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Abstract 

Mesoporous gamma alumina fibres of high surface area, stable up to 1000 ºC, were 

synthesized by bioreplica technique using sisal fibres as templates. Alumina formation during 

pyrolysis and calcination of fibres infiltrated with aluminium chloride solution has been studied, 

paying special attention to the interaction between the precursor and sisal fibres, using several 

experimental techniques such as ATR-FTIR, coupled TG-FTIR and thermo-XRD analysis. The 

morphology and microstructure of the resulting alumina fibres were characterized using SEM 

and TEM.  The crystallographic analysis of the alumina sample performed by electron and X-

ray diffraction suggests that fibres are constituted by  and -Al2O3 crystallites, whose chemical 

structure was confirmed by ATR-FTIR and Al27-MAS-NMR. The specific surface area and 

porosity of ceramic fibres were determined by N2 and CO2 adsorption-desorption 

measurements. Resulting alumina fibres retain high specific surface areas of 200 m2/g and 150 

m2/g even after calcination at 1000 °C for 15 h in dry air and for 4 h in wet air, respectively. 

 

Keywords: biomorphic alumina; biomimetic alumina; inorganic salt infiltration; sisal fibre 

biotemplate. 
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1. Introduction 

High surface area mesoporous aluminas with narrow pore distribution have been the 

subject of extensive research employing different strategies [1]. However, the synthesis of 

aluminas with hierarchically ordered pore structure attracts more and more attention [2, 3], due 

to the highly effective transport phenomena and the easy diffusion of reactants and products 

when pores of different sizes are interconnected. Generation of controllable hierarchical pores 

has been fundamentally carried out through agents acting as porosity generators like organic 

additives and surfactants [4, 5], foams, emulsions or masks based on replica procedure [6],  as 

well as by using others methods as hydrothermal treatment [7], and recently, nanocasting 

technique [8]. In any case, most of the employed processes generally involve the use of 

expensive porosity agents which must be finally removed by extraction or calcination. 

A method of ceramic synthesis that has attracted significant attention in the scientific 

community is the variant of the infiltration-replica technique which uses natural masks or bio-

templates [9-11]. Through bio-replica, it is possible to generate ceramic materials which 

faithfully reproduce the morphology and structure of the starting preforms in an easy way, with 

a porous architecture scaled from nano-, micro- to macro-sizes, with isotropic, anisotropic, 

homogeneous or heterogeneous properties, which are either difficult or very costly to produce 

by conventional methods [12]. The interest on porous bio-replicas based on metal oxides such 

as Al2O3, TiO2 and ZrO2 has been increasing in the last decades for their interest in 

photocatalysis and photovoltaic, specially for manufacturing of gas sensors, filters, catalysts 

carriers, etc. [13,14]. Lignocellulosic masks stand out among the wide range of materials 

suitable to be used as templates [15,16], due to their ecological and economical origin, obtained 

from renewable and even residual resources, which make it interesting as valorization process 

[17,18]. 

The textural and crystallographic stability of aluminas are of great importance for 

processes involving high temperatures, such as regeneration of catalyst beds and membranes, 

being the collapse of alumina structure a limiting factor of the process efficiency. High 

temperatures and high residence times reduce the specific surface area of alumina due to the 
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transformation to alpha phase, which is accompanied by coalescence and sintering phenomena. 

Thus, the attainment of thermally stable alumina keeping high specific surfaces areas is the goal 

of many researches. Ordered mesoporous aluminas exhibit SBET values ranging between 200 and 

500 m2/g after calcination at temperatures between 450 and 700 ºC [1], and exceptionally 700 - 

800 m2/g [19,20]. The surface area diminishes considerably at temperatures as high as 1000 ºC. 

It was described the cationic surfactant synthesis of -Al2O3 with a resulting surface of 130 m2/g 

after a thermal treatment at 1000 ºC for 2 h [21]. At the same calcination temperature, a mixture 

of ()-Al2O3 with 90 m2/g was obtained by nanocasting [22]. Recently, it was reported the 

generation of gamma-alumina monoliths through gel-casting of mesoporous alumina powder 

and polymerization additives, reaching 110 m2/g after calcination at 1000 °C for 10 h [23].   

Different works have dealt with the synthesis of porous alumina employing cellulose 

derived templates. The results obtained up to the moment consist of sintered alpha alumina 

cellular ceramics [24-26] and mesoporous aluminas which, as the ones obtained by conventional 

synthetic methods, do not maintain elevated specific surface area at high temperatures. Using 

filter paper as cellulose support, Shigapov et al. [27] synthesized alumina with 322 m2/g after 

calcination at 800 °C for 2 h, which decreases to 21 m2/g after treatment at 1050 °C for 12 h. 

Patel and Padhi [28] obtained at 1000 °C alumina fibres with 56 m2/g by infiltration of jute 

fibres. Fan et al. [29], through natural cotton fibres, attained -Al2O3 with surfaces areas of 

127.6 and 125.1 m2/g after a calcinations period of 2 h at 800 and 1000 °C, respectively.  

In the present paper, it is described the synthesis of thermally stable alumina fibres of 

high specific surface area up to 1000 ºC, which reproduce the morphology of sisal fibres. In a 

first part, changes experimented by the lignocellulosic template after their infiltration with the 

inorganic precursor are presented, as well as thermal phenomena occurring during 

transformation to alumina during pyrolysis and calcinations stages. In a second part, the 

composition, morphology and structure of the resulting alumina ceramic fibres are 

characterized. 
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2. Experimental section  

2.1. Synthesis  

Natural sisal fibres used in this work, named NS, were provided by Cayetano García del 

Moral S. L. (Cabra de Santo Cristo, Jaén, Spain). The fibres, manually cut to 2-4 mm length, 

were subjected to an alkalinization processes to conditioning the surface of the fibres before the 

infiltration stage. The alkali treatment was performed for 2 h at room temperature with a 4% 

NaOH solution (Panreac, 231686) , followed by exhaustive washing with distilled water. Acetic 

acid drops were added in the penultimate washing step. Pretreated sisal fibres are designated as 

PS. 

An aqueous solution of aluminium trichloride was prepared using AlCl3·6H2O (Panreac, 

141097), HCl (37% Panreac, 131020) and aluminium foil, with the following molar ratio 

1.5:1:0.75. PS fibres were immersed in the precursor solution for 240 h, washed with absolute 

EtOH (Panreac, 141086) and allowed to dry at ambient temperature. Dry infiltrated sisal fibres, 

named IS, were thermally treated in tubular furnace (Thermolyne F59340CM). The process 

consisted of a pyrolysis/carbonization stage under nitrogen for 1 h, immediately followed by an 

oxidation stage under air for 15 h at 1000 °C. An additional heating cycle was conducted at 

1000 °C for 4 h using moistured air saturated at room temperature. In order to test its thermal 

stability, another sample was prepared under the same conditions but which is also subjected to 

an additional heating cycle at 1000 °C for 4 h using humid air, water saturated at room 

temperature. The resulting ceramic fibres are referred as AF and AFh respectively. 

 

2.2. Characterization methods  

SEM analyses were performed on JSM-6400 and SM-6490LV JEOL microscopes. The 

latter is coupled to an Oxford Instruments INCAx-Sight EDAX system, used to analyze 

infiltrated fibres. 

ATR-FTIR spectra were collected, on a Bruker Vertex 77 spectrometer and a Specac 

Golden Gate ATR accessory, after 32 scans for the range 4000 - 500 cm-1, with a resolution of 4 

cm-1. 
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XRD measurements were conducted in a Philips X´Pert PRO MPD, with a X´Celerator 

RTMS system, using Cu K (= 1.5406 Å) monochromatic radiation. The proportion of 

ordered regions of cellulose fibrils was determined for alkalized and infiltrated fibres using the 

crystallinity index (CI), calculated by Segal equation [30]: 

 

 %CI = (1 - (Iam/Imax))·100                                                                                              (1) 

 

where Imax is the intensity of the main lattice reflection of cellulose, corresponding to the (002) 

plane located around  22º (2), and Iam is the intensity attributed to amorphous material, around 

18º, for I type cellulose. Alumina crystallite size was estimated through the Scherrer equation 

applied to (440) and (113) planes for -Al2O3 and -Al2O3 respectively.  

The crystallographic evolution of two portions of infiltrated fibres was followed 

dynamically by temperature programmed X-ray diffraction (TXRD), scanning each 

diffractogram every 50 ºC for 40 min. A fraction of the sample was heated from room 

temperature to 400 ºC under inert atmosphere with a rate of 5 °C/min. Another fraction was pre-

pyrolized at 500 ºC and, after being finely ground, it was heated from 500 to 1150 °C at 10 

ºC/min. The analysis was performed under nitrogen atmosphere between 500 and 900 °C and 

under oxidizing atmosphere between 950 and 1150 °C.  

TG/DSC analyses were carried out in a SDT 2960 TA Instrument, under nitrogen and 

air atmospheres with a rate of 10°C/min. The released gases were analyzed in a Bruker 

VECTOR 22 infrared spectrometer coupled to the outlet port of the SDT. The transfer line and 

the cell were kept at 300 °C. Spectra were recorded in the range 4000-500 cm-1 every 61 

seconds, after 64 scans and with a resolution of 4 cm-1.  

XRF semi-quantitative analyses were performed using energy-dispersive X-ray 

instruments, Axios PW4400 from PANalytical and XGT-5000WR from Horiba.  
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TEM micrographs and SAED electron diffraction patterns were collected on a Philips 

CM-200 microscope. Previously, alumina sample was dispersed in EtOH, stirred in an 

ultrasonic bath and, finally, one drop was deposited on carbon-coated copper grid.  

XPS analysis of ground alumina sample was performed in a PHI 5700 Physical 

Electronics spectrometer, employing non-monochromatic Mg Ka radiation (1253.6 eV). The 

photoemission peaks were calibrated respect to the signal C 1s for adventitious carbon (284.8 

eV) prior to the fitting procedure.  

Solid state 27Al MAS-NMR analysis was conducted on a Bruker DRX-400 

spectrometer, under a magnetic field of 9.6 T and a pulse of 1.1 s. The powdered sample was 

spun at a rate of 10 kHz and the chemical shifts were referenced to 1M AlCl3·H2O solution.  

N2 and CO2 adsorption-desorption isotherms were measured with a Micromeritics 

ASAP 2020 instrument, at 77 K (-196 ºC) and 273 K (0 ºC) respectively. Samples were first 

degassed at 90 °C for 1 h and then at 150 °C for 8 h under vacuum. The total surface areas 

(SBET) were determined using the BET equation [31]. The total pore volumes (Vsp) were 

calculated from the amount adsorbed at a P/P0 value of 0.995. The average pore sizes (wp) were 

determined approximating the pore geometry to a cylinder. The external surface areas (Stext), 

micropore areas (Stmicro) and micropore volumes (Vtmicro) were estimated from t-plot method [32] 

Mesopore distributions were determined applying the BJH method to the adsorption branch of 

the isotherms [33]. The thickness t-equation employed is the one proposed by Harkins and Jura  

[34,35]. The surface areas and volumes of narrow-neck micropores, SDR and VDR, were estimated 

from the CO2 adsorption data using the DR equation [36]. 

 

3. Results and discussion 

3.1. Pretreated and infiltrated sisal fibres 

Micrographs of natural sisal fibres NS, pretreated PS and infiltrated IS are shown in Fig. 

1. Typical remnants of the spongy parenchyma cells (Fig. 1a) and the hollow polygonal cells or 

ultimate cells [37] (Fig. 1b), which constitute a bundle of longitudinal fibres, are visible in the 

external surface and section of sisal fibre, respectively. The alkalization process is widely used 
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for conditioning the surface of the fibres. It cleans the walls by removing waxes and other 

lipophilic components, and also extracts a fraction of hemicellulose and inorganic constituents. 

After removing a part of the cementitious matrix, the defibration of longitudinal beam occurs, as 

can be seen in PS fibres (Fig. 1c), increasing the outer surface. Alkali treatment also produces a 

more hydrophilic surface due to the more exposed hydroxyl groups from cellulosic components, 

which could facilitate the subsequent interaction and adsorption of the aqueous solution 

precursor. The acidic media of the precursor solution generates morphological changes in the 

surface of sisal fibre after the infiltration step. Thus, IS fibres show a broken and unpaged 

surface, in which conductive vessels are visible (Fig. 1d).  

 

Figure 1: SEM micrographs of natural sisal fibre NS (A), sisal cross-section (B), alkalized sisal fibre PS 
(C), infiltrated sisal IS (D). 

 

Like any plant, sisal absorbs nutrients and different soil minerals, essential for its 

growing, and which turn into constituents of sisal fibres, in addition to cellulose, hemicellulose, 

lignin and other smaller carbohydrates. Table 1S presents the composition of the ashes of NS 

and PS. Calcium is the most abundant element in sisal, being mainly found as hydrated calcium 
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oxalate secretions, which decreases after washing and alkali treatments, increasing consequently 

the proportion of Na and Mg.  

 

Table 1S. XRF compositional analysis of natural NS and alkalized PS sisal ashes, and AFh alumina 
sample. 
 

 NS PS  
AFh 

% ash 0.67 0.71 
%weight   %weight  

Ca 74.39 58.68 Al2O3 99.36 
Mg 10.22 29.74 Ca 0.28 

Si 3.60 2.63 Fe 0.27 
Na 3.54 4.96 Mn 0.09 
Fe 2.32 1.09  
S 1.94 1.16 
K 1.16 0.11 

Al 1.14 0.48 
P 0.65 0.06 

Sr 0.42 0.14 
Ti 0.17  

Mn 0.16 0.20 
Cu 0.10 0.56 
Ba 0.09  
Zn 0.05 0.13 
Cl 0.05 0.06 

 

After infiltration, sisal fibres are covered with an amorphous compound derived from 

aluminium chloride. The EDX analyses done on different areas of IS fibre (Fig. 2) are shown in 

Table 1. 

 

Figure 2: Selected regions on infiltrated fibres for EDX analysis. 
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Table 1. EDX chemical analysis of the infiltrated sisal fiber, IS, shown in Fig. 2  
 

% weight Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 4 
C 48.60 48.22 60.38 46.50 
O 45.34 44.89 33.04 43.64 

Na   0.66 0.36 
Mg  0.13  0.23 
Al 2.41 4.22 2.18 4.28 
Si    0.56 
Cl 3.15 2.46 3.61 4.17 
K    0.17 

Ca  0.08 0.14  
Mn 0.13   0.10 
Fe 0.04    

 
 

 A compositional heterogeneity can be observed, which would be indicative of a 

different local reactivity towards the aluminium precursor. Thus, some regions show Al/Cl 

ratios closed to those of dimeric and trimeric aluminium complexes, while other regions show 

Al/Cl ratios closed to that of the polymer.  

 

Moreover, infiltration modifies the lignocellulosic structure, as can be proved by XRD 

and ATR-FTIR analysis. Therefore, the lowest intensity about 2 at 18° observed in the XRD 

diffractogram for the IS fibres (Fig. 1S) corresponds to a  decrease in the amorphous content of 

sisal fibres, yielding a  moderate increase of %CI, as estimated by Eq. 1, up to ≈ 79% for IS 

fibre, while that of PS fibre was ≈76%.  

 

Figure 1S: XRD diffractograms of alkalized PS (a) and infiltrated IS (b) sisal fibers. 
 



10 
 

ATR-FTIR spectra of PS and IS fibres are shown in Fig. 3. Primarily, the 

hemicellulosic components of the cell walls are extracted during alkalization process [38]. The 

pretreatment performed in the present work is not strong enough to eliminate hemicellulose 

completely and a small fraction remains, as the presence of a weak band at around 1726 cm-1 

(Fig. 3a), associated with the C = O stretching of acetyl and acid groups of the hemicellulose 

side chains reveals. The occurrence of hemicellulose is also corroborated by the TG-DSC 

analysis, discussed in section 3.2. 

 

Figure 3: ATR-FTIR spectra of alkalized PS (a) and infiltrated IS (b) sisal fibres.  
 

 

 Infiltration generates several changes in IS fibre visible in the region 4000 - 800 cm-1 

(Fig. 3b), which can be subdivided into: 

 

i) Modifications attributed to the presence of hydrolysed aluminium species that interact 

with the lignocellulosic fibre. 

  The hydration environment of these species would be the cause of the most significant 

changes. Is the case of the new contribution around 3080 cm-1, which produces the broadening 

of the OH stretching band. Furthermore, as a consequence of the infiltration, a band of low 

intensity appears around 2500 cm-1, associated with OH stretching mode of Al-OH2 groups [39] 
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and short hydrogen bonds [40]. This suggests that the interaction between precursor and fibre 

could occur between the hydroxyl groups of hemi/cellulosic components and the hydrolysed 

aluminium species. Another effect observed is a slight displacement of the band associated to 

OH deformation mode, from 1597 to 1610 cm-1. The appearance of a new band at around 1462 

cm-1 may be associated with the interaction or coordination between aluminium cations and 

carboxyl groups from components of lignocellulosic fibre, such as glucuronic acids of the 

remaining hemicellulose side chains. It has been reported that the symmetrical COO- stretching 

vibration corresponding to the carboxylate bridges established with aluminium centers  of 

different nature are located between 1470-1460 cm-1 [41,42]. The corresponding antisymmetric 

stretching vibrations, located at wavenumbers over1550 cm-1, could contribute to the 

displacement of the OH-deformation observed.  

 

ii) Changes due to the extraction of components, as well as to the decomposition of 

carbohydrates during the infiltration period in acid medium. 

The decrease in the intensity of asymmetric CH deformation band situated around 1423 

cm-1 is attributed to the extraction of carbohydrates. In the case of lignin this band is mainly 

related to the CH deformation vibrations associated to aromatic skeleton, such as methoxyl (-

OCH3) or hydroxymethyl (-CH2OH) groups [43,44]. Also, the decrease of the area of the strong 

band at 1020 cm-1 is associated to a partial hydrolysis of the polysaccharide chains, as the 

remanent hemicellulose and cellulose, particularly of "amorphous" character which is 

chemically more reactive than crystalline cellulose fibrils. It is known that a mild acidic 

environment and the presence of inorganic salts such as aluminium trichloride, promote this 

hydrolysis [45,46]. This extraction would increase the content of cellulose with a greater 

structural order, which explains the increased intensity of the characteristic vibrations of 

cellulose, at 1155, 1101 and 1051 cm-1, further corroborated by the higher crystallinity index of 

the infiltrated fibre IS, as reported above. 

Furthermore, alkenes, cycloalkanes and aromatic compounds could be generated as a 

consequence of the decomposition of carbohydrates in the lignocellulosic fibre, whose CH 



12 
 

stretching vibrations around 3100-3010 cm-1, aromatic skeleton and C=C stretching modes in 

the range 1690-1500 cm-1, and CH deformation vibrations in the range 1470-1430 cm-1, could 

contribute to the new bands observed in these regions. 

 

3.2. Thermal evolution of the infiltrated sisal fibres 

The infiltration with the alumina precursor generates changes in the thermal 

decomposition behaviour of sisal fibre, as it is revealed by TG/DTG-DSC thermograms of 

alkalized fibres and infiltrated fibres shown in Fig. 4.  

 

Figure 4: TG/DTG/DSC thermograms of alkalized sisal fibres PS, under nitrogen (A) and air 
atmospheres (B); the corresponding thermograms for infiltrated fibres IS, under nitrogen (C) and air (D). 

 

While, fundamentally both in nitrogen or air, only three stages are observed for PS (Fig. 

4a and Fig. 4b), five stages can be distinguished for the IS (Fig. 4c and Fig. 4d). For both 

samples, at temperatures below 110 °C, a small weight loss in the TG signals and a 

corresponding endothermic effect in the DSC curves are associated with moisture evaporation. 

Specifically, for PS fibres a second stage is distinguished between 190 and 390 ºC, with a total 
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mass loss of about 70% respect to the dry fibre (% dry basis, d.b.) which corresponds to the 

overlapping decomposition/pyrolysis of the remaining hemicellulosic components and to 

cellulose decomposition in a greater proportion [47,48]. In this temperature range, the DSC 

curve under inert atmosphere shows an endothermic effect centred at 347 °C, associated with 

the heat required to break the glycosidic bonds of cellulose chains, whereas under oxidizing 

atmosphere it shows an overall exothermic effect around 349 °C, due to the oxidation of volatile 

compounds. The third step above 400ºC under inert atmosphere corresponds to the 

reorganization, condensation and aromatization of the carbon skeleton, accompanied by a small 

and slow mass loss process. While under air, it corresponds to the combustion of the 

carbonaceous residue, accompanied by an intense exothermic effect at 475 °C with a mass loss 

of 30% (d.b.). 

 

The simultaneous TG-FTIR analysis of the released gas, shown in Fig. 5, help to clarify 

the phenomena taking place during the thermal decomposition of IS fibres. 

 

Figure 5: FTIR of gases evolved during decomposition of IS fibres under nitrogen atmosphere, at 52 (a), 
150 (b), 293 (d) and 356 ºC (d). 

 

 

 Thus, the first stage below 110 °C of endothermic character is primarily due to the 

evolution of H2O and CO2, as shows the FTIR spectrum in Fig. 5a, associated with moisture 

desorption and probably with the early decomposition of labile organic compounds generated 
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due to the infiltration. For the second stage, between 110 and 190 °C is an endothermic process 

with a mass loss of 12% (d.b), mainly due to H2O, CO2, and in less proportion HCl (Fig. 5b), 

associated with the alumina precursor dehydration which leads to the release of chloride anions. 

The third stage, between 190 and 320 °C, presents a mass loss between 32 and 33% (d.b.) 

coincident with the release of CO2, CO, H2O, formic acid, methanol, and formaldehyde (Fig. 

5c), gases from the pyrolysis of lignocellulosic biomass. Immediately after, it can be 

distinguished the fourth stage by a lower mass loss, around 16% in air and 23% under nitrogen, 

which is coincident with the maximum temperature rate of decomposition of cellulose observed 

in PS fibres. Under inert atmosphere, the third and fourth stages occur through a series of exo 

and endothermic processes whose energies are nearly compensated. However, an exothermic 

effect around 355 ºC is clearly detected during the thermal decomposition of IS fibres in air, 

which also occurs for PS fibres, associated with the oxidation of volatiles from cellulose 

pyrolysis. The fifth stage in nitrogen corresponds to the carbonization process (> 400 °C) while 

in air to the char combustion (> 380 °C), an exothermic process with maximum at 465 °C and a 

mass loss of 34 % (d.b.). 

Infiltration with acidic precursor solutions explains that pyrolysis of lignocellulosic 

materials takes place through two different processes. Diverse studies have shown that the 

impregnation of biomass with chemical species such as AlCl3, H3PO4, H2SO4, HCl, FeCl3, 

ZnCl2 NH4Cl promotes dehydration and inhibits depolymerization of cellulose [49,50]. Thus, 

for IS sample, the intense third stage around 290 °C  can be associated with the decomposition 

of cellulose through a dehydration mechanism, leading to the formation of char, while the less 

intense fourth stage around 350 °C can be assigned to the cellulose depolymerization process, 

observed in PS fibres, which mainly generates volatile products. The global energy balance 

would be the result of exothermic carbonization and endothermic volatilization processes 

[51,52]. 

 

3.3. Correlation between decompositon of biotemplate and crystallization of alumina 
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The formation of alumina phase is influenced by the decomposition of sisal fibre 

biotemplate, as deduced from the structural evolution of the alumina precursor analyzed by 

TDRX. At low temperatures the crystallization of aluminium hydroxides or oxyhydroxides is 

not perceptible. From room temperature until 250 °C, only the reflections from cellulose are 

observed in the range from 15 to 22 ° (Fig. 6.1). With increasing temperature, cellulose loses its 

crystalline structure progressively, thus decreasing the crystallinity index (Fig. 6.2), being 

completely amorphous from 250 °C, which is coincident with the main decomposition step of IS 

fibre (third stage).  

 

Figure 6: TXRD under inert atmosphere of IS fibres (A), at 30 (a), 50 (b), 100 (c), 150 (d), 200 (e), 250 
(f), 300 (g), 350 (h) and 400 º C (i).  Evolution of the corresponding crystallinity index (B). 
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Figure 7: TXRD evolution of IS fibres pre-pyrolized at 500 ºC, studied under inert atmosphere (grey 
lines) at 500 (a), 600 (b), 700 (c), 800 (d) and 900 ºC (e), under air (black lines) at 950 (f) y 1000 (g), 
1050 (h), 1100 (i) and 1150º C (j). Reflexion peaks at 2 = 42.4, 51.5, 56, 65.4 and 67 ° correspond to -
Al2O3. 

Under inert atmosphere, as temperature rises above 500 °C two wide peaks emerge 

around 21 and 43 º, as shown in Fig. 7(a-e), associated with pseudomorphic carbon of the sisal 

template [25], specifically to (002) and (100) reflections  of turbostratic carbon, which appears 

graphitized at 1200 °C as shows Fig. 2S. When air is introduced to the system and the 

combustion of carbonaceous material occurs, aluminium oxide develops rapidly and low-

temperature (-Al2O3) and high-temperature transition aluminas (-Al2O3, -Al2O3) emerge, 

even -Al2O3 is detected at temperatures below 1100 °C, as is shown in Fig. 7(f-h).  
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Figure 2S: XRD diffractograms of infiltrated fibers carbonized at 1200 ºC. (*) Reflexions attributed to -
Al2O3. 

 

The fact that the crystalline phase of alumina corresponding to a given temperature do 

not develop completely under inert atmosphere, could be attributed to carbonaceous skeleton of 

the biotemplate, which hinders the nucleation and growth of aluminium oxide from the carbon-

alumina composite.  Only when carbonaceous material is removed by combustion, the alumina 

crystallites begin to develop freely. Recent studies show that the presence of carbon delays the 

crystallographic progression of alumina [53]. It follows that the crystallographic development of 

alumina must be different depending on whether the aluminium oxide is in contact with the 

carbon network or if is isolated. Further, the mineral matter from the biotemplate and from the 

precursor solution will influence the growth of crystalline alumina phases. 

 

3.4. Alumina ceramic fibres  

SEM micrographs of Fig. 8 clearly evidence the structure of the alumina ceramic fibres, 

which perfectly reproduce the morphology of sisal fibres, where parenchymal cell fragments 

(Fig. 8a), vascular tissues (Fig. 8b) and bundles of ultimate fibres (Fig. 8c and Fig. 8d) can be 

observed. 
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Figure 8: SEM micrographs of alumina fibres. Longitudinal (A, B) and cross-section (C, D) views 
corresponding to AFh sample. 
 
 

XRF analysis performed on AFh fibre, given in Table 1S reveals that the method used 

in the present paper produces alumina fibres with a small content of Ca, from sisal fibre, in 

addition to small amounts of impurities of Fe and Mn, from the aluminium alloy foil used as 

precursor. However, the amount of remaining calcium in sisal fibre after alkalization and 

infiltration processes is not sufficient to be detected by XRD as crystalline calcium aluminate 

phases, such as CaAl12O19, registered by other authors [26]. In any case, these impurities should 

be considered for the potential applications of the generated alumina fibres. 

The main alumina phase in AF and AFh samples, identified by XRD patterns  Fig. 9, 

corresponds to a transition alumina with cubic structure (patterns 10-0425 and 79-1558 PDF 

files), associated with -Al2O3 [54], and a small proportion of -Al2O3 crystallites (10-0173 

PDF file) larger in the sample AFh. In this case the steam should have a mineralizer effect on 

the formation of alpha phase [55, 56].  
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Figure 9: XRD diffractograms of AF (a) and AFh (b) samples. The last is slightly moved along y-axis for 
better viewing. (■) -Al2O3.  
 
 

The existence of gamma and alpha alumina at 1000 °C can be explained as follows. The 

presence of transition phases may be related to the small size of aluminium oxide crystalline 

seeds formed during the carbonization process, due to the inhibitory effect of the carbonaceous 

scaffold, as commented in section 3.2. Moreover, the relatively low temperature of formation of 

alpha phase with respect to the typical phase transition scheme proposed by Stumpf et al. [57] 

and Tertian and Papée [58], could be due to various causes, such as the formation of a gel 

composed of hydrolyzed polynuclear aluminium species during the infiltration step. It has been 

described that aluminas generated from polyaluminium species, in particular from basic 

aluminium chlorides, have lower transition temperatures than usual [59,60]. Furthermore, the 

local temperature increase due to the combustion process of the carbonaceous matrix can help to 

overcome the energy barrier necessary for the formation of alpha phase [61,62]. The distinction 

between the transition aluminas Al2O3 and -Al2O3 is complex because they show very 

similar crystal structures. In principle, the higher definition of the reflection associated to (222) 

plane and the less intense reflection of the plane (111), at around 4.6 Å, suggest that the 

transition phase corresponds to -Al2O3 [63]. The peak widths are indicative of the nano-sized 

alumina crystallites, estimated at 4.1 and 5.5 nm  for AF and AFh samples respectively. 
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ATR-FTIR spectrum of both alumina samples, presented in Fig. 10, does not discard 

the presence of -Al2O3. The wavenumbers below 1000 cm-1 are related to the characteristics 

Al-O vibration of aluminas.  The region below 700 cm-1, associated with Al-O stretching 

vibrations of octahedrally coordinated aluminium (v-AlO6), is more intense compared to the 

region 900-750 cm-1, associated with Al-O stretching vibrations of aluminium in tetrahedral 

coordination (v-AlO4), feature shared by low temperature transition aluminas, as  and -Al2O3 

phases [64].  

  

Figure 10: ATR-FTIR spectra of AF (discontinuous line) and AFh (continuous line) samples. 

 
 

27Al MAS-NMR analysis has been configured as a method for distinguishing the 

coordination environments of aluminium, allowing to discern different phases of alumina in a 

complementary manner. In the case of Al2O3 and Al2O3 their fractions of octahedrally 

coordinated aluminium have been quantified about 65 ± 4% and 75 ± 4% respectively [65,66]. 

Two signals centred at 7 and 64 ppm are observable in  the spectrum of AFh fibres shown in 

Fig. 11, associated respectively with Al3 + in octahedral position (AlVI) and tetrahedral (AlIV), 

not being perceptible the alpha phase contribution, characterized by an octahedral environment 

around 13 ppm [40]. It has been estimated that the proportion of AlVI is close to 70%, which 

suggests that both phases remain even after a reheating cycle with humid air. 
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Figure 11: 27Al-MAS-RMN of AFh sample (SSB: spinning side bands). 

 

The infrared band centred at 3400 cm-1 and the shoulder around 3200 cm-1, shown in the 

inset plot of Fig. 10, are associated with O-H stretching modes of hydroxyl groups located at the 

surface of aluminium oxide, resulted from the moisture adsorption, which can be distinguished 

by XPS analysis. Survey and multi-region XPS spectra of AFh fibre are shown in Fig. 12.  

 

Figura 12: XPS spectra, survey (A), O1s region (B) and Al2p region (C), of AFh sample. 
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The binding energy of the photoelectron peaks O1s and Al2p are located respectively at 

530.96 eV and 73.95 eV, and the kinetic energy of the Auger electron peak AlKLL is situated at 

1387.64 eV, values which are characteristic for aluminium oxides [67]. Trough the fitting 

procedure, the O1s band is found to be composed of three overlapping components, at 529.35, 

530.79 and 532.36 eV with contributions close to 17, 56 and 27%, respectively. The lowest 

energy component is associated to O2-, from oxygen combined with aluminium in the alumina 

lattice, while the highest band energy component is due to physisorbed water [68]. The main 

contribution is associated with hydroxyls groups due to water dissociation on the alumina 

surface. It is known that the Al3+ cations of the alumina surface, as Lewis acid sites, are able to 

dissociate the water molecules from ambient moisture [69]. 

The synthesized gamma-alumina fibres are mainly mesoporous, as revealed by nitrogen 

adsorption-desorption analysis. The isotherms, shown in Fig. 13a, are of type IV and, in general 

terms, exhibit a hysteresis loop close to H3 type according to the IUPAC classification [70].  

 

Figure 13: Adsorption-desorption N2 isotherms for AF (■) and AFh (▲) samples (A). The first is moved 
150 cm3/g from its original position for better viewing. The corresponding pore volume (B) and area (C) 
distributions.  
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AF sample is characterized by a continuous filling of pores as the pressure increases. It 

is observed a slight restriction at P/P0 around 0.97 in which the adsorption and desorption 

branches are close to overlap. In contrast, two different behaviours can be distinguished in AFh 

sample between i) P/P0 = 0.6 to 0.75, where the adsorption is slow, the pore filling is continuous 

and the hysteresis is close to H3 type, resembling to AF sample, and ii) P/P0 = 0.75 to 0.95, 

where the adsorption capacity increases significantly and both branches are substantially 

vertical and parallel, overlapping at high relative pressures, thus being the hysteresis loop closer 

to H1 type. The isotherm of the recalcined sample AFh presents two peculiarities: a steeper 

slope of the hysteresis loop and a plateau at high relative pressures. The first would be 

indicative of a more uniform nanostructure and better pore connectivity [23,71] and the second 

suggests a complete filling of pores, characteristics of a material with a porous structure more 

organized and with a limited range of pore sizes. In fact, H1 hysteresis type is associated with 

porous materials consisting of agglomerated particles with a certain compactness and even, it 

has been associated with cylindrical mesopores open at both ends [72], while the H3 type, 

without an adsorption limit at high P/P0, is typical of poorly aggregated materials or plate-like 

particles living rise to slit-shaped pores [70]. The main results of the textural analysis performed 

are listed in Table 2.  

 

Table 2. Textural data of the ceramic fibers AF and AFh  
 
 

 
a  BET equation constant 
b  Mean pore width, wp = 4V/S 
c  Maximum pore size determined by BJH distribution from the adsorption branch 

 

 AF AFh 
SBET (m2/g) 200.8 153.9 
C a 118.6 108.3 
St Ext (m

2/g) 174.0 144.2 
St micro (m

2/g) 26.8 9.6 
SDR (m

2/g) 203.7 131.1 
Vsp (cm3/g) 0.47 0.52 
Vt micro (cm3/g) 0.0099 0.0028 
VDR (cm3/g) 0.0816 0.0525 
wp 

b (Ǻ) 93 136 
BJH max (dV/dD) c (Ǻ) 76 153 
BJH max (dA/dD) c (Ǻ) 56 56 



24 
 

Alumina fibres present high external surface area StExt, very close to the total BET 

surface area, mainly associated with the existence of mesopores in the range 3 - 40 nm, as 

shown BJH distributions in Fig. 13b and Fig. 13c. The surface and volume of micropores 

accessible to nitrogen, Stmicro and Vtmicro, are very low in AF sample and practically negligible 

for AFh, while the surface and volume of those micropores accessible to CO2, SDR and VDR, 

corresponding to narrow-neck pores, are still significant in AFh sample, values also lower than 

those exhibited by AF.  

The effects on the biomimetic alumina fibres generated by a second calcination step 

under the presence of moisture consist essentially in modifying the pore volume and area 

distributions, observed in Fig. 13b and Fig. 13c respectively. An increase in the average pore 

size, from 9 nm to 14 nm, could explain the increment of about 11% in the mesopore volume, 

Vsp, of AFh sample. This fact would be associated to the destruction of the smaller pores, as the 

reduction of micropores accessible to N2 and CO2 , estimated around 72 and 36% for Vtmicro and 

VDR, respectively (values derived from Table 2), indicates. The micro and nanostructural 

reorganization experienced by alumina fibres during the recalcination process, resulting in a 

pore size enlargement and/or in a better pore connectivity, also explains the decrease in specific 

surface area, which is also consistent with the growh in crystallite size of -Al2O3 estimated by 

the Scherrer equation. The reduction in SBET, Stmicro and SDR values, around 23, 64 and 36% 

respectively (from Table 2), is associated especially to a decrease in the proportion of pores 

with a diameter less than 12 nm, as deduced from Fig. 13b. 

The morphology, nanostructure and crystallinity of the alumina particles of the AFh 

fibre walls are analyzed by TEM images and SAED diffraction patterns, collected in Fig. 14.  
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Figure 14: TEM micrographs and SAED patterns of AFh sample. 
 

Alumina fibres presents a spongy texture constituted by aggregated particles, of sizes 

between 4 and 12 nm, the same order of magnitude as the crystallite estimated by the Scherrer 

equation. The clusters of particles appear longitudinally arranged in elongated structures, with 

widths of 120-200 nm, as seen in Fig. 14a. According to XRD, the SAED patterns show a 

strong polycrystalline habit, where the most intense rings are those associated with the most 

intense planes of the cubic phase of alumina, (440) and (400). At bigger magnifications, 

different morphologies can be observed, as the wormhole type shown in Fig. 14b, with particle 

sizes between 1 and 3 nm and micropores of average diameters between 1 and 2 nm. 

Nevertheless, it should be noted that the dominant micromorphology consist of elongate 

particles, around 15 - 30 nm of length and 3-6 nm of width, some of which appear twinned or 

folded, generating slots of around 2 nm, as can be seen in Fig. 14b-c. 
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4. Conclusions 

 Mesoporous gamma alumina fibres with BET surface area of 200 m2/g were synthesized 

through the replica method of sisal fibres, followed by a carbonization process and prolonged 

calcination at 1000 °C. After a re-calcination stage in wet oxidizing atmosphere, the ceramic 

fibres are maintained without a significant transformation to -Al2O3 phase, reducing specific 

surface area by around 20%. This stage produces a reorganization of the porous architecture to a 

more ordered structure, possibly with better connectivity between the pores, together with an 

increase of the volume and the average size of mesopores, produced at the expense of the loss of 

microporosity, which explains the decrease of specific surface area. 

This paper analyzes the interaction of the aluminium inorganic precursor with the 

lignocellulosic fibre and its thermal evolution. The interaction between fibre and precursor 

could take place through the OH groups of the cellulosic components as well as through the 

carboxylic groups of the glucuronic acid side chains of the remnant hemicellulose after the 

alkalizing process. This effect will be studied in greater depth in a later investigation.  

As temperature increases, the precursor evolves into amorphous aluminium 

oxo/hydroxide, which not only covers the surface of the fibre, but becomes part of the walls, 

due to the precursor infiltration process through the cell walls of the natural fibre, whose final 

result are alumina ceramic fibres mimicking the natural masks. The slow transformation of the 

aluminium oxide is associated with the difficulty of nucleation and growth processes during the 

conformation of the ceramic structure, due to the impediment exerted by the carbonaceous 

matrix, leading to the formation of low temperature transition alumina crystallites, 

predominantly -Al2O3, stable at 1000 ºC.   
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