compressive load.

Notice that, as the bending problem analysed in the previous subsection,
the FE model agrees well with the results of the LPBM. The maximum
value of the INS in the present loading case is a 64% of the maximum value
given by a regularized model. Consequently, regularized models are very
conservative when the maximum INS is given near to a change of curvature.
These results show the importance of considering the non-regularized effects
in the calculation of the unfolding failure.

The regularized value of the ISS is very close to the non-regularized
value, with small discrepancies near to the changes of curvature. In this
case, the non-regularized effects for the ISS are not so important due to the
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Figure 3.18: Maximum ISS in the L-shaped beam under compressive load.

presence of a dominant shear force.

3.9.3 Joggle under a tensile load

The joggle is a very common element in riveted or bolted joints between
panels where the continuity of the surface is important from an aerodynamic
point of view. This element has two curved parts, commonly having the
same mean radius R. One of this curved parts is clockwise and the other
one is counter-clockwise. Consequently, the joint between them constitutes a
change of curvature even if they both have the same mean radius. However,
a short straight part is usually located between both curved parts, see Figure
3.19.

Figure 3.19: Joggle under a tensile load.

The importance of the non-regularized model in a joggle resides in the
shortness of the curved elements and the high curvature, which implies that
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the stresses cannot reach their regularized values in the zone between the
changes of curvature. Furthermore, the importance of the non-regularized
models is higher when the maximum of the regularized INS is located close
to a change of curvature, as has been shown in the L-shaped beam.

The results of the maximum INS depending on the axial coordinate s
by using the LPBM with an order of n = 50 , the Ko & Jackson’s solution
and the FE model predictions are depicted in Figure 3.20. The same so-
lutions for the maximum/minimum ISS are depicted in Figure 3.21, where
the minimum value of the Ko & Jackson solution has been suppressed as
the minimum value of the regularized shear stress in the problem is null in
the whole beam.

Figure 3.20: Maximum INS in the joggle under tensile load.

Again, FE results agrees with a very high accuracy with the results
obtained with the LPBM.

Notice the symmetry of the regularized ISS respect to the geometrical
center of the joggle due to the symmetry of the shear force. However, the
non-regularized ISS is non-symmetric due to the effect of the bending mo-
ment, which is not symmetric. Notwithstanding, the maximum value of the
ISS is similar with both regularized and non-regularized models.

Respect to the INS, the maximum value is the 80% of the maximum value
given by the regularized model. Therefore, the use of a regularized model
for estimating the unfolding failure is again very conservative. Furthermore,
the results obtained considering the non-regularized effects show that the
stresses do not reach the regularized value at any point of the curved parts
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Figure 3.21: Maximum ISS in the joggle under tensile load.

due to the short length of these curved parts.

3.10 Numerical characteristics of the MBM

and LPBM non regularized models

The MBM and the LPBM have been implemented in MatLab on a stan-
dard PC (Intel Core i3, 3.30 GHz). An analysis of the numerical charac-
teristics of this model concerning the computational times and the errors
(respect to a high enough order) has been carried out with the implemented
methods.

The MBM has presented numerical limitations due to the very fast
growth of the condition number of the stiffness matrix with the model or-
der, which results in very high numerical errors when inverting the matrix.
This limitation has been explained in the subsection 3.4.3, where a maxi-
mum order is deduced depending on the radius to thickness ratio R/t. This
maximum order is summarized in Table 3.1.

The MBM has very low computational times which are shown in Figure
3.22(a) depending on the number of plies for a model order of n = 9, and
in Figure 3.22(b) depending on the model order for a number of plies of
Np = 8. These computational times have been obtained for the bending
problem studied in the subsection 3.9.1, which, with a relation R/t = 1.5,
is limited to n = 9, changing the stacking sequence.
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The LPBM has higher computational times than the MBM, which are
shown in Figure 3.23(a) depending on the number of plies for a model order
of n = 20, and in Figure 3.23(b) depending on the model order for a number
of plies of Np = 1.

(a) (b)

Figure 3.22: Computational times of the MBM. (a) Depending on Np for
n = 9. (b) Depending on n for Np = 8.

(a) (b)

Figure 3.23: Computational times of the LPBM. (a) Depending on Np for
n = 20. (b) Depending on n for Np = 1.

Every point of the Figures 3.22 and 3.23 have been obtained by eval-
uating 10 times the computational time and obtaining the mean value of
them. The dependence with the number of plies of the computational times
is linear, while the dependence with the model order is roughly exponen-
tial. The MBM has usually computational times in the order of 0.1 seconds,
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while the LPBM for orders around 10 has computational times in the order
of 1 second (10 times higher than the MBM) and for orders around 100
has computational times in the order of 10 seconds. The LPBM has higher
computational times than the MBM due to the numerical integration by
quadrature methods of the integrals without a known analytical solutions.

Numerical errors are similar in both models for the same order, and
therefore, while an order lower than the maximum allowable order of the
MBM is chosen it is convenient to choose the MBM for reducing the com-
putational times. Notwithstanding, if a high accuracy is desired the LPBM
has to be chosen with the corresponding higher model order.

The numerical errors are evaluated by considering as exact the solution
of the model with a high enough order and comparing with models with
lower orders. In that way, evaluating different geometries, loading states
and stacking sequences (see [108]) the following estimation of the error ε in
the maximum INS has been obtained:

ε =
5t

Rn3
. (3.163)

Therefore, the errors in the maximum INS decrease with a cubic order.
Notice that the error of the maximum INS in the maximum order of the
MBM are always between the 0.1% and the 0.5%, which is accurate enough
for predicting the unfolding failure. However, errors at other points of the
distribution different from the maximum, e.g., near to a change of curvature,
can be much higher. Therefore, if the main interest of application of the
model is to obtain an accurate stresses distribution and not only to predict
the maximum, the LPBM is necessary.

3.11 Regularization distance

One parameter of importance when analysing a non-regularized problem
is the regularization distance (RD). The RD is defined as the distance from
the non-regularized focus necessary to reduce the perturbations of the non-
regularized parameters to a 5% of its maximum value.

It can be considered that stresses and other parameters at points located
at higher distances than the RD from all the non-regularized focuses are very
close to their regularized values. Therefore, two non-regularized focuses
distanced more than the summation of both RD associated to both focuses
can be considered independent, and one of those focuses do not affect to the
parameters in the closer area of the other focus.

That distance may be used to divide a section in several problems to
analyse. E.g., in a L-shaped beam with a high R/t ratio the curved part
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may be long enough so one change of curvature does not affect to the other
one and, therefore, each change of curvature may be analysed independently
considering the curved part as a semi-infinite beam. This is important in
sections having many changes of curvature, where the complexity may be
reduced by dividing the section in several chains of beams.

The perturbations have been obtained as a summation of exponential
functions according to (3.136) and (3.137) (notice that the hyperbolic sine is
equivalent to an exponential function). The decay rate of those functions are
determined by the coefficients of the exponents of the exponentials, which,
at the same time, are given by the square root of the eigenvalues λi of the
matrix G. Typically, the eigenvalues are complex numbers causing that the
exponentials are damped oscillations. The decay rate is given only by the
real part of the square root of λi, associated to the damping, the complex
part being associated to the oscillations. Therefore, the decay rate of the
perturbations may be approximated by the exponential with the coefficient
in the exponent with a lower real part,

√
λmin:

Re
(√

λmin

)
= min

i

(
Re
(√

λi

))
. (3.164)

Notice that the coefficient with a lower real part of
√
λmin does not

necessarily coincide with the eigenvalue λi with the minimum real part, as
the coefficient is defined as the square root of the eigenvalue and the real
part of the square root of λi depends also on the imaginary part of λi.

Therefore, the regularization distance, Lreg may be approximated by the
value of s where the exponential associated to

√
λmin has declined to the 5%

of its maximum value (which is given in s = 0):

e−Re(
√
λmin)Lreg

2
t ' 0.05, (3.165)

where the inverse of one half of the thickness has been added in the expres-
sion to consider the dimensional value of the regularization distance Lreg

instead of the non-dimensional ones used in the development of the MBM
and the LPBM.

Hence, the approximation of the RD yields:

Lreg '
3t

2 Re
(√

λmin

) . (3.166)

Equation (3.166) may be used to obtain the RD numerically by using the
LPBM with a model order high enough. However, a closed-form equation
is desired to evaluate the RD before running the non-regularized model.
This closed-form equation may be obtained by approximating

√
λmin by the
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corresponding parameter in a model with order n = 2, since generally the
eigenvalues associated to higher orders are lower. A model with order n = 2
applied to a homogeneous material has two eigenvalues which are given by
the following expressions:

λ1,2 =
3(Q11Q33 −Q2

13)

2Q11Q55

± 3

2

√
(Q2

13 −Q11Q33)(Q2
13 −Q11Q33 + 20Q2

55)

Q2
11Q

2
55

.

(3.167)
For a composite material the corresponding eigenvalues may be approx-

imated by equation (3.167) by considering the homogeneous equivalent ma-
terial and calculating the corresponding stiffnesses Qij. The eigenvalue with
the minimum real part is obtained by choosing the minus sign in equation
(3.167):

λmin =
3(Q11Q33 −Q2

13)

2Q11Q55

− 3

2

√
(Q2

13 −Q11Q33)(Q2
13 −Q11Q33 + 20Q2

55)

Q2
11Q

2
55

.

(3.168)
Notice that the eigenvalue λmin is highly influenced by the parameter

Q55, the RD being highly influenced by the shear stiffness of the material.
Summarizing, the RD may be evaluated by equation (3.166) calculating

numerically
√
λmin by using an order high enough in the LPBM. Notwith-

standing,
√
λmin can be approximated by using the homogeneous equivalent

material and using equation (3.168) for a quick estimation of the RD.
Considering a single-ply laminate with ply properties given in Table 3.2

and changing the orientation of the ply, the square root of the eigenvalue
whose square root has the minimum real part is depicted in the complex
plane in Figure 3.24 for the approximation given in equation (3.168), a
straight beam and a curved beam with R = t.

The 0o ply and the 90o ply cases are marked in the Figure. The eigenvalue
square root in low orientations has a null imaginary part until an orientation
between 45o and 55o where the imaginary part becomes not null. Notice a
discontinuity in the curved beam case when the imaginary part becomes
not null. That discontinuity is due to a change in the eigenvalue with the
minimum real part in its square root.

The RD yields as depicted in Figure 3.25, where a discontinuity in the
slope is observed when the imaginary part of

√
λmin becomes not null.

Therefore, the approximation results slightly anti-conservative, specially
in the straight beam case. Furthermore, it can be observed that the RD
are, for the present material properties and a single-ply laminate, delimited
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Figure 3.24: Complex plane representation of
√
λmin.

Figure 3.25: Regularization distances for a single-ply laminate depending
on the orientation.

between a value of 0.65t and 2.25t. In the case of a composite laminate these
values may change and it is necessary to evaluate each stacking sequence
independently.
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3.12 Off-topic applications of the non regu-

larized models

The MBM and LPBM have been applied in the previous sections to com-
posite sections loaded by end forces and bending moments including changes
of curvature, in order to predict the effect of these changes of curvature on
the stresses distribution. However, these models may be applied to many
others applications [110]. In particular, in the present section, the models
are applied to evaluate stresses at joints between beams with different ma-
terial properties, to determine non-regularized effects at the vicinity of an
embedment and to analyse the three point bending test.

3.12.1 Joint of beams with different material proper-
ties

In a joint of two materials a discontinuity in the material properties
takes place, which, due to the different Poisson contractions of the materi-
als, causes the appearance of a singular stress field. This kind of problem
may be analysed using the models developed in section 3.8 by consider-
ing two components and introducing different material properties in each
component.

As a numerical example, two homogeneous isotropic materials are con-
sidered with different Young modulus and the same Poisson coefficients,
with the material properties shown in Table 3.3.

Material 1 E1 100 GPa ν1 0.3
Material 2 E2 10 GPa ν2 0.3

Table 3.3: Material properties for the numerical examples

The two beams made with different materials are considered perfectly
bonded at a flat surface as shown in Figure 3.26. Both beams are of constant
thickness t. Furthermore, a tensile load N0 is acting perpendicular to the
joint surface.

Figure 3.26: Joint of two beams with different material properties, axially
loaded.
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For comparison reasons, the problem has been implemented in a FE
software. Quadratic bi-dimensional elements with a plane strain assumption
have been used, where a variable mesh size has been used concentrating the
elements near to the free edges and near to the joint section.

Figure 3.27 shows the distribution of the axial stress σs at the joint
section obtained by using the LPBM with n = 500, which has required a
computational time of 50 seconds, and compared with the FE results.

Figure 3.27: Axial stress at the joint of two different materials.

The LPBM, as the FEM or any model based on series expansion with
polynomials, cannot predict an infinite value of the stresses at the singular
point. However, the tendency is clearly captured, observing both tendencies
to an infinite value in the free edges. The LPBM obtains a similar distribu-
tion to the FEM. Far away from the joint section the distribution of stresses
tends to a constant value, it being the regularized value.

Figure 3.28(a) shows the shear stress τsz and Figure 3.28(b) shows the
through-thickness stress σz in the joint section obtained by using the LPBM
with n = 500 and compared with the FE results. The through-thickness
stress is different at both sides, as this stress is not continuous in the axial
direction s, so the stress at both sides, corresponding to both materials, is
depicted.

The stiffer material is tensioned in the through-thickness direction, while
the softer material is compressed. For the present material properties, the
through-thickness stress is in the same order than the mean value of the
axial stress. The normal through-thickness stress is not singular in the free
edges. Notwithstanding, it has an infinite slope changing sharply from 0 to
a finite value. The shear stress is singular similarly than the axial stress,
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(a) (b)

Figure 3.28: Stresses in the joint of two different materials. (a) Shear stress.
(b) Through-thickness stress in both sides.

however, it is neither captured by the LPBM nor by the FE model. A high
agreement is observed between the LPBM and the FEM results.

3.12.2 Non-regularized effects due to the boundary
conditions

The way in which the load is applied may introduce also non-regularized
effects. According to the Saint-Venant principle, at sufficiently large dis-
tances from load the way of application of two equivalent loads do not affect
to the stress distribution. However, the way in which the load is applied
affects to the nearest zone in the form of non-regularized effects.

If boundary conditions are prescribed stresses, this kind of non-regularized
effects may be calculated. Analogously, prescribed displacements may in-
troduce non-regularized effects over the stress distribution.

As a numerical example, a straight semi-infinite beam embedded, that is,
with null transverse and longitudinal displacements at the end, is considered.
It is loaded under a tensile load N0, and it is constituted by a homogeneous
isotropic material with E = 100 GPa and ν = 0.3.

For comparison reasons, the problem has been implemented in a FEM
software. Quadratic bi-dimensional elements with a plane strain assumption
have been used, where a variable mesh size has been used concentrating the
elements near to the free edge in the thickness direction and near to the
constrained section.

Figure 3.29 shows the axial stress σs in the embedment section obtained
by using the LPBM with n = 500, which has required a computational time
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of 25 seconds, and by using a FE model.

Figure 3.29: Axial stress in an embedment under tensile load.

The stress distribution obtained in Figure 3.29 is very similar to the
stress distribution obtained in Figure 3.27 as the embedment is analogous
to a joint with a material with an infinite stiffness. The singular behaviour
of the stress is clearly captured with the model, and results have a high
agreement with the FE results.

Figure 3.30(a) shows the shear stress τsz and Figure 3.30(b) shows the
through-thickness stress σz in the embedment section obtained by using the
LPBM with n = 500 and the FEM.

(a) (b)

Figure 3.30: Stresses in an embedment under tensile load. (a) Shear stress.
(b) Through-thickness stress.
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Shear and through-thickness stresses have more pronounced distributions
than in the case of the joint with a different material. Shear stress and
through-thickness normal stress have a singular value at the free edge, and
both have a high agreement with FE results.

Another numerical example is analysed by using a pure bending moment
load M0 instead of the tensile load. Figure 3.31 shows the axial stresses σs
in the embedment section obtained by using the LPBM with n = 500 with
the mentioned bending moment, which has required a computational time
of 25 seconds, and by using a FE model.

Figure 3.31: Axial stress in an embedment under bending moment.

A singular behaviour in the axial stresses distribution is again observed,
with axial stresses tending to infinite in the free edges in the embedment
section. A high agreement with the FE results is again observed.

Figure 3.32(a) shows the shear stresses τsz and Figure 3.32(b) shows the
through-thickness stresses σz in the embedment section obtained by using
the LPBM with n = 500 and the FEM.

In the present case the shear stresses tend to infinite in the free edge.
Respect to the through-thickness stress, a tensile zone and a compressive
zone is observed in difference with the tensile load case. A high agreement
with the FE results is again observed.

3.12.3 Non-regularized effects due to punctual loads

The last off-topic application analysed is the effect of punctual loads over
the stress distribution. Theotokoglou and Sideridis [111] showed that near to
a punctual load in flat laminates the stress distribution is distorted and the
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(a) (b)

Figure 3.32: Stresses in an embedment under bending moment. (a) Shear
stress. (b) Through-thickness stress.

typical lineal distribution of axial stresses is not obtained. In particular, a
three-point bending test is analysed. The stress distribution in a three-point
bending test has been analysed by Makeev et al. [78].

The model developed can predict the effect of a punctual load by con-
sidering a external pressure modelled as a Dirac delta and obtaining the
regularized expression from equation (3.131). However, the resolution of
the regularized value in that case is not easy. As an alternative, by using
the developed regularized solution, the punctual load is approximated by
a very short straight component with a very high constant pressure whose
resultant is the applied load.

For the numerical example, the three-point bending test depicted in
Figure 3.33 is considered with P = 1 N/mm, L = 2.5 mm and an eight-plies
laminate with stacking sequence [45,0,-45,90]2S, a thickness per ply of 0.2
mm and the ply properties of table 3.2.

Figure 3.33: Three-point bending test configuration.

All loads are approximated as applied in a length δ = 0.05 mm as a
pressure with the resultant force given in Figure 3.33.
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The numerical example in the non-regularized case is evaluated by using
the LPBM with an order of n = 100, which has required a computational
time of 30 seconds.

The regularized solution of the present problem consists in a linear distri-
bution of axial stresses in the thickness, which increases or decreases linearly
with the s coordinate according to the bending moment. The regularized
shear stress has a quadratic distribution in the thickness.

The axial stresses in the top face of the top ply of Figure 3.33 and in the
bottom face of the bottom ply of Figure 3.33 depending on the s coordinate
are depicted in Figure 3.34 in parallel with their regularized values.

Figure 3.34: Axial stress in the top and bottom of a three-point bending
test sample.

The maximum of the axial stress in the bottom ply is a 15% higher than
the one predicted by a regularized model, and similarly for the top face
in the compression zone. This is due to the non-regularized effect of the
punctual load, which changes the distribution of the axial stress near to the
section of the load application. Far from the load application points, the
axial stress tends to its regularized value.

The maximum and minimum values of the shear stress depending on the
s coordinate is depicted in Figure 3.35.

The shear stress presents a singularity at the load application points,
tendency which is captured by the non-regularized model. Far away from
the load application points, the shear stress tend to its regularized value,
which is typically used for the calculation of the interlaminar shear strength
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Figure 3.35: Shear stress in a three-point bending test.

when this kind of test is used for characterization of the material.



Chapter 4

Three-dimensional models for
evaluating interlaminar stresses

The unfolding failure is typically calculated, from an analytical point of
view, by using bi-dimensional (2D) approximations as those presented in
Chapter 3, considering in most cases a plane stress or a plane strain ap-
proximation, although other generalized plane assumptions may give better
results. When a more complex geometry is given, or loads are not constant
in the width direction, finite elements models are typically used for calcu-
lating the stresses in the curved laminates. By using finite elements models
some three-dimensional (3D) effects appearing in curved laminates may be
obtained, such as the free-edge effects, the torsion due to the ±45o plies or
the anticlastic effect.

In the present Chapter, two kinds of 3D models are developed. These 3D
models are developed for a singly curved composite laminate loaded under
pure bending moment. The pure bending moment case has been chosen
because the failure is generally given in zones of the laminate where the
bending moment is the predominant load.

The first model developed consists in considering the regularized zone
of the laminate, far away from the free-edges in the width direction and
far away from a change of curvature in the curved direction. Thus, stresses
and strains are considered to depend only on the interlaminar coordinate,
which reduces considerably the complexity of the problem expressing the
partial derivatives as absolute derivatives with respect to a single coordinate.
Spencer et al. [97] developed a similar model, only applied to determining the
residual stresses due to a homogeneous temperature change in the laminate.
The present regularized model is an extension of this model to consider
also the loads acting over the laminate. Several authors have developed
approximated models in a 3D stresses state for estimating the stresses due
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to the bending moment, as Chiang [112] or Wu and Chi [113]. Notice that
this first model is not actually a 3D model while only one coordinate is
considered, but the whole 3D stresses state is obtained and 3D effects such
as the torsion are considered.

The second model is considered regularized only in the circumferential
direction, so the effect of the finite width and the free-edge effects are ob-
tained. This model is developed following the same procedure used for the
MBM or the LPBM, considering an approximation of the displacements
based on a series expansion. The difference with the MBM and the LPBM
is that this novel model is made in a different plane and that all 3D stress
components are considered, and not only the stress components contained
in a 2D plane. The non-regularized effect in the circumferential direction
may be obtained by the MBM or the LPBM, and, consequently, it has not
been considered in this model. A combination of both non-regularized ef-
fects may be obtained by developing a whole non-regularized 3D model in
both directions, whose basis are given with the present 3D non-regularized
model. However, this whole non-regularized model is not developed here for
the sake of brevity, being a future development of the work presented here.

Therefore, since Chapter 3 is based on a 2D elasticity problem with a 2D
constitutive equation, developing a 2D model for obtaining the stresses and
strains, while the present Chapter is based on a 3D elasticity problem with
all the components of stresses and strains. The basis for solving that 3D
problem with a 3D model are presented, but only a 1D model is developed
in a first instance and a 2D model including the width direction is finally
developed based on an extension of the LPBM.

Both 3D problems will be solved considering residual strains due to the
manufacturing process (assumed that they are only due to the homogeneous
change of temperature in the curing cycle). The effects of the manufacturing
process over the residual stresses in a laminate was summarized by Wisnom
et al. [55]. The three most important mechanisms generating these residual
stresses are:

• Differential thermal expansion. The thermal expansion coefficient of
the matrix is much higher than the corresponding coefficient in the
fibre. This implies a different thermal expansion coefficient in unidi-
rectional plies between the fibre direction and the perpendicular ones.
Therefore, in a laminate with plies having different orientations, the
free deformation of each ply is constrained by the deformation of the
other plies and, hence, residual stresses appear. Accordingly, in the
cooling after the curing process, the fibre direction of the plies is com-
pressed and the in-plane perpendicular direction is tensioned.
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• Cure shrinkage. The polymers have a chemical shrink during the
curing process, causing also residual stresses when they cannot flow
to compensate this shrinkage. Depending on the resin, this residual
stresses may be even in the same order than the residual stresses due
to the differential thermal expansion.

• Interaction between the tooling and the laminate. Mainly due to the
different thermal expansion coefficients of the tools respect to those of
the composite laminate.

The aim of the present work is not to estimate these manufacturing
process effects (see Kravchenko et al. [114, 115]), but to consider them in
the model and in the stress calculation. In that way, these mechanisms
due to the manufacturing process are introduced in the analytical model as
residual strains εMP

ij . In the case of the thermal expansion in the cooling
from the curing temperature the residual strains, in the orthotropic ply axes,
may be expressed as follows:

εMP
i = αi∆T, i = 1, 2, 3, (4.1)

where ∆T is the homogeneous change of temperature in the laminate and
αi are the thermal expansion coefficients in the orthotropic axes of a ply.

These residual strains and, consequently, the associated residual stresses,
are not generally considered in the analysis of the unfolding problem as in
flat laminates they affect more significantly to the in-plane stresses and not
to the interlaminar stresses. However, when the laminate is highly curved
residual interlaminar stresses may be also significant, reaching in several
cases a high percentage of the strength in that direction (see [56]).

4.1 3D model with double regularization for

singly-curved beams under bending mo-

ment and residual strains

This model, named 3Ddr in the following, is developed in order to obtain
regularized stresses and strains in a curved composite laminate with only
one curvature radius, which is considered constant. The model is obtained
considering that the regularized stresses and strains in the laminate depend
only on the radial coordinate. This hypothesis is only valid in several cases
such as a bending problem, a torsion problem or a spatially uniform change
of temperature. Therefore, the solution obtained is not valid when the shell
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is under non-membrane axial or shear forces, and is not accurate near the
free-edges or near to a change of curvature. The solutions is also valid for
composite pipes. The geometry considered is depicted in Figure 4.1.

Figure 4.1: Geometry of the studied problem and parameters definition.

A cylindrical coordinate system is used as shown in Figure 4.1, where
θ is the curvilinear coordinate, r is the radial coordinate and y is the axial
coordinate. The hollow-cylinder-shaped laminate has a mean radius R and
a thickness t, which define the inner radius R− and the outer radius R+.

The displacements will generally depend on the three coordinates, where
u(r, θ, y) is the circumferential displacement, v(r, θ, y) is the axial displace-
ment and w(r, θ, y) is the radial displacement. However, these displacements
are conditioned to cause only r-dependant strains. Therefore, the distribu-
tion of the displacements under the condition of strains depending only on
the radial coordinate has to be determined. This is carried out by using the
compatibility equations, which can be expressed depending on the strains.

The most common residual strains are those caused by a spatially con-
stant temperature increment, ∆T . These residual strains are typically given
in the curing process when cooling from the curing temperature. This case
can be modelled with the thermal expansion coefficients αi, with i = 1, 2, 3,
where the residual strains yield as equation (4.1). Notice that the thermal
expansion coefficients are considered to be constant with the temperature.

It is important to determine accurately the residual strains in order to
predict in an accurate way the springback and the residual stresses in the
component. Residual stresses are given when the component cannot deform
freely, which is typically due to the stacking sequence of the laminate, but
it can also be due to other geometrical restrictions, such as the curvature of
the laminate.
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4.1.1 Theoretical development

Strains

The first step in the development of the model is to determine the
through-the-thickness distribution of the strains. This distribution is ob-
tained by using the compatibility equations, which expressed in the cylin-
drical coordinate system are given by:

r2
∂2εθ
∂y2

+
∂2εy
∂θ2

+ r
∂εy
∂r
− r∂

2γθy
∂θ∂y

− 1
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∂γry
∂y

= 0, (4.2a)
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where εθ is the circumferential strain, εr is the radial strain, εy is the axial
strain, γrθ is the interlaminar shear strain associated to the circumferen-
tial direction, γry is the interlaminar shear strain associated to the axial
direction, and γθy is the in-plane shear strain.

In the problem under consideration, the strains only depend on the radial
coordinate. Therefore, equations (4.2) can be reduced to the following four
equations:

dεy(r)

dr
= 0, (4.3a)

d

dr

(
r2
dεθ(r)

dr

)
− rdεr(r)

dr
= 0, (4.3b)

d2εy(r)

dr2
= 0, (4.3c)

d

dr

(
1

r

d(rγθy(r))

dr

)
= 0. (4.3d)

Equation (4.3c) is automatically accomplished by equation (4.3a), and it
is obviated. Notice that the interlaminar shear strains, γry(r) and γrθ(r), do
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not appear in equations (4.3), so they are not affected by the compatibility
equations.

The axial strain, εy(r), has to be constant in the thickness in accordance
with equation (4.3a). Therefore, it can be defined from the mean line axial
strain, ε0y, as follows:

εy(r) = ε0y. (4.4)

Equation (4.3d) establishes the condition for the in-plane shear strain,
which, integrating the equation, can be expressed depending on the auxiliary
in-plane shear constants, γ0θy and γ0yθ:

γθy(r) =
r

R
γ0θy +

R

r
γ0yθ. (4.5)

Finally, the circumferential and radial strains are related according to
equation (4.3b). Integrating the equation, these strains can be expressed as
functions of the radial displacement, wo(r), and the auxiliary circumferential
constant, ε0θ, as follows:

εθ(r) = ε0θ +
wo(r)

r
, (4.6a)

εr(r) =
dwo(r)

dr
. (4.6b)

Therefore, according to the compatibility equations, strains can be ex-
pressed depending only on four constants (ε0y, γ

0
θy, γ

0
yθ and ε0θ) and three

functions (γry(r), γrθ(r) and wo(r)).

Equilibrium equations

The three-dimensional stress tensor in the cylindrical coordinate system
is defined by its components: the circumferential stress σθ, the radial stress
σr, the axial stress σy, the interlaminar shear stress associated to the axial
direction τry, the interlaminar shear stress associated to the circumferential
direction τrθ and the in-plane shear stress τθy.

The equilibrium equations for the previously defined stresses are given
by the following equations:
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= 0, (4.7a)
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∂τrθ
∂θ

+ r
∂τry
∂y

+
∂(rσr)

∂r
= σθ. (4.7c)

Considering that the stresses only depend on the radial coordinate, equi-
librium equations can be written as:

d(r2τrθ(r))

dr
= 0, (4.8a)

d(rτry(r))

dr
= 0, (4.8b)

d(rσr(r))

dr
= σθ(r). (4.8c)

Constitutive law

The constitutive law of a generic ply in the orthotropic axes is defined
by the following relation:


σ11(r)
σ22(r)
σ33(r)
σ23(r)
σ13(r)
σ12(r)

 =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




ε11(r)− εMP

1

ε22(r)− εMP
2

ε33(r)− εMP
3

ε23(r)
ε13(r)
ε12(r)

 , (4.9)

where σij (with i, j = 1, 2, 3) are the stresses in the orthotropic coordinate
system, εij (with i, j = 1, 2, 3) are the strains in the orthotropic coordinate
system, Cij (with i, j = 1, 2, ..., 6) are the orthotropic stiffnesses of the ply
and εMP

i (with i = 1, 2, 3) are the residual strains induced during the manu-
facturing process. Notice that residual strains are constant in the thickness.

The constitutive law given by equation (4.9) has to be rotated around
axis x3 (which coincides at each point with the radial coordinate axis r) in
order to obtain the constitutive law expressed in the cylindrical coordinate
system. Proceeding as commented, the constitutive law of a ply p can be
written as:


σpθ(r)
σpy(r)
σpr (r)
τ pry(r)
τ prθ(r)
τ pθy(r)

 =


C̄p

11 C̄p
12 C̄p

13 0 0 C̄p
16

C̄p
12 C̄p

22 C̄p
23 0 0 C̄p

26

C̄p
13 C̄p

23 C̄p
33 0 0 C̄p

36

0 0 0 C̄p
44 C̄p

45 0
0 0 0 C̄p

45 C̄p
55 0

C̄p
16 C̄p

26 C̄p
36 0 0 C̄p

66




εθ(r)−∆εpθ
εy(r)−∆εpy
εr(r)−∆εpr
γry(r)
γrθ(r)

γθy(r)−∆γpθy

 , (4.10)
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where C̄p
ij (with i, j = 1, 2, ..., 6) are the stiffnesses of the ply p expressed in

the cylindrical coordinate system, ∆εpθ is the residual strain of the ply p in
the circumferential direction, ∆εpy is the residual strain of the ply p in the
axial direction, ∆εpr is the residual strain of the ply p in the radial direction
and ∆γpθy is the residual shear in-plane strain of the ply p. Notice that plies
may be differently oriented and, therefore, stresses have been marked with
a superscript p indicating in which ply they are calculated.

Resolution of the interlaminar shear strains

The interlaminar shear strain functions, γry(r) and γrθ(r), can be easily
determined by combining the corresponding equilibrium equations with the
constitutive law. Hence, substituting the interlaminar shear constitutive
equations of (4.10) in the equilibrium equations (4.8a) and (4.8b) they yield:

C̄p
44

d(rγry(r))

dr
+ C̄p

45

d(rγrθ(r))

dr
= 0, (4.11a)

C̄p
45

d(r2γry(r))

dr
+ C̄p

55

d(r2γrθ(r))

dr
= 0. (4.11b)

The solution of the differential equations system (4.11) yield:

γry(r) =
R−p
ζp45r

(
C̄p

55η
p
1 − C̄

p
45

R−p
r
ηp2

)
, (4.12a)

γrθ(r) =
R−p
ζp45r

(
−C̄p

45η
p
1 + C̄p

44

R−p
r
ηp2

)
, (4.12b)

where R−p is the lowest radius of ply p (which constitutes the interface be-
tween ply p and ply p− 1) and, equivalently, R+

p is the highest radius of ply
p. ηp1 and ηp2 are the integration constants in ply p, and ζp45 is defined by:

ζp45 = C̄p
44C̄

p
55 − (C̄p

45)
2. (4.13)

Substituting equations (4.12) into the corresponding constitutive equa-
tions of (4.10), interlaminar shear stresses yield:

τ pry(r) =
R−p
r
ηp1, (4.14a)

τ prθ(r) =

(
R−p
r

)2

ηp2. (4.14b)

Equations (4.14) may also be obtained by integrating directly equations
(4.8a) and (4.8b). In view of (4.14), there are a total of 2Np integration
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constants, ηp1 and ηp2, with p = 1, 2, . . . , Np, where Np is the total number
of plies. An amount of (2Np − 2) equations can be obtained by using the
equilibrium between plies, which establish the continuity of the interlaminar
stresses in the interfaces. The other two equations can be obtained by
applying a boundary condition of the interlaminar stresses in the inner or
in the outer radius of the laminate. If a boundary condition for one of the
through-thickness shear stresses is applied on the inner or outer radius, the
other boundary condition in the opposite radius is automatically satisfied
due to the equilibrium equations.

In the present model, a boundary condition of a null value of both shear
interlaminar stresses in the inner radius is considered, which implies a null
value of both interlaminar stresses in the outer radius. With these con-
ditions, the integration constants yield ηp1 = ηp2 = 0 for every ply p, and,
therefore, interlaminar shear stresses and strains are null in the whole thick-
ness.

Resolution of the radial displacements

The radial displacements can be determined by the radial equilibrium
equation. Substituting the constitutive law (4.10) into the equilibrium equa-
tion (4.8c) it yields:

C̄p
13

d(rεθ(r))

dr
+ C̄p

23

d(rεy(r))

dr
+ C̄p

33

d(rεr(r))

dr
+ C̄p

36

d(rγθy(r))

dr
=

C̄p
11εθ(r) + C̄p

12εy(r) + C̄p
13εr(r) + C̄p

16γθy(r) + δp3 − δ
p
1, (4.15)

where:

δpi = C̄p
1i∆ε

p
θ + C̄p

2i∆ε
p
y + C̄p

3i∆ε
p
r + C̄p

6i∆γ
p
θy, i = 1, 2, 3, 6. (4.16)

Notice that C̄p
ij = C̄p

ji.
Substituting the strains from equations (4.4), (4.5) and (4.6) into equa-

tion (4.15):

C̄p
33r

d

dr

(
r
dwo(r)

dr

)
− C̄p

11wo(r) =

hp1γ
0
θy

r2

R
+
[
hp2ε

0
θ + hp3ε

0
y + δp3 − δ

p
1

]
r + C̄p

16Rγ
0
yθ, (4.17)

where the auxiliary parameters hp1, h
p
2 and hp3 are defined as:
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hp1 = C̄p
16 − 2C̄p

36, hp2 = C̄p
11 − C̄

p
13, hp3 = C̄p

12 − C̄
p
23. (4.18)

Equation (4.17) can be integrated by, first, obtaining a particular solu-
tion and, second, solving the homogeneous equation. Therefore, integrating
equation (4.17) the radial displacement yields:

w0(r) = −hp4Rγ0yθ + r
(
hp5ε

0
θ + hp6ε

0
y + hp7

)
+

r2

R
hp8γ

0
θy +

ξp1r
κp

C̄p
13 + κpC̄p

33

+
ξp2r
−κp

C̄p
13 − κpC̄

p
33

, (4.19)

where ξp1 and ξp2 are two integration constants introduced by the homoge-
neous equation, which depend on the ply p.

In (4.19), the parameter κp, establishing the radial dependence of the
radial displacement, is defined as:

κp =

√
C̄p

11

C̄p
33

, (4.20)

and the auxiliary parameters are defined as:

hp4 =
C̄p

16

C̄p
11

, hp5 =
C̄p

11 − C̄
p
13

C̄p
33 − C̄

p
11

, hp6 =
C̄p

12 − C̄
p
23

C̄p
33 − C̄

p
11

, (4.21a)

hp7 =
δp3 − δ

p
1

C̄p
33 − C̄

p
11

, hp8 =
C̄p

16 − 2C̄p
36

4C̄p
33 − C̄

p
11

. (4.21b)

The particular solution of (4.19) is not valid in plies with κp = 1 or with
κp = 2. These cases are considered in a following subsection. The particular
solution is not valid when κp = 0 either, but this is not a realistic case, and
it is not studied.

Notice that κp reminds the Lekhnitskii’s parameter given in equation
(3.10a) relating the circumferential and the radial stiffnesses. However, it is
not exactly the same, coinciding only when the Lekhnitskii’s equations are
applied considering a plane strain assumption.

The ply integration constants ξp1 and ξp2 constitute a set of 2Np unknown
variables. These variables are determined by imposing the continuity of
w1(r) and σr(r) between plies, which implies a total of 2Np − 2 equations,
and by imposing the boundary conditions of σr(r) in both radial boundaries,
R− and R+. These boundary conditions are usually applied with a null
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value, but they can also have another value, which will cause membrane
forces, Nθ, which are defined as:

Nθ =

∫ R+

R−
σθ(r)dr. (4.22)

Substituting the equilibrium equation (4.8c) into (4.22), the membrane
forces yield:

Nθ =

∫ R+

R−

d(rσr(r))

dr
dr = R+p+ −R−p−. (4.23)

Once the continuity between plies and the boundary conditions have
been imposed, the unknown variables ξp1 and ξp2 are determined depending on
the strain constant parameters ε0θ, ε

0
y, γ

0
θy and γ0yθ. These strain parameters

define the circumferential strain, the axial strain and torsional strains, which
can be fixed as inputs in the problem, or they can be calculated from the
applied loads to the laminate. The calculation from applied loads is studied
in a following section. In this last case, the unknown variables ξp1 and ξp2 are
determined jointly with the strain constant parameters ε0θ, ε

0
y, γ

0
θy and γ0yθ.

Strains and stresses calculation

In order to apply the equilibrium equations of the radial stress, σr, be-
tween plies, it is necessary to obtain its closed-form equation. In this way,
stresses expressions can be obtained from the strains expressions. Strains
expressions can be obtained by substituting the radial displacement, w0(r),
given in equation (4.19), into equations (4.6), which yield:

εθ(r) = −R
r
hp4γ

0
yθ + (1 + hp5)ε

0
θ + hp6ε

0
y + hp7 +

r

R
hp8γ

0
θy+

ξp1r
κp−1

C̄p
13 + κpC̄p

33

+
ξp2r
−κp−1

C̄p
13 − κpC̄

p
33

, (4.24a)

εr(r) = hp5ε
0
θ + hp6ε

0
y + hp7 + 2

r

R
hp8γ

0
θy +

κpξp1r
κp−1

C̄p
13 + κpC̄p

33

− κpξp2r
−κp−1

C̄p
13 − κpC̄

p
33

. (4.24b)

Substituting the strains given in equations (4.24), (4.4) and (4.5) into
the constitutive law (4.10), the stresses can be written as:

σpθ(r) = Hp
11ε

0
θ+H

p
12ε

0
y+

R

r
Hp

13γ
0
yθ+H

p
14γ

0
θy

r

R
+Hp

15ξ
p
1r
κp−1+Hp

16ξ
p
2r
−κp−1+Hp

17,

(4.25a)
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σpy(r) = Hp
21ε

0
θ+H

p
22ε

0
y+

R

r
Hp

23γ
0
yθ+H

p
24γ

0
θy

r

R
+Hp

25ξ
p
1r
κp−1+Hp

26ξ
p
2r
−κp−1+Hp

27,

(4.25b)

σpr (r) = Hp
31ε

0
θ+H

p
32ε

0
y+

R

r
Hp

33γ
0
yθ+H

p
34γ

0
θy

r

R
+Hp

35ξ
p
1r
κp−1+Hp

36ξ
p
2r
−κp−1+Hp

37,

(4.25c)

τ pθy(r) = Hp
61ε

0
θ+H

p
62ε

0
y+

R

r
Hp

63γ
0
yθ+H

p
64γ

0
θy

r

R
+Hp

65ξ
p
1r
κp−1+Hp

66ξ
p
2r
−κp−1+Hp

67,

(4.25d)
where the auxiliary ply constants Hp

ij, with i = 1, 2, 3, 6 and j = 1, 2..., 7,
are defined as follows:

Hp
i1 = C̄p

i1 + (C̄p
i1 + C̄p

i3)h
p
5, i = 1, 2, 3, 6, (4.26a)

Hp
i2 = C̄p

i2 + (C̄p
i1 + C̄p

i3)h
p
6, i = 1, 2, 3, 6, (4.26b)

Hp
i3 = C̄p

i6 − C̄
p
i1h

p
4, i = 1, 2, 3, 6, (4.26c)

Hp
i4 = C̄p

i6 + (C̄p
i1 + 2C̄p

i3)h
p
8, i = 1, 2, 3, 6, (4.26d)

Hp
i5 =

C̄p
i1 + κpC̄p

i3

C̄p
13 + κpC̄p

33

, Hp
i6 =

C̄p
i1 − κpC̄

p
i3

C̄p
13 − κpC̄

p
33

, i = 1, 2, 3, 6, (4.26e)

Hp
i7 = (C̄p

i1 + C̄p
i3)h

p
7 − δ

p
i , i = 1, 2, 3, 6, (4.26f)

Therefore, equation (4.25c) is used to apply the continuity of the transver-
sal stresses between plies, in the same way than equation (4.19) is used to
apply the continuity of the radial displacements.

Displacements calculation

The displacement field is defined by its components: the circumferen-
tial displacement u(r, θ, y), the axial displacement v(r, θ, y) and the radial
displacement w(r, θ, y). Displacements are obtained by integrating the dis-
placement/strain relations, which can be expressed in cylindrical coordinates
as:

εθ(r) =
1

r

∂u(r, θ, y)

∂θ
+
w(r, θ, y)

r
, εy(r) =

∂v(r, θ, y)

∂y
, εr(r) =

∂w(r, θ, y)

∂r
,

(4.27a)

γθy(r) =
∂u(r, θ, y)

∂y
+

1

r

∂v(r, θ, y)

∂θ
, γry(r) =

∂w(r, θ, y)

∂y
+
∂v(r, θ, y)

∂r
,

(4.27b)

γrθ(r) =
∂u(r, θ, y)

∂r
− u(r, θ, y)

r
+

1

r

∂w(r, θ, y)

∂θ
. (4.27c)
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Therefore, by introducing (4.4), (4.5), (4.6) and the null values of the
interlaminar shear strains (γrθ = γry = 0) into equations (4.27), and inte-
grating the equations, displacements (cancelling the rigid solid motion that
appears) are given by:

u(r, θ, y) = y
r

R
γ0θy + θrε0θ, (4.28a)

v(r, θ, y) = yε0y +Rθγ0yθ, (4.28b)

w(r, θ, y) = w0(r). (4.28c)

Hence, ε0θ is associated to a normal circumferential deformation, ε0y is
associated to a normal axial deformation, γ0θy is associated to a torsional
deformation and γ0yθ is associated to an in-plane shear deformation in the
width direction, as depicted in Figure 4.2.

Figure 4.2: Deformations associated to the strain constant parameters.

4.1.2 Loads application and boundary conditions

The forces and moments in the laminate are firstly defined for a general
loading state depending on the two in-plane coordinates, θ and y. After
that, the non-dependence of these forces and moments with both in-plane
coordinates is considered, in order to obtain their values from the applied
loads.

Once the values of the forces and moments have been obtained, a system
of linear equations is developed in order to determine the strain constant
parameters, ε0θ, ε

0
y, γ

0
θy and γ0yθ, and the integration constants of the radial

displacement, ξp1 and ξp2 , depending on these loads.
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Equilibrium of forces and moments

The forces and moments in a cylindrical shell for a general loading state
are defined by the following expressions [116, chap. 1]:

Nθ(θ, y) =

∫ R+

R−
σθ(r, θ, y)dr, Mθ(θ, y) =

∫ R+

R−
(r −R)σθ(r, θ, y)dr,

(4.29a)

Nθy(θ, y) =

∫ R+

R−
τθy(r, θ, y)dr, Mθy(θ, y) =

∫ R+

R−
(r −R)τθy(r, θ, y)dr,

(4.29b)

Ny(θ, y) =

∫ R+

R−

r

R
σy(r, θ, y)dr, My(θ, y) =

∫ R+

R−

r

R
(r −R)σy(r, θ, y)dr,

(4.29c)

Nyθ(θ, y) =

∫ R+

R−

r

R
τθy(r, θ, y)dr, Myθ(θ, y) =

∫ R+

R−

r

R
(r −R)τθy(r, θ, y)dr,

(4.29d)

Qθ(θ, y) =

∫ R+

R−
τrθ(r, θ, y)dr, Qy(θ, y) =

∫ R+

R−

r

R
τry(r, θ, y)dr, (4.29e)

where Nθ, as defined previously, is the membrane force or the circumferential
force, Mθ is the circumferential moment, Ny is the axial force, My is the axial
moment, Qθ is the circumferential shear force, Qy is the axial shear force,
Nθy is the in-plane shear force associated to the circumferential direction,
Nyθ is the in-plane shear force associated to the axial direction, Mθy is the
torsional moment associated to the circumferential direction and Myθ is the
torsional moment associated to the axial direction. Notice that forces and
moments are defined per unit width due to the shell assumption.

Notice that torsional moment associated to the circumferential direction
and the in-plane shear forces are related by the following equation:

Mθy(θ, y) = R(Nyθ(θ, y)−Nθy(θ, y)). (4.30)

The equilibrium equations of forces can be obtained by integrating equa-
tions (4.7) in the thickness and considering the value of normal interlaminar
stresses and the null value of shear interlaminar stresses in the radial bound-
aries, yielding:

∂Nθ(θ, y)

∂θ
+R

∂Nyθ(θ, y)

∂y
+Qθ(θ, y) = 0, (4.31a)

∂Nθy(θ, y)

∂θ
+R

∂Ny(θ, y)

∂y
= 0, (4.31b)
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∂Qθ(θ, y)

∂θ
+R

∂Qy(θ, y)

∂y
+R+p+ −R−p− = Nθ(θ, y). (4.31c)

The equilibrium equations of moments can be obtained by integrating
equations (4.7a) and (4.7b) in the thickness multiplied by (r−R) and con-
sidering a null value of shear interlaminar stresses in the radial boundaries.
These equilibrium equations yield:

∂Mθ(θ, y)

∂θ
+R

∂Myθ(θ, y)

∂y
= RQθ(θ, y), (4.32a)

∂Mθy(θ, y)

∂θ
+R

∂My(θ, y)

∂y
= RQy(θ, y). (4.32b)

Suppressing Mθy(θ, y) by substituting (4.30) in (4.32b):

∂Nyθ(θ, y)

∂θ
− ∂Nθy(θ, y)

∂θ
+
∂My(θ, y)

∂y
= Qy(θ, y). (4.33)

Considering that the zone under study is far enough from the free edges
and the changes of curvature and under a loading state for which stresses
do not depend on θ and y, then the forces and moments neither depend on
θ nor on y. Substituting these conditions in equations (4.31c) and (4.32)
the circumferential and axial shear forces, Qθ and Qy, are null and the
circumferential force, Nθ, is given by the membrane forces (4.23). The
absence of the shear forces was previously demonstrated with the absence
of the interlaminar shear stresses, τrθ and τry. However, these conditions
are not sufficient to solve the problem.

In that way, to get the conditions to solve the problem it is necessary
to consider the non-dependence with each coordinate independently of the
other. Hence, considering only the non-dependence of the forces and mo-
ments with the y-direction, equations (4.31) and (4.32a) yield:

dNθ(θ)

dθ
+Qθ(θ) = 0,

dQθ(θ)

dθ
+R+p+ −R−p− = Nθ(θ), (4.34a)

dNθy(θ)

dθ
= 0, (4.34b)

dMθ(θ)

dθ
= RQθ(θ). (4.34c)

Notice that Qθ(θ) is null and Nθ(θ) is given by the membrane forces
in the zone far enough from the free edges and the changes of curvature.
However, equation (4.34a) implies a sinusoidal variation of these forces plus
the membrane force, so taking into account that far enough from the free
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edges and the changes of curvatures in the θ-direction they have to be equal
to the membrane value, implies that Qθ(θ) = 0 and Nθ(θ) is given by the
membrane forces (4.23). Substituting the null value of Qθ(θ) in equation
(4.34c) it implies that Mθ(θ) is constant, so that Mθ(θ) = M0 with M0 being
the applied bending moment at the θ boundary. Equation (4.34b) implies
also a constant value of Nθy(θ) = P0, with P0 being the applied in-plane
shear force in the circumferential direction at the θ boundary.

Notice that M0 and P0 are not respectively the total applied bending
moment and in-plane shear force divided between the width of the specimen
in the axial direction. This is due to the consideration of being far enough
from the free edges in the y-direction. Near to the free edges the distribution
may be different so Mθ(θ) and Nθy(θ) are not constant in the whole width.
However, when the width is much higher than the thickness Mθ(θ) and
Nθy(θ) can be approximated by the total applied bending moment and in-
plane shear force divided by the width.

If a closed cylinder is calculated (a pipe), the values of M0 and P0 may
not be easy to obtain. However, in this case the displacements have to take
the same value at θ = 0 and at θ = 2π. Introducing this condition into
(4.28) the two equations of M0 and P0 can be substituted by null values of
ε0θ and γ0yθ.

In the same way, considering only the non-dependence of the forces and
moments with the θ-direction, equations (4.31a), (4.31b) and (4.32a) yield:

dNy(y)

dy
= 0, (4.35a)

R
dNyθ(y)

dy
+Qθ(y) = 0,

dMyθ(y)

dy
= Qθ(y). (4.35b)

Equation (4.35a) implies a constant value of the axial force, Ny(y) = N0,
where N0 is the applied axial load. On the other side, equations (4.35b) im-
ply, suppressing Qθ(y) by substituting one equation in the other, a constant
value of Myθ(y) +RNyθ(y) = T0, where T0 is the applied torsional moment.

Therefore, in the studied zone where stresses and strains depend only on
the radial coordinate, the four remaining equations to close the problem and
determining the strain constant parameters, ε0θ, ε

0
y, γ

0
θy and γ0yθ, are given

by the applied loads Mθ = M0, Ny = N0, Nθy = P0 and Myθ +RNyθ = T0.
The forces and moments not included in the previous conditions, such as

the membrane force (Nθ) or the axial moment (My), are not inputs of the
problems as they are results of other loads or effects, such as the pressure or
the anticlastic effect combined with the curvature, and they are calculated
from the input loads.
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Application of the external loads

To apply the external loads equation it is necessary to integrate equa-
tions (4.25) accordingly to the forces and moments definitions. Therefore,
substituting the circumferential stress (4.25a) into the definition of the cir-
cumferential bending moment (4.29a) and considering that Mθ = M0, the
applied bending moment per unit of width can be written as:

M0 =

Np∑
p=1

∫ R+
p

R−
p

(r −R)σpθ(r)dr =

Np∑
p=1

(
KM

1p ε
0
θ +KM

2p ε
0
y +KM

3p γ
0
yθ +KM

4p γ
0
θy +KM

5p ξ
p
1 +KM

6p ξ
p
2 +KM

7p

)
, (4.36)

where the auxiliary ply constantsKM
jp (with j = 1, 2, ..., 7 and p = 1, 2, ..., Np)

are defined as follows:

KM
jp = Hp

1j

R+
p −R−p

2

(
R+
p +R−p − 2R

)
, j = 1, 2, 7, (4.37a)

KM
3p = Hp

13R

(
R+
p −R−p −R log

(
R+
p

R−p

))
, (4.37b)

KM
4p = Hp

14

(
(R+

p )3 − (R−p )3

3R
−

(R+
p )2 − (R−p )2

2

)
, (4.37c)

KM
5p = Hp

15

(
(R+

p )κ
p+1 − (R−p )κ

p+1

κp + 1
−R

(R+
p )κ

p − (R−p )κ
p

κp

)
, (4.37d)

KM
6p = Hp

16

(
(R+

p )1−κ
p − (R−p )1−κ

p

1− κp
+R

(R+
p )−κ

p − (R−p )−κ
p

κp

)
. (4.37e)

Substituting the axial stress (4.25b) into the definition of the axial force
(4.29c) and considering that Ny = N0, the applied axial force per unit of
length can be written as:

N0 =

Np∑
p=1

∫ R+
p

R−
p

r

R
σpy(r)dr =

Np∑
p=1

(
KN

1pε
0
θ +KN

2pε
0
y +KN

3pγ
0
yθ +KN

4pγ
0
θy +KN

5pξ
p
1 +KN

6pξ
p
2 +KN

7p

)
, (4.38)
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where the auxiliary ply constantsKN
jp (with j = 1, 2, ..., 7 and p = 1, 2, ..., Np)

are defined as follows:

KN
jp = Hp

2j

(R+
p )2 − (R−p )2

2R
, j = 1, 2, 7, (4.39a)

KN
3p = Hp

23(R
+
p −R−p ), KN

4p = Hp
24

(R+
p )3 − (R−p )3

3R2
, (4.39b)

KN
5p = Hp

25

(R+
p )κ

p+1 − (R−p )κ
p+1

(κp + 1)R
, KN

6p = Hp
26

(R+
p )1−κ

p − (R−p )1−κ
p

(1− κp)R
.

(4.39c)

Substituting the in-plane shear stress (4.25d) into the definition of the
in-plane shear force associated to the circumferential direction (4.29b) and
considering that Nθy = P0, the applied in-plane shear force per unit of length
can be written as:

P0 =

Np∑
p=1

∫ R+
p

R−
p

τ pθy(r)dr =

Np∑
p=1

(
KP

1pε
0
θ +KP

2pε
0
y +KP

3pγ
0
yθ +KP

4pγ
0
θy +KP

5pξ
p
1 +KP

6pξ
p
2 +KP

7p

)
, (4.40)

where the auxiliary ply constantsKP
jp (with j = 1, 2, ..., 7 and p = 1, 2, ..., Np)

are defined as follows:

KP
jp = Hp

6j

(
R+
p −R−p

)
, j = 1, 2, 7, (4.41a)

KP
3p = Hp

63R log

(
R+
p

R−p

)
, KP

4p = Hp
64

(R+
p )2 − (R−p )2

2R
, (4.41b)

KP
5p = Hp

65

(R+
p )κ

p − (R−p )κ
p

κp
, KP

6p = −Hp
66

(R+
p )−κ

p − (R−p )−κ
p

κp
. (4.41c)

Finally, substituting the in-plane shear stress (4.25d) into the definition
of the in-plane shear moment and force associated to the axial direction
(4.29d) and considering that Myθ+RNyθ = T0, the applied torsional moment
per unit of length can be written as:
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T0 =

Np∑
p=1

∫ R+
p

R−
p

r2

R
τ pθy(r)dr =

Np∑
p=1

(
KT

1pε
0
θ +KT

2pε
0
y +KT

3pγ
0
yθ +KT

4pγ
0
θy +KT

5pξ
p
1 +KT

6pξ
p
2 +KT

7p

)
, (4.42)

where the auxiliary ply constantsKT
jp (with j = 1, 2, ..., 7 and p = 1, 2, ..., Np)

are defined as follows:

KT
jp = Hp

6j

(R+
p )3 − (R−p )3

3R
, j = 1, 2, 7, (4.43a)

KT
3p = Hp

63

(R+
p )2 − (R−p )2

2
, KT

4p = Hp
64

(R+
p )4 − (R−p )4

4R2
, (4.43b)

KT
5p = Hp

65

(R+
p )κ

p+2 − (R−p )κ
p+2

(κp + 2)R
, KT

6p = Hp
66

(R+
p )2−κ

p − (R−p )2−κ
p

(2− κp)R
.

(4.43c)

Summary of the problem resolution procedure

The problem developed in the present section is constituted by a set of
(4 + 2Np) unknown variables. These unknown variables are divided in four
strain constant parameters ε0θ, ε

0
y, γ

0
θy and γ0yθ, and in 2Np ply constants ξp1

and ξp2 (with p = 1, 2, ..., Np).
The problem is then closed by using (4+2Np) equations. These equations

are also divided in two groups. The first group is constituted by the 2Np

ply equations, which are subdivided in Np− 1 equations of compatibility of
radial displacements between plies by using equation (4.19), Np−1 equations
of equilibrium of the radial stress between plies by using equation (4.25c),
and two boundary conditions applied to the first ply with σp=1

r (R−) = p−

and to the last ply with σ
p=Np
r (R+) = p+. The second group of equations

is constituted by the four applied loads, which involve the whole laminate,
given by equations (4.36), (4.38), (4.40) and (4.42).

Notice that the last group of equations may be substituted by other
equations if the boundary conditions require it, e.g., in a pipe it is necessary
to change equations (4.36) and (4.40) by the imposition of ε0θ = 0 and γ0yθ =
0, or in the case that the axial deformation is avoided by the embedding of
the axial ends equation (4.38) has to be substituted by the imposition of
ε0y = 0.
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The (4 + 2Np) set of equations constitutes a linear system of equations
of the (4 + 2Np) unknown variables, which can be numerically implemented
as a matrix inversion problem of the form Ax = b, where x includes all the
unknown variables. Notice that all the residual strains parameters and the
applied loads are included in vector b.

Once the unknown variables have been obtained, stresses and displace-
ments can be easily evaluated by using equations (4.25) and (4.28) respec-
tively. The evaluation of the radial displacement requires also the use of
equation (4.19). Furthermore, strains can be also evaluated by using equa-
tions (4.4), (4.5) and (4.24).

The terms of the aforementioned matrix have been obtained in the
present model, depending on ply parameters. However, those parameters
cannot be calculated for matrices having certain combinations of elastic
properties, the particular cases being developed in the following section.

4.1.3 Particular cases

There are three particular cases where the solution of the equation (4.17)
is not the equation (4.19). These three particular cases are given in plies
p with κp = 0, κp = 1 or κp = 2. The first particular case, κp = 0, is
not a realistic configuration, as it implies a null value of the circumferential
stiffness of the ply or an infinite value of the radial stiffness. The second
particular case, κp = 1, is very typical in common laminates, as it implies
the same circumferential stiffness than radial stiffness, C̄p

11 = C̄p
33, which is

typically occurring in UD plies with the fibre oriented in the axial direction.
The third case, κp = 2, is not usual but possible, and it implies C̄p

11 = 4C̄p
33.

Hence, the case κp = 0 is not being developed in the present document.
The other two particular cases are studied in the following subsections.

Problem resolution in a ply p with C̄p
11 = C̄p

33

The case of a ply with C̄p
11 = C̄p

33 has singularities in the developed
solution of the problem, so it needs to be independently analysed. This is,
for example, the case of a 90o ply (defining the 0o direction as the ply with
the fibres in the θ direction). Consequently, this particular case has a high
importance.

In this case the solution of equation (4.17) yields:
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w0(r) = −hp4Rγ0yθ + r log(r)
(
hp5ε

0
θ + hp6ε

0
y + hp7

)
+

r2

R
hp8γ

0
θy +

ξp1r

C̄p
13 + C̄p

11

+
ξp2r
−1

C̄p
13 − C̄

p
11

, (4.44)

where hp4 and hp8 remains as in the general ply case accordingly to (4.21),
and hp5, h

p
6 and hp7 yield for this ply p:

hp5 =
C̄p

11 − C̄
p
13

2C̄p
11

, hp6 =
C̄p

12 − C̄
p
23

2C̄p
11

, hp7 =
δp3 − δ

p
1

2C̄p
11

. (4.45)

Therefore, substituting (4.44) into (4.6) the circumferential and radial
strains can be written as:

εθ(r) = −hp4
R

r
γ0yθ + ε0θ + (hp5ε

0
θ + hp6ε

0
y + hp7) log(r)+

r

R
hp8γ

0
θy +

ξp1
C̄p

13 + C̄p
11

+
ξp2r
−2

C̄p
13 − C̄

p
11

, (4.46a)

εr(r) = (hp5ε
0
θ + hp6ε

0
y + hp7)(1 + log(r)) + 2

r

R
hp8γ

0
θy +

ξp1
C̄p

13 + C̄p
11

− ξp2r
−2

C̄p
13 − C̄

p
11

.

(4.46b)
Substituting the strains given in equations (4.46), (4.4) and (4.5) into

the constitutive law (4.10), the stresses can be written as:

σpθ(r) = (Hp
11 +Gp

11 log(r))ε0θ + (Hp
12 +Gp

12 log(r))ε0y+

Hp
13

R

r
γ0yθ +Hp

14

r

R
γ0θy +Hp

15ξ
p
1 +Hp

16ξ
p
2r
−2 +Hp

17 +Gp
17 log(r), (4.47a)

σpy(r) = (Hp
21 +Gp

21 log(r))ε0θ + (Hp
22 +Gp

22 log(r))ε0y+

Hp
23

R

r
γ0yθ +Hp

24

r

R
γ0θy +Hp

25ξ
p
1 +Hp

26ξ
p
2r
−2 +Hp

27 +Gp
27 log(r), (4.47b)

σpr (r) = (Hp
31 +Gp

31 log(r))ε0θ + (Hp
32 +Gp

32 log(r))ε0y+

Hp
33

R

r
γ0yθ +Hp

34

r

R
γ0θy +Hp

35ξ
p
1 +Hp

36ξ
p
2r
−2 +Hp

37 +Gp
37 log(r), (4.47c)
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τ pθy(r) = (Hp
61 +Gp

61 log(r))ε0θ + (Hp
62 +Gp

62 log(r))ε0y+

Hp
63

R

r
γ0yθ +Hp

64

r

R
γ0θy +Hp

65ξ
p
1 +Hp

66ξ
p
2r
−2 +Hp

67 +Gp
67 log(r), (4.47d)

where the auxiliary ply constants Hp
ij, with i = 1, 2, 3, 6 and j = 3, 4, 5, 6

remain as in the general ply case, according to (4.26), and the auxiliary
ply constants Hp

ij and Gp
ij, with i = 1, 2, 3, 6 and j = 1, 2, 7, are defined as

follows:

Hp
i1 = C̄p

i1 + C̄p
i3h

p
5, Gp

i1 = (C̄p
i1 + C̄p

i3)h
p
5, i = 1, 2, 3, 6, (4.48a)

Hp
i2 = C̄p

i2 + C̄p
i3h

p
6, Gp

i2 = (C̄p
i1 + C̄p

i3)h
p
6, i = 1, 2, 3, 6, (4.48b)

Hp
i7 = C̄p

i3h
p
7 − δ

p
i , Gp

i7 = (C̄p
i1 + C̄p

i3)h
p
7, i = 1, 2, 3, 6. (4.48c)

Therefore, when the present ply is involved in an equation of continuity
of the radial displacement, equation (4.44) must be used instead of (4.19),
and when the present ply is involved in an equation of continuity of the
radial stress, equation (4.47c) must be used instead of (4.25c).

In the total forces equations (4.36), (4.38), (4.40) and (4.42), the present
ply p is included with the following parameters KM

jp , KN
jp , KP

jp and KT
jp

(with j = 1, 2, 7 and p given by the present ply):

KM
jp = Gp

1j

(
R
(
R+
p (1− logR+

p )−R−p (1− logR−p )
)

+

(R+
p )2

2

(
logR+

p −
1

2

)
−

(R−p )2

2

(
logR−p −

1

2

))
+

Hp
1j

R+
p −R−p

2

(
R+
p +R−p − 2R

)
, j = 1, 2, 7, (4.49a)

KN
jp =

(
Hp

2j −
Gp

2j

2

)
(R+

p )2 − (R−p )2

2R
+

Gp
2j

2R

(
(R+

p )2 logR+
p − (R−p )2 logR−p

)
, j = 1, 2, 7, (4.49b)

KP
jp = (Hp

6j −G
p
6j)
(
R+
p −R−p

)
+

Gp
6j(R

+
p logR+

p −R−p logR−p ), j = 1, 2, 7, (4.49c)
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KT
jp =

(
Hp

6j −
Gp

6j

3

)
(R+

p )3 − (R−p )3

3R
+

Gp
6j

3R

(
(R+

p )3 logR+
p − (R−p )3 logR−p

)
, j = 1, 2, 7, (4.49d)

and parameters KM
6p and KN

6p are given by:

KM
6p = Hp

16

(
log

(
R+
p

R−p

)
+R

(R+
p )−κ

p − (R−p )−κ
p

κp

)
, (4.50a)

KN
6p =

Hp
26

R
log

(
R+
p

R−p

)
. (4.50b)

Parameters KM
jp and KN

jp, with j = 3, 4, 5, and KP
jp and KT

jp, with j =
3, 4, 5, 6, remain as in equations (4.37), (4.39), (4.41) and (4.43), respectively.

Problem resolution in a ply p with Cp
11 = 4Cp

33

The case of a ply with C̄p
11 = 4C̄p

33 is not common, but is possible. In
this case, the solution of equation (4.17) can be written as:

w0(r) = −hp4Rγ0yθ + r
(
hp5ε

0
θ + hp6ε

0
y + hp7

)
+

r2

R
log(r)hp8γ

0
θy +

ξp1r
2

C̄p
13 + 2C̄p

33

+
ξp2r
−2

C̄p
13 − 2C̄p

33

, (4.51)

where hp4, h
p
5, h

p
6 and hp7 remain as in the general ply case, accordingly to

(4.21), and hp8 yields for this ply p:

hp8 =
C̄p

16 − 2C̄p
36

4C̄p
33

. (4.52)

Therefore, substituting (4.51) into (4.6) the circumferential and radial
strains can be written as:

εθ(r) = −hp4
R

r
γ0yθ + (1 + hp5)ε

0
θ + hp6ε

0
y + hp7+

r

R
log(r)hp8γ

0
θy +

ξp1r

C̄p
13 + 2C̄p

33

+
ξp2r
−3

C̄p
13 − 2C̄p

33

, (4.53a)

εr(r) = hp5ε
0
θ + hp6ε

0
y + hp7+

r

R
(1 + 2 log(r))hp8γ

0
θy +

2ξp1r

C̄p
13 + 2C̄p

33

− 2ξp2r
−3

C̄p
13 − 2C̄p

33

. (4.53b)
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Substituting the strains given in equations (4.53), (4.4) and (4.5) into
the constitutive law (4.10), the stresses can be written as:

σpθ(r) = Hp
11ε

0
θ +Hp

12ε
0
y +Hp

13

R

r
γ0yθ+

(Hp
14 +Gp

14 log(r))
r

R
γ0θy +Hp

15ξ
p
1r +Hp

16ξ
p
2r
−3 +Hp

17, (4.54a)

σpy(r) = Hp
21ε

0
θ +Hp

22ε
0
y +Hp

23

R

r
γ0yθ+

(Hp
24 +Gp

24 log(r))
r

R
γ0θy +Hp

25ξ
p
1r +Hp

26ξ
p
2r
−3 +Hp

27, (4.54b)

σpr (r) = Hp
31ε

0
θ +Hp

32ε
0
y +Hp

33

R

r
γ0yθ+

(Hp
34 +Gp

34 log(r))
r

R
γ0θy +Hp

35ξ
p
1r +Hp

36ξ
p
2r
−3 +Hp

37, (4.54c)

τ pθy(r) = Hp
61ε

0
θ +Hp

62ε
0
y +Hp

63

R

r
γ0yθ+

(Hp
64 +Gp

64 log(r))
r

R
γ0θy +Hp

65ξ
p
1r +Hp

66ξ
p
2r
−3 +Hp

67, (4.54d)

where the auxiliary ply constants Hp
ij, with i = 1, 2, 3, 6 and j = 1, 2, 3, 5, 6, 7

remain as in the general ply case according to (4.26), and the auxiliary ply
constants Hp

ij and Gp
ij, with i = 1, 2, 3, 6 and j = 4, are defined as follows:

Hp
i4 = C̄p

i6 + C̄p
i3h

p
8, Gp

i4 = (C̄p
i1 + 2C̄p

i3)h
p
8, i = 1, 2, 3, 6. (4.55a)

Therefore, when the present ply is involved in an equation of continuity
of the radial displacement, equation (4.51) must be used instead of (4.19),
and when the present ply is involved in an equation of continuity of the
radial stress, equation (4.54c) must be used instead of (4.25c).

In the total forces equations (4.36), (4.38), (4.40) and (4.42), the present
ply p is included with the following parameters KM

jp , KN
jp , KP

jp and KT
jp

(with j = 4 and p given by the present ply):
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KM
4p = Gp

14

(
(R+

p )2

2

(
1

2
− logR+

p

)
−

(R−p )2

2

(
1

2
− logR−p

)
+

(R+
p )3

3R

(
logR+

p −
1

3

)
−

(R−p )3

3R

(
logR−p −

1

3

))
+

Hp
14

(
(R+

p )3 − (R−p )3

3R
−

(R+
p )2 − (R−p )2

2

)
, (4.56a)

KN
4p =

(
Hp

24 −
Gp

24

3

)
(R+

p )3 − (R−p )3

3R2
+
Gp

24

3R2

(
(R+

p )3 logR+
p − (R−p )3 logR−p

)
,

(4.56b)

KP
4p =

(
Hp

64 −
Gp

64

2

)
(R+

p )2 − (R−p )2

2R
+
Gp

64

2R

(
(R+

p )2 logR+
p − (R−p )2 logR−p

)
,

(4.56c)

KT
4p =

(
Hp

64 −
Gp

64

4

)
(R+

p )4 − (R−p )4

4R2
+
Gp

64

4R2

(
(R+

p )4 logR+
p − (R−p )4 logR−p

)
,

(4.56d)
and parameter KT

6p is given by:

KT
6p =

Hp
66

R
log

(
R+
p

R−p

)
. (4.57)

Parameters KM
jp , KN

jp and KP
jp, with j = 1, 2, 3, 5, 6, 7, and KT

jp, with
j = 1, 2, 3, 5, 7, remain as in equations (4.37), (4.39), (4.41) and (4.43),
respectively.

4.2 Analysis of the effect of residual stresses

in the unfolding failure

UD plies of composite laminates have different thermal expansion co-
efficients in the fibre direction and the in-plane direction perpendicular to
the fibre, due to the different expansion coefficient between the matrix and
the fibre. When a laminate with different orientations of the plies is man-
ufactured the free expansion of the plies is constrained by the plies with
a different orientation, causing the appearance of in-plane residual stresses.
This kind of residual stresses are well-known and correctly calculated for the
flat laminates, which typically raise during the cooling after the curing pro-
cess. However, when the laminate is curved the existence of axial stresses,
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σθ, causes the apparition of interlaminar stresses to fulfil the equilibrium
equation (4.8c).

In this way, a temperature change induces the apparition of interlaminar
stresses in a curved laminate. These interlaminar stresses can be tensile or
compressive, depending on the stacking sequence, respectively anticipating
or delaying the unfolding failure. When the temperature change is higher
the residual stresses are higher too. Therefore, residual stresses depend on
the service temperature. When the service temperature is lower, residual
stresses are higher.

4.2.1 Homogeneous anisotropic materials

At mesoscopic scale, composite materials are not homogeneous as each
ply is oriented in a different direction. However, an individual ply, or a lam-
inate with all the plies oriented in the same direction, can be approximated
as homogeneous and orthotropic. In a homogeneous material there are no
differences in the coefficients of thermal expansion between plies. Therefore,
by using the previous explanation about the differences in these coefficients,
the non-existence of the mentioned residual stresses becomes reasonable.
However, the curvature may induce residual stresses in many cases, even in
homogeneous materials.

An orthotropic material is considered in this section as an example of
anisotropic material. When the material orthotropic directions are coinci-
dent with the θ and y axes, it can shrink or expand freely in those directions
without inducing residual stresses. However, when the orthotropic axes are
oriented in other directions the curvature constrains the thermal expansion
and residual stresses appear.

In this section the model is applied to a shell with a mean radius equal to
the thickness: R = t = 1 mm. The stiffness properties and the coefficients
of thermal expansion, expressed in the orthotropic axes, are given in Table
4.1.

Table 4.1: Material properties
E11 (MPa) 150 ν12 0.3 G12 (MPa) 4.8 α11 (K−1) -1·10−6

E22 (MPa) 10 ν13 0.3 G13 (MPa) 4.8 α22 (K−1) 3·10−5

E33 (MPa) 10 ν23 0.3 G23 (MPa) 4.8 α33 (K−1) 3·10−5

Considering that the 0o direction is defined by the direction 1 of the
material being coincident with the θ axis, a material with 45o of orienta-
tion under a temperature decrement of 160oC presents the residual stresses
(calculated according to the regularized solution developed in the previous
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section) depicted in Figure 4.3. These stresses expressed in the material
axes are depicted in Figure 4.4.

(a) (b)

Figure 4.3: Residual stresses in a 45o single ply laminate with ∆T =
−160oC. (a) Circumferential, axial and shear stresses. (b) Interlaminar nor-
mal stress.

(a) (b)

Figure 4.4: Residual stresses in a 45o single ply laminate with ∆T = −160oC
expressed in the material axes. (a) Stress in the fibre direction. (b) Stresses
in the orthotropic matrix directions and shear stress.

In Figure 4.4, it can be observed that the highest stresses are given in
the stiffest direction of the material (direction 1). The depicted residual
stresses represent the thermal stresses due to the curvature.

Considering a typical strength in the radial direction of the material of
approximately 50 MPa, and considering that the unfolding failure is typi-
cally given for radius smaller than the mean radius, the thermal stresses in
the given configuration represent a 4% of the total failure load.

Figure 4.5 shows the maximum radial stress appearing in a homogeneous
curved sample under a temperature decrement of 160oC, depending on the
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orientation of the material. It can be observed that the maximum radial
stress for the present case is given for approximately 38o. Furthermore,
directions 0o and 90o have null residual stresses, since they are able to deform
freely.

Figure 4.5: Maximum radial stress for ∆T = −160oC depending on the
orientation of the single ply laminate.

4.2.2 Composite laminates

In the case of a composite laminate, the different thermal expansion
coefficients in the same direction of each ply due to their different orienta-
tions induces significant residual in-plane stresses, and according to (4.8c)
interlaminar stresses too.

As an example of application of the model to calculate the regularized
thermal stresses, let us consider the material properties of Table 4.1 and two
different stacking sequences given by [45, 0, -45, 90]S and [45, 90, -45, 0]S.
In these cases, Figure 4.6 shows the radial stresses obtained when applying
a temperature decrement ∆T = −160oC.

In a composite laminate, fibres have very low (or even negative) expan-
sion coefficients, and therefore, the plies have very small expansion coeffi-
cients in direction 1, the expansion coefficient being higher in direction 2.
As a consequence, referring to the circumferential stresses, the 0o plies are
compressed in the circumferential direction while the 90o plies are tensioned
in the same direction. By using equation (4.8c), the presence of compressed
plies implies a decrease of the interlaminar stress when the radial coordi-
nate increases, and, on the contrary, the presence of tensioned plies implies
an increase of the interlaminar stress when the radial coordinate increases.
Hence, when the 0o plies are outer, in the stacking sequence, than the 90o

plies, the inner plies are compressed in the through-the-thickness direction
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Figure 4.6: Radial stresses due to the temperature increment in different
stacking sequences.

and the outer plies are tensioned, as can be seen in Figure 4.6. Inversely,
when the 90o plies are outer than the 0o plies the inner plies are tensioned
in the through-the-thickness direction and the outer plies are compressed.

The unfolding failure is given in these curved beams when the component
is under a bending moment that induces an opening of the curvature. Under
this load state the maximum of the radial stresses is located in the inner part.
Therefore, from the residual stresses point of view, it is optimal to locate the
0o plies outer than the 90o plies in the stacking sequence. This configuration
is optimal also when considering the stresses distributions due to the bending
moment, residual stresses reinforcing this optimization criterion.

Furthermore, considering an interlaminar strength with a value of ap-
proximately 50 MPa with the selected material properties, the residual
stresses in the case of the [45, 90, -45, 0]S stacking sequence anticipates
a 12% the unfolding failure, and in the case of the [45, 0, -45, 90]S stacking
sequence it improves a 12%, considering the given geometry with t = R.

The interlaminar stresses are lower when the relation tl/R decreases,
tl being the thickness of a ply. This parameter can decrease in two cases,
when the number of plies increases maintaining the t/R relation, or when the
mean radius increases maintaining the number of plies and the ply thickness.
Figure 4.7 shows the decrement of the interlaminar normal stresses in both
cases respect to the interlaminar normal stresses depicted in Figure 4.6.

Hence, the effect of the residual stresses is specially important in thin
laminates (with a small number of plies) and in laminates with a small mean
radius respect to the thickness.
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(a) (b)

Figure 4.7: Radial stresses due to the temperature increment in different
geometries. (a) Increment of the number of plies. (b) Increment of the
mean radius.

4.2.3 Finite elements comparison

The solution obtained with the model has been compared with results of
a FE model. The FEM is carried out by considering a 135o curved hollow
cylinder, so that the stresses may be observed far enough from the free edge
in the θ direction, and with a width W = 10t, so that the stresses may
be observed far enough from the free edge in the y direction. The solid
model has been meshed with 10 quadratic elements in the thickness, a high
accuracy being obtained for the interlaminar stresses.

Figure 4.8 shows in continuous line the solution of the model for the
material of Table 4.1 with R = 2t and an individual ply of 45o, and in
asterisks the numerical solution by using the FE model and obtaining the
stresses far enough from the boundaries.

The analytical model constitutes the exact solution of the regularized
stresses, and the FEM results show a good agreement with that solution.
The small differences seen in Figure 4.8 are mainly due to numerical errors
and slight non-regularized effects.

4.3 Analysis of the three-dimensional effects

over the unfolding failure

The regularized 3D model developed can be also applied to the calcula-
tion of regularized stresses due to a bending moment M0, an in-plane shear
force P0, a torsional moment T0 and an axial force N0. In the present Chap-
ter, the bending moment case, M0, is analysed since it is the typical load
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(a) (b)

Figure 4.8: Validation of the model (continuous line) with finite elements
results (asterisks) in the homogeneous case of 45o. (a) In-plane stresses. (b)
Interlaminar stresses.

in the unfolding failure. This load state is given, for instance, in the ILTS
test, consisting in a four-point bending test on a L-sectioned beam.

The load state associated to a bending moment M0 has been widely
analysed with 2D regularized models, it being typically calculated with the
Lekhnitskii’s equations (see [19], Chapter 3) or with the Ko and Jackson’s
equations [4]. It can be also calculated with the non-regularized models
developed in Chapter 3. In the present section, the solution of the model
applied for several stacking sequences is being compared with the exact reg-
ularized model given in [4] to analyse the accuracy of the 2D approximation,
typically used in the calculation of the unfolding failure.

4.3.1 Homogeneous anisotropic materials

In the homogeneous anisotropic material the solution of the 2D regular-
ized problem given by Ko and Jackson [4] coincides with the one given by
Lekhnitskii et al. [19].

The regularized 3D model developed, when applied to the pure bending
moment case, includes several important hypothesis regarding the forces and
moments. It assumes that the forces and moments reach their regularized
values, which are the inputs of the model, and those regularized values
are determined by the free boundaries at the ends in the y direction and
a bending moment applied uniformly at the ends of the θ direction (it is
considered uniform only when it is regularized in the y direction, as it has
actually different values at the free edge). This model is equivalent to a
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free torsion model, the beam can torsion freely while T0 = 0 due to the
boundary condition of null τθy at the free edges along the width. The axial
force is considered also null, N0 = 0, due to the boundary condition of null
σy at the free edges in the width as well as the applied in-plane shear force
is considered null also, P0 = 0.

A second model has been considered as a constrained model. In this
model the torsion is constrained and an uniform bending moment is applied
at the ends along θ (the condition of T0 = 0 used is substituted by γ0θy = 0,
which implies a null torsion). Hence, 3D deformations are constrained in this
model. As a consequence, this model is not realistic for the ILTS four-point
bending test [3].

Considering an orthotropic material with properties given in Table 4.1
and varying the orientation angle in a single-ply laminate, for a geometry
determined by t = R = 1 mm and a load of M0 = −1 Nm/m, the evolution
of the maximum regularized radial stress as a function of the orientation
angle is depicted in Figure 4.9.

Figure 4.9: Maximum radial stress for M0 = −1 Nm/m depending on the
orientation of the single ply laminate.

It can be seen that using a 2D model for the homogeneous material
returns similar results to the 3D constrained model. However, in a more
realistic model where the beam can freely torsion, the maximum radial stress
is significantly higher than that given by the 2D model. Therefore, a 2D
model is not accurate for this kind of configuration. The difference between
the 3D model and the 2D model is maximum around 35o for the given
material properties, and it is null in the 0o and 90o single ply laminates.

Considering the case with a maximum difference, given by an orientation
of 35o, all the stresses in the regularized beam calculated with both 3D
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models are depicted in Figure 4.10.

(a) (b)

Figure 4.10: Stresses in a 35o single ply laminate under M0 = −1 Nm/m
for (a) the free torsion model and (b) the constrained model.

The stresses calculated with the free torsion model present high differ-
ences with the ones calculated with the constrained model (which are similar
to those of the 2D models since the 3D deformations are constrained). Spe-
cially, the differences are very high in the maximum values of the circumfer-
ential and the radial stress, affecting significantly to the failure prediction.

4.3.2 Composite laminates

The 2D models for composite laminates are typically obtained by assum-
ing a plane strain or plane stress state. Plane stress is not a realistic state
because a null stress state in the y direction does not fulfil the compatibility
equations, causing discontinuities in the displacements along the transversal
direction. However, in the same way, a null strain state in the y direction,
when the laminate has any ply with an orientation different to 0o and 90o,
causes discontinuities in the radial shear stress associated to the y direction,
τry, and then it is neither physically possible.

Therefore, it is expected that a 3D model can return more accurate
results than the 2D models, as a 3D model accomplish the continuity in the
displacements and in the shear stress τry. For this reason, the constrained
3D model yields more accurate results than the 2D model in the laminate
case.

If a typical laminate with plies oriented at 0o, ±45o and 90o is considered,
it is expected to obtain higher errors in a 2D model when the number of
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±45o plies increases and when the asymmetry of the stacking sequence is
higher.

Although not shown here, it has been observed that, generally, the dif-
ferences between the 2D model and the 3D model decrease when the number
of plies increase, as the stacking sequence causes a more homogeneous ma-
terial. Consequently, the 2D model is less accurate when it is applied to
thin laminates or less quasi-isotropic laminates.

An interesting 3D effect is the difference between plies of 45o and -45o

when both kind of plies are given in the same stacking sequence. In a
2D model the stiffnesses of a 45o ply are the same than the stiffnesses of
a -45o ply and, therefore, the stresses are not affected by the sign of the
orientation. Consequently, when a ply of 45o is adjacent to a ply of -45o

the circumferential stresses are continuous. However, due to the torsion, in
a 3D model when a ply of 45o is adjacent to a ply of -45o, circumferential
stresses are not continuous across the interface. This effect can be seen in
Figure 4.11, where a stacking sequence [45 -45 -45 45] has been used. In this
Figure the free torsion model presents discontinuities in the circumferential
stress, while the constrained model presents a continuous distribution.

(a) (b)

Figure 4.11: Differences between 45o plies and -45o plies when both are used
in a laminate, showed in a [45 -45 -45 45] stacking sequence. (a) Free torsion
model, (b) Constrained model.

4.3.3 Finite elements comparison

The solution of the model has been compared with FE results for the
case of the bending moment. A curved beam with the material given in
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Table 4.1 has been used with a single-ply configuration of orientation 45o,
1 mm thickness, a mean radius of 2 mm, a total angle of 300o and a width
in the y direction of 10 mm. A −10 Nmm total bending moment has been
applied. Considering the 10 mm width, a bending moment per width of
M0 = −1 Nmm/mm is given. The solid has been meshed with 10 quadratic
elements in the thickness, so a high accuracy is obtained for the interlaminar
stresses. By comparing the finite elements results obtained with the free
torsion model and with the constrained model, Figure 4.12 is obtained.

Figure 4.12: Validation of the models (continuous and discontinuous lines)
by using M0 = −1 N with finite elements results (asterisks) in the homoge-
neous case of 45o.

Small differences (about a 10%) are observed between the solution of the
free torsion 3D model and the FE results in all the stress components. These
differences are due to the finite width of the specimen in the FE model. The
finite width in the y direction induces a stress state of plane stress in the
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boundary, causing the bending moment in the edges to be smaller than
the bending moment in the center of the beam. The bending moment,
M0 [N], has been calculated from the total moment, MT [Nmm], and from
the width, W [mm], as M0 = MT/W , supposing that it is homogeneously
distributed. Actually, due to the edge effect we have that the regularized
bending moment is calculated as M0 = kWMT/W , where the parameter kW
depends mainly on the W/t ratio although it depends also on the stacking
sequence, the material properties, the R/t ratio, etc. It can be deduced that
kW −→ 1 when W/t −→∞.

Therefore, the edge effects causes that the maximum value of M0 is
higher than MT/W . Using a FE model for the present problem a value of
kW = 1.2 has been obtained. Therefore, by using a M0 = 1.2 N bending
moment, Figure 4.13 is obtained.

Figure 4.13: Validation of the models (continuous and discontinuous lines)
by using M0 = −1.2 N and comparing with FE results (asterisks) in the
homogeneous case of 45o.
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Considering the right value of the parameter kW and, therefore, the
right value of the bending moment per unit of length in the inner part of
the sample M0, the differences between the finite element results and the
free torsion 3D model are considerably reduced. The free torsion model
results are very accurate compared with the finite elements model, as no
kind of displacement constraint has been imposed in the finite elements
model. However, the constrained model (which has similar characteristics
to a 2D model) is less accurate in this case due to the torsion induced by
the orientation of the ply.

The importance of considering the effect of the finite width by the pa-
rameter kW in the bending moment calculation has been showed. The ana-
lytical calculation of kW is necessary for an accurate calculation of the stress
components, the regularized 3D model not being satisfactory at that point.
This effect is calculated by using the non-regularized model developed in
the following section.

4.4 Three-dimensional non-regularized mod-

els

The finite width of the specimens combined with the anticlastic effect
may cause that the value of the regularized bending moment in the inner
part of the sample M0 is different to the total bending moment divided by
the width MT/W . This effect can be corrected using a factor kW so that
M0 may be obtained from the total applied bending moment as follows:

M0 = kW
MT

W
. (4.58)

In order to obtain the bending moment distribution in the width in a
more accurate way and to calculate the free-edge effects, an extension of the
MBM and the LPBM to a 3D problem is developed in the present chapter.
This extension may be carried out either with a series expansion in z of the
displacements, and, consequently, the parameters of the problem depend on
s and y, or with a double series expansion in z and y, and, consequently,
parameters of the problem depend on s. A whole 3D model should be
expanded in both z and y, to obtain uni-dimensional differential equations
which have to be solved following a similar procedure as in the original
LPBM and MBM.

To simplify the model, considering that the interesting loading state for
the unfolding problem is the bending problem, a s non-dependant problem is
considered in the strains and stresses, so that the non-regularized problem is
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considered only in the y direction. In that way, a 3D model is used to solve a
2D problem as depicted in Figure 4.14. Therefore, the problem in expanded
only in the z direction since the solution in s is regularized and may be
determined. Consequently, the final differential equation only depend on y.

Figure 4.14: Section studied with the 3D model.

The calculation of the non-regularized problem in the y direction let us
to estimate not only the finite width effect, but also the free edge effect in
the through-the-width direction.

The model is developed first for flat laminates as a simpler model, and
it is subsequently extended to the curved laminate problem. For the sake of
brevity, only the LPBM is developed, while a similar development may be
carried out for the MBM. Therefore, displacements and lengths are consid-
ered non-dimensionalized with one half of the thickness, t/2, including the
through-the-width coordinate y and the respective length W .

Using the concept of the LPBM, the theoretical basis of the 3D non-
regularized model developed with a series expansion in the z coordinate
with Legendre polynomials is given by the following:

us(s, y, z) = u0(s, y) + zu1(s, y) +
n∑
i=2

pi(z)ui(s, y), (4.59a)

uy(s, y, z) = v0(s, y) + zv1(s, y) +
n∑
i=2

f yi (z)vi(s, y), (4.59b)

uz(s, y, z) = w1(s, y) +
n∑
i=2

f zi (z)wi(s, y). (4.59c)
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where pi(z) is the Legendre polynomial of order i, and f yi (z) and f zi (z) are
functions to be determined. As explained previously, this model can be used
considering the regularization in s-direction so that unknown parameters
depend only on the y coordinate.

Notice that, if no regularization is given in the s-direction, the displace-
ments components depends then on both coordinates s and y. Therefore,
the final system of differential equations of the model will be with partial
derivatives and, therefore, it will not be as easy to solve as in the LPBM.
In order to obtain absolute derivatives in the final system of differential
equations, a double series expansion may be used:

us(s, y, z) =
n∑
i=0

m∑
j=0

pi(z)pj(y)uji(s), (4.60a)

uy(s, y, z) =
n∑
i=1

m∑
j=1

f yi (z)gyj (y)vji(s), (4.60b)

uz(s, y, z) =
n∑
i=1

m∑
j=1

f zi (z)gzj (y)wji(s). (4.60c)

where gyj (y) and gzj (y) are functions to be determined. This series expansion
of displacements requires a higher number of displacements components,
and, therefore, the model will require a higher number of higher-order mo-
ments in the stresses side. Furthermore, it needs to differentiate orders n
and m in directions z and y, respectively.

For the development of a whole three-dimensional model it is recom-
mendable to use the approximation given by equations (4.60). However, the
model developed in the present section, as commented previously, consid-
ers a s non-dependant problem in the stresses and strains, which is given
only in some particular cases such as the bending problem. Therefore, in the
present section approximation (4.59) is used since the behaviour in direction
s may be calculated, thus, suppressing this coordinate from the differential
equation of the model. Notice that, although the model is only valid for
a particular case, it is associated to the dominant load in the unfolding
problem.

4.4.1 Development of the 3D non-regularized model
in flat laminates

The non-regularized model is first developed for the flat laminates as
a simpler case. In this case the free-edge effects have been widely studied
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for some kinds of stacking sequences and the results can be compared with
numerical and analytical solutions.

Displacements and strains distributions

Strains and stresses are considered non-dependant with the s coordinate,
which causes a given dependence of the displacements with the aforemen-
tioned coordinate. The terms of the strains could be obtained by using
the compatibility equations, as in the regularized 3D model. However, in
the present section the displacements are obtained by integrating the strain
equations since the resolution from compatibility equations is complexer in a
three-dimensional case. Notwithstanding, the same result may be obtained
with the compatibility equations.

Therefore, considering the axial strain, εs(y, z), which only depends on
the coordinates y and z, and integrating the respective strain-displacement
relation, yields:

εs(y, z) =
∂us(s, y, z)

∂s
−→ us(s, y, z) = uAs (y, z) + εs(y, z)s. (4.61)

where uAs (y, z) and εs(y, z) are auxiliary functions due to the integration.
Considering also the transverse strain, εy(y, z), and the interlaminar

strain, εz(y, z), and integrating the respective strain-displacement relations
yields:

εy(y, z) =
∂uy(s, y, z)

∂y
−→ uy(s, y, z) = u0y(y, z) + uAy (s, z), (4.62a)

εz(y, z) =
∂uz(s, y, z)

∂z
−→ uz(s, y, z) = u0z(y, z) + uAz (s, y), (4.62b)

where u0y(y, z), u
A
y (s, z), u0z(y, z) and uAz (s, y) are auxiliary functions due to

the integration.
Considering now the shear strain γyz(y, z), and using (4.62), yields:

γyz(y, z) =
∂uy(s, y, z)

∂z
+
∂uz(s, y, z)

∂y
=

∂u0y(y, z)

∂z
+
∂u0z(y, z)

∂y
+
∂uAy (s, z)

∂z
+
∂uAz (s, y)

∂y
. (4.63)

Since the right term of equation (4.63) cannot depend on s, the auxiliary
functions uAy (s, z) and uAz (s, y) can be written as:
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uAy (s, z) = uBy (s)− zξA(s), (4.64a)

uAz (s, y) = uBz (s) + yξA(s), (4.64b)

where uBy (s), uBz (s) and ξA(x) are auxiliary functions.
Considering now the shear strain γsy(y, z), and using (4.61), (4.62a) and

(4.64a), yields:

γsy(y, z) =
∂us(s, y, z)

∂y
+
∂uy(s, y, z)

∂s
=

∂uAs (y, z)

∂y
+ s

∂εs(y, z)

∂y
+
duBy (s)

ds
− zdξA(s)

ds
. (4.65)

Since the right term of equation (4.65) cannot depend on s, the auxiliary
functions εs(y, z), u

B
y (s) and ξA(s) are given by:

εs(y, z) = εAs (z) + yκ0y + yzξB, (4.66a)

uBy (s) = sφz −
s2

2
κ0y, (4.66b)

ξA(s) = sκ0yz +
s2

2
ξB, (4.66c)

where ξB is an auxiliary constant, εAs (z) is an auxiliary function, κ0y is the
curvature in the y direction associated to the axial strain εs(y, z), φz is
the rigid body rotation around z axis and κ0yz is the mean line torsional
curvature.

Finally, considering the shear strain γsz(y, z), and using (4.61), (4.62b),
(4.64b), (4.66a) and (4.66c), yields:

γsz(y, z) =
∂us(s, y, z)

∂z
+
∂uz(s, y, z)

∂s
=

∂uAs (y, z)

∂z
+ yκ0yz + s

dεAs (z)

dz
+ 2syξB +

duBz (s)

ds
. (4.67)

Since the right term of equation (4.67) cannot depend on s, the auxiliary
constant ξB and the auxiliary functions εAs (z) and uBz (s) are given by:

εAs (z) = ε0s + zκ0z, (4.68a)

uBz (s) = sφy −
s2

2
κ0z, (4.68b)
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ξB = 0, (4.68c)

where ε0s is the mean line axial strain, κ0z is the curvature in the z direction
associated to the axial strain εs(y, z) and φy is the rigid body rotation around
the axis y.

Furthermore, the following definition is considered, which allows a sim-
pler expression of the strains to be obtained:

uAs (y, z) = u0s(y, z)− yφz − zφy. (4.69)

Therefore, substituting (4.64), (4.66), (4.68) and (4.69) in (4.61) and
(4.62) the displacements can be written as:

us(s, y, z) = u0s(y, z) + sε0s + szκ0z + syκ0y − yφz − zφy, (4.70a)

uy(s, y, z) = u0y(y, z) + sφz −
s2

2
κ0y − szκ0yz, (4.70b)

uz(s, y, z) = u0z(y, z) + sφy −
s2

2
κ0z + syκ0yz. (4.70c)

Substituting in the strains definitions, strains can be written as:

εs(y, z) = ε0s + zκ0z + yκ0y, (4.71a)

εy(y, z) =
∂u0y(y, z)

∂y
, εz(y, z) =

∂u0z(y, z)

∂z
, (4.71b)

γyz(y, z) =
∂u0y(y, z)

∂z
+
∂u0z(y, z)

∂y
, (4.71c)

γsy(y, z) =
∂u0s(y, z)

∂y
− zκ0yz, (4.71d)

γsz(y, z) =
∂u0s(y, z)

∂z
+ yκ0yz. (4.71e)

Notice that the rigid body rotations, φy and φz, do not affect to the
strains.
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Displacements approximation

Displacements are approximated by using a series expansion according
to (4.59). However, under the assumption of non-dependence of the strains
and stresses with the axial coordinate s, displacements have been simplified
to equations (4.70). Therefore, in the present model, the auxiliary functions
u0s(y, z), u

0
y(y, z) and u0z(y, z) have been approximated by a series expansion

in the z-coordinate:

u0s(y, z) = u0(y) + zu1(y) +
n∑
i=2

pi(z)ui(y), (4.72a)

u0y(y, z) = v0(y) + zv1(y) +
n∑
i=2

f yi (z)vi(y), (4.72b)

u0z(y, z) = w1(y) +
n∑
i=2

f zi (z)wi(y). (4.72c)

Using the matrix notation introduced in Chapter 3 the series expansion
can be expressed as follows:

u0s(y, z) = u0(y) + zu1(y) + fs
T (z)u(y), (4.73a)

u0y(y, z) = v0(y) + zv1(y) + fy
T (z)v(y), (4.73b)

u0z(y, z) = w1(y) + fz
T (z)w(y). (4.73c)

Functions fs(z), according to the LPBM, are defined by the Legendre
polynomials. Function fz(z) was defined in the LPBM as fz(z) = f̂s(z).
Function fy(z) is defined by the shear strains, which for the straight lami-
nate yield fy(z) = fs(z).

Strains

After substituting (4.73) in the strains equations (4.71), and considering
the properties of the derivatives of the Legendre polynomials vectors exposed
in Chapter 3, the strains components can be written as:

εs(y, z) = esN(y) + zesM(y), (4.74a)

εy(y, z) = eyN(y) + zeyM(y) + fs
T (z)ey(y), (4.74b)

γsy(y, z) = esyN (y) + zesyM(y) + fs
T (z)esy(y), (4.74c)

γyz(y, z) = eyzQ (y) + f̂s
T

(z)eyz(y), (4.74d)
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γsz(y, z) = eszQ (y) + f̂s
T

(z)esz(y). (4.74e)

εz(y, z) = ˆ̂fs
T

(z)ez(y), (4.74f)

where esN(y), esM(y), eyN(y), eyM(y), esyN (y), esyM(y), eyzQ (y) and eszQ (y) are
the non-dimensional first-order 1D strain components, and ey(y), esy(y),
eyz(y), esz(y) and ez(y) are the non-dimensional higher-order 1D strain
components, which are defined as:

esN(y) = ε0s + yκ0y, esM(y) = κ0z, (4.75a)

eyN(y) =
dv0(y)

dy
, eyM(y) =

dv1(y)

dy
, ey(y) =

dv(y)

dy
, (4.75b)

esyN (y) =
du0(y)

dy
, esyM(y) =

du1(y)

dy
− κ0yz, esy(y) =

du(y)

dy
, (4.75c)

eyzQ (y) = v1(y)+
dw1(y)

dy
+hQ

Tv(y), eyz(y) = Hγ
Tv(y)+

dw(y)

dy
, (4.75d)

eszQ (y) = u1(y) + yκ0yz + hQ
Tu(y), esz(y) = Hγ

Tu(y), (4.75e)

ez(y) = Hz
Tw(y). (4.75f)

Notice that the constant matrices Hγ and Hz and vector hQ are defined
in Chapter 3 in the development of the LPBM (see (3.111) and hQ = ρ for
the flat laminate case).

Equilibrium

The classical shell forces and moments in a flat laminate are defined as
follows:

Ns(y) =

∫ 1

−1
σs(y, z) dz , Ms(y) =

∫ 1

−1
σs(y, z) z dz , (4.76a)

Ny(y) =

∫ 1

−1
σy(y, z) dz , My(y) =

∫ 1

−1
σy(y, z) z dz , (4.76b)

Nsy(y) =

∫ 1

−1
τsy(y, z) dz , Msy(y) =

∫ 1

−1
τsy(y, z) z dz , (4.76c)

Qs(y) =

∫ 1

−1
τsz(y, z) dz , Qy(y) =

∫ 1

−1
τyz(y, z) dz . (4.76d)

The higher-order moments are defined as follows:
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My(y) =

∫ 1

−1
σy(y, z)fs(z) dz , (4.77a)

Msy(y) =

∫ 1

−1
τsy(y, z)fs(z) dz , (4.77b)

Msz(y) =

∫ 1

−1
τsz(y, z) f̂s(z) dz , (4.77c)

Myz(y) =

∫ 1

−1
τyz(y, z) f̂s(z) dz , (4.77d)

Mz(y) =

∫ 1

−1
σz(y, z)

ˆ̂fs(z) dz . (4.77e)

Notice that the higher-order moments associated to σs(y, z) have not
been defined as they are not needed in the constitutive law, due to the
absence of higher-order components in the expression of εs(y, z) in (4.74a).

The elasticity equilibrium equations in a 3D Cartesian coordinate sys-
tem, simplified considering the non-dependence of the stresses with s, are
given by the following equations:

∂τsy(y, z)

∂y
+
∂τsz(y, z)

∂z
= 0, (4.78a)

∂σy(y, z)

∂y
+
∂τyz(y, z)

∂z
= 0, (4.78b)

∂τyz(y, z)

∂y
+
∂σz(y, z)

∂z
= 0. (4.78c)

The forces equilibrium equations are obtained by integrating equations
(4.78) in the thickness and the first-order moment equilibrium equations are
obtained by integrating equations (4.78a) and (4.78b) multiplied by z in the
thickness. If null values of σz, τsz and τyz are prescribed in both thickness
boundaries, the aforementioned equation may be written as:

dNsy(y)

dy
= 0,

dNy(y)

dy
= 0,

dQy(y)

dy
= 0,

dMy(y)

dy
= Qy(y), (4.79a)

dMsy(y)

dy
= Qs(y). (4.79b)
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Considering that the edges in the y direction are free and, therefore,
prescribing null values of σy(y, z), τsy(y, z) and τyz(y, z) in the width bound-
aries, equations (4.79a) imply null values of Nsy(y), Ny(y), Qy(y) and My(y).
Hence, only equation (4.79b) needs to be considered in the following.

The higher-order moments equilibrium equations are obtained integrat-
ing equations (4.78a) and (4.78b) multiplied by fs(z) and integrating equa-
tion (4.78c) multiplied by f̂s(z), yielding:

dMsy(y)

dy
= HγMsz(y) + hQQs(y), (4.80a)

dMy(y)

dy
= HγMyz(y) + hQQy(y) = HγMyz(y), (4.80b)

dMyz(y)

dy
= HzMz(y). (4.80c)

Constitutive law

As in Chapter 3, the laminate is considered constituted by Np plies. The
3D constitutive law of a ply p, with z varying from z−p to z+p , can be expressed
depending on the stiffness matrix of the ply expressed in the ply orthotropic
coordinate system, Cp

ij, with i, j = 1, 2, .., 6, according to equations (4.9).
Rotating the stiffness matrix to the global system (s, y, z), the following
stiffness matrix is obtained:


σps(y, z)
σpy(y, z)
σpz(y, z)
τ pyz(y, z)
τ psz(y, z)
τ psy(y, z)

 =


C̄p

11 C̄p
12 C̄p

13 0 0 C̄p
16

C̄p
12 C̄p

22 C̄p
23 0 0 C̄p

26

C̄p
13 C̄p

23 C̄p
33 0 0 C̄p

36

0 0 0 C̄p
44 C̄p

45 0
0 0 0 C̄p

45 C̄p
55 0

C̄p
16 C̄p

26 C̄p
36 0 0 C̄p

66




εs(y, z)−∆εps
εy(y, z)−∆εpy
εz(y, z)−∆εpz
γyz(y, z)
γsz(y, z)

γsy(y, z)−∆γpsy

 ,
(4.81)

where C̄p
ij, with i, j = 1, 2, .., 6, are the stiffness constants in the global

coordinate system and ∆εpij, with i, j = s, y, z, are the residual strains due
to the manufacturing process (∆γpsy = 2∆εpsy).

Using the three-dimensional constitutive law given in (4.81), the strains
approximations given in (4.74) and the forces and moments definition given
in (4.76) and (4.77), constitutive equations yield:
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

Ns(y)
Ms(y)
Ny(y)
My(y)
My(y)
Nsy(y)
Msy(y)
Msy(y)
Mz(y)


+



N ε
s

M ε
s

N ε
y

M ε
y

M ε
y

N ε
sy

M ε
sy

M ε
sy

M ε
z


= Kσ



esN(y)
esM(y)
eyN(y)
eyM(y)
ey(y)
esyN (y)
esyM(y)
esy(y)
ez(y)


, (4.82a)


Qy(y)
Myz(y)
Qs(y)
Msz(y)

 = Kτ


eyzQ (y)
eyz(y)
eszQ (y)
esz(y)

 , (4.82b)

where N ε
ij, M

ε
ij and M ε

ij are the residual forces, moments and higher-order
moments due to the manufacturing process, andKσ andKτ are respectively
the normal and shear stiffness matrices of the model.

The components of the stiffness matrices Kσ and Kτ are shown in Ap-
pendix B.1.

The residual forces, moments and higher-order moments due to the man-
ufacturing process are calculated as follows:

N ε
s =

Np∑
p=1

(z+p − z−p )∆σps , M ε
s =

Np∑
p=1

1

2
((z+p )2 − (z−p )2)∆σps , (4.83a)

N ε
y =

Np∑
p=1

(z+p − z−p )∆σpy , M ε
y =

Np∑
p=1

1

2
((z+p )2 − (z−p )2)∆σpy , (4.83b)

N ε
sy =

Np∑
p=1

(z+p − z−p )∆τ psy , M ε
sy =

Np∑
p=1

1

2
((z+p )2 − (z−p )2)∆τ psy , (4.83c)

M ε
y =

Np∑
p=1

(
∆σpy

∫ z+p

z−p

fs(z) dz

)
, (4.83d)

M ε
sy =

Np∑
p=1

(
∆τ psy

∫ z+p

z−p

fs(z) dz

)
, (4.83e)
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M ε
z =

Np∑
p=1

(
∆σpz

∫ z+p

z−p

ˆ̂fs(z) dz

)
, (4.83f)

where ∆σps , ∆σpy , ∆σpz and ∆τ psy are calculated from the following expres-
sions: 

∆σps
∆σpy
∆σpz
∆τ psy

 =


C̄p

11 C̄p
12 C̄p

13 C̄p
16

C̄p
12 C̄p

22 C̄p
23 C̄p

26

C̄p
13 C̄p

23 C̄p
33 C̄p

36

C̄p
16 C̄p

26 C̄p
36 C̄p

66




∆εps
∆εpy
∆εpz
∆γpsy

 . (4.84)

According to (4.75a), the dependency of eN(y) and eM(y) with the co-
ordinate y is fixed depending only on three constants. Therefore, the two
first equations of (4.82a) are not needed for the development of the final
differential equation, it being only used for the calculation of the axial force
and the axial bending moment. After extracting the two first equations,
and, rearranging, equations (4.82a) may be expressed as follows:



Ny(y)
My(y)
My(y)
Nsy(y)
Msy(y)
Msy(y)
Mz(y)


+



N ε
y

M ε
y

M ε
y

N ε
sy

M ε
sy

M ε
sy

M ε
z


= KA

σ



eyN(y)
eyM(y)
ey(y)
esyN (y)
esyM(y)
esy(y)
ez(y)


+KB

σ

[
esN(y)
esM(y)

]
, (4.85)

where matrices KA
σ and KB

σ are defined in Appendix B.1.
Equations (4.85) and (4.82b) may be inverted yielding the following com-

pliance equations:



eyN(y)
eyM(y)
ey(y)
esyN (y)
esyM(y)
esy(y)
ez(y)


= ǨA

σ



Ny(y)−N ε
y

My(y)−M ε
y

My(y)−M ε
y

Nsy(y)−N ε
sy

Msy(y)−M ε
sy

Msy(y)−M ε
sy

Mz(y)−M ε
z


− ǨB

σ

[
esN(y)
esM(y)

]
, (4.86a)


eyzQ (y)
eyz(y)
eszQ (y)
esz(y)

 = Ǩτ


Qy(y)
Myz(y)
Qs(y)
Msz(y)

 , (4.86b)
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where ǨA
σ = (KA

σ )−1, ǨB
σ = (KA

σ )−1KB
σ and Ǩτ = Kτ

−1, and their
components are denominated as follows:

ǨA
σ =



Ǎ22 B̌22 (ǩA22)T Ǎ26 B̌26 (ǩA26)T (ǩA23)T

B̌22 Ď22 (ǩB22)T B̌26 Ď26 (ǩB26)T (ǩB23)T

ǩA22 ǩB22 Ǩσ
22 ǩA26 ǩB26 Ǩσ

26 Ǩσ
23

Ǎ26 Ǎ26 (ǩA26)T Ǎ66 B̌66 (ǩA66)T (ǩA36)T

B̌26 B̌26 (ǩB26)T B̌66 Ď66 (ǩB66)T (ǩB36)T

ǩA26 ǩB26 Ǩσ
26 ǩA66 ǩB66 Ǩσ

66 Ǩσ
36

ǩA23 ǩB23 (Ǩσ
23)T ǩA36 ǩB36 (Ǩσ

36)T Ǩσ
33


, (4.87a)

ǨB
σ =



Ǎ12 B̌12

B̌12 Ď12

ǩA12 ǩB12
Ǎ16 B̌16

B̌16 Ď16

ǩA16 ǩB16
ǩA13 ǩB13


, (4.87b)

Ǩτ =


Ǎ44 (ǩC44)T Ǎ45 (ǩC45)T

ǩC44 Ǩτ
44 ǩC45 Ǩτ

45

Ǎ45 (ǩC45)T Ǎ55 (ǩC55)T

ǩC45 Ǩτ
45 ǩC55 Ǩτ

55

 . (4.87c)

Solution procedure

The solution is obtained by jointly solving the strain-displacements equa-
tions, the constitutive law and the equilibrium equations. Deriving equation
(4.86b), considering the null value of Qy and introducing equations (4.80a),
(4.80b), (4.79b), (4.75d) and (4.75e), the shear compliance equations can be
written as:


dv1(y)
dy

+ d2w1(y)
dy2

+ hQ
T dv(y)

dy

Hγ
T dv(y)

dy
+ d2w(y)

dy2
du1(y)
dy

+ κ0yz + hQ
T du(y)

dy

Hγ
T du(y)

dy

 = Ǩτ


0

Hγ
−1 d2My(y)

dy2

d2Msy(y)

dy2

Hγ
−1
(
d2Msy(y)

dy2
− hQ d2Msy(y)

dy2

)
 .

(4.88)
The in-plane displacements components v(y), u1(y) and u(y) may be

obtained from equation (4.88) as follows:
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dv(y)

dy
= HQ

11

d2My(y)

dy2
+HQ

12

d2Msy(y)

dy2
+HQ

13

d2Msy(y)

dy2
−

(Hγ
T )−1

d2w(y)

dy2
, (4.89a)

du1(y)

dy
= HQ

21

d2My(y)

dy2
+HQ

22

d2Msy(y)

dy2
+HQ

23

d2Msy(y)

dy2
− κ0yz, (4.89b)

du(y)

dy
= HQ

31

d2My(y)

dy2
+HQ

32

d2Msy(y)

dy2
+HQ

33

d2Msy(y)

dy2
, (4.89c)

where the auxiliary matrices are defined in Appendix B.2.
Considering that Ny(y), My(y) and Nsy(y) are null, and substituting the

strains from equations (4.75b), (4.75c) and (4.75f), the equations of (4.86a)
associated to ey(y), esyM(y), esy(y) and ez(y) yield:


dv(y)
dy

du1(y)
dy
− κ0yz

du(y)
dy

Hz
Tw(y)

 =


Ǩσ

22 ǩB26 Ǩσ
26 Ǩσ

23

(ǩB26)T Ď66 (ǩB66)T (ǩB36)T

Ǩσ
26 ǩB66 Ǩσ

66 Ǩσ
36

(Ǩσ
23)T ǩB36 (Ǩσ

36)T Ǩσ
33



My(y)
Msy(y)
Msy(y)
Mz(y)

−

ǩA12 ǩB12
B̌16 Ď16

ǩA16 ǩB16
ǩA13 ǩB13

[ esN(y)
esM(y)

]
−Hε, (4.90)

where the auxiliary vector Hε is defined in Appendix B.2.
Substituting equations (4.89), (4.75a) and (4.80) into equations (4.90),

the differential equation of the model is given by:

d2x(y)

dy2
= Gx(y) +Gcv(y) + gε, (4.91a)

x(y) =


My(y)
Msy(y)
Msy(y)
w(y)

 , v(y) =

 κ0yz
ε0s + yκ0y

κ0z

 , (4.91b)

where matrices G and Gc and vector gε are defined in Appendix B.2.
As described in Chapter 3 for the MBM and LPBM, the differential equa-

tion (4.91a) can be solved by obtaining a particular solution (the regularized
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solution) and the solution of the homogeneous equation. The regularized
solution is given by:

xreg(y) = −G−1Gcv(y)−G−1Gε. (4.92)

Non-regularized stresses and strains are determined by the superposition
of their regularized values, given in equation (4.92), and the perturbations,
calculated from the homogeneous equation. The homogeneous equation
is determined by separating the solution vector, x(y), into its regularized
value, xreg(y), and the perturbations, x̂(y). Therefore, the homogeneous
equation is obtained with the variable change x(y) = xreg(y) + x̂(y), and
the differential equation results in:

d2x̂(y)

dy2
= Gx̂(y). (4.93)

Equation (4.93) is solved as an eigenvalue problem as described in the
MBM and the LPBM of Chapter 3 and imposing the boundary conditions
associated to the free edge My(y) = 0, Msy(y) = 0, Msy(y) = 0 and
Myz(y) = 0 in y = 0 and in y = W .

Stresses calculation

With an analogous development to that employed in the straight beam
case of the MBM and the LPBM, once the vector x(y) given in (4.91b)
has been calculated, the moment and higher order moments Msy(y), My(y)
and Msy(y) are directly obtained as the corresponding components of x(y).
Shear higher-order moments and transverse higher-order moments are ob-
tained from the equilibrium equations (4.80). Strains are obtained by using
the compliance equations (4.86). Once strains are obtained, the axial, trans-
verse and in-plane shear stress are calculated for each ply by using the 3D
constitutive equations (4.81):

σps(y, z) = Sps (z)T
(
ǨA
σMT (y)− ǨB

σ

[
ε0s + yκ0y

κ0z

])
+

Qp
11(ε

0
s + yκ0y + zκ0z), (4.94a)

σpy(y, z) = Spy(z)T
(
ǨA
σMT (y)− ǨB

σ

[
ε0s + yκ0y

κ0z

])
+

Qp
12(ε

0
s + yκ0y + zκ0z), (4.94b)
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τ psy(y, z) = Spsy(z)T
(
ǨA
σMT (y)− ǨB

σ

[
ε0s + yκ0y

κ0z

])
+

Qp
16(ε

0
s + yκ0y + zκ0z), (4.94c)

where the vector MT (y) is defined as follows:

MT (y) =



Ny(y)−N ε
y

My(y)−M ε
y

My(y)−M ε
y

Nsy(y)−N ε
sy

Msy(y)−M ε
sy

Msy(y)−M ε
sy

Mz(y)−M ε
z


, (4.95)

and the shape vectors Sps (z), Spy(z) and Spsy(z), defined by their components(
Sps
)
i
(z),

(
Spy

)
i
(z) and

(
Spsy

)
i
(z) respectively for i = 0, 1, ..., 3n, are given

by:

(
Sps
)
i
(z) = Qp

12pi(z),
(
Sps
)
i+n+1

(z) = Qp
16pi(z), i = 0, 1, ..., n, (4.96a)

(
Sps
)
i+2n

(z) = Qp
13pi−2(z), i = 2, 3, ..., n, (4.96b)(

Spy

)
i
(z) = Qp

22pi(z),
(
Spy

)
i+n+1

(z) = Qp
26pi(z), i = 0, 1, ..., n,

(4.96c)(
Spy

)
i+2n

(z) = Qp
23pi−2(z), i = 2, 3, ..., n, (4.96d)(

Spsy

)
i
(z) = Qp

26pi(z),
(
Spsy

)
i+n+1

(z) = Qp
66pi(z), i = 0, 1, ..., n,

(4.96e)(
Spsy

)
i+2n

(z) = Qp
36pi−2(z), i = 2, 3, ..., n. (4.96f)

Finally, the out-of-plane shear and through-thickness stresses are ob-
tained by integration of the equilibrium equations (4.78):

τ psz(y, z) = τ psz(y, z
−
p )− Spsz(z)T

(
ǨA
σ

dMT (y)

dy
− ǨB

σ

[
κ0y
0

])
−

Qp
16κ

0
y

(
z − z−p

)
, (4.97a)
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τ pyz(y, z) = τ pyz(y, z
−
p )− Spyz(z)T

(
ǨA
σ

dMT (y)

dy
− ǨB

σ

[
κ0y
0

])
+

Qp
12κ

0
y

(
z − z−p

)
, (4.97b)

σpz(y, z) = σpz(y, z
−
p )−

dτ psz(y, z
−
p )

dy

(
z − z−p

)
+Spz,2(z)TǨA

σ

d2MT (y)

dy2
, (4.97c)

and the shape vectors:

Spsz(z) =

∫ z

z−p

Spsy(z′)dz′, (4.98a)

Spyz(z) =

∫ z

z−p

Spy(z′)dz′, (4.98b)

Spz,2(z) =

∫ z

z−p

Spyz(z
′)dz′. (4.98c)

Out-of-plane shear and through-thickness stresses have to be calculated
recursively ply by ply as in the MBM and the LPBM, starting with the
boundary conditions τ 1sz(y,−1) = τ 1yz(y,−1) = σ1

z(y,−1) = 0. In the suc-
cessive layers, continuity with the previous layers is imposed. The boundary
conditions τ

Np
sz (y, 1) = τ

Np
yz (y, 1) = σ

Np
z (y, 1) = 0 are automatically accom-

plished.

Loads application

The solution of the model and, consequently, the stress components,
have been expressed depending on the mean line strains ε0s, κ

0
y, κ

0
z and κ0yz.

However, the inputs of the problem are usually the loads applied to the
laminate, which are given as an axial force N0, a bending moment M0, an
in-plane bending moment P0 and a torsional moment T0. These total forces
and moments are obtained by integrating in the width the corresponding
distributed forces and moments as follows:

N0 =

∫ W

0

Ns(y)dy, (4.99a)

M0 =

∫ W

0

Ms(y)dy, (4.99b)

P0 =

∫ W

0

(
y − W

2

)
Ns(y)dy, (4.99c)

T0 =

∫ W

0

(Msy(y)− yQs(y)) dy. (4.99d)
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4.4.2 Development of the 3D non-regularized model
in curved laminates

The non-regularized model applied to curved laminates constitutes a
more complex case than the flat laminates model since the anticlastic effect,
combined with the curvature, constrains several kinds of deformations.

Displacements and strains distributions

As in the flat laminate case, strains and stresses are considered non-
dependant on the s coordinate, what enforces a given dependence of the
displacements with the aforementioned coordinate. As in the regularized 3D
model, the terms of the strains may be obtained by using the compatibility
equations. However, in the present section the displacements are being
obtained by integrating the strain equations as in the flat laminate case.

Therefore, considering the transverse strain, εy(y, z), and the interlami-
nar strain, εz(y, z), and integrating their respective strain-displacement re-
lations, it yields:

εy(y, z) =
∂uy(s, y, z)

∂y
−→ uy(s, y, z) = u0y(y, z) + uAy (s, z), (4.100a)

εz(y, z) =
∂uz(s, y, z)

∂z
−→ uz(s, y, z) = u0z(y, z) + uAz (s, y), (4.100b)

where u0y(y, z), u
A
y (s, z), u0z(y, z) and uAz (s, y) are auxiliary functions due to

the integration.
Considering now the shear strain γyz(y, z), and substituting (4.100),

yields:

γyz(y, z) =
∂uy(s, y, z)

∂z
+
∂uz(s, y, z)

∂y
=

∂u0y(y, z)

∂z
+
∂u0z(y, z)

∂y
+
∂uAy (s, z)

∂z
+
∂uAz (s, y)

∂y
. (4.101)

Since the right term of equation (4.101) cannot depend on s, the auxiliary
functions uAy (s, z) and uAz (s, y) can be written as:

uAy (s, z) = uBy (s)− (z +R)ξA(s), (4.102a)

uAz (s, y) = uBz (s) + yξA(s), (4.102b)
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where uBy (s), uBz (s) and ξA(s) are auxiliary functions.
Substituting (4.100a) and (4.102a) in the shear strain γsy(y, z) yields:

γsy(y, z) =
∂us(s, y, z)

∂y
+

R

R + z

∂uy(s, y, z)

∂s
=

∂us(s, y, z)

∂y
+

R

R + z

(
duBy (s)

ds
− (z +R)

dξA(s)

ds

)
. (4.103)

Since the right term of equation (4.103) cannot depend on s, the dis-
placement us(s, y, z) can be written as:

us(s, y, z) = uAs (y, z) + uBs (s, z)− Ry

R + z

duBy (s)

ds
+Ry

dξA(s)

ds
, (4.104)

where uAs (y, z) and uBs (s, z) are auxiliary functions due to the integration.
Considering now the axial strain, εs(y, z), which depends only on the

coordinates y and z, and substituting (4.104), (4.100b) and (4.102b), the
following expression can be obtained:

εs(y, z) =
R

R + z

(
∂us(s, y, z)

∂s
+
uz(s, y, z)

R

)
=

R

R + z

(
∂uBs (s, z)

∂s
−

Ry

R + z

d2uBy (s)

ds2
+ Ry

d2ξA(s)

ds2
+
u0z(y, z) + uBz (s) + yξA(s)

R

)
. (4.105)

Since the right term of equation (4.105) cannot depend on s, the auxiliary
functions uBs (s, z), uBy (s), uBz (s) and ξA(s) can be written as:

uBs (s, z) = suCs (z) + ξB(s), (4.106a)

uBy (s) = sγ0sy −
s2

2
k0y, (4.106b)

uBz (s) = −RdξB(s)

ds
, (4.106c)

ξA(s) = φs cos
s

R
+ φz sin

s

R
, (4.106d)

where uCs (z) and ξB(s) are auxiliary functions due to the integration, γ0sy is
the mean line in-plane shear strain, k0y is the mean line curvature associated
to the y direction and φs and φz are rigid body rotations.
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Finally, considering the shear strain γsz(y, z) and substituting (4.104),
(4.100b), (4.102b) and (4.106), it yields:

γsz(y, z) =
R

R + z

(
R + z

R

∂us(s, y, z)

∂z
− us(s, y, z)

R
+
∂uz(s, y, z)

∂s

)
=

R

R + z

(
R + z

R

∂uAs (y, z)

∂z
+
R + z

R
s
duCs (z)

dz
+

2y

R + z

(
γ0sy − sk0y

)
− u0s(y, z) + suCs (z) + ξB(s)

R
−Rd

2ξB(s)

ds2

)
. (4.107)

Since the right term of equation (4.107) cannot depend on s, the auxiliary
constant k0y and the auxiliary functions uBs (z) and ξB(s) can be written as:

uCs (z) =
R + z

R
ε0s, (4.108a)

ξB(s) = UX cos
s

R
+ UZ sin

s

R
, (4.108b)

k0y = 0, (4.108c)

where ε0s is the mean line axial strain and UX and UZ are the rigid body
displacements in the (s, z) plane.

Furthermore, for the sake of simplicity, the following definition is con-
sidered in order to obtain a simpler expression of the strain components:

uAs (y, z) = u0s(y, z) +
Ry

R + z
γ0sy. (4.109)

Therefore, substituting (4.102), (4.106), (4.108) and (4.109) in (4.100)
and (4.104) the displacements can be written as:

us(s, y, z) = u0s(y, z) + s
R + z

R
ε0s + UX cos

s

R
+ UZ sin

s

R
−

yφs sin
s

R
+ yφz cos

s

R
, (4.110a)

uy(s, y, z) = u0y(y, z) + sγ0sy − (z +R)
(
φs cos

s

R
+ φz sin

s

R

)
, (4.110b)

uz(s, y, z) = u0z(y, z) + UX sin
s

R
− UZ cos

s

R
+

yφs cos
s

R
+ yφz sin

s

R
. (4.110c)
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Substituting in the strains definitions, strains components can be written
as:

εs(y, z) = ε0s +
u0z(y, z)

R + z
, (4.111a)

εy(y, z) =
∂u0y(y, z)

∂y
, εz(y, z) =

∂u0z(y, z)

∂z
, (4.111b)

γyz(y, z) =
∂u0y(y, z)

∂z
+
∂u0z(y, z)

∂y
, (4.111c)

γsy(y, z) =
∂u0s(y, z)

∂y
+

R

R + z
γ0sy, (4.111d)

γsz(y, z) =
∂u0s(y, z)

∂z
− u0s(y, z)

R + z
. (4.111e)

Displacements approximation

Displacements are approximated by using a series expansion according to
(4.59). However, under the assumption of non-dependence of the strains and
stresses with the axial coordinate s, displacements have been simplified to
equations (4.110). Therefore, in the present model, the auxiliary functions
u0s(y, z), u

0
y(y, z) and u0z(y, z) have been approximated by a series expansion

in the z-coordinate:

u0s(y, z) = u0(y) + zu1(y) +
n∑
i=2

pi(z)ui(y), (4.112a)

u0y(y, z) = v0(y) + zv1(y) +
n∑
i=2

f yi (z)vi(y), (4.112b)

u0z(y, z) = w1(y) +
n∑
i=2

f zi (z)wi(y). (4.112c)

Using the matrix notation developed in Chapter 3 the series expansion
is expressed as follows:

u0s(y, z) = u0(y) + zu1(y) + fs
T (z)u(y), (4.113a)

u0y(y, z) = v0(y) + zv1(y) + fy
T (z)v(y), (4.113b)

u0z(y, z) = w1(y) + fz
T (z)w(y). (4.113c)
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Functions fs(z), according to the LPBM, are defined by the Legendre
polynomials. Function fz(z) was defined in the LPBM according to equation
(3.124). Function fy(z) is defined by the shear strain γyz(y, z). Substituting
(4.113) in equation (4.111c):

γyz(y, z) = v1(y) +
dw1(y)

dy
+
dfy

T (z)

dz
v(y) + fz

T (z)
dw(y)

dy
. (4.114)

According to the LPBM, it is desirable to express the shear strain in the
following way:

γyz(y, z) = eyzQ (y) + fz
T (z)eyz(y). (4.115a)

eyz(y) = Hγ
Tv(y) +

dw(y)

dy
. (4.115b)

Hence, substituting (4.114) in (4.115), the strain component eyzQ (y) and
function fy(z) yield:

eyzQ (y) = v1(y) +
dw1(y)

dy
+
AT

R
v(y), (4.116a)

fz
T (z) =

(
dfy

T (z)

dz
− A

T

R

)
(Hγ

−1)T −→ dfy(z)

dz
= Hγfz(z) +

A

R
.

(4.116b)
Where A is a constant vector to be determined. According to [96],

function fz(z) may be expressed as follows:

Hγfz(z) = (z +R)
dfs(z)

dz
− fs(z)−RhQ. (4.117)

Substituting (4.117) in (4.116b):

dfy(z)

dz
=

1

R

(
(z +R)

dfs(z)

dz
− fs(z)−RhQ +A

)
. (4.118)

Integrating equation (4.118), function fy(z) yields:

fy(z) = fs(z) +
1

R

(∫
z
dfs(z)

dz
dz −

∫
fs(z)dz + (A−RhQ)z +B

)
,

(4.119)
where B is an integration constant vector to be determined.
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Using integration by parts over the first integral of equation (4.119)
function fy(z) yields:

fy(z) = fs(z) +
1

R

(
zfs(z)− 2

∫
fs(z)dz + (A−RhQ)z +B

)
. (4.120)

To simplify (4.120), it is necessary to define other shifted vector f̌s(z)

analogous to the previously defined vectors f̂s(z) and ˆ̂fs(z) as follows:

f̌s
T

(z) =
[
p3(z) p4(z) p5(z) ... pn+1(z)

]
. (4.121)

Vector f̌s(z) accomplishes the following properties:

zfs(z) = Ξ̌1f̌s(z) + Ξ̌2f̂s(z), (4.122a)

df̌s(z)

dz
= Hyfs(z) + 3ρz + ρ̌, (4.122b)

fs(z) = Υf̌s(z) +
1

2
(3z2 − 1)υ, (4.122c)

where matrices Ξ̌1 and Ξ̌2 are defined by their components Ξ̌1,ij and Ξ̌2,ij

respectively as follows:

Ξ̌1,ij =
i+ 2

2i+ 3
δij, Ξ̌2,ij =

i+ 1

2i+ 3
δij, i, j = 1, 2, ..., n− 1, (4.123)

and matrix Hy and vector ρ̌ are defined as follows:

ρ̌ =


1
0
1
0
1
...

 , Hy =


5 0 0 0 0 ...
0 7 0 0 0 ...
5 0 9 0 0 ...
0 7 0 11 0 ...
5 0 9 0 13 ...
... ... ... ... ... ...

 . (4.124)

The previous matrices and vectors may be obtained easily from those
used in the bi-dimensional LPBM by using the following expressions:

Ξ̌1 = (3Ξ1 −Ξ2)−1(2Ξ1 −Ξ2), Ξ̌2 = (3Ξ1 −Ξ2)−1Ξ1, (4.125a)

ρ̌ = Υρ+ υ, (4.125b)

Hy = Hγ(3Ξ1 −Ξ2). (4.125c)
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Furthermore, matrices Hy, Ξ̌1 and Ξ̌2 accomplish the following rela-
tions:

Ξ̌1 + Ξ̌2 = I, (4.126a)

Hy
−1 = (Ξ̌1 − Ξ̌2)(I −ΥΥ), (4.126b)

Hy
−1ρ = (Ξ̌1 − Ξ̌2)Υυ. (4.126c)

Therefore, by using the property (4.122b), the integral inside equation
(4.120) yield: ∫

fs(z)dz = Hy
−1
(
f̌s(z)− 3ρ

z2

2
− ρ̌z

)
. (4.127)

Substituting (4.122a) and (4.127) in (4.120), function fy(z) can be writ-
ten as:

fy(z) = fs(z) +
1

R

(
Ξ̌1f̌s(z) + Ξ̌2f̂s(z)−Hy

−1 (2f̌s(z)− 3ρz2 − 2ρ̌z
)

+

(A−RhQ)z +B) . (4.128)

Substituting (4.126b) in (4.128) yields:

fy(z) = fs(z)+
1

R

(
(2Ξ̌2 − Ξ̌1)f̌s(z) + Ξ̌2f̂s(z) + 2(Ξ̌1 − Ξ̌2)ΥΥf̌s(z)+

Hy
−1 (3ρz2 + 2ρ̌z

)
+ (A−RhQ)z +B

)
. (4.129)

Substituting (3.108) in (4.122c) yields:

ΥΥf̌s(z) = f̂s(z)− 1

2
(3z2 − 1)Υυ − υz. (4.130)

Substituting (4.130) in (4.129) and considering (4.126b) and (4.126c)
yields:

fy(z) = fs(z) +
1

R

(
(2Ξ̌2 − Ξ̌1)f̌s(z) + (2Ξ̌1 − Ξ̌2)f̂s(z)−

(Ξ̌1 − Ξ̌2) (2υz −Υυ − (I −ΥΥ)2ρ̌z) + (A−RhQ)z +B
)
. (4.131)

Substituting (4.125b) in (4.131) and considering that Υρ̌ = ρ yields:



197 Three-dimensional models for evaluating interlaminar stresses

fy(z) = fs(z) +
1

R

(
(2Ξ̌2 − Ξ̌1)f̌s(z) + (2Ξ̌1 − Ξ̌2)f̂s(z)+

(Ξ̌1 − Ξ̌2)Υυ + (A−RhQ)z +B
)
. (4.132)

Applying the condition of same value in z = 1 of the polynomials con-
tained in vector fy(z), vectors A and B yield:

A = RhQ, (4.133a)

B = −(Ξ̌1 − Ξ̌2)Υυ = −Hy
−1ρ. (4.133b)

Therefore, functions fy(z) are obtained as:

fy(z) = fs(z) +
1

R

(
(2Ξ̌2 − Ξ̌1)f̌s(z) + (2Ξ̌1 − Ξ̌2)f̂s(z)

)
. (4.134)

Consequently, the components f yi (z), with i = 2, 3, ..., n, of vector fy(z)
are defined as:

f yi+1(z) = pi+1(z) +
1

R

ipi+2(z) + (i+ 3)pi(z)

2i+ 3
. (4.135)

The derivative of vector fy(z), in accordance with equations (4.116b)
and (4.133a), can be written as:

dfy(z)

dz
= Hγfz(z) + hQ. (4.136)

Strains

Substituting (4.113) in the strains equations (4.111) and considering the
properties of the derivatives of the Legendre polynomials vectors exposed in
Chapter 3, strain components can be written as:

εs(y, z) = ε0s +
R

R + z

(
esN(y) + zesM(y) + fs

T (z)es(y)
)
, (4.137a)

εy(y, z) = eyN(y) + zeyM(y) + fy
T (z)ey(y), (4.137b)

γsy(y, z) =
R

R + z
γ0sy + eysN (y) + zeysM(y) + fs

T (z)eys(y), (4.137c)

γyz(y, z) = eyzQ (y) + fz
T (z)eyz(y), (4.137d)
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γsz(y, z) =
R

R + z

(
eszQ (y) + fz

T (z)esz(y)
)
, (4.137e)

εz(y, z) =
R + z

R
ˆ̂fs
T

(z)ez(y), (4.137f)

where esN(y), esM(y), eyN(y), eyM(y), eysN (y), eysM(y), eyzQ (y) and eszQ (y) are the
non-dimensional first-order 1D strain components, and es(y), ey(y), eys(y),
eyz(y), esz(y) and ez(y) are the non-dimensional higher-order 1D strain
components, which are defined by:

esN(y) =
w1(y)

R
+ hN

Tw(y), esM(y) = hM
Tw(y), (4.138a)

es(y) = Hs
Tw(y), (4.138b)

eyN(y) =
dv0(y)

dy
, eyM(y) =

dv1(y)

dy
, ey(y) =

dv(y)

dy
, (4.138c)

eysN (y) =
du0(y)

dy
, eysM(y) =

du1(y)

dy
, eys(y) =

du(y)

dy
, (4.138d)

eyzQ (y) = v1(y)+
dw1(y)

dy
+hQ

Tv(y), eyz(y) = Hγ
Tv(y)+

dw(y)

dy
, (4.138e)

eszQ (y) = u1(y)− u0(y)

R
+ hQ

Tu(y), esz(y) = Hγ
Tu(y), (4.138f)

ez(y) = Hz
Tw(y). (4.138g)

Notice that the constant matrices Hs, Hγ and Hz and vectors hN ,
hM and hQ are defined in Chapter 3 in the development of the LPBM (see
(3.111), (3.125) and (3.128)). The curved case includes also the higher-order
1D strain component in the axial strain, es(y), which were not needed in
the flat laminate.

Equilibrium

The forces and moments in a cylindrical shell for a general loading state
are defined in [116, chap. 1], which are shown in equations (4.29). For the
present case, in which forces and moments do not depend on the circum-
ferential coordinate s, definition of forces and moments may be reduced as
follows:

Ns(y) =

∫ 1

−1
σs(y, z)dz, Ms(y) =

∫ 1

−1
σs(y, z)zdz, (4.139a)

Ny(y) =

∫ 1

−1

z +R

R
σy(y, z)dz, My(y) =

∫ 1

−1

z +R

R
σy(y, z)zdz, (4.139b)
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Nys(y) =

∫ 1

−1

z +R

R
τsy(y, z)dz, Mys(y) =

∫ 1

−1

z +R

R
τsy(y, z)zdz,

(4.139c)

Qs(y) =

∫ 1

−1
τsz(y, z)dz, Qy(y) =

∫ 1

−1

z +R

R
τyz(y, z)dz. (4.139d)

The higher-order moments are defined as follows:

Ms(y) =

∫ 1

−1
σs(y, z)fs(z) dz , (4.140a)

My(y) =

∫ 1

−1

z +R

R
σy(y, z)fy(z) dz , (4.140b)

Mys(y) =

∫ 1

−1

z +R

R
τsy(y, z)fs(z) dz , (4.140c)

Msz(y) =

∫ 1

−1
τsz(y, z)fz(z) dz , (4.140d)

Myz(y) =

∫ 1

−1

z +R

R
τyz(y, z)fz(z) dz , (4.140e)

Mz(y) =

∫ 1

−1

(
z +R

R

)2

σz(y, z)
ˆ̂fs(z) dz . (4.140f)

The 3D elasticity equilibrium equations for a cylindrical coordinate sys-
tem, and considering the non-dependence of the stresses with s, are given
by the following equations:

(z +R)
∂τsy(y, z)

∂y
+

1

(z +R)

∂

∂z

[
(z +R)2τsz(y, z)

]
= 0, (4.141a)

(z +R)
∂σy(y, z)

∂y
+

∂

∂z
[(z +R)τyz(y, z)] = 0, (4.141b)

(z +R)
∂τyz(y, z)

∂y
+

∂

∂z
[(z +R)σz(y, z)] = σs(y, z). (4.141c)

The forces equilibrium equations are obtained by integrating equations
(4.141) in the thickness and the first-order moment equilibrium equations
are obtained by integrating equations (4.141a) and (4.141b) multiplied by
z in the thickness. Null values of σz, τsz and τyz are prescribed in both
thickness boundaries z = ±1.
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R
dNys(y)

dy
+Qs(y) = 0, (4.142a)

dNy(y)

dy
= 0, (4.142b)

R
dQy(y)

dy
= Ns(y), (4.142c)

dMys(y)

dy
= Qs(y), (4.142d)

dMy(y)

dy
= Qy(y). (4.142e)

Considering that the edges in the y direction are free and, therefore,
considering null prescribed values of σy, τsy and τyz in the width boundaries
(y = 0 and y = W ), equation (4.79b) implies a null value of Ny(y) =
0. Furthermore, substituting (4.142d) in (4.142a) and considering also the
boundary conditions in y, the following relation is obtained:

RNys(y) +Mys(y) = 0. (4.143)

Substituting (4.142e) in (4.142c) yields:

Ns(y) = R
d2My(y)

dy2
. (4.144)

The higher-order moments equilibrium equations are obtained integrat-
ing equations (4.78a) and (4.78b) multiplied by fs(z) and integrating equa-
tion (4.78c) multiplied by f̂s(z), yielding:

dMys(y)

dy
= HγMsz(y) + hQQs(y), (4.145a)

dMy(y)

dy
= HγMyz(y) + hQQy(y), (4.145b)

dMyz(y)

dy
= HzMz(y) +HsMs(y) + hMMs(y) + hNNs(y). (4.145c)
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Constitutive law

The constitutive law of the plies is considered in the same way as in the
development of the model of the flat laminate. Therefore, the constitutive
law expressed in the (s, y, z) coordinate system is given by equation (4.81),
including also the manufacturing process residual strains.

Using the three-dimensional constitutive law given in (4.81), the strains
approximations given in (4.74) and the forces and moments definition given
in (4.139) and (4.140), constitutive equations yield:



Ns(y)
Ms(y)
Ms(y)
Ny(y)
My(y)
My(y)
Nys(y)
Mys(y)
Mys(y)
Mz(y)


+



N ε
s

M ε
s

M ε
s

N ε
y

M ε
y

M ε
y

N ε
ys

M ε
ys

M ε
ys

M ε
z


= Kσ



esN(y)
esM(y)
es(y)
eyN(y)
eyM(y)
ey(y)
eysN (y)
eysM(y)
eys(y)
ez(y)


+Kεγ

[
ε0s
γ0sy

]
, (4.146a)


Qy(y)
Myz(y)
Qs(y)
Msz(y)

 = Kτ


eyzQ (y)
eyz(y)
eszQ (y)
esz(y)

 , (4.146b)

where N ε
ij, M

ε
ij and M ε

ij are the residual forces, moments and higher-order
moments due to the manufacturing process, Kσ andKτ are respectively the
normal and shear stiffness matrices of the model, and Kεγ is the stiffness
matrix associated to the mean line strains ε0s and γ0sy.

The components of the stiffness matrices Kσ, Kτ and Kεγ are shown
in Appendix B.3.

The residual forces, moments and higher-order moments due to the man-
ufacturing process are calculated as follows:

N ε
s =

Np∑
p=1

(z+p − z−p )∆σps , M ε
s =

Np∑
p=1

1

2
((z+p )2 − (z−p )2)∆σps , (4.147a)

N ε
y =

Np∑
p=1

(
∆σpy

∫ z+p

z−p

z +R

R
dz

)
, M ε

y =

Np∑
p=1

(
∆σpy

∫ z+p

z−p

z +R

R
z dz

)
,

(4.147b)
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N ε
ys =

Np∑
p=1

(
∆τ psy

∫ z+p

z−p

z +R

R
dz

)
, M ε

ys =

Np∑
p=1

(
∆τ psy

∫ z+p

z−p

z +R

R
z dz

)
,

(4.147c)

M ε
s =

Np∑
p=1

(
∆σps

∫ z+p

z−p

fs(z) dz

)
, (4.147d)

M ε
y =

Np∑
p=1

(
∆σpy

∫ z+p

z−p

z +R

R
fy(z) dz

)
, (4.147e)

M ε
ys =

Np∑
p=1

(
∆τ psy

∫ z+p

z−p

z +R

R
fs(z) dz

)
, (4.147f)

M ε
z =

Np∑
p=1

(
∆σpz

∫ z+p

z−p

(
z +R

R

)2
ˆ̂fs(z) dz

)
, (4.147g)

where ∆σps , ∆σpy , ∆σpz and ∆τ psy are calculated from equations (4.84).
Equations (4.146a) and (4.146b) can be inverted yielding the following

compliance equations:



esN(y)
esM(y)
es(y)
eyN(y)
eyM(y)
ey(y)
eysN (y)
eysM(y)
eys(y)
ez(y)


= Ǩσ



Ns(y)
Ms(y)
Ms(y)
Ny(y)
My(y)
My(y)
Nys(y)
Mys(y)
Mys(y)
Mz(y)


− ǩε + Ǩεγ

[
ε0s
γ0sy

]
, (4.148a)


eyzQ (y)
eyz(y)
eszQ (y)
esz(y)

 = Ǩτ


Qy(y)
Myz(y)
Qs(y)
Msz(y)

 , (4.148b)

where Ǩσ = (Kσ)−1, Ǩεγ = −(Kσ)−1Kεγ and Ǩτ = Kτ
−1. The com-

ponents of matrices Ǩσ, Ǩεγ and Ǩτ are denominated following the same
rules used for defining the components of matrices Kσ, Kεγ and Kτ respec-
tively. Therefore, expressions shown in Appendix B.3 for the components
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of Kσ, Kεγ and Kτ can be used for calculating Ǩσ, Ǩεγ and Ǩτ . The
matrix ǩε is defined as follows:

ǩε =



ǩε1
ǩε2
ǩε3
ǩε4
ǩε5
ǩε6
ǩε7
ǩε8
ǩε9
ǩεz


= Ǩσ



N ε
s

M ε
s

M ε
s

N ε
y

M ε
y

M ε
y

N ε
ys

M ε
ys

M ε
ys

M ε
z


. (4.149)

Solution procedure

The solution is obtained by solving jointly the strain-displacements equa-
tions, the constitutive law and the equilibrium equations. Deriving equation
(4.148b) and introducing equations (4.142a), (4.142e), (4.145a), (4.145b),
(4.138e) and (4.138f) the shear compliance equations yield:


dv1(y)
dy

+ d2w1(y)
dy2

+ hQ
T dv(y)

dy

Hγ
T dv(y)

dy
+ d2w(y)

dy2
du1(y)
dy
− 1

R
du0(y)
dy

+ hQ
T du(y)

dy

Hγ
T du(y)

dy

 = Ǩτ


d2My(y)

dy2

Hγ
−1
(
d2My(y)

dy2
− hQ d2My(y)

dy2

)
d2Mys(y)

dy2

Hγ
−1
(
d2Mys(y)

dy2
− hQ d2Mys(y)

dy2

)

 .
(4.150)

Therefore, the in-plane displacements components may be obtained from
equation (4.150) as follows:

dv1(y)

dy
= HQ

00

d2My(y)

dy2
+HQ

01

d2My(y)

dy2
+HQ

02

d2Mys(y)

dy2
+

HQ
03

d2Mys(y)

dy2
− d2w1(y)

dy2
+ hQ

T (Hγ
T )−1

d2w(y)

dy2
, (4.151a)

dv(y)

dy
= HQ

10

d2My(y)

dy2
+HQ

11

d2My(y)

dy2
+HQ

12

d2Mys(y)

dy2
+

HQ
13

d2Mys(y)

dy2
− (Hγ

T )−1
d2w(y)

dy2
, (4.151b)
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du1(y)

dy
− 1

R

du0(y)

dy
= HQ

20

d2My(y)

dy2
+HQ

21

d2My(y)

dy2
+HQ

22

d2Mys(y)

dy2
+

HQ
23

d2Mys(y)

dy2
, (4.151c)

du(y)

dy
= HQ

30

d2My(y)

dy2
+HQ

31

d2My(y)

dy2
+HQ

32

d2Mys(y)

dy2
+

HQ
33

d2Mys(y)

dy2
, (4.151d)

where the auxiliary matrices are defined in Appendix B.4.
Substituting the equilibrium equations (4.142), (4.143), (4.144) and (4.145),

taking into account the null value of Ny(y) = 0 and the strain components
definition (4.138) in equation (4.148a), the compliance equations yield:



w1(y)
R

+ hN
Tw(y)

hM
Tw(y)

Hs
Tw(y)
dv0(y)
dy

dv1(y)
dy

dv(y)
dy

du0(y)
dy

du1(y)
dy

du(y)
dy

Hz
Tw(y)



= ǨA



Ms(y)
Ms(y)
d2My(y)

dy2

My(y)
d2My(y)

dy2

My(y)
Mys(y)
Mys(y)


− ǩε + Ǩεγ

[
ε0s
γ0sy

]
, (4.152)

where the matrix ǨA is defined in Appendix B.4.
The system of equations (4.152) can be rearranged and expressed as

follows, in order to obtain the axial bending and higher-order moments:

[
Ms(y)
Ms(y)

]
= ǨB



d2My(y)

dy2

My(y)
d2My(y)

dy2

My(y)
Mys(y)
Mys(y)
w(y)


+ ǨC

[
ε0s
γ0sy

]
+ ǨD, (4.153)
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where the matrices ǨB and ǨC and the vector ǨD are defined in Appendix
B.4.

Substituting (4.153) and (4.151) in (4.152) the following system of dif-
ferential equations is obtained:

d2x(y)

dy2
= Gx(y) +Gcv(y) + gε, (4.154a)

x(y) =


My(y)
My(y)
Mys(y)
Mys(y)
w1(y)
w(y)

 , v(y) =

[
ε0s
γ0sy

]
, (4.154b)

where matrices G and Gc and vector gε are defined in Appendix B.4.
As in the flat laminate case, the system of differential equations (4.154a)

may be solved by obtaining a particular solution (the regularized solution)
and the solution of the homogeneous equation. The regularized solution
yields:

xreg(y) = −G−1Gcv(y)−G−1Gε. (4.155)

Non-regularized stresses and strains are determined by the superposition
of their regularized values, given by equation (4.155), and the perturbations,
calculated from the homogeneous equation. The homogeneous equation
is determined by separating the solution vector, x(y), into its regularized
value, xreg(y), and the perturbation, x̂(y). Therefore, the homogeneous
equation is obtained by doing the variable change x(y) = xreg(y) + x̂(y),
and the equation yields:

d2x̂(y)

dy2
= Gx̂(y). (4.156)

Equation (4.156) is solved as an eigenvalue problem, as in the flat lami-
nate case, and imposing the boundary conditions of the free edge My(y) = 0,
My(y) = 0, Mys(y) = 0, Mys(y) = 0, Qy(y) = 0 and Myz(y) = 0 in y = 0
and y = W .

Stresses calculation

With a similar procedure to that made in the flat laminate case, once the
vector x(y) given in (4.154b) has been calculated, the moments and higher
order moments My(y), Mys(y), My(y) and Mys(y) are directly obtained as
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the corresponding components of x(y). Shear higher-order moments and
transverse higher-order moments are obtained from the equilibrium equa-
tions (4.145), and the axial higher-order moments are obtained from equa-
tion (4.153). Strains may be obtained by using the compliance equations
(4.148). However, in the present procedure, compliance equations (4.152)
(considering the strain components definition (4.138)) are used instead of
equations (4.148). Once strains are obtained, the axial, transverse and in-
plane shear stresses are calculated for each ply by using the 3D constitutive
equations (4.81):

σps(y, z) = Sps (z)T
(
ǨA
σMT (y)− ǩε + Ǩεγ

[
ε0s
γ0sy

])
+

Qp
11ε

0
s +Qp

16

R

R + z
γ0sy, (4.157a)

σpy(y, z) = Spy(z)T
(
ǨA
σMT (y)− ǩε + Ǩεγ

[
ε0s
γ0sy

])
+

Qp
12ε

0
s +Qp

26

R

R + z
γ0sy, (4.157b)

τ psy(y, z) = Spsy(z)T
(
ǨA
σMT (y)− ǩε + Ǩεγ

[
ε0s
γ0sy

])
+

Qp
16ε

0
s +Qp

66

R

R + z
γ0sy, (4.157c)

where the vector MT (y) is defined as follows:

MT (y) =



Ms(y)
Ms(y)
d2My(y)

dy2

My(y)
d2My(y)

dy2

My(y)
Mys(y)
Mys(y)


, (4.158)

and the shape vectors Sps (z), Spy(z) and Spsy(z), defined by their components(
Sps
)
i
(z),

(
Spy

)
i
(z) and

(
Spsy

)
i
(z) respectively for i = 0, 1, ..., 4n + 1, are

given by:
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(
Sps
)
i
(z) = Qp

11

R

R + z
pi(z),

(
Sps
)
i+n+1

(z) = Qp
12f

y
i (z), i = 0, 1, ..., n,

(4.159a)(
Sps
)
i+2n+2

(z) = Qp
16pi(z), i = 0, 1, ..., n, (4.159b)(

Sps
)
i+3n+1

(z) = Qp
13

R + z

R
pi−2(z), i = 2, 3, ..., n, (4.159c)

(
Spy

)
i
(z) = Qp

12

R

R + z
pi(z),

(
Spy

)
i+n+1

(z) = Qp
22f

y
i (z), i = 0, 1, ..., n,

(4.159d)(
Spy

)
i+2n+2

(z) = Qp
26pi(z), i = 0, 1, ..., n, (4.159e)(

Spy

)
i+3n+1

(z) = Qp
23

R + z

R
pi−2(z), i = 2, 3, ..., n, (4.159f)

(
Spsy

)
i
(z) = Qp

16

R

R + z
pi(z),

(
Spsy

)
i+n+1

(z) = Qp
26f

y
i (z), i = 0, 1, ..., n,

(4.159g)(
Spsy

)
i+2n+2

(z) = Qp
66pi(z), i = 0, 1, ..., n, (4.159h)(

Spsy

)
i+3n+1

(z) = Qp
36

R + z

R
pi−2(z), i = 2, 3, ..., n. (4.159i)

Finally, the out-of-plane shear and through-thickness stresses are ob-
tained by integration of the equilibrium equations (4.141):

τ psz(y, z) = τ psz(y, z
−
p )

(
R + z−p
R + z

)2

− Spsz(z)TǨA
σ

dMT (y)

dy
, (4.160a)

τ pyz(y, z) = τ pyz(y, z
−
p )
R + z−p
R + z

− Spyz(z)TǨA
σ

dMT (y)

dy
, (4.160b)

σpz(y, z) = σpz(y, z
−
p )
R + z−p
R + z

−
dτ psz(y, z

−
p )

dy

(
z − z−p

) R + z−p
R + z

+

Spz,1(z)T
(
ǨA
σMT (y)− ǩε + Ǩεγ

[
ε0s
γ0sy

])
+Qp

11ε
0
s

(
z − z−p

)
+

Qp
16γ

0
sy

R

R + z
log

(
R + z

R + z−p

)
+ Spz,2(z)TǨA

σ

d2MT (y)

dy2
, (4.160c)
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and the shape vectors:

Spsz(z) =
1

(z +R)2

∫ z

z−p

(z +R)2Spsy(z′)dz′, (4.161a)

Spyz(z) =
1

z +R

∫ z

z−p

(z +R)Spy(z′)dz′, (4.161b)

Spz,1(z) =
1

z +R

∫ z

z−p

Sps (z′)dz′. (4.161c)

Spz,2(z) =
1

z +R

∫ z

z−p

(z +R)Spyz(z
′)dz′. (4.161d)

Out-of-plane shear and through-thickness stresses have to be calculated
recursively ply-by-ply as in the MBM and the LPBM, starting with the
boundary conditions τ 1sz(y,−1) = τ 1yz(y,−1) = σ1

z(y,−1) = 0. In the suc-
cessive layers, continuity with the previous layers is imposed. The boundary
conditions τ

Np
sz (y, 1) = τ

Np
yz (y, 1) = σ

Np
z (y, 1) = 0 are automatically accom-

plished.

Loads application

The solution of the model and the stresses have been developed depend-
ing on the mean line strains ε0s and γ0sy. However, the inputs of the problem
are usually the loads applied to the laminate, which are given as a bending
moment M0 and an in-plane shear force P0. These loads are obtained by
integrating in the width the corresponding distributed forces and moments
as follows:

M0 =

∫ W

0

Ms(y)dy, (4.162a)

P0 =

∫ W

0

Nsy(y)dy, (4.162b)

where the force Nsy(y) is defined as follows:

Nsy(y) =

∫ 1

−1
τsy(y, z)dz. (4.163)
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4.5 Applications of the 3D non-regularized

models

The three-dimensional non-regularized models developed in section 4.4
are an expansion of the LPBM to analyse some three-dimensional effects in
the problem under study but reduced to a s non-dependant model. For this
reason, only s-regularized problems under a bending moment M0 or a shear
in-plane load P0 may be calculated. Notwithstanding, the applications of
these novel models let us to calculate the non-regularized effects given in
the y direction.

First, in the curved laminates, the 3D non regularized model let us to
calculate the effect of the finite width, which introduces non-regularized
effects due to the curvature. The curvature prevents the free deformation
of the laminate due to the anticlastic effect, introducing a through-the-
width bending moment My(y). However, this bending moment My(y) has to
vanish along the free boundaries at the width ends, so non-regularized effects
are introduced near to these free boundaries in order to accomplish the
boundary condition. These non-regularized effects affect also to the bending
moment distribution in the width Ms(y) due to M0. This distribution is
usually considered uniform with a value Ms(y) = M0/W . However, the
non-regularized effects change the distribution inducing a maximum of the
regularized bending moment higher than M0/W , and causing the calculation
of the unfolding failure by considering the constant distribution assumption
to become non conservative.

Another effect which may be calculated with the present non-regularized
models is the free-edge effect. The residual stresses and the through-the-
width stresses due to the loads have to accomplish the stress-free bound-
ary conditions along the boundaries in the width ends, causing also non-
regularized effects traditionally known as free-edge effects.

Finally, other three-dimensional effects which have already been obtained
by the regularized solution given in section 4.1 may be obtained also with
the present model, such as the torsion of the laminate or the manufacturing
process residual stresses (which now may be obtained also including the
free-edge effects). These effects are not shown in the present section as they
have been studied previously and they are associated to the regularized 3D
stress distribution.

4.5.1 Through-the-width distributions

The curvature constrains the free deformation of a curved laminate due
to the anticlastic effect, introducing a through-the-width moment My(y).
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The null boundary conditions of this moment along the free-edge induce
non-regularized effects which affect also to the other stresses.

As a numerical example, laminates with the material properties of Table
4.1, a ply thickness of 0.2 mm, a mean radius R = t and a width W = 10t
are considered loaded under a bending moment M0. The stacking sequences
considered are [45,-45,90,0]S and [45,0,-45,90]S.

The distributed axial moment (bending moment) and force depending
on the y coordinate are depicted in Figure 4.15 for both laminates by using
the present non-regularized model with n = 50 and compared with the
regularized values.

(a) (b)

Figure 4.15: Distributed forces and moments distribution through the width:
(a) bending moment Ms(y), (b) axial force Ns(y).

The regularized value of Ns(y) is a null value, as no axial force is applied.
The regularized value of the bending moment is M0/W . Both regularized
values coincide with their respective mean values of the non-regularized
distribution along the width.

Notice that a non uniform distribution of the bending moment Ms(y) is
obtained, due to the non-regularized effects, causing that the maximum is
higher than the average value given by a regularized model. In particular,
for the laminate [45,-45,90,0]S the maximum of the bending moment is a
10% higher than the one predicted by a regularized model. The laminate
[45,0,-45,90]S presents a similar distribution but the maximum value is closer
to the regularized value. If the width is increased, as the mean value of the
distribution is the regularized value and the regularization distance does
not depend on the width, the maximum non-regularized value tends to the
regularized value.

The distributed axial force Ns(y) tends to the regularized null value in
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the center of the specimen, reaching its maximum value at the free ends.
The maximum value is higher in the [45,-45,90,0]S stacking sequence than
in the [45,0,-45,90]S stacking sequence.

The distributed anticlastic bending moment and torsional moment de-
pending on the y coordinate are depicted in Figure 4.16 for both laminates
by using the present non-regularized model with n = 50 and compared with
their respective regularized values. In this case the regularized values are
different for each stacking sequence.

(a) (b)

Figure 4.16: Distributed forces and moments distribution through the width:
(a) anticlastic bending moment My(y), (b) torsional moment Mys(y).

The anticlastic bending moment My(y) has a similar distribution to that
of the axial bending moment Ms(y) but with null values at the free edges.
The moment tend to the regularized value far enough from the free edge.
As can be seen in Figure 4.16b, the torsional moment distribution is signifi-
cantly deviated from its regularized value. Notwithstanding, its mean value
is equal to the regularized value.

The finite width effect is given also in flat laminates. However, the dis-
tributions in a flat laminate are less pronounced than in the curved laminate
when a bending moment load is applied, not being included here for the sake
of brevity.

4.5.2 Free-edge effects

The free-edge effects are given for any kind of geometry near the free
edges of a composite laminate. Due to the different properties in the different
directions of the plies and to the stacking sequence with plies in different
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directions, the compatibility and equilibrium in the free edges implies a
stress concentration with theoretically infinite stresses.

The non-regularized model developed in section 4.4 is based in polyno-
mials, so it cannot predict infinite stresses. However, it can predict the
tendency of the stresses within a high enough model order.

The free-edge effects are analysed first as a numerical example in a flat
laminate with a cross-ply laminate [0,90]S, where the shape of the stress
distribution has been extensively studied and approximated in the literature
(see Mittelstedt and Becker [68]). Considering the ply properties of table
4.1, a width W = 10t and an axial load per unit of width N0 in the s
direction, the INS obtained in the interface between a 0o and a 90o ply is
depicted in Figure 4.17. The stress distribution has been obtained by using
the non-regularized model with n = 50.

Figure 4.17: INS obtained in the interface between a 0o and a 90o ply in a
laminate [0,90]S under axial load.

A INS distribution in the interface similar to the one obtained by other
authors, such as Pagano [65], is obtained. The infinite theoretical value
of the INS at the free edge is not obtained as in the other aforementioned
approximations. By using different order the zone nearer to the free edge is
better approximated obtaining more accurate values closer to the free edge,
as is seen in Figure 4.18.

Far from the edge, when the model order increases, the solution con-
verges. However, at the zone very close to the free-edge a very slow and
not clear convergence is obtained. Therefore, the model cannot be used for
estimating the stresses just in the free-edge, but the distance from the free
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Figure 4.18: INS obtained in the interface between a 0o and a 90o ply for
different model orders.

edge where stresses are obtained in an accurate way is reduced by increasing
the model order (similarly than the LPBM and the MBM do not predict
accurately the stresses just in a change of curvature, but predict accurately
the stresses very close to it).

Figure 4.19 shows the ISS obtained along the interface by using the
non-regularized model with n = 500.

Figure 4.19: ISS obtained in the interface between a 0o and a 90o ply in a
laminate [0,90]S under axial load.

The distribution of the ISS shows that the solution converge to a finite
value of the ISS just at the free-edge, due to the infinite value of the INS.
The present solution has the maximum value close to the free edge and not
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just at the free edge, but doing a sensibility analysis it is observed that the
maximum value gets closer to the free edge when the order increases.



Chapter 5

Failure mechanisms involved in
the unfolding failure

The unfolding failure has been traditionally associated to the INS, con-
sidering that when the maximum INS in the thickness reach the ILTS, a
crack is initiated interlaminarly and it is propagated by the INS causing the
delamination. The ILTS is typically obtained by using a four-point bend-
ing test [3]. However, when applying this testing procedure to a L-shaped
composite laminate, the maximum INS calculated, i.e., the apparent ILTS,
has a thickness dependence similar to that depicted in Figure 1.2, where a
typical distribution of the apparent ILTS with the thickness is shown. This
thickness dependence is shown, for example, by Edwards and Thompson [6].

However, the thickness dependence is not generally given in fabric com-
posites as can be seen in the experimental results of Avalon and Donald-
son [8], and it is neither observed in unidirectional laminates [0]n, as can be
seen in the unidirectional specimens of Hoffmann et al. [7].

Airbus Operations S.L. has provided some experimental results which are
used in the present Chapter for the validation of the models developed in
the PhD project. The INS calculated for the aforementioned experimental
results using the analysis tools existing prior to this Thesis presents the
thickness dependence which is found in the literature and which has not
been explained yet.

This Chapter explains first the bases of a new idea for giving an explana-
tion to this thickness dependence by introducing a new failure mechanism,
which has been denominated induced unfolding. This new idea assumes
that an intralaminar failure may induce defects in the interlaminar direc-
tion which propagate as a delamination with the presence of the INS. The
classical failure mechanism has been denominated traditional unfolding in
order to distinguish from the new mechanism. After introducing the bases
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of the new failure mechanism, the experimental results provided by Airbus
Operations S.L. are used to show evidences of the existence of the induced
unfolding. These evidences are divided in two groups. First, stresses are ac-
curately calculated using the non-regularized model developed in Chapter 4
showing that intralaminar failures may take place at the loads in which the
delamination is produced. Second, the delamination locations in the thick-
ness is estimated by considering the traditional and the induced unfolding,
observing that the locations of the delaminations agree in a much higher
percentage with those predicted by the induced unfolding.

This new failure mechanism has supposed an important change in the
understanding of the unfolding failure and consequently requires a deeper
research. Therefore, this Chapter lays the background for a future develop-
ment of a failure criterion which may include this new concept, requiring a
wider experimental and numerical analysis.

5.1 The concept of the induced unfolding fail-

ure mechanism

The idea of the induced unfolding lays in an intralaminar failure which
introduces defects or cracks that propagates interlaminarly due to the pres-
ence of a high INS. This effect has been showed in similar problems in the
literature. Roos [117] observed in his PhD Thesis interlaminar cracks in
Ω-specimens which have been initiated by a matrix failure, and Hélénon et
al. [76] observed a similar delamination in T-specimens. Notwithstanding,
these authors obtained an initial intralaminar failure which was dominated
by an ISS, so the initial intralaminar defect was not perpendicular to the
interface between plies and the interlaminar propagation is more evident.
For those cases, where the matrix failure has an initial failure which is not
perpendicular to the interfaces between plies causing the delamination, the
Wisnom delamination criterion [75] is of special interest. This criterion
considers the stresses in the matrix in all the directions by calculating an
effective stress, where the fibre direction stress is obtained by factoring down
the composite stress by the ratio of matrix modulus to the fibre direction
modulus.

Notwithstanding, the present idea of induced unfolding establishes that
the delamination may be produced also when the intralaminar crack is per-
pendicular to the interface. Blázquez et al. [118] and Paŕıs et al. [119, 120]
studied the propagation of an intralaminar matrix crack in a flat laminate
due to a tensile load. They obtained several possibilities of behaviour when
the crack approaches the interface with a stiffer ply. Generally, an interlam-
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inar crack appears in the interface, which may be connected or not with the
intralaminar matrix crack. Hence, connecting this concept with the induced
unfolding mechanism, the appearance of this interlaminar initial crack due
to the matrix failure may propagate interlaminarly as a delamination with a
high enough INS. Flat laminates require a load increment to propagate the
delamination caused by the intralaminar crack, but high INS are present
in curved laminates which may cause the instantaneous propagation of the
delamination. An example of the intralaminar cracks perpendicular to the
interfaces between plies that have propagated interlaminarly may be found
in Figure 5.1.

Figure 5.1: Propagation of intralaminar cracks as delaminations causing the
induced unfolding.

The intralaminar matrix failure may be predicted with a typical strength
failure criterion. However, the propagation of the delamination requires a
fracture mechanics criterion, which is not directly applicable with the models
developed in the present project. Hence, results of the present Chapter are
not conclusive but indicative about if the failure mechanism is possible or
not.

The matrix failure is not the only intralaminar failure which may induce a
delamination and, therefore, the induced unfolding failure. Another example
of intralaminar failure which may induce a delamination may be given by a
fibre compressive failure. This kind of induced failure is given then in the
compressive side of the specimen (near to the higher radius), so it may be
easily identified by the location of the delamination, as seen in Figure 5.2.
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Figure 5.2: Induced unfolding initiated by a fibre compressive failure.

The fibre compressive case is typical of fabric composite laminates, where
the fibre compressive strength to ILTS ratio is lower. Composite laminates
with UD plies have higher fibre compressive strength to ILTS ratios, so
traditional unfolding is given at lower loads and the fibre compressive failure
is not typically given.

The present Chapter is focused only in the induced unfolding initiated
by an intralaminar matrix failure, which is analysed in detail by using the
experimental results provided by Airbus Operations S.L.

5.2 Experimental results

The experimental tests consisted in a four-point bending test campaign
over L-specimens made by a CFRP of UD plies with different lay-ups. Six
kinds of specimens were defined according to Table 5.1, where the stacking
sequence of each kind of specimen is shown. Seven coupons of each specimen
were tested.

Name Stacking sequence
CP1 [45 -45 90 45 0 -45 90 -45 45]
CP2 [45 -45 90 -45 45 0 45 -45]S
CP3 [45 -45 90 -45 45 0 45 -45]S
CP4 [45 -45 90 90 -45 45 0 45 -45 45 -45 0 45 -45]S
CP5 [45 0 -45 90]6S
CP6 [45 -45 90 90 90 -45 45 0 0 45 -45 45 -45 0 [45 -45]5]S

Table 5.1: Specimens stacking sequences

The geometry of each kind of coupon is determined by the thickness, t,
the outer radius of the curved part, Ro, and the width, W , which are shown
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in Table 5.2. Notice that CP2 and CP3 specimens have the same stacking
sequence and different width.

Name t (mm) Ro (mm) W (mm)
CP1 1.7 5 25
CP2 2.9 8 25
CP3 2.9 8 50
CP4 5.2 12 40
CP5 8.8 20 40
CP6 8.8 20 40

Table 5.2: Specimens dimensions

The experimental failure load has been obtained from the tests, so apply-
ing the non-linear methodology described in Chapter 2, the bending moment
in the curved part of the L-shaped laminate can be calculated. The bend-
ing moment obtained is introduced as input in the subsequent analytical
methodologies employed for the stresses calculation.

These coupons were manufactured for a characterization process, so they
have not been designed with the purpose of observing the induced unfolding
and the laminates are not optimized for this objective.

5.2.1 Traditional unfolding

The traditional unfolding failure criteria, applied to the tests under con-
sideration, establishes that the curved laminate fails when the maximum
value of the INS in the curved zone reaches its maximum allowable value.
Therefore, calculating the stresses in the coupons that have been tested, the
maximum value of the INS may be assumed as the apparent ILTS.

For the calculation of the stresses the non-regularized three-dimensional
model developed in Chapter 4 has been selected. This model includes the
effect of the torsion, the combined effect of the anticlastic with the curvature,
the effect of the finite width and the free-edge effects. The maximum value of
the INS is given by the singularity of the free-edge, which is not considered.
Therefore, the maximum value is considered as the maximum value obtained
in the inner part of the specimen.

The apparent ILTS is then considered as the maximum INS obtained
in the middle of the width of the specimen with the non-regularized three-
dimensional model with a high enough order. This apparent ILTS divided
by the strength in the intralaminar matrix direction S22 is depicted in Figure
5.3 respect to the thickness of the coupons.
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Figure 5.3: Apparent ILTS of the coupons respect to the thickness.

Notice the thickness dependence of the apparent ILTS, where thinnest
specimens have lower values of the apparent ILTS than the thickest speci-
mens. Furthermore, assuming that S22 = S33, the thinnest specimens have
an apparent ILTS of 60% of the nominal strength and only CP5 specimens
may have failed due to the traditional unfolding while the rest of specimens
present a lower value of the INS at the failure onset. Notice also that, for
the thickest specimens, two different kind of specimens (CP5 and CP6) are
showing different mean values of the apparent ILTS.

5.2.2 Induced unfolding

The induced unfolding hypothesis establishes that the curved laminate
is delaminated when a ply fails in an intralaminar direction, requiring a
sufficiently high INS for propagating interlaminarly this initial damage.

In order to demonstrate the existence of the induced unfolding, two kind
of evidences are shown in the present section. First, evidences associated
to the stress state in curved laminates, and second, evidences associated to
the delamination location in the thickness of the curved laminate.

Evidences associated to the stress state

The non-regularized three-dimensional model developed in Chapter 4
allows us to obtain with a high accuracy the intralaminar stresses in the
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direction perpendicular to the fibres for each ply. Hence, considering the in-
tralaminar failure associated to the matrix as the initial cause of the sample
failure, the sample fails when the stress in the intralaminar matrix direction,
σ22, reaches the corresponding strength S22.

Figure 5.4 shows the value of the maximum σ22 divided by the strength
S22 respect to the thickness for all the coupons.

Figure 5.4: Maximum stress in the matrix direction of the coupons respect
to the thickness.

It can be observed that all the specimens are bearing a maximum stress
in the intralaminar matrix direction which is equal to its strength just in the
moment of the failure since the value of σ22/S22 is near to the unitary value,
without a clear thickness dependence. Therefore, stress analysis carried
out suggest that laminates are failing initially by an intralaminar failure
causing the induced unfolding and not by the traditional unfolding. Only
specimens CP5 have an uncertain failure mechanism while it may have failed
by traditional or induced unfolding indifferently.

The maximum of σ22 for the present specimens is always given in the
90o plies, although in other stacking sequences it may be also given in the
±45o plies.

Evidences associated to the delamination locations

Both traditional unfolding and induced unfolding due to a matrix failure
cause a delamination closer to the lower radius than to the higher radius.
Moreover, failed composites present multiple delamination cracks in this
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zone. This fact hinders identifying which is the first crack causing the failure
during the test execution. However, induced unfolding due to a matrix
failure causes typically a delamination closer to the lower radius than the
traditional unfolding.

A statistical analysis has been carried out over the coupons of each spec-
imen, analysing how many coupons have a particular delamination crack in
the position predicted by the stress analysis, assuming that failure is ini-
tiated either by traditional unfolding or by induced unfolding, in order to
determine which are the more repetitive cracks.

CP1 specimens are difficult to analyse due to their very low thickness,
showing a 100% agreement in the delamination location with both failure
mechanisms. Figure 5.5 shows a picture of a CP1 coupon.

Figure 5.5: Location of the delaminations in a CP1 coupon.

CP2 and CP3 specimens give similar results since they have the same
stacking sequence and geometry except the width. This kind of specimens
have shown also a 100% agreement with both failure mechanisms. All spec-
imens have a crack at the location predicted by the induced unfolding and
also another crack at the location predicted by the traditional unfolding.
Figure 5.6 shows a picture of a CP2/CP3 coupon.

CP4 specimens have shown the highest agreement with the induced un-
folding. The 100% of CP4 specimens have a crack where the induced un-
folding predicts, while only a 29% of the specimens have a crack where the
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Figure 5.6: Location of the delaminations in a CP2/CP3 coupon.

traditional unfolding predicts. Figure 5.7 shows a picture of a CP4 coupon.

Figure 5.7: Location of the delaminations in a CP4 coupon.

The 100% of CP5 specimens have a delamination crack at the location
predicted by the induced unfolding while a 70% have a delamination crack
where the traditional unfolding predicts. Figure 5.8 shows a picture of a
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CP5 coupon.

Figure 5.8: Location of the delaminations in a CP5 coupon.

Finally, CP6 specimens have shown also an excellent agreement with
the induced unfolding hypothesis, since the 100% of CP6 specimens have a
delamination crack at the location predicted by the induced unfolding. Con-
versely, only a 43% of CP6 specimens have a delamination crack where the
traditional unfolding predicts, thus indicating that the intralaminar failure
may have triggered the unfolding failure in CP6 samples. Figure 5.9 shows
a picture of a CP6 coupon.

More pictures of the delamination cracks in the different kinds of speci-
men may be observed in [100].

Therefore, the delamination crack locations have shown a 100% agree-
ment with the induced unfolding failure mechanism, thus supporting the
hypothesis that this mechanism has initiated the unfolding failure, in par-
ticular in CP4 and CP6 specimens where crack locations have shown a good
agreement with the traditional unfolding in less than a 50% of the specimen.
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Figure 5.9: Location of the delaminations in a CP6 coupon.
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Chapter 6

Design recommendations

In this PhD Thesis several models for the stress calculations based in
2D and 3D approximations have been presented. Those models have been
implemented in MatLab, showing very low computational times and a very
high accuracy for a high enough model order. This is especially useful for
an optimization problem which requires to evaluate many cases and may
spend much more time. Furthermore, two kinds of unfolding failure have
been separated: the traditional failure and the induced unfolding.

Design recommendations and optimization guidelines may be defined by
considering both traditional and induced unfolding failure mechanisms and
using the models developed to obtain the stress analysis of multiple configu-
rations. For the analysis of the optimal configurations, a L-shaped laminate
of 90o is considered loaded under a pure opening bending moment. The
material properties considered are shown in Table 6.1, with a ply thickness
of tp = 0.2 mm. S22 is the tensile strength in the in-plane direction per-
pendicular to the fibres corrected with the residual stresses and S33 is the
ILTS.

Table 6.1: Material properties
E11 (MPa) 150 E22 (MPa) 10 E33 (MPa) 10

ν12 0.3 ν13 0.3 ν23 0.3
G12 (MPa) 4.8 G13 (MPa) 4.8 G23 (MPa) 4.8
S22 (MPa) 50 S33 (MPa) 50

The following sections evaluate the maximum bending moment in several
kinds of laminates considering both traditional and induced unfolding ob-
serving how different parameters affect to the results, and finally summarize
the design guidelines by considering the results obtained.



6.1. Maximum bending moment with the combination of traditional and
induced unfolding 228

6.1 Evaluation of the maximum bending mo-

ment with the combination of traditional

and induced unfolding

The simplest approximation for evaluating the maximum INS due to
a bending moment is given by Kedward’s formula [1], which is shown in
equation (2.5). Therefore, the maximum bending moment according to
Kedward’s formula and the traditional unfolding concept, MK , that a curved
laminate can bear, is given by the following expression:

MK = −t
√

4R2 − t2
3

S33. (6.1)

This approximation is based on the Lekhnitskii’s equations. Therefore,
it is valid for homogeneous materials, and does not consider the stacking
sequence effect. Notwithstanding, this expression shows that, for a given
thickness, it is interesting to increase the mean radius, when possible, to
increase the bending moment that the laminate can bear. This bending
moment is used as a reference moment in the calculations.

For estimating the moment that the laminate can bear considering the
effect of the stacking sequence and the different three-dimensional effects,
stresses are calculated according to the three-dimensional non-regularized
model with n = 40 andW = 10t. The three-dimensional effects are generally
much more important than the change-of-curvature effects in the considered
geometry under a bending moment. The bending problem is one of the
cases less affected by the change-of-curvature effects. Therefore, the results
of the regularized three-dimensional aforementioned model are used for the
optimization, considering that the real value may be modified even in a 6%
by the change of curvature.

Applying that three-dimensional model, a bending moment MTU is ob-
tained considering that the INS reaches the ILTS (traditional unfolding)
and a bending moment MIU is obtained considering that the matrix stress
σ22 reaches the corresponding strength S22 (induced unfolding). Hence, the
maximum bending moment that laminate may bear is given by Mmax =
min(MTU ,MIU).

Six blocks of different kinds of stacking sequences have been consid-
ered for the calculations. The first block is composed by a 8-plies laminate
100/0/0/0, where the first number is the percentage of plies at 0o, the second
number is the percentage of plies at 90o, the third number is the percent-
age of plies at 45o and the last number is the percentage of plies at -45o.
Therefore, the first laminate considered is a [0]8 laminate.
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The second block has four laminates with the different possibilities of 8-
plies symmetrical laminates 75/25/0/0. The third block is composed by the
four laminates of the different possibilities of 8-plies symmetrical laminates
25/75/0/0. The fourth block has six laminates with the different possibilities
of 8-plies symmetrical laminates 50/50/0/0. The fifth block is composed by
the 12 possibilities of 8-plies symmetrical laminates 25/25/25/25.

Finally, the sixth block has 12 laminates, defined by the symmetrical
laminates [0,45,-45,90]nS, [45,0,-45,90]nS, [45,90,0,-45]nS and [45,90,-45,0]nS
with n = 2, 3, 4.

With the purpose of analysing the effect of the stacking sequence, the
bending stiffness, Eb [Nm], and the axial stiffness, Ea [N/m], are used. The
different results are depicted depending on the non-dimensional parameter
(12Eb)/(Eat

2). Notice that this parameter has an unit value for an isotropic
material and for a homogeneous stacking sequence with all plies at 0o or
90o.

For analysing the effect of the radius to thickness ratio, R/t, different
values of this parameter are evaluated.

First, considering a laminate with R/t = 1, the bending moment as-
sociated to the traditional unfolding, MTU , is depicted in Figure 6.1, the
bending moment associated to the induced unfolding, MIU , is depicted in
Figure 6.2, and the maximum bending moments that the laminates may
bear are depicted in Figure 6.3.

Figure 6.1: Analytical bending moment in the traditional unfolding, MTU ,
for R = t.

As seen in Figure 6.1, the values of MTU for the different stacking se-
quences and thicknesses follow a defined distribution, which has been in-
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terpreted as a potential function. It is observed that the distribution is
roughly independent of the number of plies and of the stacking sequence
and the percentage of each kind of ply, depending only on the parameter
(12Eb)/(Eat

2).

Figure 6.2: Analytical bending moment in the induced unfolding, MIU , for
R = t.

Respect to Figure 6.2, the values of MIU have not a globally defined
distribution. Notwithstanding, each kind of stacking sequence, defined by
the percentage of each ply, has a defined distribution which may also be
approximated by a potential function.

Figure 6.3: Analytical bending moment, Mmax, for R = t.

Hence, considering both MTU and MIU , the maximum bending moment
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Mmax is obtained as depicted in Figure 6.3. It may be observed that the best
design for a curved laminate under bending moment prone to unfolding fail-
ure is the one which maximize the parameter (12Eb)/(Eat

2). Furthermore,
stacking sequences which a higher value of that parameter are prone to the
traditional unfolding failure, since laminates with a low value are prone to
induced unfolding. Furthermore, the reduction of the number of 90o plies
causes the increment of MIU and therefore the domination of the traditional
unfolding.

Second, considering a laminate with R/t = 2, the bending moment as-
sociated to the traditional unfolding, MTU , is depicted in Figure 6.4, the
bending moment associated to the induced unfolding, MIU , is depicted in
Figure 6.5, and the maximum bending moments that the laminates may
bear are depicted in Figure 6.6.

Figure 6.4: Analytical bending moment in the traditional unfolding, MTU ,
for R = 2t.

Comparing Figure 6.4 with Figure 6.1, the case of R = 2t has a higher
dispersion of MTU values, although they can be approximated also by a
potential function. Furthermore, the potential function of R = 2t has a
higher exponent than in the case of R = t, causing higher differences of the
value of MTU when varying the parameter (12Eb)/(Eat

2).
Comparing Figure 6.5 with Figure 6.2, the case of R = 2t has a lower

dispersion of MIU values, although they can be approximated also by a
potential functions. Furthermore, the potential function of R = 2t has a
lower exponent and much lower values than in the case of R = t.

The maximum bending moment for the R = 2t case, observed in Figure
6.6, shows a higher domination of the induced unfolding due to the much
lower values of MIU .



6.1. Maximum bending moment with the combination of traditional and
induced unfolding 232

Figure 6.5: Analytical bending moment in the induced unfolding, MIU , for
R = 2t.

Figure 6.6: Analytical bending moment, Mmax, for R = 2t.

Finally, considering a laminate with R/t = 3, the bending moment as-
sociated to the traditional unfolding, MTU , is depicted in Figure 6.7, the
bending moment associated to the induced unfolding, MIU , is depicted in
Figure 6.8, and the maximum bending moments that the laminates may
bear are depicted in Figure 6.9.

In Figure 6.7 it is observed again an increment of the exponent in the
potential distribution when the R/t ratio is increased, increasing the slope
of the distribution.

Figure 6.8 shows again a decrease of the exponents when the R/t ratio
is increased.
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Figure 6.7: Analytical bending moment in the traditional unfolding, MTU ,
for R = 3t.

Figure 6.8: Analytical bending moment in the induced unfolding, MIU , for
R = 3t.

Combining both effects, Figure 6.9 shows a higher domination of the
induced unfolding when a higher R/t ratio is chosen. For the depicted
laminates, the R/t = 3 case is highly dominated by the induced unfolding,
and only a few laminates fail by traditional unfolding.

In actual laminates, when a thin laminate is chosen the R/t ratio is
usually higher than in thicker laminates due to manufacturability limitations
in the inner radius of the curved part. Hence, thinner laminates are more
dominated by the induced unfolding, causing higher errors in the traditional
calculation based only in the traditional unfolding. Therefore, the induced
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Figure 6.9: Analytical bending moment, Mmax, for R = 3t.

unfolding constitutes the explanation of the thickness-dependant of the ILTS
since thin laminates fail due to a different failure mechanism, the induced
unfolding.

6.2 Optimization recommendations based on

both failure mechanisms

Considering a fixed R/t ratio and a given proportion of each kind of plies,
both failure mechanisms agree in a common optimization criterion based on
maximizing the bending stiffness to axial stiffness ratio. Furthermore, due
to the higher slope of the induced unfolding correlated curve respect to the
traditional unfolding one, small bending stiffness to axial stiffness ratios are
usually dominated by the induced unfolding while high ratios are dominated
by the traditional unfolding.

When the proportion of plies is not fixed, the traditional unfolding is
optimized by maximizing also the bending stiffness to axial stiffness ra-
tio, but the induced unfolding has different correlated curves for different
proportions of plies, so detailed study being required for each particular
case. Notwithstanding, if the optimum stacking sequence for the traditional
unfolding is not failing by induced unfolding it may be considered as the
optimum one by considering both failure mechanisms.

Finally, if the R/t ratio is not fixed, a higher ratio improves the tradi-
tional unfolding but reduces the maximum bending moment respect to the
Kedward bending moment MK of the induced unfolding. Notwithstanding,
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the Kedward bending moment MK is increased with the R/t ratio, so, fi-
nally, the maximum bending moment is always increased when the R/t ratio
increases.

The thickness-dependence of the apparent ILTS may be explained using
the results of the present Chapter. Notice that when the R/t ratio is in-
creased the relation MTU/MK remains approximately invariant. However,
when the R/t ratio is increased the relation MIU/MK decreases, and con-
sequently the failure due to the induced unfolding occurs at a lower load
and it is more probable that the induced unfolding is given instead of the
traditional unfolding. Due to manufacturability reasons, thinner specimens
have to be designed typically with higher R/t ratios than the typical ratios
of the thicker L-shaped specimens, and then the induced unfolding occurs
at a lower load respect to the traditional unfolding and the apparent ILTS,
i.e., the value of the INS in the failure load, is lower. Therefore, it causes
that the apparent ILTS of thinner specimens is lower than the apparent
ILTS of thicker laminates, which may be traduced as the classical thickness
dependence.
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Chapter 7

Concluding remarks and future
developments

Unfolding failure consists in a delamination which appears in curved
specimens when they are loaded under a bending moment which tries to
open the curvature. This PhD Thesis presents a detailed analysis of the
failure mechanisms present in the unfolding failure and the stress states
associated to them.

The aims of the Thesis are oriented to give an explanation of the two
main problems which are present in the nowadays calculation procedures.
The first problem consists in the thickness dependence of the apparent ILTS
in typical composite laminates obtained from a four-point bending test pro-
cedure, e.g., ASTM D 6415/D 6415M [3]. The second problem consists in a
high conservatism of the analytical procedures when applied to some kinds
of loading states and geometries, mainly due to non-regularized effects such
as the change-of-curvature effect.

The project is divided in three main parts, according to the three main
steps involving the failure calculation: obtaining the loads (Chapter 2),
calculating the stresses (Chapters 3 and 4) and applying a failure criterion
(Chapter 5). Finally, based in the results obtained in the aforementioned
Chapters, Chapter 6 has developed some design recommendations.

Chapter 2 is oriented to the bending moment calculation in the four-
point bending test. The four-bending point test has been analysed due to
its importance in the ILTS calculation, in order to have a wider view of the
deformation and the loads distribution during the test. This kind of test is
highly non-linear due to the change of the contact point between the rollers
and the coupon due to a high displacements problem. Therefore, a non-
linear model has been developed to obtain the load-displacements relation
and the load-bending moment relation.
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The model has shown small differences in the bending moment calcula-
tion from the applied load, lesser than a 5%, respect to the model presented
in the ASTM procedure [3]. However, it also estimates the displacement by
considering the stiffness of the beam, while the ASTM procedure requires
the experimental measurements of the load and the displacement. There-
fore, the model may be used for monitoring the test while it allows obtaining
the force-displacement relation previously to the test.

The force-displacement distribution obtained with the non-linear model
for the four-point bending test has been compared with experimental results
for the validation of the model, showing a high agreement.

Bi-dimensional models have been developed in Chapter 3 for the calcu-
lation of the stresses in curved beams. First, an approximation to the Ko
and Jackson equations [4] has been developed. This model is similar to the
model presented in [94], using a different notation which makes easier the
numerical implementation of the model. Second, the model has been ex-
tended by using a series expansion of the displacements and a higher-order
moments definition in the stresses side. These higher-order models have al-
lowed the stresses in more complex problems such as the change of curvature
problem to be calculated, where the traditional analytical models are not
applicable.

Two kinds of higher-order models (MBM and LPBM) have been de-
veloped depending on the functions used in the series expansion and the
moments definition. MBM model is based in monomials, which let us to
obtain a model with very low computational times. This model has a lim-
itation in the maximum order that can be employed due to the increment
of the condition number of the stiffness matrix when the order is increased,
which limits also the accuracy of the model. Notwithstanding, it has a sat-
isfactory accuracy in the maximum stresses prediction for many interesting
situations. LPBM model is based in Legendre polynomials. The Legendre
polynomials, due to their orthogonality, suppress the maximum order lim-
itation, and much higher orders can be reached yielding, therefore, much
higher accuracies and accurately predicting the whole stress distribution
even near to a change of curvature. The computational times of the Leg-
endre polynomials based model are higher than the computational times of
the monomials based model, although they are much lower than the com-
putational times required by a FE model with a similar accuracy in the
results.

The higher-order models have been used to estimate the regularization
distance, which is an important parameter to analyse the extension of the
non-regularized effects due to the change of curvature or others factors. This
parameter determines the length of the zone in which the Saint-Venant prin-
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ciple can be applied. Furthermore, the non-regularized models have been
applied to other kinds of problems different from the change of curvature,
such as the joint between materials with different properties or the effect of
concentrated loads.

The stress analysis in curved specimens has been completed by the de-
velopment of three-dimensional models in Chapter 4. Three-dimensionality
may introduce a torsion, induced by the different length of the outer and in-
ner±45o plies. Furthermore, the anticlastic effect restricted by the curvature
of the material introduces a through-the-width moment which is null in the
free-edge, modifying the stress distribution and causing a through-the-width
distribution of the stress. Finally, the free-edge introduces singularities in
the interfaces of the plies.

First, a regularized three-dimensional model has been developed to anal-
yse the effect of a homogeneous change of temperature (causing residual
stresses in the laminate), the effect of the torsion and the anticlastic effect.
Residual INS have been obtained for curved laminates, observing that, in
typical symmetrical laminates, 0o plies (compressed plies) cause a negative
increment of the residual INS with the radial coordinate and that 90o plies
(tensioned plies) cause a positive increment of the residual INS with the
radial coordinate. Therefore, considering that the maximum of the INS due
to the bending moment are typically given at lower radii, it is interesting to
locate the 0o plies outer than the 90o plies in the stacking sequence in order
to use the residual stresses to reduce that maximum INS.

Second, a non-regularized model has been developed to consider also the
three-dimensional state, obtaining the free-edge effects and the through-
the-width stress distributions. The through-the-width stress distributions
have shown a high importance in some kinds of stacking sequences where
the maximum stress is a 20% higher than the maximum stress predicted
by considering a homogeneous stress distribution in the width. This non-
regularized model has similar numerical properties (accuracy, computational
times, convergence, etc.) than the bi-dimensional non-regularized models.

The developed non-regularized models have laid the background for a
wider analysis of the stress analysis in curved laminates. In particular, the
three-dimensional model has provided a much higher accuracy of the stresses
in the in-plane matrix direction than that given by the bi-dimensional mod-
els, where the stress state approximation (e.g., plane stress or plane strain)
plays an important role. This higher accuracy has let us to observe that,
when applying the model to experimental results, the matrix direction may
be failing approximately at the failure load, which may imply that the un-
folding failure could be initiated, not only by the INS, but also by the
in-plane stresses.
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Following this line, a novel failure mechanism has been presented in
Chapter 5, consisting in the concept of induced unfolding which gives a
plausible explanation of the thickness-dependence of the apparent ILTS.
The induced unfolding is initiated by an intralaminar crack, which, due
to the presence of a high enough INS, may propagate interlaminarly when
reaching the interface with a stiffer ply.

Hence, intralaminar cracks may anticipate the delamination and, there-
fore, the unfolding failure, causing that the apparent ILTS (defined as the
maximum INS in the failure load) is lower than the actual ILTS. The main
intralaminar failure considered has been the in-plane matrix direction fail-
ure, which is typically given in composite laminates with UD plies.

Some evidences of the existence of the induced unfolding have been ex-
posed based in some experimental results provided by Airbus Operations
S.L. First evidences are based in the maximum stresses calculation, observ-
ing that the INS has not always the same value at the failure point, which
implies the classical thickness dependence. However, the maximum in-plane
matrix direction stress has an almost constant value similar to the matrix
direction strength in all the specimens at the failure load. Therefore, results
indicate that in all the specimens an in-plane matrix failure should have
taken place approximately for the failure load.

Second evidences are based in the location of the delaminations. The
location of the first delamination predicted by the traditional unfolding fail-
ure mechanism is different generally than the location of the first delamina-
tion predicted by the induced unfolding mechanism. Images of the broken
coupons after the test have allowed us to observe the cracks that have ap-
peared during the test. The cracks locations have shown a higher correlation
with the induced unfolding than with the traditional unfolding. A 100% of
the coupons have a delamination where the induced unfolding predicts, while
for some kind of specimens only the 50% of the coupons have a delamination
where the traditional unfolding predicts.

Finally, based in the results obtained in the previous Chapters, Chapter
6 has developed some design guidelines for optimizing the stacking sequence
and geometry of curved laminates prone to unfolding failure.

Both traditional and induced unfolding failure mechanisms may be op-
timized by maximizing the bending stiffness respect to the axial stiffness.
Therefore, if the number of each kind of ply is fixed, the optimizations es-
tablishes that the stiffest plies (0o plies) have to be located in the outer part
of the stacking sequence, and that the less stiff plies (90o plies) have to be
located in the inner part of the stacking sequence.

Furthermore, it may be observed that comparing the maximum bending
moment that a curved beam may bear with the maximum bending moment
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predicted by Kedward’s formula, the relation between them has very small
variations in the traditional unfolding mechanism when the mean radius to
thickness ratio is increased. However, the variation in the induced unfolding
is higher, so that for higher mean radius to thickness ratios the induced un-
folding is given at lower bending moments respect to the bending moment
predicted by Kedward’s formula. Hence, it may explain the classical thick-
ness dependence of the apparent ILTS since thinner laminates require, due
to manufacturability reasons, higher mean radius to thickness ratios and,
therefore, the bending moment in the induced unfolding to the bending
moment in the traditional unfolding ratio decreases anticipating the failure
due to the induced unfolding and causing that the apparent ILTS is lower
in these cases.

Future developments have to be focused on demonstrating the existence
of the induced unfolding with experimental and numerical evidences. Nu-
merical evidences may be focused on modelling the crack propagation from
in-plane failures and showing that the onset and propagation of the delam-
ination from that crack is unstable, when the interface is bearing a high
enough INS. Experimental evidences may be focused on the realization of
experimental tests with stacking sequences and radius to thickness ratios es-
pecially chosen for obtaining the desired failure mechanism, and observing
the crack initiation and propagation with ultra-high speed cameras.

Finally, a new failure criterion based in both failure mechanisms has
to be developed. It is important to include in that failure criterion the
necessity of a minimum INS for the propagation of the delamination from
the intralaminar crack, which implies the main difficulty in the calculation
of the induced unfolding.
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Appendix A

Matrices of the differential
equation of the 2D
non-regularized models

A.1 MBM matrices for the straight beam

The matrices are subdivided in the following submatrices:

G =

[
Gss Gsz

Gzs Gzz

]
, gN =

[
gsN
gzN

]
, gM =

[
gsM
gzM

]
, (A.1a)

gσ+ =

[
gsσ+

gzσ+

]
, gσ− =

[
gsσ−

gzσ−

]
, (A.1b)

gτ+ =

[
gsτ+

o

]
, gτ− =

[
gsτ−

o

]
, (A.1c)

where o is a vector of zeros and the submatrices are given by:

Gss = −HγHzĎzz
−1
B̌sz

T
, Gsz = HγHzĎzz

−1
Hz

T , (A.2a)

Gzs =
(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
B̌sz

T −Hγ
T Ǎss, (A.2b)

Gzz =
(
ČττHz −Hγ

T B̌sz

)
Ďzz

−1
Hz

T , (A.2c)

gsN = −HγHzĎzz
−1
b̌Nz, gsM = −HγHzĎzz

−1
b̌Mz, (A.2d)

gzN = −Hγ
T ǎNs +

(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
b̌Nz, (A.2e)

gzM = −Hγ
T ǎMs +

(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
b̌Mz, (A.2f)
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gsσ+ = −Hγ f̂s

(
t

2

)
, gsσ− = Hγ f̂s

(
− t

2

)
, (A.2g)

gzσ+ = −
(
Čττ f̂s

(
t

2

)
+ čQτ

)
, (A.2h)

gzσ− = Čττ f̂s

(
− t

2

)
+ čQτ , (A.2i)

gsτ+ = −fs
(
t

2

)
, gsτ− = fs

(
− t

2

)
. (A.2j)

A.2 MBM matrices for the curved beam

The matrices are subdivided in the following submatrices:

G =

[
Gss Gsz

Gzs Gzz

]
, gN =

[
gsN
gzN

]
, gM =

[
gsM
gzM

]
, (A.3a)

gσ+ =

[
gsσ+

gzσ+

]
, gσ− =

[
gsσ−

gzσ−

]
, (A.3b)

gτ+ =

[
gsτ+

o

]
, gτ− =

[
gsτ−

o

]
, (A.3c)

where o is a vector of zeros and the submatrices are given by:

Gss = Hγ

(
Hs −HzĎzz

−1
B̌sz

T
)
, Gsz = HγHzĎzz

−1
Hz

T , (A.4a)

Gzs = ČττHs +
(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
B̌sz

T −Hγ
T Ǎss, (A.4b)

Gzz =
(
ČττHz −Hγ

T B̌sz

)
Ďzz

−1
Hz

T +Hγ
THs

T , (A.4c)

gsN = −HγHzĎzz
−1
b̌Nz, gsM = Hγ

(
hM −HzĎzz

−1
b̌Mz

)
, (A.4d)

gzN =
1

R
čQτ −Hγ

T ǎNs +
(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
b̌Nz, (A.4e)

gzM = ČττhM −Hγ
T ǎMs +

(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
b̌Mz, (A.4f)

gsσ+ = −R
+

R
Hγfz

(
t

2

)
, gsσ− =

R−

R
Hγfz

(
− t

2

)
, (A.4g)

gzσ+ = −R
+

R

(
Čττfz

(
t

2

)
+ čQτ

)
, (A.4h)
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gzσ− =
R−

R

(
Čττfz

(
− t

2

)
+ čQτ

)
, (A.4i)

gτ+ = −R
+

R
fs

(
t

2

)
, gτ− =

R−

R
fs

(
− t

2

)
. (A.4j)

A.3 LPBM matrices for the straight beam

The matrices are subdivided in the following submatrices:

G =

[
Gss Gsz

Gzs Gzz

]
, gN =

[
gsN
gzN

]
, gM =

[
gsM
gzM

]
, (A.5a)

gσ+ =

[
gsσ+

gzσ+

]
, gσ− =

[
gsσ−

gzσ−

]
, (A.5b)

gτ+ =

[
gsτ+

o

]
, gτ− =

[
gsτ−

o

]
, (A.5c)

where o is a vector of zeros and the submatrices are given by:

Gss = −HγHzĎzz
−1
B̌sz

T
, Gsz = HγHzĎzz

−1
Hz

T , (A.6a)

Gzs =
(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
B̌sz

T −Hγ
T Ǎss, (A.6b)

Gzz =
(
ČττHz −Hγ

T B̌sz

)
Ďzz

−1
Hz

T , (A.6c)

gsN = −HγHzĎzz
−1
b̌Nz, gsM = −HγHzĎzz

−1
b̌Mz, (A.6d)

gzN = −Hγ
T ǎNs +

(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
b̌Nz, (A.6e)

gzM = −Hγ
T ǎMs +

(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
b̌Mz, (A.6f)

gsσ+ = −Hγ f̂s(1)− hQ, gsσ− = Hγ f̂s(−1) + hQ, (A.6g)

gzσ+ = −(Čττ f̂s(1) + čQτ ), gzσ− = Čττ f̂s(−1) + čQτ , (A.6h)

gsτ+ = −fs(1), gsτ− = fs(−1). (A.6i)
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A.4 LPBM matrices for the curved beam

The matrices are subdivided in the following submatrices:

G =

[
Gss Gsz

Gzs Gzz

]
, gN =

[
gsN
gzN

]
, gM =

[
gsM
gzM

]
, (A.7a)

gσ+ =

[
gsσ+

gzσ+

]
, gσ− =

[
gsσ−

gzσ−

]
, (A.7b)

gτ+ =

[
gsτ+

o

]
, gτ− =

[
gsτ−

o

]
, (A.7c)

where o is a vector of zeros and the submatrices are given by:

Gss = Hγ

(
Hs −HzĎzz

−1
B̌sz

T
)
, Gsz = HγHzĎzz

−1
Hz

T , (A.8a)

Gzs = ČττHs +
(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
B̌sz

T −Hγ
T Ǎss, (A.8b)

Gzz =
(
ČττHz −Hγ

T B̌sz

)
Ďzz

−1
Hz

T +Hγ
THs

T , (A.8c)

gsN = Hγ

(
hN −HzĎzz

−1
b̌Nz

)
+
hQ
R
, (A.8d)

gsM = Hγ

(
hM −HzĎzz

−1
b̌Mz

)
, (A.8e)

gzN =
1

R
čQτ + ČττhN −Hγ

T ǎNs +
(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
b̌Nz,

(A.8f)

gzM = ČττhM −Hγ
T ǎMs +

(
Hγ

T B̌sz − ČττHz

)
Ďzz

−1
b̌Mz, (A.8g)

gsσ+ = −R
+

R
(Hγfz(1) + hQ) , gsσ− =

R−

R
(Hγfz(−1) + hQ) , (A.8h)

gzσ+ = −R
+

R
(Čττfz(1) + čQτ ), gzσ− =

R−

R
(Čττfz(−1) + čQτ ), (A.8i)

gτ+ = −R
+

R
fs(1), gτ− =

R−

R
fs(−1). (A.8j)
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Matrices expressions of the 3D
non-regularized models

B.1 Stiffness matrices for the flat laminate

The stiffness matrices Kσ and Kτ are divided in terms associated to the
different components of the vector of equations (4.82). These components
are denominated as follows:

Kσ =



A11 B11 A12 B12 (kA12)T A16 B16 (kA16)T (kA13)T

B11 D11 B12 D12 (kB12)T B16 D16 (kB16)T (kB13)T

A12 B12 A22 B22 (kA22)T A26 B26 (kA26)T (kA23)T

B12 D12 B22 D22 (kB22)T B26 D26 (kB26)T (kB23)T

kA12 kB12 kA22 kB22 Kσ
22 kA26 kB26 Kσ

26 Kσ
23

A16 B16 A26 A26 (kA26)T A66 B66 (kA66)T (kA63)T

B16 D16 B26 B26 (kB26)T B66 D66 (kB66)T (kB63)T

kA16 kB16 kA26 kB26 Kσ
26 kA66 kB66 Kσ

66 Kσ
63

kA13 kB13 kA23 kB23 (Kσ
23)T kA63 kB63 (Kσ

63)T Kσ
33


,

(B.1a)

Kτ =


A44 (kC44)T A45 (kC45)T

kC44 Kτ
44 kC45 Kτ

45

A45 (kC45)T A55 (kC55)T

kC45 Kτ
45 kC55 Kτ

55

 . (B.1b)

The components of the stiffness matricesKσ andKτ , shown in equations
(B.1), are calculated from the following expressions:

Aij =

Np∑
p=1

(z+p − z−p )C̄p
ij, i, j = 1, 2, 3, 4, 5, 6, (B.2a)
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Bij =

Np∑
p=1

1

2
((z+p )2 − (z−p )2)C̄p

ij, i, j = 1, 2, 3, 6, (B.2b)

Dij =

Np∑
p=1

1

3
((z+p )3 − (z−p )3)C̄p

ij, i, j = 1, 2, 3, 6, (B.2c)

kAij =

Np∑
p=1

(
C̄p
ij

∫ z+p

z−p

fs(z)dz

)
, i, j = 1, 2, 6, (B.2d)

kAij =

Np∑
p=1

(
C̄p
ij

∫ z+p

z−p

ˆ̂fs(z)dz

)
, i = 1, 2, 6, j = 3, (B.2e)

kBij =

Np∑
p=1

(
C̄p
ij

∫ z+p

z−p

zfs(z)dz

)
, i, j = 1, 2, 6, (B.2f)

kBij =

Np∑
p=1

(
C̄p
ij

∫ z+p

z−p

z ˆ̂fs(z)dz

)
, i = 1, 2, 6, j = 3, (B.2g)

kCij =

Np∑
p=1

(
C̄p
ij

∫ z+p

z−p

f̂s(z)dz

)
, i, j = 4, 5, (B.2h)

Kσ
ij =

Np∑
p=1

(
C̄p
ij

∫ z+p

z−p

fs(z)fs
T (z)dz

)
, i, j = 1, 2, 6, (B.2i)

Kσ
ij =

Np∑
p=1

(
C̄p
ij

∫ z+p

z−p

fs(z) ˆ̂fs
T

(z)dz

)
, i = 1, 2, 6, j = 3, (B.2j)

Kσ
33 =

Np∑
p=1

(
C̄p

33

∫ z+p

z−p

ˆ̂fs(z) ˆ̂fs
T

(z)dz

)
, (B.2k)

Kτ
ij =

Np∑
p=1

(
C̄p
ij

∫ z+p

z−p

f̂s(z)f̂s
T

(z)dz

)
, i, j = 4, 5. (B.2l)

The matrices KA
σ and KB

σ yield:
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KA
σ =



A22 B22 (kA22)T A26 B26 (kA26)T (kA23)T

B22 D22 (kB22)T B26 D26 (kB26)T (kB23)T

kA22 kB22 Kσ
22 kA26 kB26 Kσ

26 Kσ
23

A26 A26 (kA26)T A66 B66 (kA66)T (kA36)T

B26 B26 (kB26)T B66 D66 (kB66)T (kB36)T

kA26 kB26 Kσ
26 kA66 kB66 Kσ

66 Kσ
36

kA23 kB23 (Kσ
23)T kA36 kB36 (Kσ

36)T Kσ
33


, (B.3a)

KB
σ =



A12 B12

B12 D12

kA12 kB12
A16 B16

B16 D16

kA16 kB16
kA13 kB13


. (B.3b)

B.2 Auxiliary matrices for the flat laminate

The auxiliary matrices employed in Chapter 4 in the development of the
non-regularized model for the straight laminates are defined as follows:

HQ
11 = (Hγ

T )−1Ǩτ
44Hγ

−1, (B.4a)

HQ
12 = (Hγ

T )−1
(
ǩC45 − Ǩ

τ
45Hγ

−1hQ
)
, (B.4b)

HQ
13 = (Hγ

T )−1Ǩτ
45Hγ

−1, (B.4c)

HQ
21 = (ǩC45)THγ

−1 − hQTHQ
31, (B.4d)

HQ
22 = Ǎ55 − (ǩC55)THγ

−1hQ − hQTHQ
32, (B.4e)

HQ
23 = (ǩC55)THγ

−1 − hQTHQ
33, (B.4f)

HQ
31 = (Hγ

T )−1Ǩτ
45Hγ

−1, (B.4g)

HQ
32 = (Hγ

T )−1
(
ǩC55 − Ǩ

τ
55Hγ

−1hQ
)
, (B.4h)

HQ
33 = (Hγ

T )−1Ǩτ
55Hγ

−1. (B.4i)

The matrix Hε yield:
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Hε =


ǩA22 ǩB22 Ǩσ

22 ǩA26 ǩB26 Ǩσ
26 Ǩσ

23

B̌26 B̌26 (ǩB26)T B̌66 Ď66 (ǩB66)T (ǩB36)T

ǩA26 ǩB26 Ǩσ
26 ǩA66 ǩB66 Ǩσ

66 Ǩσ
36

ǩA23 ǩB23 (Ǩσ
23)T ǩA36 ǩB36 (Ǩσ

36)T Ǩσ
33





N ε
y

M ε
y

M ε
y

N ε
sy

M ε
sy

M ε
sy

M ε
z


.

(B.5)

Matrices G and Gc and vector gε of the final differential equations are
obtained from the following expressions:

G = G1
−1G2, Gc = G1

−1G3, gε = G1
−1Hε, (B.6)

where the auxiliary matrices G1, G2 and G3 are defined by:

G1 =


HQ

11 − Ǩσ
23Hz

−1Hγ
−1 HQ

12 HQ
13 −(Hγ

T )−1

HQ
21 − (ǩB36)THz

−1Hγ
−1 HQ

22 HQ
23 0

HQ
31 − Ǩσ

36Hz
−1Hγ

−1 HQ
32 HQ

33 0
−Ǩσ

33Hz
−1Hγ

−1 0 0 0

 , (B.7a)

G2 =


Ǩσ

22 ǩB26 Ǩσ
26 0

(ǩB26)T Ď66 (ǩB66)T 0
Ǩσ

26 ǩB66 Ǩσ
66 0

(Ǩσ
23)T ǩB36 (Ǩσ

36)T Hz
T

 , (B.7b)

G3 =


0 ǩA12 ǩB12
2 B̌16 Ď16

0 ǩA16 ǩB16
0 ǩA13 ǩB13

 . (B.7c)

B.3 Stiffness matrices for the curved lami-

nate

The stiffness matrices Kσ, Kτ and Kεγ are divided in terms associ-
ated to the different components of the vector of equations (4.146). These
components are denominated as follows:
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Kσ =



A11 B11 (kA11)
T A12 B12 (kA12)

T A16 B16 (kA16)
T (kA13)

T

B11 D11 (kB11)
T B12 D12 (kB12)

T B16 D16 (kB16)
T (kB13)

T

kA11 kB11 Kσ
11 kC12 kD12 Kσ

12 kA16 kB16 Kσ
16 Kσ

13

A12 B12 (kC12)
T A22 B22 (kA22)

T A26 B26 (kA26)
T (kA23)

T

B12 D12 (kD12)
T B22 D22 (kB22)

T B26 D26 (kB26)
T (kB23)

T

kA12 kB12 (Kσ
12)

T kA22 kB22 Kσ
22 kC26 kD26 Kσ

26 Kσ
23

A16 B16 (kA16)
T A26 A26 (kC26)

T A66 B66 (kA66)
T (kA36)

T

B16 D16 (kB16)
T B26 B26 (kD26)

T B66 D66 (kB66)
T (kB36)

T

kA16 kB16 Kσ
16 kA26 kB26 (Kσ

26)
T kA66 kB66 Kσ

66 Kσ
36

kA13 kB13 (Kσ
13)

T kA23 kB23 (Kσ
23)

T kA36 kB36 (Kσ
36)

T Kσ
33


,

(B.8a)

Kτ =


A44 (kF44)T A45 (kF45)T

kF44 Kτ
44 kF45 Kτ

45

A45 (kF45)T A55 (kF55)T

kF45 Kτ
45 kF55 Kτ

55

 , (B.8b)

Kεγ =



Aε11 Aγ16
Bε

11 Bγ
16

kε11 kγ16
Aε12 Aγ26
Bε

12 Bγ
26

kε12 kγ26
Aε16 Aγ66
Bε

16 Bγ
66

kε16 kγ66
kε13 kγ36


. (B.8c)

The components of the stiffness matrix Kσ, shown in equations (B.8),
are calculated from the following expressions:

A11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

R

z +R
dz

)
, A12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

dz

)
, (B.9a)

A16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

dz

)
, A22 =

Np∑
p=1

(
C̄p

22

∫ z+p

z−p

z +R

R
dz

)
, (B.9b)

A26 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

z +R

R
dz

)
, A66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

z +R

R
dz

)
,

(B.9c)
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B11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

R

z +R
zdz

)
, B12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

zdz

)
, (B.10a)

B16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

zdz

)
, B22 =

Np∑
p=1

(
C̄p

22

∫ z+p

z−p

z +R

R
zdz

)
, (B.10b)

B26 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

z +R

R
zdz

)
, B66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

z +R

R
zdz

)
,

(B.10c)

D11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

R

z +R
z2dz

)
, D12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

z2dz

)
,

(B.11a)

D16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

z2dz

)
, D22 =

Np∑
p=1

(
C̄p

22

∫ z+p

z−p

z +R

R
z2dz

)
,

(B.11b)

D26 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

z +R

R
z2dz

)
, D66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

z +R

R
z2dz

)
,

(B.11c)

kA11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

R

z +R
fs(z)dz

)
, (B.12a)

kA12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

fy(z)dz

)
, kC12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

fs(z)dz

)
,

(B.12b)

kA16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

fs(z)dz

)
, kA13 =

Np∑
p=1

(
C̄p

13

∫ z+p

z−p

z +R

R
ˆ̂fs(z)dz

)
,

(B.12c)

kA22 =

Np∑
p=1

(
C̄p

22

∫ z+p

z−p

z +R

R
fy(z)dz

)
, (B.12d)

kA26 =

Np∑
p=1

(
C̄p

26

∫ z+p

z−p

z +R

R
fs(z)dz

)
, (B.12e)
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kC26 =

Np∑
p=1

(
C̄p

26

∫ z+p

z−p

z +R

R
fy(z)dz

)
, (B.12f)

kA23 =

Np∑
p=1

(
C̄p

23

∫ z+p

z−p

(
z +R

R

)2
ˆ̂fs(z)dz

)
, (B.12g)

kA66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

z +R

R
fs(z)dz

)
, (B.12h)

kA36 =

Np∑
p=1

(
C̄p

36

∫ z+p

z−p

(
z +R

R

)2
ˆ̂fs(z)dz

)
, (B.12i)

kB11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

R

z +R
fs(z)zdz

)
, (B.13a)

kB12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

fy(z)zdz

)
, kD12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

fs(z)zdz

)
,

(B.13b)

kB16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

fs(z)zdz

)
, kB13 =

Np∑
p=1

(
C̄p

13

∫ z+p

z−p

z +R

R
ˆ̂fs(z)zdz

)
,

(B.13c)

kB22 =

Np∑
p=1

(
C̄p

22

∫ z+p

z−p

z +R

R
fy(z)zdz

)
, (B.13d)

kB26 =

Np∑
p=1

(
C̄p

26

∫ z+p

z−p

z +R

R
fs(z)zdz

)
, (B.13e)

kD26 =

Np∑
p=1

(
C̄p

26

∫ z+p

z−p

z +R

R
fy(z)zdz

)
, (B.13f)

kB23 =

Np∑
p=1

(
C̄p

23

∫ z+p

z−p

(
z +R

R

)2
ˆ̂fs(z)zdz

)
, (B.13g)

kB66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

z +R

R
fs(z)zdz

)
, (B.13h)

kB36 =

Np∑
p=1

(
C̄p

36

∫ z+p

z−p

(
z +R

R

)2
ˆ̂fs(z)zdz

)
, (B.13i)
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Kσ
11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

R

z +R
fs(z)fs

T (z)dz

)
, (B.14a)

Kσ
12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

fs(z)fy
T (z)dz

)
, (B.14b)

Kσ
16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

fs(z)fs
T (z)dz

)
, (B.14c)

Kσ
13 =

Np∑
p=1

(
C̄p

13

∫ z+p

z−p

z +R

R
fs(z) ˆ̂fs

T
(z)dz

)
, (B.14d)

Kσ
22 =

Np∑
p=1

(
C̄p

22

∫ z+p

z−p

z +R

R
fy(z)fy

T (z)dz

)
, (B.14e)

Kσ
26 =

Np∑
p=1

(
C̄p

26

∫ z+p

z−p

z +R

R
fy(z)fs

T (z)dz

)
, (B.14f)

Kσ
23 =

Np∑
p=1

(
C̄p

23

∫ z+p

z−p

(
z +R

R

)2

fs(z) ˆ̂fs
T

(z)dz

)
, (B.14g)

Kσ
66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

z +R

R
fs(z)fs

T (z)dz

)
, (B.14h)

Kσ
36 =

Np∑
p=1

(
C̄p

36

∫ z+p

z−p

(
z +R

R

)2

fs(z) ˆ̂fs
T

(z)dz

)
, (B.14i)

Kσ
33 =

Np∑
p=1

(
C̄p

33

∫ z+p

z−p

(
z +R

R

)3
ˆ̂fs(z) ˆ̂fs

T
(z)dz

)
, (B.14j)

The components of the stiffness matrix Kτ , shown in equations (B.8),
are calculated from the following expressions:

A44 =

Np∑
p=1

(
C̄p

44

∫ z+p

z−p

z +R

R
dz

)
, A45 =

Np∑
p=1

(
C̄p

45

∫ z+p

z−p

dz

)
, (B.15a)
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A55 =

Np∑
p=1

(
C̄p

55

∫ z+p

z−p

R

z +R
dz

)
, (B.15b)

kF44 =

Np∑
p=1

(
C̄p

44

∫ z+p

z−p

z +R

R
fz(z)dz

)
, kF45 =

Np∑
p=1

(
C̄p

45

∫ z+p

z−p

fz(z)dz

)
,

(B.16a)

kF55 =

Np∑
p=1

(
C̄p

55

∫ z+p

z−p

R

z +R
fz(z)dz

)
, (B.16b)

Kτ
44 =

Np∑
p=1

(
C̄p

44

∫ z+p

z−p

z +R

R
fz(z)fz

T (z)dz

)
, (B.17a)

Kτ
45 =

Np∑
p=1

(
C̄p

45

∫ z+p

z−p

fz(z)fz
T (z)dz

)
, (B.17b)

Kτ
55 =

Np∑
p=1

(
C̄p

55

∫ z+p

z−p

R

z +R
fz(z)fz

T (z)dz

)
. (B.17c)

The components of the stiffness matrix Kεγ , shown in equations (B.8),
are calculated from the following expressions:

Aε11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

dz

)
, Aγ16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

R

z +R
dz

)
, (B.18a)

Aε12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

z +R

R
dz

)
, Aγ26 =

Np∑
p=1

(
C̄p

26

∫ z+p

z−p

dz

)
, (B.18b)

Aε16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

z +R

R
dz

)
, Aγ66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

dz

)
, (B.18c)

Bε
11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

zdz

)
, Bγ

16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

R

z +R
zdz

)
, (B.19a)

Bε
12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

z +R

R
zdz

)
, Bγ

26 =

Np∑
p=1

(
C̄p

26

∫ z+p

z−p

zdz

)
, (B.19b)
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Bε
16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

z +R

R
zdz

)
, Bγ

66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

zdz

)
, (B.19c)

kε11 =

Np∑
p=1

(
C̄p

11

∫ z+p

z−p

fs(z)dz

)
, (B.20a)

kγ16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

R

z +R
fs(z)dz

)
, (B.20b)

kε12 =

Np∑
p=1

(
C̄p

12

∫ z+p

z−p

z +R

R
fy(z)dz

)
, (B.20c)

kγ26 =

Np∑
p=1

(
C̄p

26

∫ z+p

z−p

fy(z)dz

)
, (B.20d)

kε16 =

Np∑
p=1

(
C̄p

16

∫ z+p

z−p

z +R

R
fs(z)dz

)
, (B.20e)

kγ66 =

Np∑
p=1

(
C̄p

66

∫ z+p

z−p

fs(z)dz

)
, (B.20f)

kε13 =

Np∑
p=1

(
C̄p

13

∫ z+p

z−p

(
z +R

R

)2
ˆ̂fs(z)dz

)
, (B.20g)

kγ36 =

Np∑
p=1

(
C̄p

36

∫ z+p

z−p

z +R

R
ˆ̂fs(z)dz

)
. (B.20h)

B.4 Auxiliary matrices for the curved lami-

nate

The auxiliary matrices employed in Chapter 4 in the development of the
non-regularized model for the curved laminates are defined as follows:

HQ
00 = Ǎ44 − (ǩC44)THγ

−1hQ − hQTHQ
10, (B.21a)

HQ
01 = (ǩC44)THγ

−1 − hQTHQ
11, (B.21b)

HQ
02 = Ǎ45 − (ǩC45)THγ

−1hQ − hQTHQ
12, (B.21c)

HQ
03 = (ǩC45)THγ

−1 − hQTHQ
13, (B.21d)
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HQ
10 = (Hγ

T )−1
(
ǩC44 − Ǩ

τ
44Hγ

−1hQ
)
, (B.21e)

HQ
11 = (Hγ

T )−1Ǩτ
44Hγ

−1, (B.21f)

HQ
12 = (Hγ

T )−1
(
ǩC45 − Ǩ

τ
45Hγ

−1hQ
)
, (B.21g)

HQ
13 = (Hγ

T )−1Ǩτ
45Hγ

−1, (B.21h)

HQ
20 = Ǎ45 − (ǩC45)THγ

−1hQ − hQTHQ
30, (B.21i)

HQ
21 = (ǩC45)THγ

−1 − hQTHQ
31, (B.21j)

HQ
22 = Ǎ55 − (ǩC55)THγ

−1hQ − hQTHQ
32, (B.21k)

HQ
23 = (ǩC55)THγ

−1 − hQTHQ
33, (B.21l)

HQ
30 = (Hγ

T )−1
(
ǩC45 − Ǩ

τ
45Hγ

−1hQ
)
, (B.21m)

HQ
31 = (Hγ

T )−1Ǩτ
45Hγ

−1, (B.21n)

HQ
32 = (Hγ

T )−1
(
ǩC55 − Ǩ

τ
55Hγ

−1hQ
)
, (B.21o)

HQ
33 = (Hγ

T )−1Ǩτ
55Hγ

−1. (B.21p)

The matrix ǨA yield:

ǨA =



ǨA
11 ǨA

12 ǨA
13 ǨA

14 ǨA
15 ǨA

16 ǨA
17 ǨA

18

ǨA
21 ǨA

22 ǨA
23 ǨA

24 ǨA
25 ǨA

26 ǨA
27 ǨA

28

ǨA
31 ǨA

32 ǨA
33 ǨA

34 ǨA
35 ǨA

36 ǨA
37 ǨA

38

ǨA
41 ǨA

42 ǨA
43 ǨA

44 ǨA
45 ǨA

46 ǨA
47 ǨA

48

ǨA
51 ǨA

52 ǨA
53 ǨA

54 ǨA
55 ǨA

56 ǨA
57 ǨA

58

ǨA
61 ǨA

62 ǨA
63 ǨA

64 ǨA
65 ǨA

66 ǨA
67 ǨA

68

ǨA
71 ǨA

72 ǨA
73 ǨA

74 ǨA
75 ǨA

76 ǨA
77 ǨA

78

ǨA
81 ǨA

82 ǨA
83 ǨA

84 ǨA
85 ǨA

86 ǨA
87 ǨA

88

ǨA
91 ǨA

92 ǨA
93 ǨA

94 ǨA
95 ǨA

96 ǨA
97 ǨA

98

ǨA
z1 ǨA

z2 ǨA
z3 ǨA

z4 ǨA
z5 ǨA

z6 ǨA
z7 ǨA

z8


, (B.22)

where the columns of ǨA are defined from the columns of Kσ as follows:
ǨA

11

ǨA
21
...

ǨA
z1

 =


B̌11

Ď11
...
ǩB13

−


(ǩA13)T

(ǩB13)T

...
Ǩσ

33

Hz
−1hM , (B.23a)
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
ǨA

12

ǨA
22
...

ǨA
z2

 =


(ǩA11)T

(ǩB11)T

...
(Ǩσ

13)T

−


(ǩA13)T

(ǩB13)T

...
Ǩσ

33

Hz
−1Hs, (B.23b)


ǨA

13

ǨA
23
...

ǨA
z3

 = R


Ǎ11

B̌11
...
ǩA13

−


(ǩA13)T

(ǩB13)T

...
Ǩσ

33

Hz
−1(Hγ

−1hQ +RhN ), (B.23c)


ǨA

14

ǨA
24
...

ǨA
z4

 =


B̌12

Ď12
...
ǩB23

 ,

ǨA

15

ǨA
25
...

ǨA
z5

 =


(ǩA13)T

(ǩB13)T

...
Ǩσ

33

Hz
−1Hγ

−1, (B.23d)


ǨA

16

ǨA
26
...

ǨA
z6

 =


(ǩA12)T

(ǩB12)T

...
(Ǩσ

23)T

 ,

ǨA

17

ǨA
27
...

ǨA
z7

 =


B̌16

Ď16
...
ǩB36

− 1

R


Ǎ16

B̌16
...
ǩA36

 , (B.23e)


ǨA

18

ǨA
28
...

ǨA
z8

 =


(ǩA16)T

(ǩB16)T

...
(Ǩσ

36)T

 , (B.23f)

The matrices ǨB and ǨC and the vector ǨD are obtained by the
following equations:

ǨB =

[
ǨB

11 ǨB
12 ǨB

13 ǨB
14 ǨB

15 ǨB
16 ǨB

17

ǨB
21 ǨB

22 ǨB
23 ǨB

24 ǨB
25 ǨB

26 ǨB
27

]
=

−
[
ǨA

21 ǨA
22

ǨA
31 ǨA

32

]−1 [
ǨA

23 ǨA
24 ǨA

25 ǨA
26 ǨA

27 ǨA
28 −hM

T

ǨA
33 ǨA

34 ǨA
35 ǨA

36 ǨA
37 ǨA

38 −Hs
T

]
,

(B.24a)

ǨC =

[
KC

11 KC
12

KC
21 KC

22

]
= −

[
ǨA

21 ǨA
22

ǨA
31 ǨA

32

]−1 [
Bε

11 Bγ
16

kε11 kγ16

]
, (B.24b)

ǨD =

[
ǨD

1

ǨD
2

]
=

[
ǨA

21 ǨA
22

ǨA
31 ǨA

32

]−1 [
ǩε2
ǩε3

]
, (B.24c)

where the components ǩεi , i = 1, 2, ..., 9, z, are defined in equation (4.149).
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Finally, matrices G and Gc and vector gε are defined by the following
expressions:

G = GA
−1GB, Gc = GA

−1GC , gε = GA
−1Hε, (B.25)

where the auxiliary matrices GA, GB and GC and the auxiliary vector Hε

are defined by the following expressions:

GA =


GA

11 GA
12 GA

13 GA
14 GA

15 GA
16

GA
21 GA

22 GA
23 GA

24 GA
25 GA

26

GA
31 GA

32 GA
33 GA

34 GA
35 GA

36

GA
41 GA

42 GA
43 GA

44 GA
45 GA

46

GA
51 GA

52 GA
53 GA

54 GA
55 GA

56

GA
61 GA

62 GA
63 GA

64 GA
65 GA

66

 , (B.26a)

GB =


GB

11 GB
12 GB

13 GB
14 GB

15 GB
16

GB
21 GB

22 GB
23 GB

24 GB
25 GB

26

GB
31 GB

32 GB
33 GB

34 GB
35 GB

36

GB
41 GB

42 GB
43 GB

44 GB
45 GB

46

GB
51 GB

52 GB
53 GB

54 GB
55 GB

56

GB
61 GB

62 GB
63 GB

64 GB
65 GB

66

 , (B.26b)

GC =


GC

11 GC
12

GC
21 GC

22

GC
31 GC

32

GC
41 GC

42

GC
51 GC

52

GC
61 GC

62

 , Hε =


Hε

1

Hε
2

Hε
3

Hε
4

Hε
5

Hε
6

 , (B.26c)

the components of matrix GA yielding:

GA
11 = HQ

00 − ǨA
53 − ǨA

51Ǩ
B
11 − ǨA

52Ǩ
B
21, (B.27a)

GA
12 = HQ

01 − Ǩ
A
55 − Ǩ

A
51Ǩ

B
13 − Ǩ

A
52Ǩ

B
23, (B.27b)

GA
13 = HQ

02, GA
14 = HQ

03, GA
15 = −1, GA

16 = hQ
T (Hγ

T )−1, (B.27c)

GA
21 = HQ

10 − Ǩ
A
63 − Ǩ

A
61Ǩ

B
11 − ǨA

62Ǩ
B
21, (B.27d)

GA
22 = HQ

11 − Ǩ
A
65 − Ǩ

A
61Ǩ

B
13 − Ǩ

A
62Ǩ

B
23, (B.27e)

GA
23 = HQ

12, GA
24 = HQ

13, GA
25 = 0, GA

26 = −(Hγ
T )−1, (B.27f)

GA
31 = HQ

20−ǨA
83+

ǨA
73

R
−
(
ǨA

81 −
ǨA

71

R

)
ǨB

11−
(
ǨA

82 −
ǨA

72

R

)
ǨB

21, (B.27g)
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GA
32 = HQ

21 − Ǩ
A
85 +

ǨA
75

R
−
(
ǨA

81 −
ǨA

71

R

)
ǨB

13 −
(
ǨA

82 −
ǨA

72

R

)
ǨB

23,

(B.27h)

GA
33 = HQ

22, GA
34 = HQ

23, GA
35 = 0, GA

36 = 0, (B.27i)

GA
41 = HQ

30 − Ǩ
A
93 − Ǩ

A
91Ǩ

B
11 − ǨA

92Ǩ
B
21, (B.27j)

GA
42 = HQ

31 − Ǩ
A
95 − Ǩ

A
91Ǩ

B
13 − Ǩ

A
92Ǩ

B
23, (B.27k)

GA
43 = HQ

32, GA
44 = HQ

33, GA
45 = 0, GA

46 = 0, (B.27l)

GA
51 = −ǨA

13 − ǨA
11Ǩ

B
11 − ǨA

12Ǩ
B
21, (B.27m)

GA
52 = −ǨA

15 − Ǩ
A
11Ǩ

B
13 − Ǩ

A
12Ǩ

B
23, (B.27n)

GA
53 = 0, GA

54 = 0, GA
55 = 0, GA

56 = 0, (B.27o)

GA
61 = −ǨA

z3 − Ǩ
A
z1Ǩ

B
11 − ǨA

z2Ǩ
B
21, (B.27p)

GA
62 = −ǨA

z5 − Ǩ
A
z1Ǩ

B
13 − Ǩ

A
z2Ǩ

B
23, (B.27q)

GA
63 = 0, GA

64 = 0, GA
65 = 0, GA

66 = 0, (B.27r)

the components of matrix GB yielding:

GB
11 = ǨA

54 + ǨA
51Ǩ

B
12 + ǨA

52Ǩ
B
22, GB

12 = ǨA
56 + ǨA

51Ǩ
B
14 + ǨA

52Ǩ
B
24,

(B.28a)

GB
13 = ǨA

57 + ǨA
51Ǩ

B
15 + ǨA

52Ǩ
B
25, GB

14 = ǨA
58 + ǨA

51Ǩ
B
16 + ǨA

52Ǩ
B
26,

(B.28b)

GB
15 = 0, GB

16 = ǨA
51Ǩ

B
17 + ǨA

52Ǩ
B
27, (B.28c)

GB
21 = ǨA

64 + ǨA
61Ǩ

B
12 + ǨA

62Ǩ
B
22, GB

22 = ǨA
66 + ǨA

61Ǩ
B
14 + ǨA

62Ǩ
B
24,

(B.28d)

GB
23 = ǨA

67 + ǨA
61Ǩ

B
15 + ǨA

62Ǩ
B
25, GB

24 = ǨA
68 + ǨA

61Ǩ
B
16 + ǨA

62Ǩ
B
26,

(B.28e)

GB
25 = 0, GB

26 = ǨA
61Ǩ

B
17 + ǨA

62Ǩ
B
27, (B.28f)

GB
31 = ǨA

84 −
ǨA

74

R
+

(
ǨA

81 −
ǨA

71

R

)
ǨB

12 +

(
ǨA

82 −
ǨA

72

R

)
ǨB

22, (B.28g)
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GB
32 = ǨA

86 −
ǨA

76

R
+

(
ǨA

81 −
ǨA

71

R

)
ǨB

14 +

(
ǨA

82 −
ǨA

72

R

)
ǨB

24, (B.28h)

GB
33 = ǨA

87 −
ǨA

77

R
+

(
ǨA

81 −
ǨA

71

R

)
ǨB

15 +

(
ǨA

82 −
ǨA

72

R

)
ǨB

25, (B.28i)

GB
34 = ǨA

88 −
ǨA

78

R
+

(
ǨA

81 −
ǨA

71

R

)
ǨB

16 +

(
ǨA

82 −
ǨA

72

R

)
ǨB

26, (B.28j)

GB
35 = 0, GB

36 =

(
ǨA

81 −
ǨA

71

R

)
ǨB

17 +

(
ǨA

82 −
ǨA

72

R

)
ǨB

27, (B.28k)

GB
41 = ǨA

94 + ǨA
91Ǩ

B
12 + ǨA

92Ǩ
B
22, GB

42 = ǨA
96 + ǨA

91Ǩ
B
14 + ǨA

92Ǩ
B
24,

(B.28l)
GB

43 = ǨA
97 + ǨA

91Ǩ
B
15 + ǨA

92Ǩ
B
25, GB

44 = ǨA
98 + ǨA

91Ǩ
B
16 + ǨA

92Ǩ
B
26,

(B.28m)
GB

45 = 0, GB
46 = ǨA

91Ǩ
B
17 + ǨA

92Ǩ
B
27, (B.28n)

GB
51 = ǨA

14 + ǨA
11Ǩ

B
12 + ǨA

12Ǩ
B
22, GB

52 = ǨA
16 + ǨA

11Ǩ
B
14 + ǨA

12Ǩ
B
24,

(B.28o)
GB

53 = ǨA
17 + ǨA

11Ǩ
B
15 + ǨA

12Ǩ
B
25, GB

54 = ǨA
18 + ǨA

11Ǩ
B
16 + ǨA

12Ǩ
B
26,

(B.28p)

GB
55 = − 1

R
, GB

56 = ǨA
11Ǩ

B
17 + ǨA

12Ǩ
B
27 − hN

T , (B.28q)

GB
61 = ǨA

z4 + ǨA
z1Ǩ

B
12 + ǨA

z2Ǩ
B
22, GB

62 = ǨA
z6 + ǨA

z1Ǩ
B
14 + ǨA

z2Ǩ
B
24,

(B.28r)
GB

63 = ǨA
z7 + ǨA

z1Ǩ
B
15 + ǨA

z2Ǩ
B
25, GB

64 = ǨA
z8 + ǨA

z1Ǩ
B
16 + ǨA

z2Ǩ
B
26,

(B.28s)
GB

65 = 0, GB
66 = ǨA

10,1Ǩ
B
17 + ǨA

10,2Ǩ
B
27 −Hz

T , (B.28t)

the components of matrix GC yielding:

GC
11 = Bε

12+ǨA
51K

C
11+ǨA

52K
C
21, GC

12 = Bγ
26+ǨA

51K
C
12+ǨA

52K
C
22, (B.29a)

GC
21 = kε12 + ǨA

61K
C
11 + ǨA

62K
C
21, GC

22 = kγ26 + ǨA
61K

C
12 + ǨA

62K
C
22,

(B.29b)

GC
31 = Bε

16 −
Aε16
R

+

(
ǨA

81 −
ǨA

71

R

)
KC

11 +

(
ǨA

82 −
ǨA

72

R

)
KC

21, (B.29c)
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GC
32 = Bγ

66 −
Aγ66
R

+

(
ǨA

81 −
ǨA

71

R

)
KC

12 +

(
ǨA

82 −
ǨA

72

R

)
KC

22, (B.29d)

GC
41 = kε16+ǨA

91K
C
11+Ǩ

A
92K

C
21, GC

42 = kγ66+ǨA
91K

C
12+Ǩ

A
92K

C
22, (B.29e)

GC
51 = Aε11 + ǨA

11K
C
11 +ǨA

12K
C
21, GC

52 = Aγ16 + ǨA
11K

C
12 +ǨA

12K
C
22, (B.29f)

GC
61 = kε13 + ǨA

10,1K
C
11 + ǨA

10,2K
C
21, (B.29g)

GC
62 = kγ36 + ǨA

10,1K
C
12 + ǨA

10,2K
C
22, (B.29h)

and the components of matrix Hε yielding:

Hε
1 = ǨA

51Ǩ
D
1 + ǨA

52Ǩ
D
2 − ǩ

ε
5, Hε

2 = ǨA
61Ǩ

D
1 + ǨA

62Ǩ
D
2 − ǩ

ε
6, (B.30a)

Hε
3 =

(
ǨA

81 −
ǨA

71

R

)
ǨD

1 +

(
ǨA

82 −
ǨA

72

R

)
ǨD

2 − ǩ
ε
8 +

ǩε7
R
, (B.30b)

Hε
4 = ǨA

91Ǩ
D
1 + ǨA

92Ǩ
D
2 − ǩ

ε
9, Hε

5 = ǨA
11Ǩ

D
1 + ǨA

12Ǩ
D
2 − ǩ

ε
1, (B.30c)

Hε
6 = ǨA

10,1Ǩ
D
1 + ǨA

10,2Ǩ
D
2 − ǩ

ε
z. (B.30d)



Bibliography

[1] K.T. Kedward, R.S. Wilson, and S. K. Mclean. Flexure of simply
curved composite shapes. Composites, 20:527–536, 1989.

[2] P.C. Paul, C.R. Saff, K.B. Sänger, M.A. Mahler, H.P. Kan, and E.F.
Kautz. Out of plane analysis for composite structures. In Eighth
DoD/NASA/FAA Conference on Fibrous Composites in Structural
Design, pages 263–279, 1992. Norfolk, Virginia.

[3] ASTM D 6415/D 6415M - 06a. Standard test method for measuring
the curved beam strength of a fibre-reinforced polymer-matrix com-
posite. ASTM Standards, 2007.

[4] W.L. Ko and R.H. Jackson. Multilayer theory for delamination analy-
sis of a composite curved bar subjected to end forces and end moments.
NASA Technical Memorandum 4139, 1989.

[5] R.Y. Kim and S.R. Soni. Failure of composite laminates due to com-
bined interlaminar normal and shear stresses. In Composites’86: recent
advances in Japan and the United States, Proceedings of Japan-U.S.
CCM-III, pages 341–350, 1986.

[6] T. Edwards and J. Thompson. Spar corner radius integrity for the
A400M wing. Applied Mechanics and Materials, 3-4:197–202, 2005.

[7] M. Hoffmann, K. Zimmermann, B. Bautz, and P. Middendorf. Size ef-
fect on through-thickness strength properties of 3D loaded composite
laminates. In Proceedings of the 17th European Conference on Com-
posite Materials ECCM17, 2016. 26-30 of June, Munich, Germany.

[8] S.C. Avalon and S.L. Donaldson. Strength of composite angle brackets
with multiple geometries and nanofiber-enhanced resins. Journal of
Composite Materials, 45(9):1017–1030, 2010.

[9] M.R. Wisnom. Size effects in the testing of fibre-composite materials.
Composites Science and Technology, 59:1937–1957, 1999.



Bibliography 264

[10] A. Makeev, G. Seon, Y. Nikishkov, and E. Lee. Methods for assessment
of interlaminar tensile strength of composite materials. Journal of
Composite Materials, 49(7):783–794, 2015.

[11] T.A. Fletcher, T. Kim, T.J. Dodwell, R. Butler, R. Scheichl, and
R. Newley. The influence of free edges on curved beam strength. In
Proceedings of the 21th International Conference on Composite Mate-
rials ICCM20, 2015. 19-24 of July, Copenhaguen, Denmark.

[12] T.A. Fletcher, A.K. Reinarz, T.J. Dodwell, R. Butler, R. Scheichl,
and R Newley. Efficient modelling and accurate certification of curved
aerospace laminates. In Proceedings of the 17th European Conference
on Composite Materials ECCM17, 2016. 26-30 of June, Munich, Ger-
many.

[13] T. Kim, T.A. Fletcher, T.J. Dodwell, R. Butler, R. Scheichl,
J. Ankersen, and R. Newley. The effect of free edges on inter-laminar
performance of curved laminates. In 56th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, 2015.

[14] J. Most, D. Stegmair, and D. Petry. Error estimation between simple,
closed-form analytical formulae and full-scale FEM for interlaminar
stress prediction in curved laminates. Composite Structures, 131:72–
81, 2015.

[15] R.M. Jones. Mechanics of Composite Materials. Mc Graw-Hill, 1975.

[16] J.M. Whitney and N.J. Pagano. Shear deformation in heterogeneous
anisotropic plates. Journal of Applied Mechanics, 37:1031–1036, 1970.

[17] K.C. Lin and C.M. Hsieh. The closed form general solutions of 2-D
curved laminated beams of variable curvatures. Composite Structures,
79(4):606–618, 2007.

[18] K.C. Lin and C.W. Lin. Finite deformation of 2-D laminated curved
beams with variable curvatures. International Journal of Non-Linear
Mechanics, 46(10):1293–1304, 2011.

[19] S.G. Lekhnitskii, S.W. Tsai, and T. Cheron. Anisotropic Plates. Gor-
don and Breach Science Publishers, 1968.

[20] W.L. Ko. Delamination stresses in semicircular laminated composite
curved bars. NASA Technical Memorandum 4026, 1988.



265 Bibliography

[21] A. Sharma and C.E. Bakis. Analysis of elastic stresses in thick, polar-
orthotropic, C-shaped rings. Journal of Composite Materials, 38:1619–
1638, 2004.

[22] A. Sharma and C.E. Bakis. C-shape specimen for tensile radial
strength of thick, filament-wound rings. Journal of Composite Ma-
terials, 40(2):97–116, 2006.

[23] A. Schmitz and P. Horst. Bending deformation limits of corru-
gated unidirectionally reinforced composites. Composite Structures,
107:103–111, 2014.

[24] W. Cui, T. Liu, J. Len, and R. Ruo. Interlaminar tensile strength
(ILTS) measurement of woven glass/polyester laminates specimen us-
ing four-point curved beam specimen. Composites Part A, 27A:1097–
1105, 1996.

[25] S. Smidt. Bending of curved sandwich beams. Composite Structures,
33:211–225, 1995.

[26] R.A. Shenoi and W. Wang. Through-thickness stresses in curved com-
posite laminates and sandwich beams. Composites Science and Tech-
nology, 61(11):1501–1512, 2001.

[27] M.S. Qatu. Theories and analyses of thin and moderately thick lam-
inated composite curved beams. International Journal of Solids and
Structures, 30(20):2743–2756, 1993.

[28] G. Kress, R. Roos, M. Barbezat, C. Dransfeld, and P. Ermanni. Model
for interlaminar normal stress in singly curved laminates. Composite
Structures, 69(4):458–469, 2005.
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alytic evaluation of radial stresses in unfolding failure of composite
materials. Comparison with numerical solutions. In Proceedings of the
16th European Conference on Composite Materials ECCM16, 2014.
22-26 of June, Seville, Spain.
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Stacking sequence optimization of curved UD-CFRP laminates for im-
proving unfolding strength considering thermal residual stresses. In
Proceedings of the 17th European Conference on Composite Materials
ECCM17, 2016. 26-30 of June, Munich, Germany.
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