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6 Composition operators on Hardy-Orliz spaesPasal Lefèvre, Daniel Li,Hervé Que�éle, Luis Rodríguez-Piazza2nd February 2008Abstrat. We investigate omposition operators on Hardy-Orliz spaes whenthe Orliz funtion Ψ grows rapidly: ompatness, weak ompatness, to be p-summing, order bounded, . . . , and show how these notions behave aording tothe growth of Ψ. We introdue an adapted version of Carleson measure. Weonstrut various examples showing that our results are essentially sharp. Inthe last part, we study the ase of Bergman-Orliz spaes.Mathematis Subjet Classi�ation. Primary: 47 B 33 � 46 E 30; Se-ondary:Key-words. Bergman-Orliz spae � Carleson measure � omposition operator� Hardy-Orliz spae1 Introdution.Composition operators on the lassial Hardy spaes Hp have been widelystudied (see [36℄, and [11℄, and referenes therein; see also [19℄ and [20℄, and[7℄, [10℄, [18℄, [28℄, [33℄, [37℄, [38℄ for some more reent works), but it seemsthat one has not paid muh attention to the Hardy-Orliz spaes (in [40℄ and[41℄, J.-O. Strömberg studied Hardy-Orliz spaes in the ase when the Orlizfuntion Ψ inreases smoothly; see also [26℄ for omposition operators). We shallinvestigate what happens when the Orliz funtion grows more rapidly than apower funtion.Reall that, given an analyti self-map φ : D → D of the unit disk D, theomposition operator assoiated to φ is the map Cφ : f 7→ f ◦ φ. This mapmay operate on various Banah spaes X of analyti funtions on D (Hardyspaes, Bergman spaes, . . . , and their weighted versions (see [42℄ for instane),Bloh spaes B and B0, BMOA and VMOA, Dirihlet spaes (see [1℄), orsome more general spaes as Nevanlinna or Smirnov lasses: [8℄, [9℄, [17℄, [21℄;see also [3℄, [4℄, [14℄ for omposition operators on H p spaes of Dirihlet series,though they are not indued by an analyti self-map of D). The goal is to linkproperties of the omposition operator Cφ : X → X (ompatness, strong orweak, for example) to properties of the symbol φ (essentially its behaviour nearthe frontier of D). For that study, one an roughly speaking (see [11℄, Chapter4, though their notions are di�erent from ours) distinguish two kind of spaes.1
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1) The small spaes X ; those spaes are in a sense lose to the Hardy spae
H∞: the ompatness of Cφ : X → X is very restritive and it imposes severerestritions on φ. For example, if X = H∞, a theorem of J. Shwartz ([34℄) im-plies that Cφ : H∞ → H∞ is ompat if and only if ‖φ‖∞ < 1 (weakly ompatsu�es: see [23℄), whih in turn implies reinfored ompatness properties for
Cφ. For example, Cφ : H∞ → H∞ is nulear and 1-summing as soon as it isompat.2) The large spaes X ; those spaes are in a sense lose to the Hardy spae
H1: the ompatness of Cφ : X → X an take plae fairly often, and in generalimplies no self-improvement. For example, for X = H2, Cφ : H2 → H2 an beompat without being Hilbert-Shmidt, even if φ is injetive ([39℄, Theorem6.2). Another formulation (whih lends better to generalizations in the non-Hilbertian ase) is that Cφ an be non-order bounded (see [16℄, and our Setion3) and yet ompat.In this paper, we shall rather be on the small spae side, sine we shallwork in spaes assoiated to a very large Orliz funtion Ψ (typially: Ψ(x) =

Ψ2(x) = ex2 − 1), and the previous situation will not take plae: our operatorswill be e.g. order-bounded as soon as they are (weakly) ompat, even if thesituation is not so extreme as for H∞. However, for slightly smaller Orlizfuntions (for instane Ψ(x) = exp
[(

log(x + 1)
)2] − 1), the situation is loserto the H2 ase: the omposition operators may be ompat on HΨ, but notorder-bounded (Theorem 4.22).This paper is divided into �ve parts. Setion 1 is this Introdution. In Se-tion 2, whih is essentially notational, we reall some more or less standard fatson Orliz funtions Ψ, on assoiated Orliz spaes LΨ, and the �little� Orlizspae MΨ, and their banahi properties, assoiated with various slow growthonditions (indiated by subsripts: ∆1, ∆2, . . . ) or fast growth onditions(indiated by supersripts: ∆0, ∆1, ∆2, . . . ).In Setion 3, we introdue the Hardy-Orliz spae HΨ, and its (or his) �littlebrother� HMΨ. These spaes have already been studied (see [15℄, [31℄), butrather for slowly growing funtions Ψ (having ∆2 most of the time), and theirde�nition is not so learly outlined, so we give a detailed exposition of theequivalene of the two natural de�nitions that one has in mind (if one wantsto extend the ase of Hardy spaes Hp assoiated to Ψ(x) = xp), as well asof the automati boundedness (through the Littlewood subordination prinipleand the ase of inner self-maps of the disk) of omposition operators on thosespaes. Two of the main theorems are Theorem 3.24 and Theorem 3.27. Roughlyspeaking, Theorem 3.24 says the following: if Ψ is very fast growing (having ∆2more preisely), HΨ is a small spae, the (weak) ompatness of Cφ is veryrestritive, and even if the situation is not so extreme as for H∞ (‖φ‖∞ < 1), φhas to tend to the boundary very slowly, and Cφ is automatially order-boundedintoMΨ. However, Theorem 3.27 shows the limits of this self-improvement: Cφmay be order-bounded into MΨ (and hene ompat), but p-summing for no�nite p. We also show that, when Ψ has ∆2 growth, there are always symbols2



φ induing ompat omposition operators on H2 (even Hilbert-Shmidt), butnot ompat on HΨ.Setion 4 is devoted to the use of Carleson measures. The usefulness of thosemeasures in the study of omposition operators is well-known (see [12℄, [11℄, [6℄)and, to our knowledge, �rst expliitly used for ompatness in [27℄. In partiular,we reall the following neessary and su�ient ondition for Cφ : H2 → H2 tobe ompat: if h > 0 and w ∈ ∂D, onsider the Carleson window :
W (w, h) = {z ∈ D ; |z| ≥ 1 − h and | arg(zw̄)| ≤ h}.If φ is an analyti self-map of D with boundary values φ∗, and µφ = φ∗(m)denotes the image under φ∗ of the normalized Lebesgue measure (Haar measure)on T = ∂D, the measure µφ is always a Carleson measure, i.e.:

sup
w∈∂D

µφ

(
W (w, h)

)
= O (h).Now, we an state:Theorem 1.1 (B. MaCluer [27℄) The omposition operator Cφ : H2 → H2is ompat if and only if µφ satis�es the �little-oh� ondition, i.e. if and onlyif:(1.1) sup

w∈∂D

µφ

(
W (w, h)

)
= o (h) as h→ 0.There is another famous neessary and su�ient ompatness ondition, dueto J. Shapiro ([35℄): Let us denote by Nφ the Nevanlinna ounting funtion of

φ, i.e.:
Nφ(w) =

{ ∑
φ(z)=w

log 1
|z| if w 6= φ(0) and w ∈ φ(D)

0 if w /∈ φ(D).By Littlewood's inequality, one always has (see [11℄, page 33):
Nφ(w) = O (1 − |w|).Now, Shapiro's Theorem reads:Theorem 1.2 (J. Shapiro [35℄) The omposition operator Cφ : H2 → H2 isompat if and only if Nφ satis�es the �little-oh� ondition, i.e.:(1.2) Nφ(w) = o (1 − |w|) as |w| <→ 1.Theorem 1.2 is very elegant, and probably more �popular� than Theorem1.1. Yet, it is di�ult to apply beause the assumption (1.2) is di�ult tohek. Here, we shall appeal to Theorem 1.1 to prove (Theorem 4.1) that theompatness of Cφ : H2 → H2 annot be read on |φ∗| when φ is not �nitelyvalent; more preisely, there are two analyti self-maps φ1 and φ2 : D → D3



suh that: |φ∗1| = |φ∗2| m-a.e., but Cφ1 : H2 → H2 is not ompat, though
Cφ2 : H2 → H2 is ompat.We show then that every omposition operator whih is ompat on HΨis neessarily ompat on Hp for all p < ∞. However, there exist (see above,or Setion 3) symbols φ induing ompat omposition operators on H2 butwhih are not ompat on HΨ, when Ψ has ∆2 growth. Hene ondition (1.1)does not su�e to haraterize the ompat omposition operators on HΨ. Wehave to replae Carleson measures and ondition (1.1) by what we may all �Ψ-Carleson measures�, and an adaptated � little-oh� ondition, whih allows us toharaterize ompatness for omposition operators. It follows that if Ψ ∈ ∆0,then the weak ompatness of Cφ : HΨ → HΨ implies its ompatness.We also show that the above example φ2 indues, for an Orliz funtion Ψwhih does not satisfy ∆2, but whih satis�es ∆1, a omposition operator onHΨwhih is ompat, but not order bounded into MΨ(T) (Theorem 4.22), showingthat the assumption that Ψ ∈ ∆2 in Theorem 3.24 is not only a tehnialassumption.In Setion 5, we introdue the Bergman-Orliz spaes. Let us remind that,in the Hilbertian ase, the study of ompatness of omposition operators issimpler for the Bergman spae B2 than for the Hardy spae H2. For example,we have the following:Theorem 1.3 (see [36℄)i) Cφ : B2 → B2 is ompat if and only if(1.3) lim

|z|<→1

1 − |φ(z)|
1 − |z| = +∞.ii) (1.3) is always neessary for Cφ : H2 → H2 to be ompat, and it issu�ient when φ is injetive, or only �nitely valent.iii) There are Blashke produts φ satisfying (1.3) for whih Cφ : H2 → H2is (in an obvious manner) non-ompat.We perform here a similar study for the Bergman-Orliz spae BΨ, andompare the situation with that of the Hardy-Orliz spaeHΨ. We are naturallyled to a reinforement of (1.3) under the form:(1.4) Ψ−1

[
1

(1 − |φ(a)|)2
]

Ψ−1

[
1

(1 − |a|)2
] −→

|a| <→ 1

0(always neessary, and su�ient when Ψ is ∆2), whih reads, in the ase Ψ(x) =

Ψ2(x) = ex2 − 1:(1.5) 1 − |φ(z)| ≥ cε(1 − |z|)ε for all ε > 0.4



In [36℄, the onstrution of a Blashke produt satisfying (1.3) is fairly deliate,and appeals to Frostman's Lemma and Julia-Caratheodory's Theorem on non-angular derivatives at the boundary. Here, we an no longer use these tools forthe reinforement (1.5), so we do make a diret onstrution, using the Parsevalformula for �nite groups. In passing, the onstrution gives a simpler proof for(1.3). Otherwise, the theorem whih we obain is similar to Shapiro's one, if oneignores some tehnial di�ulties due to the non-separability of BΨ: we haveto �transit� by the smaller Bergman-Morse-Transue spae BMΨ, whih is thelosure of H∞ in BΨ, is separable, and has BΨ as its bidual.2 NotationLet D be the open unit disk of the omplex plane, that is the set of omplexnumbers with modulus stritly less than 1, and T the unit irle, i.e. the set ofomplex numbers with modulus 1.We shall onsider in this paper Orliz spaes de�ned on a probability spae
(Ω,P), whih will be the unit irle T, with its (normalized) Haar measure
m (most often identi�ed with the normalized Lebesgue measure dx/2π on theinterval [0, 2π]), or the open unit disk D, provided with the normalized areameasure A .By an Orliz funtion, we shall understand that Ψ: [0,∞] → [0,∞] is anon-dereasing onvex funtion suh that Ψ(0) = 0 and Ψ(∞) = ∞. To avoidpathologies, we shall assume that we work with an Orliz funtion Ψ havingthe following additional properties: Ψ is ontinuous at 0, stritly onvex (heneinreasing), and suh that

Ψ(x)

x
−→
x→∞

∞.This is essentially to exlude the ase of Ψ(x) = ax.If Ψ′ is the left (or instead, if one prefers, the right) derivative of Ψ, one has
Ψ(x) =

∫ x

0 Ψ′(t) dt for every x > 0.The Orliz spae LΨ(Ω) is the spae of all (equivalene lasses of) measurablefuntions f : Ω → C for whih there is a onstant C > 0 suh that
∫

Ω

Ψ
( |f(t)|

C

)
dP(t) < +∞and then ‖f‖Ψ (the Luxemburg norm) is the in�mum of all possible onstants Csuh that this integral is ≤ 1. The Morse-Transue spaeMΨ(Ω) is the subspaegenerated by L∞(Ω), or, equivalently, the subspae of all funtions f for whihthe above integral is �nite for all C > 0.To every Orliz funtion is assoiated the omplementary Orliz funtion

Φ = Ψ∗ : [0,∞] → [0,∞] de�ned by:
Φ(x) = sup

y≥0

(
xy − Ψ(y)

)
,5



The extra assumptions on Ψ ensure that Φ is itself stritly onvex.When Φ satis�es the ∆2 ondition (see the de�nition below), LΨ is (isomor-phially, if LΦ is itself normed by the Luxemburg norm) the dual spae of LΦ,whih is, in turn, the dual of MΨ.2.1 Growth onditionsWe shall have to use various growth onditions for the Orliz funtion Ψ.These onditions are usually denoted as ∆-onditions. Our interest is in Orlizfuntions whih have a somewhat fast growth. Usually, some of these ondi-tions are de�ned through a moderate growth ondition on the omplementaryfuntion Φ of Ψ, and the ondition ∆ for the Orliz funtion is translated as a
∇-ondition for the omplementary funtion. So we shall distinguish betweenmoderate growth onditions, that we shall de�ne for the omplementary Orlizfuntion, and fast growth onditions. To emphasize this distintion, we shalldenote, sometimes in hanging the usual notation (see [22, 30℄), the moder-ate growth onditions with a subsript, and the fast growth onditions with asupersript.Moderate growth onditions

• The Orliz funtion Φ sati�es the ∆1-ondition (Φ ∈ ∆1) if, for someonstant c > 0, one has:
Φ(xy) ≤ cΦ(x)Φ(y)for x, y large enough.This is equivalent to say that
Φ(axy) ≤ Φ(x)Φ(y)for some onstant a > 0 and x, y large enough.This ondition is usually denoted by ∆′ (see [30℄, page 28).

• Φ satis�es the ∆2-ondition (Φ ∈ ∆2) if
Φ(2x) ≤ K Φ(x)for some onstant K > 1 and x large enough.One has:

Φ ∈ ∆1 ⇒ Φ ∈ ∆2.

6



Fast growth onditions
• The Orliz funtion Ψ satis�es the ∆0-ondition (Ψ ∈ ∆0) if (see [25℄),for some β > 1:

lim
x→+∞

Ψ(βx)

Ψ(x)
= +∞.A typial example is Ψ(x) = exp

[
log(x + 2) log log(x + 2)

]
− 2log log 2;another is Ψ(x) = exp

[(
log(x+ 1)3/2

)]
− 1.

• The Orliz funtion Ψ satis�es the ∆1-ondition (Ψ ∈ ∆1) if there is some
β > 1 suh that:

xΨ(x) ≤ Ψ(βx)for x large enough.Note that this latter ondition is usually written as ∆3-ondition, with a sub-sript (see [30℄, �2.5). This notation �ts better with our onvention, and thesupersript 1 agrees with the fat that this ∆1-ondition is between the ∆0-ondition and the following ∆2-ondition. Ψ ∈ ∆1 implies that
Ψ(x) ≥ exp

(
α (log x)2

)for some α > 0 and x large enough (see [30℄, Proposition 2, page 37). A typialexample is Ψ(x) = e(log(x+1))2 − 1.
• The Orliz funtion Ψ: [0,∞) → [0,∞) is said to satisfy the ∆2-ondition(Ψ ∈ ∆2) if there exists some α > 1 suh that:

Ψ(x)2 ≤ Ψ(αx)for x large enough.This implies that
Ψ(x) ≥ exp(xα)for some α > 0 and x large enough ([30℄, Proposition 6, page 40). A typialexample is Ψ(x) = Ψ2(x) = ex2 − 1.Conditions of regularity

• The Orliz funtion Ψ satis�es the ∇2-ondition (Ψ ∈ ∇2) if its omple-mentary funtion Φ satis�es the ∆2-ondition.This is equivalent to say that for some onstant β > 1 and some x0 > 0,one has Ψ(βx) ≥ 2βΨ(x) for x ≥ x0, and that implies that Ψ(x)
x −→

x→∞
∞.In partiular, this exludes the ase LΨ = L1.

7



• The Orliz funtion Ψ satis�es the ∇1-ondition (Ψ ∈ ∇1) if its omple-mentary funtion Φ satis�es the ∆1-ondition.This is equivalent to say that
Ψ(x)Ψ(y) ≤ Ψ(bxy)for some onstant b > 0 and x, y large enough.All power funtions Ψ(x) = xp satisfy ∇1, but Ψ(x) = xp log(x+ 1) doesnot.One has (see [30℄, page 43):

Ψ ∈ ∆1 +3 Ψ ∈ ∆0

�&
FFFFFF

FFFFFF

Ψ ∈ ∆2

7?
xxxxxxx

xxxxxxx

%-
SSSSSSSSSSS

SSSSSSSSSSS
Ψ ∈ ∇2

Ψ ∈ ∇1

2:llllllllll

llllllllllBut ∆1 does not imply ∇1. That ∇1 does not even imply ∆0 is lear sineany power funtion Ψ(x) = xp (p ≥ 1) is in ∇1.2.2 Some spei� funtionsIn this paper, we shall make a repeated use of the following funtions:
• If Ψ is an Orliz funtion, we set, for every K > 0:(2.1) χK(x) = Ψ

(
KΨ−1(x)

)
, x > 0.For example, if Ψ(x) = ex − 1, then Ψ−1(x) = log(1 + x), and χK(x) =

(1 + x)K − 1.Note that:� Ψ ∈ ∆0 means that χβ(u)

u
−→
u→∞

+∞, for some β > 1.� Ψ ∈ ∆1 means that χβ(u) ≥ uΨ−1(u) for u large enough, for some
β > 1.� Ψ ∈ ∆2 means that χα(u) ≥ u2 for u large enough, for some α > 1.� Ψ ∈ ∇1 means that χA(u) ≥ (Ψ(A)/b)u for u large enough and forevery A large enough, for some b > 0.

• For |a| = 1 and 0 ≤ r < 1, ua,r is the funtion de�ned on the unit disk Dby:(2.2) ua,r(z) =
( 1 − r

1 − ārz

)2

, |z| < 1.Note that ‖ua,r‖∞ = 1 and ‖ua,r‖1 ≤ 1 − r.8



3 Composition operators on Hardy-Orliz spaes3.1 Hardy-Orliz spaesIt is well-known that the lassial Hp spaes (1 ≤ p ≤ ∞) an be de�ned intwo equivalent ways:1) Hp is the spae of analyti funtions f : D → C for whih, setting fr(t) =
f(reit):

‖f‖Hp = sup
0≤r<1

‖fr‖pis �nite (reall that the numbers ‖fr‖p inrease with r). When f ∈ Hp, theFatou-Riesz Theorem asserts that the boundary limits f∗(t) = lim
r

<→ 1
fr(t)exist almost everywhere and ‖f‖Hp = ‖f∗‖p. One has f∗ ∈ Lp([0, 2π]), and itsFourier oe�ients f̂∗(n) vanish for n < 0.2) Conversely, for every funtion g ∈ Lp([0, 2π]) whose Fourier oe�ients

ĝ(n) vanish for n < 0, the analyti extension P [g] : D → C de�ned by P [g](z) =∑
n≥0 ĝ(n)zn is in Hp and g is the boundary limit (P [g])∗ of P [g].Hardy-Orliz spaes HΨ are de�ned in a similar way. However, we did not�nd very satisfatory referenes, and, though the reasonings are essentially thesame as in the lassial ase, the lak of homogeneity of Ψ and the presene ofthe two spaes MΨ and LΨ gives proofs whih are not so obvious and thereforewe shall give some details.It should be noted that our de�nition is not exatly the same as the onegiven in [30℄, � 9.1.We shall begin with the following proposition.Proposition 3.1 Let f : D → C be an analyti funtion. For every Orlizfuntion Ψ, the following assertions are equivalent:
1) sup0≤r<1 ‖fr‖Ψ < +∞, where fr(t) = f(reit);
2) there exists f∗ ∈ LΨ([0, 2π]) suh that f̂∗(n) = 0 for n < 0 and for whih

f(z) =
∑

n≥0 f̂
∗(n)zn, z ∈ D.When these onditions are satis�ed, one has ‖f∗‖Ψ = sup0≤r<1 ‖fr‖Ψ.Let us note that, sine Ψ is onvex and inreasing, Ψ(a|f |) is subharmonion D, and hene the numbers ∫

T
Ψ(a|fr|) dm inrease with r, for every a > 0.This proposition leads to the following de�nition.De�nition 3.2 Given an Orliz funtion Ψ, the Hardy-Orliz spae HΨ asso-iated to Ψ is the spae of analyti funtions f : D → C suh that one of theequivalent onditions of the above proposition is satis�ed. The norm of f is de-�ned by ‖f‖HΨ = ‖f∗‖Ψ. We shall denote by HMΨ the Hardy-Morse-Transuespae, i.e. the subspae {f ∈ HΨ ; f∗ ∈MΨ(T)}.In the sequel, we shall make no distintion between f and f∗, unless theremay be some ambiguity, and shall write f instead of f∗ for the boundary limit.9



Hene we shall allow ourselves to write f(eit) instead of f∗(t), or even f∗(eit).Moreover, we shall write ‖f‖Ψ instead of ‖f‖HΨ .It follows that HΨ beomes a subspae of LΨ(T) and HMΨ = HΨ∩MΨ(T).These two spaes are losed (hene Banah spaes) sine Proposition 3.1 gives:Corollary 3.3 HΨ is weak-star losed in LΨ = (MΦ)∗. When Ψ satis�es ∇2,it is isometrially isomorphi to the bidual of HMΨ.Proof. The weak-star losure of HΨ is obvious with Proposition 3.1, 2).Suppose now that Φ satis�es ∇2, it is plainly seen that (HMΨ)⊥ is thelosed subspae of LΦ = (MΨ)∗ generated by all haraters en with n < 0,where en(t) = eint (for onveniene, we de�ne the duality between f ∈ LΨand g ∈ LΦ by integrating the produt f ǧ, where ǧ(t) = g(−t)). As HΨ ⊆
LΨ = (LΦ)∗ = (MΦ)∗ is the orthogonal of this latter subspae. So, we have
(HMΨ)⊥⊥ = HΨ. �Proof of Proposition 3.1. Assume that 1) is satis�ed. Sine ‖fr‖1 ≤
CΨ‖fr‖Ψ, one has f ∈ H1, and hene, by Fatou-Riesz Theorem, f has al-most everywhere a boundary limit f∗ ∈ L1(m). If C = sup0≤r<1 ‖fr‖Ψ, onehas: ∫

T

Ψ
( |fr|
C

)
dm ≤ 1for every r < 1; hene Fatou's lemma implies:

∫

T

Ψ
( |f∗|
C

)
dm ≤ 1,i.e. f∗ ∈ LΨ and ‖f∗‖Ψ ≤ C.Conversely, assume that 2) is satis�ed. In partiular f∗ ∈ L1(m); hene

f ∈ H1 and f∗ = limr→1 fr almost everywhere. One has fr = f∗ ∗ Pr, where
Pr is the Poisson kernel at r. Hene, using Jensen's formula for the probabilitymeasure Pr(θ − t) dt

2π , we get:
∫ 2π

0

Ψ
( |(f∗ ∗ Pr)(θ)|

‖f∗‖Ψ

) dθ
2π

≤
∫ 2π

0

Ψ

(∫ 2π

0

|f∗(t)|
‖f∗‖Ψ

Pr(θ − t)
dt

2π

)
dθ

2π

≤
∫ 2π

0

(∫ 2π

0

Ψ
( |f∗(t)|

‖f∗‖Ψ

)
Pr(θ − t)

dt

2π

)
dθ

2π

=

∫ 2π

0

(∫ 2π

0

Pr(θ − t)
dθ

2π

)
Ψ
( |f∗(t)|

‖f∗‖Ψ

) dt
2π

=

∫ 2π

0

Ψ
( |f∗(t)|

‖f∗‖Ψ

) dt
2π

≤ 1 ,so that ‖fr‖Ψ ≤ ‖f∗‖Ψ. Hene we have 1), and ‖f‖HΨ ≤ ‖f∗‖Ψ.The two parts of the proof atually give ‖f‖HΨ = ‖f∗‖Ψ. �10



Proposition 3.4 For every f ∈ HMΨ, one has ‖fr − f∗‖Ψ −→
r→1

0. Thereforethe polynomials on D are dense in HMΨ.Equivalently, on T = ∂D, the analyti trigonometri polynomial are densein HMΨ.Proof. Let f ∈ HMΨ and ε > 0. Sine MΨ = C(T)
LΨ , there exists aontinuous funtion h on T suh that ‖f − h‖Ψ ≤ ε. We have, for every r < 1:

‖Pr ∗ f− f‖Ψ ≤ ‖Pr ∗ (f−h)‖Ψ +‖Pr ∗h−h‖Ψ +‖h− f‖Ψ ≤ 2ε+‖Pr ∗h−h‖Ψbeause ‖Pr ∗ g‖Ψ ≤ ‖g‖Ψ, for every r < 1 and every g ∈ LΨ.But now, Pr ∗ h−→
r→1

h uniformly. The onlusion follows. �Remark. We do not have to use a maximal funtion to prove the existene ofboundary limits beause we use their existene for funtions in H1. However,as in the lassial ase, the Marinkiewiz interpolation Theorem, or, rather, itsOrliz spae version ensures that the maximal non-tangential funtion is in LΨ.This result is undoubtedly known, but perhaps never stated in the followingform. Reall that Nα is de�ned, for every f , say in L1(T), as
(Nαf)(eiθ) = sup

reit∈Sθ

|(f ∗ Pr)(e
it)| = sup

z∈Sθ

|f(z)|,where Sθ is the Stolz domain at eiθ with opening α (see [5℄, page 177); here fde�nes a harmoni funtion in D.Proposition 3.5 Assume that the omplementary funtion Φ of the Orlizfuntion Ψ satis�es the ∆2 ondition (i.e. Ψ ∈ ∇2). Then every linear, orsublinear, operator whih is of weak-type (1, 1) and (strong) type (∞,∞) isbounded from LΨ into itself. In partiular, for every f ∈ LΨ(T), the maxi-mal non-tangential funtion Nαf is in LΨ(T) (0 < α < 1).Proof. If Ψ ∈ ∇2, then ([30℄, Theorem 3, 1 (iii), page 23), there exists some
β > 1 suh that xΨ′(x) ≥ βΨ(x) for x large enough. Integrating between u and
v, for u < v large enough, we get Ψ(u)

Ψ(v) ≥
(

u
v

)β . Hene, for s, t large enough
Ψ−1(s)

Ψ−1(s/t) ≤ t1/β . This means (see [5℄, Theorem 8.18) that the upper Boyd indexof LΨ is ≤ 1/β < 1. Hene ([5℄, Theorem 5.17), Nα is bounded on LΨ (it iswell-known that Nαf is dominated by the Hardy-Littlewood maximal funtion
Mf). �The following, essentially well-known, riterion for ompatness of operatorswill be very useful.Proposition 3.6 1) Every bounded linear operator T : HΨ → X from HΨ intoa Banah spae X whih maps every bounded sequene whih is uniformly on-vergent on ompat subsets of D into a norm onvergent sequene is ompat.11



2) Conversely, if T : HΨ → X is ompat and weak-star to weak ontinuous,or if T : HΨ → Y ∗ is ompat and weak-star ontinuous, then T maps everybounded sequene whih is uniformly onvergent on ompat subsets of D into anorm onvergent sequene.Though well-known (at least for the lassial ase ofHp spaes), the link withthe weak (atually the weak-star) topology is usually not highlighted. Indeed,the riterion is an easy onsequene of the following proposition. Note thatProposition 3.6 will apply to the omposition operators on HΨ sine they areweak-star ontinuous.Proposition 3.7 On the unit ball of HΨ, the weak-star topology is the topologyof uniform onvergene on every ompat subset of D.Proof. First we notie that the topologies are metrizable. Indeed, this is knownfor the topology of uniform onvergene on every ompat subset of D and, onthe other hand, MΦ is separable, so that the weak-star topology is metrizableon the unit ball of its dual spae LΨ, and a fortiori on that of HΨ. Now, itis su�ient to prove that the onvergent sequenes in both topologies are thesame.Let (fk)k≥1 be in the unit ball of HΨ and weak-star onvergent to f ∈ HΨ.Let us �x a ompat subset K of D. We may suppose that K is the losedball of enter 0 and radius r < 1. First, testing the weak-star onvergene onharaters, we have f̂k(n) −→
k→∞

f̂(n) for every n ∈ Z. Then:
sup
|z|≤r

|fk(z) − f(z)| = sup
|z|=r

|fk(z) − f(z)| ≤
∑

n≥0

rn|f̂k(n) − f̂(n)|.The last term obviously tends to zero when k tends to in�nity. The resultfollows.Conversely, let (fk)k≥1 be in the unit ball of HΨ and onverging to someholomorphi funtion f uniformly on every ompat subset of D. We �rst notiethat f atually lies in the unit ball of HΨ (by Fatou's lemma). Fix h ∈ MΦand ε > 0. There exists some r < 1 suh that ‖Pr ∗ h− h‖Φ ≤ ε/8, where Pr isthe Poisson kernel with parameter r. Then (see [30℄, page 58, inequality (3) forthe presene of the oe�ient 2):
|〈h, fk − f〉| = |〈Pr ∗ h− h, fk − f〉| + |〈Pr ∗ h, fk − f〉|

≤ 2 ‖Pr ∗ h− h‖Φ‖fk − f‖Ψ + |〈h, Pr ∗ (fk − f)〉|
≤ ε

2
+ 2 ‖h‖Φ ‖[fk]r − fr‖Ψ

≤ ε

2
+ 2α ‖h‖Φ‖[fk]r − fr‖∞

=
ε

2
+ 2α ‖h‖Φ sup

|z|=r

|fk(z) − f(z)|.where α is the norm of the injetion of L∞ into LΨ.12



Now, by uniform onvergene on the losed ball of enter 0 and radius r,there exists kε ≥ 1 suh that for every integer k ≥ kε, one has
‖h‖Φ sup

|z|=r

|fk(z) − f(z)| ≤ ε/4.It follows that (fk)k weak-star onverges to f . �However, we shall have to use a similar ompatness riterion for Bergman-Orliz spaes, and it is worth stating and proving a general riterion. We shallsay that a Banah spae of holomorphi funtions on an open subset Ω of theomplex plane has the Fatou property if X is ontinuously embedded (thoughthe anonial injetion) in H (Ω), the spae of holomorphi funtions on Ω,equipped with its natural topology of ompat onvergene, and if it has thefollowing property: for every bounded sequene (fn)n in X whih onvergesuniformly on ompat subsets of Ω to a funtion f , one has f ∈ X . Then:Proposition 3.8 (Compatness riterion) Let X, Y be two Banah spaesof analyti funtions on an open set Ω ⊆ C whih have the Fatou property. Let
φ be an analyti self-map of Ω suh that Cφ = f ◦ φ ∈ Y whenever f ∈ X.Then Cφ : X → Y is ompat if and only if for every bounded sequene
(fn)n in X whih onverges to 0 uniformly on ompat subsets of Ω, one has
‖Cφ(fn)‖Y → 0.Note that Hardy-Orliz HΨ and Bergman-Orliz B

Ψ (see Setion 5) spaestrivially have the Fatou property, beause of Fatou's Lemma.Proof. Assume that the above ondition is ful�lled. Let (fn)n≥1 be in theunit ball of X . The assumption on X implies that (fn)n is a normal familyin H (Ω). Montel's Theorem allows us to extrat a subsequene, that we stilldenote by (fn)n to save notation, whih onverges to some f ∈ H (Ω), uniformlyon ompat subsets of Ω. Sine X has the Fatou property, one has f ∈ X . Now,sine (fn − f)n is a bounded sequene in X whih onverges to 0 uniformly onompat subsets of Ω, one has ‖Cφ(fn)−Cφ(f)‖Y = ‖Cφ(fn−f)‖Y → 0. Hene
Cφ is ompat.Conversely, assume that Cφ is ompat. Let (fn)n be a bounded sequene in
X whih onverges to 0 uniformly on ompat subsets of Ω. By the ompatnessof Cφ, we may assume that Cφ(fn) → g ∈ Y . The spae Y being ontinuouslyembedded in H (Ω), (fn ◦ φ)n onverges pointwise to g. Sine (fn)n onvergesto 0 uniformly on ompat subsets of Ω, the same is true for (fn ◦ φ)n. Hene
g = 0. Therefore, sine Cφ is ompat, we get ‖Cφ(fn)‖Y → 0. �3.2 Preliminary resultsLemma 3.9 Let (Ω,P) be any probability spae. For every funtion g ∈ L∞(Ω),one has:

‖g‖Ψ ≤ ‖g‖∞
Ψ−1(‖g‖∞/‖g‖1)

·13



Proof. We may suppose that ‖g‖∞ = 1.Sine Ψ(0) = 0, the onvexity of Ψ implies Ψ(ax) ≤ aΨ(x) for 0 ≤ a ≤ 1.Hene, for every C > 0, one has, sine |g| ≤ 1:
∫

Ω

Ψ(|g|/C) dP ≤
∫

Ω

|g|Ψ(1/C) dP = ‖g‖1Ψ(1/C).But ‖g‖1Ψ(1/C) ≤ 1 if and only if C ≥ 1/Ψ−1(1/‖g‖1), and that proves thelemma. �Corollary 3.10 For |a| = 1 and 0 ≤ r < 1, one has:
‖ua,r‖Ψ ≤ 1

Ψ−1( 1
1−r )

·Proof. One has ‖ua,r‖∞ = 1, and:
‖ua,r‖1 =

∫ 2π

0

∣∣∣ 1 − r

1 − āreit

∣∣∣
2

dm(t)

= (1 − r)2
+∞∑

n=0

r2n =
(1 − r)2

1 − r2
=

1 − r

1 + r
·Hene ‖ua,r‖Ψ ≤ 1/Ψ−1(1 + r/1 − r), by using Lemma 3.9, giving the resultsine (1 + r)/(1 − r) ≥ 1/1 − r. �Remark. We hene get atually ‖ua,r‖Ψ ≤ 1/Ψ−1(1 + r/1− r); the term 1 + rhas no important meaning, so we omit it in the statement of Corollary 3.10, butsometimes, for symmetry of formulae, or in order to be in aordane with thelassial ase, we shall use this more preise estimate.For every f ∈ L1(T) and every z = r eiθ ∈ D, one has

(P [f ])(z) =

∫ 2π

0

f(eit)Pz(t) dm(t),where Pz is the Poisson kernel:
Pz(t) =

1 − r2

1 − 2r cos(θ − t) + r2
=

1 − |z|2
|eit − z|2

,and f(z) = (P [f ])(z) when f is analyti on D. Sine Pz ∈ L∞(T) ⊆ LΦ(T), itfollows that the evaluation in z ∈ D:
δz(f) = f(z)is a ontinuous linear form on HΨ. The following lemma expliits the behaviourof its norm. 14



Lemma 3.11 For |z| < 1, the norm of the evaluation funtional at z is:
‖δz‖(HMΨ)∗ = ‖δz‖(HΨ)∗ ≈ Ψ−1

( 1

1 − |z|
)
·More preisely:

1

4
Ψ−1

(1 + |z|
1 − |z|

)
≤ ‖δz‖(HΨ)∗ ≤ 2Ψ−1

(1 + |z|
1 − |z|

)
·Remark. In partiular:

1

4
Ψ−1

( 1

1 − |z|
)
≤ ‖δz‖(HΨ)∗ ≤ 4Ψ−1

( 1

1 − |z|
)
,whih often su�es for our purpose.Proof. The �rst equality ‖δz‖(HMΨ)∗ = ‖δz‖(HΨ)∗ omes from the fat that

fr ∈ HMΨ, for every f ∈ HΨ and r < 1 (thus f(rz)−→
r→1

f(z), when z ∈ D and
f ∈ HΨ).On the one hand, we have, when |z| = r, using [30℄, inequality (4) page 58,and Lemma 3.9, sine ‖Pz‖1 = 1 and ‖Pz‖∞ = 1+r

1−r :
‖δz‖(HΨ)∗ ≤ 2 ‖Pz‖Φ ≤ 2

1 + r

1 − r

1

Φ−1
(

1+r
1−r

) ,whih is less than 2Ψ−1(1+r/1−r), by using the inequality (see [30℄, Proposition1 (ii), page 14, or [22℄, pages 12�13):
Ψ−1(x)Φ−1(x) ≥ x , x > 0.On the other hand, one has, using Corollary 3.10, with r = |z| and āz = r:

‖δz‖(HΨ)∗ ≥ |ua,r(z)|
‖ua,r‖Ψ

≥ 1/(1 + r)2

1/Ψ−1
(

1+r
1−r

) ≥ 1

4
Ψ−1

(1 + r

1 − r

)
,and that ends the proof. �3.3 Composition operatorsWe establish now some estimations for the norm of omposition operators.Proposition 3.12 1) Every analyti self-map φ : D → D indues a boundedomposition operator Cφ : HΨ → HΨ by setting Cφ(f) = f ◦ φ. More preisely:

‖Cφ‖ ≤ 1 + |φ(0)|
1 − |φ(0)| ·In partiular, ‖Cφ‖ ≤ 1 if φ(0) = 0. 15



2) One has:
‖Cφ‖ ≥ 1

8Ψ−1(1)
Ψ−1

(
1 + |φ(0)|
1 − |φ(0)|

)
.3) When Ψ ∈ ∇1 globally: Ψ(x)Ψ(y) ≤ Ψ(bxy) for all x, y ≥ 0, we also have:

‖Cφ‖ ≤ bΨ−1

(
1 + |φ(0)|
1 − |φ(0)|

)
.4) Moreover, Cφ maps HMΨ into HMΨ. Hene, if Ψ ∈ ∇2, then Cφ : HΨ →

HΨ is the bi-adjoint of the omposition operator Cφ : HMΨ → HMΨ.Note that when Ψ(x) = xp for 1 ≤ p <∞, then Ψ ∈ ∇1 globally, with b = 1.Proof. 1) Assume �rst that φ(0) = 0. Let f ∈ HΨ, with ‖f‖Ψ = 1. Sine
Ψ is onvex and inreasing, the funtion u = Ψ ◦ |f | is subharmoni on D,thanks to Jensen's inequality. The ondition φ(0) = 0 allows to use Littlewood'ssubordination priniple ([12℄, Theorem 1.7); for r < 1, one has:

∫ 2π

0

Ψ
(
|(f ◦ φ)(reit)|

) dt
2π

≤
∫ 2π

0

Ψ
(
|f(reit)|

) dt
2π

≤ 1.Hene f ◦ φ ∈ HΨ and ‖f ◦ φ‖Ψ ≤ 1.Assume now that φ is an inner funtion, and let a = φ(0). It is known that(see [29℄, Theorem 1) that
φ∗(m) = Pa.m ,where φ∗(m) is the image under φ∗ (the boundary limit of φ) of the normalizedLebesgue measure m, and Pa.m is the measure of density Pa, the Poisson kernelat a. Therefore, for every f ∈ HΨ with ‖f‖Ψ = 1, one has for 0 ≤ r < 1, insetting Ka = ‖Pa‖∞ = 1+|a|

1−|a| :
∫ 2π

0

Ψ
( |(f ◦ φ)(reit)|

Ka

) dt
2π

≤
∫

T

Ψ
( |(f ◦ φ)∗|

Ka

)
dm

=

∫

T

Ψ
( |f∗ ◦ φ∗|

Ka

)
dm (reall that |φ∗| = 1)

=

∫

T

Ψ
( |f∗|
Ka

)
dφ∗(m) =

∫

T

Ψ
( |f∗|
Ka

)
Pa dm(3.1)

≤
∫

T

1

Ka
Ψ(|f∗|)Pa dm , sine Ka > 1

≤
∫

T

1

Ka
Ψ(|f∗|) ‖Pa‖∞ dm

=

∫

T

Ψ(|f∗|) dm ≤ 1.Hene ‖(f ◦ φ)r‖Ψ ≤ Ka, and therefore ‖f ◦ φ‖Ψ ≤ Ka.16



Then, for an arbitrary φ, let a = φ(0) again, and let φa be the automorphism
z 7→ z−a

1−āz
, whose inverse is φ−a. Sine φ = φ−a ◦ (φa ◦ φ), one has Cφ =

Cφa◦φ ◦ Cφ−a . But φ−a is inner and, on the other hand, (φa ◦ φ)(0) = 0; heneparts a) and b) of the proof give:
‖Cφ‖ ≤ ‖Cφ−a‖ ≤ Ka =

1 + |a|
1 − |a|

,whih gives the �rst part of the proof.2) By Lemma 3.11, we have for every f ∈ HΨ with ‖f‖Ψ ≤ 1:
|(f ◦ φ)(0)| ≤ ‖δ0‖(HΨ)∗‖f ◦ φ‖Ψ ≤ 2Ψ−1(1) ‖Cφ‖.In other words:

|f
(
φ(0)

)
| ≤ 2Ψ−1(1)‖Cφ‖for every suh f ∈ HΨ. Hene:

‖δφ(0)‖(HΨ)∗ ≤ 2Ψ−1(1) ‖Cφ‖ ,giving
‖Cφ‖ ≥ 1

8Ψ−1(1)
Ψ−1

(
1 + |φ(0)|
1 − |φ(0)|

)
,by using Lemma 3.11 again, but the minoration.3) When Ψ ∈ ∇1 globally, we go bak to the proof of 1). We have onlyto modify inequalities (3.1) in b). Setting K ′

a = Ψ−1(Ka), and writing Pa =
Ψ
(
Ψ−1(Pa)

), we get, for every f ∈ HΨ with ‖f‖Ψ = 1:
∫ 2π

0

Ψ
( |(f ◦ φ)(reit)|

bK ′
a

) dt
2π

≤
∫

T

Ψ
( |f∗|
bK ′

a

)
Pa dm

=

∫

T

Ψ
( |f∗|
bK ′

a

)
Ψ
(
Ψ−1(Pa)

)
dm

≤
∫

T

Ψ
( |f∗|
K ′

a

Ψ−1(Pa)
)
dm

≤
∫

T

Ψ(|f∗|) dm ≤ 1,sine Ψ−1(Pa) ≤ Ψ−1(‖Pa‖∞) = K ′
a, giving ‖f ◦ φ‖Ψ ≤ bK ′

a.4) Suppose now that f ∈ HMΨ. As before, when φ(0) = 0, Littlewood'ssubordination priniple gives, for every C > 0:
∫ 2π

0

Ψ
(
C|(f ◦ φ)(eit)|

) dt
2π

= sup
r<1

∫ 2π

0

Ψ
(
C|(f ◦ φ)(reit)|

) dt
2π

≤ sup
r<1

∫ 2π

0

Ψ
(
C|f(reit)|

) dt
2π

=

∫ 2π

0

Ψ
(
C|f(eit)|

) dt
2π

< +∞ ;17



hene f ◦φ ∈ HMΨ. When φ is inner, the same omputations as in 1) b) above,using that φ∗(m) = Pa.m, where a = φ(0), give, for every C > 0:
∫ 2π

0

Ψ
(
C|(f ◦ φ)(reit)|

) dt
2π

≤
∫

T

Ψ(C|f∗|)‖Pa‖∞ dm

= Ka

∫

T

Ψ(C|f∗|) dm < +∞,and f ◦ φ ∈ HMΨ again. The general ase follows, as in 1) ) above, sine
f ∈ HMΨ implies f ◦ φ−a ∈ HMΨ, beause φ−a is inner, and then f ◦ φ =
(f ◦ φ−a) ◦ (φa ◦ φ) ∈ HMΨ sine (φa ◦ φ)(0) = 0. �3.4 Order bounded omposition operatorsReall that an operator T : X → Z from a Banah spae X into a Banahsubspae Z of a Banah lattie Y is order bounded if there is some positive
y ∈ Y suh that |Tx| ≤ y for every x in the unit ball of X .Before studying order bounded omposition operators, we shall reall thefollowing, ertainly well-known, result, whih says that order boundedness anbe seen as stronger than ompatness.Proposition 3.13 Let T : L2(µ) → L2(µ) be a ontinuous linear operator.Then T is order bounded if and only if it is a Hilbert-Shmidt operator.The proof is straightforward: if B is the unit ball of L2(µ), and (ei)i is anorthonormal basis, one has supf∈B |Tf | =

(∑
i |Tei|2

)1/2. Hene supf∈B |Tf | ∈
L2(µ) if and only if ∫ (∑i |Tei|2

)
dµ =

∑
i ‖Tei‖2 < +∞, i.e. if and only if Tis Hilbert-Shmidt.J. H. Shapiro and P. D. Taylor proved in [39℄ that there exist ompositionoperators on H2 whih are ompat but not Hilbert-Shmidt. We are goingto see that, when the Orliz funtion Ψ grows fast enough, the ompatness ofomposition operators on HΨ is equivalent to their order boundedness.Proposition 3.14 The omposition operator Cφ : HΨ → HΨ is order bounded(resp. order bounded into MΨ(T)) if and only if Ψ−1

(
1

1−|φ|
)
∈ LΨ(T) (resp.

Ψ−1
(

1
1−|φ|

)
∈MΨ(T)). Equivalently, if and only if(OB1) χA

( 1

1 − |φ|
)
∈ L1(T) for some A > 0,respetively:(OB2) χA

( 1

1 − |φ|
)
∈ L1(T) for every A > 0,

18



In other words (reall that χA(x) = Ψ
(
AΨ−1(x)

)), if and only if:
∫

T

Ψ

[
AΨ−1

( 1

1 − |φ|
)]
dm < +∞ for some (resp. every) A > 0.Remark For a sequene (gn)n of elements of LΨ(Ω), one has ‖gn‖Ψ −→

n→+∞
0 ifand only if(3.2) ∫

Ω

Ψ
( |gn|
ε

)
dP −→

n→+∞
0 for every ε > 0.In fat, if (3.2) holds, then for n ≥ nε, the above integrals are ≤ 1, and hene

‖gn‖Ψ ≤ ε. Conversely, assume that ‖gn‖Ψ −→
n→+∞

0, and let ε > 0 be given.Let 0 < δ ≤ 1. Sine ‖gn/(εδ)‖Ψ −→
n→+∞

0, one has ‖gn/(εδ)‖Ψ ≤ 1, and hene
∫
Ω Ψ
( |gn|

εδ

)
dP ≤ 1, for n large enough. Then, using the onvexity of Ψ:
∫

Ω

Ψ
( |gn|
ε

)
dP =

∫

Ω

Ψ
(
δ
|gn|
εδ

)
dP ≤ δ

∫

Ω

Ψ
( |gn|
εδ

)
dP ≤ δ ,for n large enough.Therefore, using Lebesgue's dominated onvergene Theorem, it follows thatif Cφ : HΨ → HΨ is order bounded into MΨ(T), then the omposition operator

Cφ : HΨ → HΨ is ompat.Proof of Proposition 3.14.As HMΨ is separable, there exists a sequene (fn)n≥1 in the unit ball of
HMΨ suh that

sup
n

∣∣fn ◦ φ(reiθ)
∣∣ = ‖δφ(reiθ)‖(HMΨ)∗ .Now, suppose that Cφ is order bounded into LΨ(T) (resp. into MΨ(T)).Then there exists some g in LΨ(T) (resp. inMΨ(T)) suh that g ≥ |Cφ(f)| a.e.,for every f in the unit ball of HΨ. Using Lemma 3.11, we have a.e.

Ψ−1
( 1

1 − |φ(reiθ)|
)
≤ 4‖δφ(reiθ)‖(HΨ)∗ = 4 sup

n

∣∣fn ◦ φ(reiθ)
∣∣ ≤ 4g.The result hene follows letting r ↑ 1.The onverse is obvious. �Theorem 3.15 If the omposition operator Cφ : HΨ → HΨ is order bounded,then:(OB3) m(1 − |φ| < λ) = O

( 1

χA(1/λ)

)
, as λ→ 0, for some A > 0.and if it is order bounded into MΨ(T), then:(OB4) m(1 − |φ| < λ) = O

( 1

χA(1/λ)

)
, as λ→ 0, for every A > 0.Under the hypothesis Ψ ∈ ∆1, the onverse holds.19



Proof. The neessary ondition follows from Proposition 3.14 and Markov'sinequality:
m
( 1

1 − |φ| > t
)
≤ 1

χA(t)

∫

T

χA

( 1

1 − |φ|
)
dm.For the onverse, we shall prove a stronger result, and for that, we de�nethe weak-LΨ spae as follows:De�nition 3.16 The weak-LΨ spae LΨ,∞(Ω) is the spae of measurable fun-tions f : Ω → C suh that, for some onstant c > 0, one has, for every t > 0:

P(|f | > t) ≤ 1

Ψ(ct)
·For subsequent referenes, we shall state separately the following elementaryresult.Lemma 3.17 For every f ∈ LΨ(Ω), one has, for every t > 0:

‖f‖Ψ ≥ t

Ψ−1
(

1
P(|f |>t)

) ·Proof. By Markov's inequality, one has, for t > 0:
Ψ
( t

‖f‖Ψ

)
P(|f | > t) ≤

∫

Ω

Ψ
( |f |

‖f‖Ψ

)
dP ≤ 1;and that gives the lemma. �Sine Lemma 3.17 an be read:

P(|f | > t) ≤ 1

Ψ(t/‖f‖Ψ)
,we get that LΨ(Ω) ⊆ LΨ,∞(Ω).The onverse of Theorem 3.15 is now an immediate onsequene of the fol-lowing proposition.Proposition 3.18

1) a) If Ψ ∈ ∆1, then LΨ(Ω) = LΨ,∞(Ω).
b) If LΨ(Ω) = LΨ,∞(Ω), then Ψ ∈ ∆0.

2) If LΨ(T) = LΨ,∞(T), then ondition (OB3) implies that Cφ : HΨ → HΨis order bounded, and ondition (OB4) implies that it is order bounded into
MΨ(T).Lemma 3.19 The following assertions are equivalenti) LΨ(Ω) = LΨ,∞(Ω).ii) ∫ ∞

1

Ψ′(u)

Ψ(Bu)
du ≡

∫ +∞

Ψ(1)

1

χB(x)
dx < +∞, for some B > 1.20



Proof of the Lemma. Assume �rst that 1/χB is integrable on (Ψ(1),∞). Forevery f ∈ LΨ,∞(Ω), there is a c > 0 suh that P(|f | > t) ≤ 1/Ψ(ct). Then
∫

Ω

Ψ
(
c
|f |
B

)
dP =

∫ +∞

0

P(|f | > Bt/c)Ψ′(t) dt

≤ Ψ(1) +

∫ +∞

1

P(|f | > Bt/c)Ψ′(t) dt

≤ Ψ(1) +

∫ +∞

1

Ψ′(t)

Ψ(Bt)
dt = Ψ(1) +

∫ +∞

Ψ(1)

du

χB(u)
< +∞,so that f ∈ LΨ(Ω).Conversely, assume that LΨ(Ω) = LΨ,∞(Ω). Sine 1/Ψ is dereasing, thereis a measurable funtion f : Ω → C suh that P(|f | > t) = 1/Ψ(t), when

t ≥ Ψ−1(1). Suh a funtion is in LΨ,∞(Ω); hene it is in LΨ(Ω), by ourhypothesis. Therefore, there is a B > 1 suh that
∫

Ω

Ψ(|f |/B) dP < +∞.But
∫

Ω

Ψ(|f |/B) dP =

∫ +∞

0

P(|f | > Bt)Ψ′(t) dt ≥
∫ +∞

1
B Ψ−1(1)

Ψ′(t)

Ψ(Bt)
dt

≥
∫ +∞

Ψ−1(1)

Ψ′(t)

Ψ(Bt)
dt =

∫ +∞

1

du

χB(u)
,and hene 1/χB is integrable on (1,∞). �Proof of Proposition 3.18. 1)a) We �rst remark that for every Orliz funtion

Ψ, one has Ψ(2x) ≥ xΨ′(x) for every x > 0, beause, sine Ψ′ is positive andinreasing:
Ψ(2x) =

∫ 2x

0

Ψ′(t) dt ≥
∫ 2x

x

Ψ′(t) dt ≥ xΨ′(x).Assume now that Ψ ∈ ∆1: xΨ(x) ≤ Ψ(βx) for some β > 0 and for x ≥ x0 > 0.By Lemma 3.19, it su�es to show that 1/χ2β is integrable on (Ψ(x0),+∞).But
∫ +∞

Ψ(x0)

dx

χ2β(x)
=

∫ +∞

x0

Ψ′(u)

Ψ(2βu)
du ≤

∫ +∞

x0

Ψ(2u)/u

2uΨ(2u)
du =

∫ +∞

x0

du

2u2
< +∞.1)b) Suppose now that LΨ(Ω) = LΨ,∞(Ω). By the preeding lemma, thereexists some B > 1 suh that

lim
x→+∞

∫ 2x

x

Ψ′(u)

Ψ(Bu)
du = 0.21



By onvexity, Ψ(2x) ≥ 2Ψ(x) and Ψ′ is nonnegative, so that
∫ 2x

x

Ψ′(u)

Ψ(Bu)
du ≥ 1

Ψ(2Bx)

∫ 2x

x

Ψ′(u) du ≥ Ψ(2x) − Ψ(x)

Ψ(2Bx)
≥ Ψ(x)

Ψ(2Bx)
·Therefore Ψ satis�es ∆0.2) Assume that LΨ(T) = LΨ,∞(T) and that ondition (OB3) (resp. (OB4))holds. By Lemma 3.19, there is a B > 0 suh that 1/χB is integrable on (1,+∞).We get, using ondition (OB3) (resp. (OB4)) and setting C = A/B:

∫

T

χC

( 1

1 − |φ|
)
dm =

∫ +∞

0

m
( 1

1 − |φ| > t
)
χ′

C(t) dt

=

∫ +∞

0

m(1 − |φ| < 1/t)χ′
C(t) dt

≤ χC(1) +K

∫ +∞

1

χ′
C(t)

χA(t)
dt.But, if we set u = χC(t), i.e. u = Ψ

(
CΨ−1(t)

), then Ψ−1(u) = CΨ−1(t), andhene
χA(t) = Ψ

(
AΨ−1(t)

)
= Ψ

(
BΨ−1(u)

)
= χB(u).Therefore:

∫

T

χC

( 1

1 − |φ|
)
dm ≤ χC(1) +K

∫ +∞

χC(1)

du

χB(u)
du < +∞.It follows from Proposition 3.14 that Cφ is order bounded (resp. into MΨ(T)).

�Remark. The ondition Ψ ∈ ∆1 is not equivalent to LΨ(Ω) = LΨ,∞(Ω). Forexample, we an take:
Ψ(x) = exp

[(
log(x+ 1)

)3/2]− 1.Then, as x tends to in�nity,
Ψ(Kx) ∼ Ψ(x) exp

(3
2
(logK)(log x)1/2

)
,and hene Ψ 6∈ ∆1. On the other hand, Ψ′(x) ∼ 3

2
(log x)1/2

x Ψ(x); hene:
∫ +∞

Ψ(1)

du

χK(u)
=

∫ +∞

1

Ψ′(t)

Ψ(Kt)
dt

∼
∫ +∞

0

3u2

exp(3
2 (logK)u)

du =

∫ +∞

0

3u2

K3u/2
du < +∞for K > 1. Therefore LΨ(Ω) = LΨ,∞(Ω) by Lemma 3.19.22



3.5 Weakly ompat omposition operatorsWe saw in Lemma 3.10 that
‖ua,r‖Ψ ≤ 1

Ψ−1( 1
1−r )

·The next result shows that the weak ompatness of Cφ transforms the �big-oh�into a � little-oh�, when Ψ grows fast enough.Theorem 3.20 Assume that Ψ ∈ ∆0. Then the weak ompatness of the om-position operator Cφ : HΨ → HΨ implies that:(W) sup
a∈T

‖Cφ(ua,r)‖Ψ = o

(
1

Ψ−1
(

1
1−r

)
)
, as r → 1.Proof. Atually, we only need to use that the restrition of Cφ : HΨ → HΨto HMΨ is weakly ompat. We proved in [25℄, Theorem 4, that, under thehypothesis Ψ ∈ ∆0, the operator Cφ : HMΨ → HMΨ is weakly ompat if andonly if for every ε > 0, we an �nd Kε > 0 suh that, for every f ∈ HMΨ, onehas:

‖Cφ(f)‖Ψ ≤ Kε‖f‖1 + ε ‖f‖Ψ.Using Corollary 3.10, we get, for every ε > 0, sine ‖ua,r‖1 ≤ 1 − r:
‖Cφ(ua,r)‖Ψ ≤ Kε(1 − r) + ε

1

Ψ−1( 1
1−r )

·But Ψ(x)
x −→

x→+∞
+∞. Hene

1 − r = o
( 1

Ψ−1( 1
1−r )

) as r → 1,and that proves the theorem. �We shall see in Setion 4 that the onverse holds when Ψ satis�es ∆0 andmoreover that Cφ is then ompat. That will use some other tehniques. Nev-ertheless, we an prove, from now on, the following result.Theorem 3.21 If Ψ ∈ ∆2, then ondition:(W) sup
a∈T

‖Cφ(ua,r)‖Ψ = o

(
1

Ψ−1
(

1
1−r

)
)
, as r → 1.in Theorem 3.20 implies ondition:(OB4) m(1 − |φ| < λ) = O

( 1

χA(1/λ)

)
, as λ→ 0, for every A > 0.in Theorem 3.15. 23



Remark that when Ψ ∈ ∆0 (and in partiular when Ψ ∈ ∆2), one has,for any B > βA (where β is given by the de�nition of ∆0): Ψ(Bx)
Ψ(Ax) → +∞ as

x → +∞; hene 1/χA(x) = o
(
1/χB(x)

) and the �big-oh� ondition in (OB4)may be replaed by a � little-oh� ondition.Before proving this theorem, let us note that:Proposition 3.22 Condition(W) sup
a∈T

‖Cφ(ua,r)‖Ψ = o
( 1

Ψ−1
(

1
1−r

)
) as r → 1implies that m(|φ| = 1) = 0.Proof. Otherwise, one has m(|φ| = 1) = δ > 0. Splitting the unit irle T into

N parts, we get some a ∈ T suh that:
m(|φ− a| ≤ π/N) ≥ δ/N.But, the inequality |φ− a| ≤ π/N implies, with r = 1 − 1/N (sine |φ| ≤ 1):

|1 − ārφ| ≤ |1 − āφ| + (1 − r)|āφ| = |a− φ| + (1 − r)|φ| < 5/N = 5(1 − r).Hene:
m
(
|Cφ(ua,r)| > 1/25)

)
= m

(
|1 − ārφ| < 5(1 − r)

)

≥ m
(
|φ− a| ≤ π(1 − r)

)
≥ δ(1 − r) ,and therefore, by Lemma 3.17:

‖Cφ(ua,r)‖Ψ ≥ 1/25

Ψ−1
(
1/δ(1 − r)

) ≥ δ/25

Ψ−1
(
1/(1 − r)

) ·Sine r an be taken arbitrarily lose to 1, that proves the proposition. �Proof of Theorem 3.21. Assume that ondition (W) is satis�ed, and �x
A > 1. Let ε > 0 to be adjusted later. We an �nd rε < 1 suh that rε ≤ r < 1implies:

‖Cφ(ua,r)‖Ψ ≤ ε

Ψ−1
(

1
1−r

) , ∀a ∈ T.Now, Lemma 3.17 also reads:
m(|f | > t) ≤ 1

Ψ
(

t
‖f‖Ψ

) ,so that, if one sets B = 1/9ε:
m
(
|1 − ārφ| < 3(1 − r)

)
= m

(
|Cφ(ua,r)| > 1/9

)
≤ 1

Ψ
[
BΨ−1

(
1

1−r

)] ·We laim that this implies a good upper bound on m(|φ| > r), even if weloose a fator 1/(1 − r), due to the e�et of a rotation on φ. For that, we shalluse the following lemma. 24



Lemma 3.23 Let φ : D → D be an analyti funtion. Then, for every r with
0 < r < 1, there exists a ∈ T suh that:

m
(
|1 − ār φ| < 3(1 − r)

)
≥ 1 − r

8
m(|φ| > r).Admitting this for a while, we are going to �nish the proof.Fix an r suh that rε ≤ r < 1, and take an a ∈ T as in Lemma 3.23. Weget, from the preeding, in setting λ = 1 − r:

m(1 − |φ| < λ) = m(|φ| > r)

≤ 8

1 − r
m
(
|1 − ārφ| < 3(1 − r)

)

≤ 8

1 − r

1

Ψ
[
BΨ−1

(
1

1−r

)] ,i.e., setting x = Ψ−1(1/1 − r) = Ψ−1(1/λ):
m(1 − |φ| < λ) ≤ 8

Ψ(x)

Ψ(Bx)
·But Ψ sati�es the ∆2-ondition: [Ψ(y)

]2 ≤ Ψ(αy) for some α > 1 and y largeenough. Then, adjusting now ε > 0 as ε = 1/9αA, in order that B = αA, weget, for x large enough, sine A > 1:
Ψ(x)Ψ(Ax) ≤ [Ψ(Ax)]2 ≤ Ψ(Bx).Therefore, for r lose enough to 1:

m(1 − |φ| < λ) ≤ 8

Ψ(Ax)
=

8

χA(1/λ)
·We hene get ondition (OB4), and that proves Theorem 3.21. �Proof of Lemma 3.23. Let λ = 1 − r, and let δ > 0 be a number whih weshall speify later. Consider the set:

Cδ = {z ∈ D ; |z| ≥ 1 − λ and |arg z| ≤ δ}(for δ = λ, Cδ is a losed Carleson window). It is geometrially lear that
(1 − λ)Cδ is ontained in the losed disk of enter 1 and whose edge ontains
(1 − λ)2eiδ; hene, for every z ∈ Cδ, one has:

|1 − (1 − λ)z|2 ≤ |1 − (1 − λ)2eiδ|2 = 2(1 − λ)2(1 − cos δ) + λ2(2 − λ)2

≤ (1 − λ)2δ2 + λ2(2 − λ)2 ≤ 9λ2if δ ≤ λ. 25



By rotation, one has, for every a ∈ T:
|z| ≥ 1 − λ and |arg (āz)| ≤ δ ⇒ |1 − (1 − λ)āz| ≤ 3λ.Let now N ≥ 2 be the integer suh that:

π

N
≤ λ <

π

N − 1
,and take δ = π/N .One has, by the previous inequalities, setting ak = e2ikδ :

{z ∈ D ; |z| ≥ 1 − λ} =
⋃

1≤k≤N

ākCδ ⊆
⋃

1≤k≤N

{z ∈ D ; |1 − (1 − λ)ākz| ≤ 3λ}.Hene, with z = φ(eit) (remark that, by Proposition 3.22, we have only toonsider the values of eit for whih |φ(eit)| < 1; however, in this lemma, we mayreplae D by D), and get:
m(|φ| ≥ 1 − λ) ≤ N sup

1≤k≤N
m(|1 − (1 − λ)ākφ| ≤ 3λ).Therefore, we an �nd some k suh that:

m(|1 − (1 − λ)ākφ| ≤ 3λ) ≥ 1

N
m(|φ| ≥ 1 − λ) ≥ λ

8
m(|φ| ≥ 1 − λ),sine λ ≤ 2π/N ≤ 8/N . That proves Lemma 3.23. �Sine the ∆2-ondition implies the ∆1-ondition, whih, in its turn, impliesthe ∆0-ondition, we get, from Theorem 3.15, Theorem 3.20 and Theorem 3.21that the weak ompatness of Cφ implies its order boundedness into MΨ(T),and thanks to the Remark after Proposition 3.14, its ompatness. We getTheorem 3.24 If Ψ satis�es the ∆2-ondition, then the following assertionsfor omposition operator Cφ : HΨ → HΨ are equivalent:

1) Cφ is order bounded into MΨ(T);
2) Cφ is ompat;
3) Cφ is weakly ompat;
4) Ψ−1

(
1

1−|φ|
)
∈MΨ(T) (i.e.: χB(1/1 − |φ|) ∈ L1(T) for every B > 0);

5) m(1 − |φ| < λ) = O
(

1
χA(1/λ)

) as λ→ 0, for every A > 0;
6) supa∈T

‖Cφ(ua,r)‖Ψ = o
(

1

Ψ−1
(

1
1−r

)
) as r → 1 (W )Remark. We shall see in the next setion (Theorem 4.22) that the assumption

Ψ ∈ ∆2 annot be removed in general: Theorem 3.24 is not true for the Orlizfuntion Ψ(x) = exp
[(

(log(x+ 1)
)2]− 1 (whih nevertheless satis�es ∆1).If one speializes this orollary to the ase where Ψ(x) = Ψ2(x) = ex2 − 1,whih veri�es the ∆2-ondition, we get, using Stirling's formula:26



Corollary 3.25 The following assertions are equivalent:
1) Cφ : HΨ2 → HΨ2 is order bounded into MΨ2(T);
2) Cφ : HΨ2 → HΨ2 is ompat;
3) Cφ : HΨ2 → HΨ2 is weakly ompat;
4) 1

1−|φ| ∈ Lp(T), ∀p ≥ 1;
5) ∀q ≥ 1 ∃Cq > 0: m(1 − |φ| < λ) ≤ Cqλ

q;
6) ∀q ≥ 1 ‖φn‖1 = o (n−q);
7) ‖φn‖Ψ2 = o (1/

√
logn).As a onsequene of Theorem 3.24, we obtain the following:Corollary 3.26 Assume that Ψ ∈ ∆2. Then there exist ompat ompositionoperators Cφ : Hp → Hp for 1 ≤ p < ∞ whih are not ompat as operators

Cφ : HΨ → HΨ.Remark. We shall see in Theorem 4.3 that ompatness on HΨ implies om-patness on Hp for p <∞. Note that this shows that, though HΨ is an interpo-lation spae between H1 and H∞ (see [5℄, Theorem V.10.8), the ompatness of
Cφ : H1 → H1 with the ontinuity of Cφ : H∞ → H∞ does not su�e to haveompatness for Cφ : HΨ → HΨ.Proof. As the ∆2 ondition implies the ∆0 ondition, we have x = o

(
χβ(x)

)as x → ∞, for some β > 1. It follows that we an �nd a positive funtion
a : T → R+ suh that a ≥ 2, a ∈ L1 but χβ(a) /∈ L1. Set h = 1 − 1

a . One has
1/2 ≤ h ≤ 1 and in partiular log h ∈ L1(T). Then the outer funtion φ : D → Cde�ned for z ∈ D by:

φ(z) = exp

[∫

T

u+ z

u− z
log h(u) dm(u)

]is analyti on D and its boundary limit veri�es |φ| = h ≤ 1 on T. By [39℄,Theorem 6.2, Cφ : H2 → H2 is Hilbert-Shmidt, and hene ompat, sine∫
T

1
1−|φ| dm =

∫
T
a dm < +∞. It is then ompat from Hp to Hp for every

p < ∞ ([39℄, Theorem 6.1). However, ∫
T
χβ

(
1

1−|φ|
)
dm =

∫
T
χβ(a) dm = +∞,and hene, by our Theorem 3.24, Cφ is not ompat on HΨ. �
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3.6 p-summing operators.Reall that an operator T : X → Y between two Banah spaes is said tobe p-summing (1 ≤ p < +∞) if there is a onstant C > 0 suh that, for everyhoie of x1, . . . , xn ∈ X , one has:
n∑

k=1

‖Txk‖p ≤ Cp sup
x∗∈X∗

‖x∗‖≤1

n∑

k=1

|x∗(xk)|p.In other terms, T maps weakly unonditionaly p-summable sequenes into norm
p-summable sequenes. When X ⊆ Y = LΨ, this implies that whenever∑

n≥1 |gn| ∈ LΨ, then ∑n≥1 ‖Tgn‖p
Ψ < +∞.For 1 ≤ p < +∞, J. H. Shapiro and P. D. Taylor proved in [39℄, Theorem6.2, that the ondition:(3.3) ∫

T

dm

1 − |φ| < +∞implies that the omposition operator Cφ : Hp → Hp is p-summing (and ondi-tion (3.3) is neessary for 1 ≤ p ≤ 2; in partiular, for p = 2, it is equivalent tosay that Cφ is Hilbert-Shmidt). Atually, they proved that (3.3) is equivalentto the fat that Cφ is order bounded on Hp, and (aknowledging to A. Shields,L. Wallen, and J. Williams) every order bounded operator into an Lp-spae is
p-summing. The ounterpart of (3.3) in our setting, are onditions (OB1) and(OB2) ∫

T

χA

( 1

1 − |φ|
)
dm < +∞in Proposition 3.14. We are going to see that, if Ψ grows fast enough, orderboundedeness does not imply that Cφ is p-summing. Note that, for ompositionoperators on H∞, being p-summing is equivalent to being ompat ([23℄, Theo-rem 2.6), but H∞ orresponds to the very degenerate Orliz funtion Ψ(x) = 0for 0 ≤ x ≤ 1 and Ψ(x) = +∞ for x > 1, whih does not math in the proofbelow.Theorem 3.27 If Ψ ∈ ∆2, then there exists a omposition operator Cφ : HΨ →

HΨ whih is order bounded into MΨ(T), and hene ompat, but whih is p-summing for no p ≥ 1.Note that every p-summing operator is Dunford-Pettis (it maps the weaklyonvergent sequenes into norm onvergent sequenes); therefore, when it startsfrom a re�exive spae, it is ompat. However, when Ψ ∈ ∆2, being Dunford-Pettis implies ompatness for omposition operators on HΨ, though HΨ is notre�exive, thanks to the next proposition and Theorem 3.24. Later (see Theorem4.21), we shall see that, under ondition ∆0, every Dunford-Pettis ompositionoperator is ompat. 28



Proposition 3.28 When Ψ ∈ ∇2, every Dunford-Pettis omposition operatorsatis�es ondition (W ).Proof. Let ga,r = Ψ−1
(
1/(1− r)

)
ua,r. If ondition (W) were not satis�ed, , weould �nd a sequene (an)n≥1 in T and a sequene of numbers (rn)n≥1 tendingto 1 suh that ‖Cφ(gan,rn)‖Ψ ≥ δ > 0 for all n ≥ 1. But (1 − r)2Ψ−1

(
1/(1 −

r)
)
−→
r→1

0. Therefore gan,rn(z) = (1− rn)2Ψ−1
(
1/(1− rn)

)
/(1− ānrnz) tends to

0 uniformly on ompat sets of D. Hene, by Proposition 3.7, (gan,rn)n≥1 tendsweakly to 0 (beause gan,rn ∈ HMΨ and, on HMΨ, the weak-star topology of
HΨ is the weak topology). Sine Cφ is Dunford-Pettis, (Cφ(gan,rn)

)
n≥1

tendsin norm to 0, and we get a ontradition, proving the proposition. �Proof of Theorem 3.27. We shall begin with some preliminaries. First, sine
Ψ ∈ ∆2, there exists α > 1 suh that [Ψ(x)

]2 ≤ Ψ(αx) for x large enough.Hene:
Ψ(x)

Ψ(x/α)
≥ Ψ

(x
α

)
−→

x→+∞
+∞.Therefore, there exists, for every n ≥ 1, some xn > 0 suh that:

Ψ(x)

Ψ(x/α)
≥ 2n ∀x ≥ xn.Then

Ψ
(x
α

)
≤ 1

2n
Ψ(x) + Ψ

(xn

α

)
≤ 1

2n
Ψ(x) + Ψ(xn) ∀x > 0.For onveniene, we shall assume, as we may, that Ψ(xn) ≥ 1.Remark also that, setting a = Ψ−1(1), one has, for every f ∈ L∞:

∫

T

Ψ
(
a

|f |
‖f‖∞

)
dm ≤ 1,so that:

‖f‖Ψ ≤ 1

a
‖f‖∞.We are now going to start the onstrution.For n ≥ 1, let Mn = log(n+ 1). Choose positive numbers βn whih tend to

0 fast enough to have: ∑

k>n

βk ≤ βn , ∀n ≥ 1,and
tn =

Ψ−1(8/βn)

Mn
−→

n→+∞
+∞.Set:

rn = 1 − 1

Ψ(tn)
·29



One has rn −→
n→+∞

1 and:
χMn

( 1

1 − rn

)
=

8

βn
·Atually, for the end of the proof, we shall have to hoose the βn's dereasingso fast that: [

Ψ
( t1 + · · · + tn−1

α

)
+ Ψ(xn)

]
2ntn
Ψ(tn)

≤ 1

2n
·This is possible, by indution, sine t/Ψ(t) −→

t→+∞
0. Note that, sine Ψ(xn) ≥ 1,one has, in partiular: ∑+∞

n=1
2ntn

Ψ(tn) < +∞Let Bn be disjoint measurable subsets of T with measure m(Bn) = cβn(where c ≥ 1 is suh that ∑n≥1 βn = 1/c), and whose union is T. De�ne
h : T → C by:

h =
∑

n≥1

rn1IBn .One has log h ∈ L1(T), sine h does not vanish, rn ≥ 1/2 for n large enough,and ∑nm(Bn) = 1 < +∞. We an de�ne the outer funtion:
φ(z) = exp

[ ∫

T

u+ z

u− z
log h(u) dm(u)

]
, |z| < 1.

φ is analyti on D and its boundary limit veri�es |φ| = h ≤ 1 on T. Hene φde�nes a omposition operator on HΨ.For any A > 0, one has, when n is large enough to ensure Mn ≥ A, andwhen rn ≤ r < rn+1:
m(|φ| > r) =

∑

k>n

m(|φ| = rk) =
∑

k>n

c βk ≤ c βn =
8 c

χMn

(
1/(1 − rn)

)

≤ 8 c

χA

(
1/(1 − rn)

) ≤ 8 c

χA

(
1/(1 − r)

) ·Sine rn −→
n→+∞

1, it follows from Theorem 3.15 that Cφ : HΨ → HΨ is order-bounded into MΨ(T) (and hene is ompat).We are now going to onstrut a sequene of funtions gn ∈ HΨ suh that∑
n |gn| ∈ LΨ, but∑n ‖Cφ(gn)‖p

Ψ = +∞ for all p ≥ 1. That will prove that Cφis p-summing for no p ≥ 1.Sine
m(|φ| ≥ rn) ≥ m(|φ| = rn) = c βn ≥ βn,we an apply Lemma 3.17 and Lemma 3.23 (whih remain valid with non-stritinequalities instead of strit ones), and we are able to �nd, for every n ≥ 1,some an ∈ T suh that:
‖Cφ(uan,rn)‖Ψ ≥ 1/9

Ψ−1
( 8

(1 − rn)βn

) ·30



But:
8

(1 − rn)βn
= Ψ(tn)Ψ(Mntn).Sine now Ψ satis�es ∆2: [Ψ(x)]2 ≤ Ψ(αx), for x large enough and one has, for

n large enough, sine Mn ≥ 1 (for n ≥ 2):
Ψ(tn)Ψ(Mntn) ≤

[
Ψ(Mntn)

]2 ≤ Ψ(αMntn).Therefore:
‖Cφ(uan,rn)‖Ψ ≥ 1/9

αMntn
·Taking now:

gn = Ψ−1
( 1

1 − rn

)
uan,rn = tnuan,rn ,one has ‖gn‖Ψ ≤ 1 (by Corollary 3.10), and

‖Cφ(gn)‖Ψ ≥ 1/9

αMn
=

1/9

α log(n+ 1)
·Therefore

+∞∑

n=1

‖Cφ(gn)‖p
Ψ = +∞for every p ≥ 1.It remains to show that g =

∑
n |gn| ∈ LΨ.We shall follow the lines of proof of Theorem II.1 in [24℄.By Markov's inequality, one has:

m(|gn| > 2−n) ≤ 2ntn‖uan,rn‖1 ≤ 2ntn(1 − rn) =
2ntn
Ψ(tn)

·Set:
An = {|gn| > 2−n} ; Ãn = An \

⋃

j>n

Aj ,and
ğn = gn1I{|gn|>2−n}.Sine:

+∞∑

n=1

‖gn − ğn‖Ψ ≤ 1

a

+∞∑

n=1

‖gn − ğn‖∞ ≤ 1

a

+∞∑

n=1

1

2n
=

1

a
< +∞,it su�es to show that ğ =

∑
n |ğn| ∈ LΨ.But ğ vanishes out of ⋃n≥1 Ãn ∪

(
lim supnAn

), and m( lim supnAn

)
= 0,sine

+∞∑

n=1

m(An) ≤
+∞∑

n=1

2ntn
Ψ(tn)

< +∞ .31



Therefore: ∫

T

Ψ
( |ğ|

2α

)
dm =

+∞∑

n=1

∫

Ãn

Ψ
( |ğ|

2α

)
dm.Sine ğj = 0 on Ãn for j > n, we get:

∫

T

Ψ
( |ğ|

2α

)
dm =

+∞∑

n=1

∫

Ãn

Ψ
( |ğ1| + · · · + |ğn|

2α

)
dm.Now, by the onvexity of Ψ:

Ψ
( |ğ1| + · · · + |ğn|

2α

)
≤ 1

2

[
Ψ
( |ğ1| + · · · + |ğn−1|

α

)
+ Ψ

( |ğn|
α

)]
·But:

Ψ
( |ğn|
α

)
≤ 1

2n
Ψ(|ğn|) + Ψ(xn) ,and

Ψ
( |ğ1| + · · · + |ğn−1|

α

)
≤ Ψ

( t1 + · · · + tn−1

α

)
;therefore, using that ∫

T
Ψ(|ğn|) dm ≤

∫
T

Ψ(|gn|) dm ≤ 1:
∫

T

Ψ
( |ğ|

2α

)
dm ≤

+∞∑

n=1

1

2

[
Ψ
( t1 + · · · + tn−1

α

)
m(Ãn)

+
1

2n

∫

T

Ψ(|ğn|) dm+ Ψ(xn)m(Ãn)

]

≤
+∞∑

n=1

1

2

[[
Ψ
( t1 + · · · + tn−1

α

)
+ Ψ(xn)

] 2ntn
Ψ(tn)

+
1

2n

]

≤
+∞∑

n=1

1

2

[ 1

2n
+

1

2n

]
= 1 ,whih proves that ğ ∈ LΨ, and ‖ğ‖Ψ ≤ 2α.The proof is fully ahieved. �Remark. In the above proof, we hose Mn = log(n + 1). This hoie wasonly used to onlude that ∑n ‖Cφ(gn)‖p
Ψ = +∞ for every p < ∞. Therefore,the above proof shows that, given any inreasing funtion Υ: (0,∞) → (0,∞)tending to ∞, we an �nd, with a suitable hoie of a slowly inreasing sequene

(Mn)n≥1, a symbol φ and a sequene (gn)n≥1 in HΨ suh that ∑n |gn| ∈ LΨ,although ∑n Υ(‖Cφ(gn)‖Ψ) = +∞.
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4 Carleson measures4.1 IntrodutionB. MaCluer ([27℄; see also [11℄, Theorem 3.12) has haraterized ompatomposition operators on Hardy spaes Hp (p < ∞) in term of Carleson mea-sures. In this setion, we shall give an analogue of this result for Hardy-Orlizspaes HΨ, but in terms of �Ψ-Carleson measures�. Indeed, Carleson measuresdo not haraterize the ompatness of omposition operators when Ψ growstoo quikly, as it follows from Corollary 3.26.Before that, we shall reall some de�nitions (see for example [11℄, pages37�38, or [12℄, page 157).Let ξ ∈ T and h ∈ (0, 1). De�ne(4.1) S(ξ, h) = {z ∈ D ; |ξ − z| < h}.The Carleson window W (ξ, h) is the following subset of D:(4.2) W (ξ, h) = {z ∈ D ; 1 − h < |z| ≤ 1 and |arg(zξ̄)| < h}.It is easy to show that we have for every ξ ∈ T and h ∈ (0, 1):
S(ξ, h/2) ⊆W (ξ, h) and W (ξ, h/2) ⊆ S(ξ, h) ,so that, in the sequel, we may work equivalently with either S(ξ, h) or W (ξ, h).Reall that a positive Borel measure µ on D (or D) is alled a Carleson measureif there exists some onstant K > 0 suh that:

µ
(
S(ξ, h)

)
≤ Kh , ∀ξ ∈ T , ∀h ∈ (0, 1).Carleson's Theorem (see [11℄, Theorem 2.33, or [12℄, Theorem 9.3) asserts that,for 0 < p <∞, the Hardy spae Hp is ontinuously embedded into Lp(µ) if andonly if µ is a Carleson measure.Given an analyti self-map φ : D → D, we de�ne the pullbak measure µφ onthe losed unit disk D (whih we shall denote simply µ when this is unambiguous)as the image of the Haar measurem of T = ∂D under the map φ∗ (the boundarylimit of φ):(4.3) µφ(E) = m

(
φ∗−1(E)

)
,for every Borel subset E of D.The automati ontinuity of omposition operators Cφ on the Hardy spae

Hp, ombined with Carleson's Theorem means that µφ is always a Carlesonmeasure.B. MaCluer ([27℄, [11℄, Theorem 3.12) showed that:The omposition operator Cφ is ompat on H2 if and only if:
µφ

(
S(ξ, h)

)
= o (h) as h→ 0, uniformly for ξ ∈ T.
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While the Shapiro's ompatness riterion, via the Nevanlinna ounting fun-tion ([36℄), deals with the behavior of φ inside the open unit disk, the hara-terization (MC) deals with its boundary values φ∗. It is natural to wonderwhether the modulus of φ∗ on T = ∂D su�es to haraterize the ompatnessof Cφ. This leads to the following question: if two funtions φ1 and φ2 havethe same modulus on T, are the ompatness of the two assoiated ompositionoperators equivalent? We have seen in Theorem 3.24 that the answer is positiveon HΨ when Ψ ∈ ∆2. However, on H2 it turns out to be negative. We give thefollowing ounterexample.Theorem 4.1 There exist two analyti funtions φ1 and φ2 from D into itselfsuh that |φ∗1| = |φ∗2| on T but for whih the omposition operator Cφ2 : H2 → H2is ompat, though Cφ1 : H2 → H2 is not ompat.Remark. Let Ψ be an Orliz funtion whih satis�es ∆2. We shall see inTheorem 4.3 that every omposition operator Cφ : H2 → H2 is ompat as soonas Cφ : HΨ → HΨ is ompat. Hene, in the above theorem, Cφ1 : HΨ → HΨis not ompat. It follows hene from Theorem 3.24, sine φ∗1 and φ∗2 have thesame modulus, that Cφ2 : HΨ → HΨ is not ompat (and, even, not weaklyompat), though Cφ2 : H2 → H2 is ompat. We have already seen suh aphenomenon in Corollary 3.26. However, the results of the next subsetion willallow us to onlude (Theorem 4.22) that, when Ψ(x) = exp
[(

log(x+ 1)2
]
− 1,whih does not satisfy ondition ∆2, but satis�es onditions ∆1 and ∇1, theomposition operator Cφ2 : HΨ → HΨ is ompat, but not order bounded into

MΨ(T). That will show that our assumption that Ψ ∈ ∆2 in Theorem 3.24 isnot only a tehnial one.Proof. We start simply with φ1(z) = 1+z
2 . It is well known that Cφ1 is notompat on H2 (this was �rst observed in H. J. Shwartz's thesis [34℄: see [39℄,page 471). Now, let:

M(z) = exp
(
− 1 + z

1 − z

)and
φ2(z) = φ1(z)M(z).For simpliity, we shall write φ = φ2, and we are going to show that Cφ is aompat operator on H2, using the riterion (MC).Let ξ = eiα ∈ T, with |α| ≤ π. We are going to prove that:

µφ

(
S(ξ, h)

)
= O (h3/2).First, observe that, for h ∈ (0, 1):

S(ξ, h) ⊆ {z ∈ D ; 1 − h < |z| ≤ 1 and | arg(z̄ξ)| ≤ 2h}.Hene for h small enough,
µφ

(
S(ξ,h)

)
≤

m
(
{θ ∈ (−π, π) ; 1 − h < |φ(eiθ)| ≤ 1 and | arg(e−iαφ(eiθ))| ≤ 2h}).34



For θ ∈ (−π, π), one has |φ(eiθ)| = |φ1(e
iθ)| = cos(θ/2), and so the ondition

1 − h < |φ(eiθ)| ≤ 1 is equivalent to 1 − h < cos(θ/2) < 1, whih implies,sine cos t = 1 − 2 sin2(t/2) ≤ 1 − 2t2/π2 ≤ 1 − t2/5 for 0 ≤ t ≤ π/2 (beause
sin t ≥ 2

π t), that 1 − h < 1 − (θ/2)2/5, i.e. θ2 ≤ 20h and so |θ| ≤ 6
√
h. Onthe other hand, M(eiθ) = exp

(
− i cot(θ/2)

); hene argφ(eiθ) = θ/2− cot(θ/2),modulo 2π. Therefore, for h small enough:
µφ

(
S(ξ, h)

)
≤ m({|θ| ≤ 6

√
h ; | − α+ θ/2 − cot(θ/2)| ≤ 2h,mod 2π})

≤ 2
∑

n∈Z

m({|t| ≤ 3
√
h ; | − α+ t− cot t+ 2πn| ≤ 2h}).We have to majorize both ∑

n∈Z

m({0 < t ≤ 3
√
h ; | − α+ t− cot t+ 2πn| ≤ 2h})and ∑

n∈Z

m({0 < t ≤ 3
√
h ; |α+ t− cot t+ 2πn| ≤ 2h}).The funtion

F (t) = t− cot(t)is inreasing , and we de�ne an, bn ∈ (0, π) by:
F (an) = α− 2π(nh + n) − 2h and F (bn) = α− 2π(nh + n) + 2h,where the integer nh is given large enough to ensure that a0 ≤ 3

√
h. Of ourse,

an < bn < an−1. Observe that 4h = F (b0) − F (a0) ≥ b0 − a0, and then
b0 ≤ 3

√
h+ 4h ≤ 4

√
h for h small enough. One has:

∑

n∈Z

m({0 < t ≤ 3
√
h ; | − α+ t− cot t+ 2πn| ≤ 2h}) ≤

∞∑

n=0

(bn − an).Sine F ′(t) = 1 +
1

sin2 t
≥ 1

t2
, one has, on the one hand:(4.4) 4h = F (bn) − F (an) =

∫ bn

an

F ′(t) dt ≥ bn − an

anbn
;hene:(4.5) bn − an ≤ 4hanbn ≤ 4hb2n , for all n ≥ 0.On the other hand, let us �rst point out that, for 0 ≤ t ≤ 1,

F ′(t) = 1 +
1

sin2 t
≤ 1 +

π2/4

t2
≤ 4

t2
·Hene, for h small enough:

2π = F (bn) − F (bn+1) =

∫ bn

bn+1

F ′(t) dt ≤ 4
bn − bn+1

bn+1bn
,35



and we get:
b2n+1 ≤ bn+1bn ≤ 2

π
(bn − bn+1).Hene, using the fat that (4.4) gives b0 − a0 ≤ 4ha0b0 ≤ 48 h2, we get, from(4.5):

∞∑

n=0

(bn − an) ≤ (b0 − a0) +
8h

π

∞∑

n=0

(bn − bn+1)

≤ 48 h2 +
8h

π
b0 ≤ 48 h2 +

8h

π
4
√
h ≤

(
48

√
h+

32

π

)
h3/2 ≤ 11 h3/2,for h small enough.In the same way, we have

∞∑

n=0

m({0 < t ≤ 3
√
h ; |α+ t− cot t+ 2πn| ≤ 2h}) ≤ 11 h3/2.We an hene onlude that µφ

(
S(ξ, h)

)
≤ Ch3/2, where C is a numerialonstant. �Remark. Cφ atually maps ontinuously H2 into H3, and ompatly H2 into

Hp, for any p < 3 (see [16℄ or Theorem 4.10 and 4.11).However, in some ases, the behaviour of |φ∗| on the boundary ∂D su�es.Proposition 4.2 Let φ1 and φ2 be two analyti self-maps of D suh that |φ∗1| ≤
|φ∗2| on ∂D. Assume that they are both one-to-one on D, and that there exists
a ∈ D suh that φ2(a) = 0. Then the ompatness of Cφ2 : H2 → H2 impliesthat of Cφ1 : H2 → H2.Proof. By omposing φ1 and φ2 with the automorphism of D whih maps 0into a, we may assume that a = 0. We an hene write φ2(z) = zφ(z), with
φ : D → C analyti in D. φ does not vanish in D beause of the injetivity of φ2(this is obvious for z 6= 0, and for z = 0, follows from the fat that the injetivityof φ2 implies φ′2(0) 6= 0).Then there is some δ > 0 suh that |φ(z)| ≥ δ for every z ∈ D. In fat, byontinuity, there is some α > 0 and some 0 < r < 1 suh that |φ(z)| ≥ α and
|φ2(z)| ≤ α for |z| ≤ r. But being analyti and non onstant, φ2 is an openmap, so there is some ρ > 0 suh that ρD ⊆ φ2(rD). Injetivity of φ2 showsthat φ2(D \ rD) ∩ ρD = ∅, that is to say that |φ2(z)| ≥ ρ for |z| > r. A fortiori
|φ(z)| ≥ ρ for |z| > r. The laim is proved with δ = min(α, ρ).Then 1

φ ∈ H∞, as well as φ1

φ . Sine ∣∣φ∗
1

φ∗

∣∣ =
∣∣φ∗

1

φ∗
2

∣∣ ≤ 1, one has ∣∣φ1(z)
φ(z)

∣∣ ≤ 1 forevery z ∈ D. Hene:
1 − |φ1(z)|

1 − |z| ≥ 1 − |φ(z)|
1 − |z| =

1 − |φ2(z)|
1 − |z| − |φ(z)|.36



Now ([36℄, Theorem 3.5), the ompatness of Cφ2 : H2 → H2 implies that
lim
z

<→1

1 − |φ2(z)|
1 − |z| = +∞;we get:

lim
z

<→1

1 − |φ1(z)|
1 − |z| = +∞,whih implies the ompatness of Cφ1 : H2 → H2, thanks to the injetivity of

φ1 ([36℄, Theorem 3.2). �4.2 Compatness on H
Ψ versus ompatness on H

2The equivalene (MC) holds atually for every Hp spae (with p < ∞)instead of H2. We are going to see in this setion that for Hardy-Orliz spaes
HΨ, one needs a new notion of Carleson measures, whih one may all Ψ-Carleson measures. Before that, we are going to see that ondition (MC) allowsto get that the ompatness of omposition operators on HΨ always impliesthat on Hp for p < ∞. Reall that, when Ψ ∈ ∆2, we have seen in Corollary3.26 that the onverse is not true.Theorem 4.3 Let φ : D → D be an analyti funtion. If one of the followingonditions:i) Cφ is a ompat operator on HΨii) Ψ ∈ ∆0 and Cφ is a weakly ompat operator on HΨis satis�ed, the omposition operator Cφ is ompat on H2.Note that we have proved in Theorem 3.24 that the weak ompatness of
Cφ : HΨ → HΨ implies its ompatness only when Ψ satis�es the ∆2 ondition.Nevertheless, we shall show in Theorem 4.21 that when Ψ ∈ ∆0, the weakompatness of Cφ is equivalent to its ompatness. This is obviously false (inpartiular when LΨ is re�exive) without any assumption on Ψ.Proof. We are going to use the haraterization (MC) for ompat ompositionoperators on H2.Suppose that the ondition on µφ is not ful�lled. Then there exist β ∈ (0, 1),
ξn ∈ T, and hn ∈ (0, 1), with hn −→

n→+∞
0, suh that:

µφ

(
S(ξn, hn)

)
≥ βhn.We are now going to use the funtion:

vn(z) =
h2

n

(1 − anz)2
,37



where:
an = (1 − hn)ξn.Of ourse, vn is atually nothing but uξn,1−hn . We have by Corollary 3.10:

‖vn‖Ψ ≤ 1

Ψ−1(1/hn)
·De�ne gn = Ψ−1(1/hn)vn, whih is in the unit ball of HMΨ. We have assumedat the beginning of the paper that x = o

(
Ψ(x)

) as x→ ∞; hene Ψ−1(x) = o (x)as x → ∞, and so h2
nΨ−1(1/hn) → 0. Therefore (gn)n onverges uniformly tozero on ompat subsets of D and ‖gn‖1 → 0, beause ‖gn‖1 ≤ hnΨ−1(1/hn).Then, in both ases, we should have ‖Cφ(gn)‖Ψ → 0. Indeed, in ase i), thisfollows from Proposition 3.6, and in ase ii), this follows from [25℄, Theorem 4.We are going to show that this is not true. Indeed:

∫

T

Ψ
( 4

β
|gn ◦ φ|

)
dm ≥

∫

D

Ψ
( 4

β
Ψ−1(1/hn)|vn(z)|

)
dµφ

≥
∫

S(ξn,hn)

Ψ
( 4

β
Ψ−1(1/hn)|vn(z)|

)
dµφ.But when z ∈ S(ξn, hn), one has |vn(z)| ≥ 1/4, beause

|1 − anz| ≤ |1 − anξn| + |an(ξn − z)| = hn + (1 − hn)hn ≤ 2hn.We obtain that by onvexity (sine β < 1):
∫

T

Ψ
( 4

β
|gn ◦ φ|

)
dm ≥

∫

T

1

β
Ψ
(
4Ψ−1(1/hn)|vn(z)|) dm

≥ 1

βhn
µφ

(
S(ξn, hn)

)
≥ 1.This implies that ‖Cφ(gn)‖Ψ ≥ β/4 and proves the theorem. �4.3 General measuresWe used several times the riterion (MC) for ompatness onH2 via Carlesonmeasures. The fat that this provides suh a useful tool leads to wonder if theboundedness and the ompatness on Hardy-Orliz spaes an be expressed insuh a pleasant manner. Theorem 4.10 and Theorem 4.11 are the Orliz versionof Carleson's Theorem for Hp spaes ([11℄, Theorem 2.35).The key for our general haraterization is the use of the following funtions(see (4.2) for the de�nition of the Carleson's window W (ξ, h)).
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De�nition 4.4 For any positive �nite Borel measure µ on the unit disk D (oron D), we set, for h ∈ (0, 1]:
ρµ(h) = sup

ξ∈T

µ
(
W (ξ, h)

)
,(4.6)

Kµ(h) = sup
0<t≤h

ρµ(t)

t
(4.7)Hene µ(W (ξ, t)

)
≤ Kµ(h)t for t ≤ h.The measure µ is a Carleson measure if and only if Kµ(h) is bounded by aonstant K, for h ∈ (0, 1) and this happens as soon as Kµ(h0) is �nite for some

h0 ∈ (0, 1).De�nition 4.5 We say that Ψ satis�es the ∇0 ondition if for some x0 > 0,
C ≥ 1 and every x0 ≤ x ≤ y, one has:(4.8) Ψ(2x)

Ψ(x)
≤ Ψ(2Cy)

Ψ(y)
·This is a ondition on the regularity of Ψ. It is satis�ed if

Ψ(2x)

Ψ(x)
≤ C

Ψ(2y)

Ψ(y)
·Proposition 4.6 the following assertions are equivalenti) Ψ satis�es the ∇0 ondition.ii) There exists some x0 > 0 satisfying: for every β > 1, there exists Cβ ≥ 1suh that

Ψ(βx)

Ψ(x)
≤ Ψ(βCβy)

Ψ(y)
, for every x0 ≤ x ≤ y.iii) There exist x0 > 0, β > 1 and Cβ ≥ 1 suh that

Ψ(βx)

Ψ(x)
≤ Ψ(βCβy)

Ψ(y)
, for every x0 ≤ x ≤ y.Proof. We only have to prove i) ⇒ ii), sine iii) ⇒ i) is similar and ii) ⇒ iii)is trivial.If β ∈ (1, 2], it is easy, taking Cβ = 2C/β. Now, if β ∈ (2b, 2b+1] for someinteger b ≥ 1, we write for every x0 ≤ x ≤ y:

Ψ(βx)

Ψ(x)
≤ Ψ(2b+1x)

Ψ(x)
=

Ψ(2b+1x)

Ψ(2bx)
· · · Ψ(2x)

Ψ(x)
·39



But we have for every integer j ≥ 1: 2j−1x ≤ (2C)j−1x ≤ (2C)j−1y, so:
Ψ(2jx)

Ψ(2j−1x)
≤ Ψ((2C)jy)

Ψ((2C)j−1y)
,and we obtain:

Ψ(βx)

Ψ(x)
≤ Ψ((2C)b+1y)

Ψ(y)
≤ Ψ(βCβy)

Ψ(y)
,where Cβ = 2Cb+1. �Examples. It is immediately seen that the following funtions satisfy ∇0:

Ψ(x) = xp, Ψ(x) = exp
[(

log(x+ 1)
)α]− 1, Ψ(x) = exα − 1, α ≥ 1.Note that when Ψ ∈ ∇0, with onstant C = 1, i.e. Ψ(βx)/Ψ(x) is inreasingfor x large enough, then we have the dihotomy: either Ψ ∈ ∆2, or Ψ ∈ ∆0.We shall say that ∇0 is uniformly satis�ed if there exist C ≥ 1 and x0 > 0 suhthat, for every β > 1:(4.9) Ψ(βx)

Ψ(x)
≤ Ψ(Cβy)

Ψ(y)
for x0 ≤ x ≤ y,One has:Proposition 4.71) Condition ∆2 implies ondition ∇0 uniformly.2) If Ψ ∈ ∇0 uniformly, then Ψ ∈ ∇1.3) The funtion κ(x) = log Ψ(ex) is onvex on (x0,+∞) if and only if ∇0 issatis�ed with onstant C = 1.We shall say that Ψ is κ-onvex when κ is onvex at in�nity. Note that Ψ is

κ-onvex whenever Ψ is log-onvex. In the above examples Ψ is κ-onvex; it alsothe ase of Ψ(x) = x2/ log x, x ≥ e; but, on the other hand, if Ψ(x) = x2 log xfor x ≥ e, then Ψ is not κ-onvex. Nevertheless, for β2 ≤ x ≤ y, one has:
Ψ(βx)

Ψ(x)
= β2

(
1 +

log β

log x

)
≤ 3β2

2
≤ 3

2

Ψ(βy)

Ψ(y)
,and hene Ψ ∈ ∇0.We do not know whether Ψ ∈ ∇0 uniformly implies that Ψ is equivalent toan Orliz funtion for whih the assoiated funtion κ is onvex.Proof. 1) Sine Ψ ∈ ∆2, one has [Ψ(u)

]2 ≤ Ψ(αu) for some α > 1 and x ≥ x0.We may assume that Ψ(x0) ≥ 1. Then, for y ≥ x ≥ x0 and every β > 1:
Ψ(βx)Ψ(y) ≤

[
Ψ(βy)

]2 ≤ Ψ(αβy) ≤ Ψ(αβy)Ψ(x),whih is (4.9). 40



2) Suppose that Ψ satis�es ondition ∇0 uniformly. We may assume that
Ψ(x0) ≥ 1. Let x0 ≤ u ≤ v; we an write u = βx0 for some β ≥ 1. Thenondition (4.9) gives:

Ψ(u)Ψ(v) = Ψ(βx0)Ψ(v) ≤ Ψ(x0)Ψ(Cβv) ≤ Ψ
(
Ψ(x0)Cβv

)
= Ψ(buv),with b = CΨ(x0)/x0.3) Assume that κ is onvex on (x0,+∞). For every β > 1, let κβ(t) =

κ(t log β) = log(Ψ(βt)), whih is onvex on (x0/ log(β),+∞). Taking y ≥ x ≥
ex0 , write x = βθ and y = βθ′ with θ ≤ θ′. Convexity of κ gives, sine θ′ ≥ θ ≥
x0/ log(β):

κβ(θ + 1) − κβ(θ) ≤ κβ(θ′ + 1) − κβ(θ′),whih means that:
Ψ(βx)

Ψ(x)
≤ Ψ(βy)

Ψ(y)
·Assume that (4.9) is ful�lled for every β > 1, with C = 1. Then, taking

y = βx, one has: [
Ψ(βx)

]2 ≤ Ψ(x)Ψ(β2x).Let u < v be large enough. Taking x = u2 and β = v/u, we get:
[
Ψ(uv)

]2 ≤ Ψ(u2)Ψ(v2),whih means that κ is onvex. �Remark. The growth and regularity onditions for Ψ an be expressed in thefollowing form:
• Ψ ∈ ∆0 i� κ(x+ β′) − κ(x) −→

x→∞
+∞, for some β′ > 0.

• Ψ ∈ ∆1 i� for some β′ > 0, one has x + κ(x) ≤ κ(x + β′), for x largeenough.
• Ψ ∈ ∆2 i� for some α′ > 0, one has 2κ(x) ≤ κ(x+α′), for x large enough.
• Ψ ∈ ∇1 i� κB(x)+κB(y) ≤ κB(x+y) for x, y large enough, with B = e−b.
• Ψ ∈ ∇0 i� for some c′ ≥ 1 and A > 1, one has κA(θ + 1) − κA(θ) ≤
κA(θ′ + c′) − κA(θ′) for θ ≤ θ′ large enough.Before proving the main results of this setion, let us ollet some basi fatson the ompatness of the embedding of HΨ1 into LΨ2(µ). First:
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Lemma 4.8 Let Ψ1, Ψ2 be two Orliz funtions and µ a �nite Borel measure on
D. Assume that the identity maps HΨ1 into LΨ2(µ) ompatly. Then, µ(T) = 0.Proof. The sequene (zn)n≥1 is weakly null in MΨ1 by Riemann-Lebesgue'sLemma. Its image by a ompat operator is then norm null. This implies thatfor every ε ∈ (0, 1), we have, for n large enough,

∫

D

Ψ2

(
|z|n

)
dµ ≤ ε.Fatou's Lemma yields Ψ2(1)µ(T) ≤ ε. �Now, we summarize what is true in full generality about ompatness foranonial embeddings.Proposition 4.9 Let Ψ1, Ψ2 be two Orliz funtions and µ a �nite Borel mea-sure on D. The following assertions are equivalenti) The identity maps HΨ1 into LΨ2(µ) ompatly.ii) Every sequene in the unit ball of HΨ1 , whih is onvergent to 0 uniformlyon every ompat subset of D, is norm-null in LΨ2(µ).iii) The identity maps HΨ1 into LΨ2(µ) ontinuously and

lim
r→1−

∥∥Ir
∥∥ = 0, where Ir(f) = f1I

D\rD
.Proof. i) ⇒ ii): let (fn)n≥1 be a sequene in the unit ball of HΨ1 , whih isuniformly onvergent to 0 on every ompat subset of D. In partiular, fn(z)onverges to 0 for every z ∈ D. This means that (fn)n≥1 onverges to 0 µ-almost everywhere, sine µ(T) = 0 by the preeding lemma. If the onlusiondid not hold, we ould assume, up to an extration, that lim‖fn‖Ψ2 > 0. Thusby ompatness of the embedding, up to a new extration, (fn)n≥1 is norm-onvergent to some g ∈ LΨ2(µ). Neessarily g 6= 0. A subsequene of (fn)n≥1would be onvergent to g µ-almost everywhere. This gives a ontradition.

ii) ⇒ iii): if not, there exist a sequene (fn)n≥1 in the unit ball of HΨ1and δ > 0 with ‖fn1I
D\(1− 1

n )D‖Ψ2 > δ, for every n ≥ 1. Let us introdue thesequene gn(z) = znfn(z) for z ∈ D. The sequene (gn)n≥1 lies in the unit ballof HΨ1 and is onvergent to 0 uniformly on every ompat subset of D. But
‖gn‖Ψ2 ≥ ‖znfn1I

D\(1− 1
n )D‖Ψ2 ≥

(
1 − 1

n

)n

‖fn1I
D\(1− 1

n )D‖Ψ2 ≥
(
1 − 1

n

)n

δ.This ontradits (ii).
iii) ⇒ ii) is very easy.
ii) ⇒ i) follows from Proposition 3.6. �We an now state some deeper haraterizations42



Theorem 4.10 Let µ be a �nite Borel measure on the losed unit disk D andlet Ψ1 and Ψ2 be two Orliz funtions. Then:1) If the identity maps HΨ1 into LΨ2(µ) ontinuously, there exists some
A > 0 suh that:(R) ρµ(h) ≤ 1

Ψ2

(
AΨ−1

1 (1/h)
) for every h ∈ (0, 1].2) If there exists some A > 0 suh that:(K) Kµ(h) ≤ 1/h

Ψ2

(
AΨ−1

1 (1/h)
) for every h ∈ (0, 1],then the identity maps HΨ1 into LΨ2(µ) ontinuously.Theorem 4.11 Let µ be a �nite Borel measure on the losed unit disk D andlet Ψ1 and Ψ2 be two Orliz funtions. Then:1) If the identity maps HΨ1 into LΨ2(µ) ompatly, then(R0) ρµ(h) = o

( 1

Ψ2

(
AΨ−1

1 (1/h)
)
) as h→ 0, for every A > 0.2) If µ(T) = 0 and(K0) Kµ(h) = o

( 1/h

Ψ2

(
AΨ−1

1 (1/h)
)
) as h→ 0 , for every A > 0,then the identity maps HΨ1 into LΨ2(µ) ompatly.3) When Ψ1 = Ψ2 = Ψ satis�es ondition ∇0, then the above onditionsare equivalent: the identity maps HΨ1 into LΨ2(µ) ompatly if and only ifondition (R0) is satis�ed and if and only if ondition (K0) is satis�ed.Remarks.1. a) If ρµ(h) ≤ C/Ψ2

(
AΨ−1

1 (1/h)
) with C > 1, then the onvexity of Ψ2gives Ψ2(t/C) ≤ Ψ2(t)/C and hene:

ρµ(h) ≤ 1

Ψ2

(
A
C Ψ−1

1 (1/h)
) ·b) If ρµ(h) ≤ 1/Ψ2

(
AΨ−1

1 (1/h)
) only for h ≤ hA, one an �nd some C =

CA > 0 suh that ρµ(h) ≤ C/Ψ2

(
AΨ−1

1 (1/h)
) for every h ∈ (0, 1]. In fat,

ρµ(h) ≤ µ(D) and 1/Ψ2

(
AΨ−1

1 (1/h)
)
≥ 1/Ψ2

(
AΨ−1

1 (1/hA)
) for h ≥ hA; hene

ρµ(h) ≤ C/Ψ2

(
AΨ−1

1 (1/h)
) with C = µ(D)/Ψ2

(
AΨ−1

1 (1/hA)
).The same remark applies for Kµ.2. a) In the ase where Ψ1 = Ψ2 = Ψ, one has: Ψ

(
AΨ−1(t)

)
≤ Ψ

(
Ψ−1(t)

)
=

t when A ≤ 1 and Ψ
(
AΨ−1(t)

)
≥ Ψ

(
Ψ−1(t)

)
= t when A ≥ 1. On the otherhand, if Ψ ∈ ∆2, one has, for some onstant C = CA > 0: Ψ(Ax) ≤ CΨ(x),43



when A ≥ 1 and Ψ(Ax) ≥ (1/C)Ψ(x) when A ≤ 1. Hene, when Ψ ∈ ∆2, onehas, for every A > 0:
1

Ψ
(
AΨ−1(1/h)

) =
1

χA(1/h)
≈ hand Theorem 4.10 is nothing but Carleson's Theorem.b) If Ψ1(x) = xp and Ψ2(x) = xq with p < q <∞, then:

Ψ2

(
AΨ−1

1 (t)
)

= Aqtq/p,and ondition (R) means that µ is a β-Carleson measure, with β = q/p (see[12℄, Theorem 9.4).) If, for �xed A > 0, the funtion x 7→ Ψ1(x)

Ψ2(Ax)
is non inreasing, at leastfor x large enough, onditions (R) and (K) (resp. onditions (R0) and (K0)below) are learly equivalent. This is the ase in the framework of lassialHardy spaes: Ψ1(x) = xp and Ψ2(x) = xq, with q ≥ p.When Ψ1 = Ψ2 = Ψ, this is equivalent, if A > 1, to the onvexity of thefuntion κ(x) = log Ψ(ex) (see Proposition 4.7).3. a) When Ψ1 = Ψ2 = Ψ, the ondition µ(T) = 0 is automatially ful�lled(and so an be removed from (K0) ). This follows on one hand from the ma-jorization in (K0) , whih implies that Kµ(h) → 0 (when h → 0); and on theother hand from the inequality:

µ
(
D \ rD

)
≤ 2π

1 − r
ρµ(1 − r) ≤ 2πKµ(1 − r).Indeed, D \ rD an be overed by less than 2π

1−r Carleson's windows of �size�
1 − r.b) Nevertheless, the ondition µ(T) = 0 annot be removed in full generalityin Theorem 4.11. Indeed, if we onsider the identity j from H4 into L2(D, m̃),where m̃ is 0 on D and its restrition to the torus is the normalized Lebesguemeasure. It is easily seen that K(h) is bounded and so less than 1

A2h1/2
, for hsmall enough. But j is not ompat.4. In the ase where Ψ1 = Ψ2 = Ψ and µ is a Carleson measure, then Kµis bounded, by say K ≥ 1, and ondition (K) is satis�ed for A = 1/K, sine

A ≤ 1 implies, by the onvexity of Ψ: Ψ
(
AΨ−1(1/h)

)
≤ AΨ

(
Ψ−1(1/h)

)
= A/h.Hene the anonial embedding HΨ →֒ LΨ(µ) is ontinuous. We get hene, byCarleson's Theorem ([12℄, Theorem 9.3):Proposition 4.12 Let µ be a positive �nite measure on D. Assume that theanonial embedding jµ : Hp → Lp(µ) is ontinuous for some 0 < p <∞. Then

jµ : HΨ → LΨ(µ) is ontinuous. 44



Note that this is atually a onsequene of the fat that HΨ is an interpola-tion spae for H1 and H∞ (see [5℄, Theorem V.10.8).When µ = µφ is the image of the Haar measure m under φ∗, where φ is ananalyti self-map of D, we know (Proposition 3.12) that the omposition opera-tor Cφ : HΨ → HΨ is always ontinuous. This an be read as the ontinuity of
HΨ →֒ LΨ(µφ). Hene ondition (R) must be satis�ed, for some A > 0. Notethat for A ≤ 1, 1/χA(1/h) ≥ h, and so ondition (R) is implied by the fat that
µφ is a Carleson measure.5. To have the majorization in ondition (K0), it su�es that: for every
A > 0, there exists hA ∈ (0, 1] suh that(4.10) Kµ(h) ≤ 1/h

Ψ2

(
AΨ−1

1 (1/h)
) , for every h ∈ (0, hA].In fat, �xing A > 0 and ε ∈ (0, 1), we have, by onvexity:

Ψ2(Ax) ≤ εΨ2(Ãx),with Ã = A/ε. Sine we have (4.10) with Ã, when h is small enough (dependingon A and ε), we get, for x = Ψ−1
1 (1/h), ondition (K0).To prove both Theorem 4.10 and Theorem 4.11, we shall need some auxiliaryresults. The following is atually the heart of the lassial Theorem of Carleson,though it is not usually stated in this form. The maximal (non-tangential)funtion Mf (whih is essentially the same as Nαf in the previous setion) willbe de�ned by:

Mf

(
eiθ
)

= sup{|f(z)|; z ∈ Gθ},where
Gθ = {z ∈ D ; |eiθ − z| < 3(1 − |z|)}.Theorem 4.13 (Carleson's Theorem) For every f ∈ H1 and every �nitepositive measure µ on the losed unit disk D, one has, for every h ∈ (0, 1] andevery t > 0:

µ
(
{z ∈ D ; |z| > 1 − h and |f(z)| > t}

)
≤ 2πKµ(h)m({Mf > t}).As this theorem is not usually stated in suh a way, we shall give a few wordsof explanations.Proof. For onveniene , we shall denote, when I is a subar of T:

W (I) = {z ∈ D ; |z| > max(0, 1 − |I|/2) and z

|z| ∈ I}.Obviously, when |I| ≤ 2, we have W (I) = W (ξ, |I|/2), where ξ is the enter of
I. 45



We shall begin by being somewhat skethy, and refer to [11℄, Theorem 2.33,or [12℄, Theorem 9.3, for the details. Following the lines of [11℄, page 39, proofof Theorem 2.33, 1) ⇒ 2): {Mf > t} is the disjoint union of a ountable familyof open ars Ij of T, and on the other hand (see [11℄, page 39), |f(z)| > t impliesthat z ∈W (Ij) for some j.Now, when αj > h, we have to over Ij in suh a way that we an write Ij ⊂
Jj,1 ∪ · · · ∪ Jj,Nj with the ars Jj,1, . . . , Jj,Nj satisfying: W (Jj,k) = W (ξj,k, h)for every k = 1, . . . , Nj and 2|Ij | ≥

Nj∑

k=1

|Jj,k|, and some ξj,k ∈ T.We then notie that:(4.11) µ
(
W (Jj,k)

)
≤ 1

2
Kµ(h) |Jj,k| .In fat, 2α = |I| if W (ξ, α) = W (I); hene:

µ
(
W (Jj,k)

)
≤ ρµ(h) ≤ hKµ(h) =

1

2
|Jj,k|Kµ(h).Denoting, for E ⊆ D, by Eh the set of points z ∈ E suh that |z| > 1 − h, wetherefore have, sine:

W (Ij)h ⊆
⋃

1≤k≤Nj

W (Jj,k),using (4.11):
µ
(
W (Ij)h

)
≤

Nj∑

k=1

µ
(
W (Jj,k)

)
≤

Nj∑

k=1

1

2
Kµ(h) |Jj,k| ≤ Kµ(h) |Ij |.It follows that:

µ
(
{z ∈ D ; |z| > 1 − h and |f(z)| > t}

)
≤
∑

j

µ
(
(Wj)h

)
≤ Kµ(h)

∑

j

|Ij |

= 2πKµ(h)
∑

j

m(Ij) = 2πKµ(h)m({Mf > t}),as announed. �The following estimation will be useful for the study both of boundednessand ompatness.Lemma 4.14 Let µ be a �nite Borel measure on D. Let Ψ1 and Ψ2 be twoOrliz funtions. Suppose that there exists A > 0 and hA ∈ (0, 1) suh that
Kµ(h) ≤ 1/h

Ψ2

(
AΨ−1

1 (1/h)
) , for every h ∈ (0, hA).Then, for every f ∈ HΨ1 suh that ‖f‖Ψ1 ≤ 1 and every Borel subset E of D,we have: ∫

E

Ψ2

(A
8
|f |
)
dµ ≤ µ(E)Ψ2(xA) +

π

2

∫

T

Ψ1(Mf) dm46



where xA =
A

2
Ψ−1

1 (1/hA).Proof. For every s > 0, the inequality |f(z)| > s implies that the norm of theevaluation at z is greater than s; hene by Lemma 3.11:
s < 4Ψ−1

1

( 1

1 − |z|
) ,i.e.:

|z| > 1 − 1

Ψ1(s/4)
·Carleson's Theorem (Theorem 4.13) gives:

µ
(
{|f(z)| > s}

)
≤ 2πKµ

( 1

Ψ1(s/4)

)
m({Mf > s})when Ψ1(s/4) ≥ 1. Hene:

∫

E

Ψ2

(A
8
|f |
)
dµ =

∫ ∞

0

Ψ′
2(t)µ({|f | > 8t/A} ∩ E) dt .But our hypothesis means that, when Ψ1(s/4) > 1/hA:

Kµ

( 1

Ψ1(s/4)

)
≤ Ψ1(s/4)

Ψ2(As/4)
·We have then

µ
(
{|f(z)| > 8t/A}

)
≤ 2π

Ψ1(2t/A)

Ψ2(2t)
m({Mf > 8t/A}).So:

∫

E

Ψ2

(A
8
|f |
)
dµ ≤

∫ xA

0

Ψ′
2(t)µ(E) dt

+ 2π

∫ +∞

xA

Ψ′
2(t)

Ψ1(2t/A)

Ψ2(2t)
m({Mf > 8t/A}) dt

≤ Ψ2(xA)µ(E)

+ 2π

∫ +∞

xA

Ψ′
2(t)

Ψ2(2t)
Ψ1(2t/A)m({Mf > 8t/A}) dt .For the seond integral, note that one has Ψ(x) ≤ xΨ′(x) ≤ Ψ(2x), for anyOrliz funtion Ψ. This leads to: 47



∫ ∞

xA

Ψ′
2(t)

Ψ2(2t)
Ψ1(2t/A)m({Mf > 8t/A}) dt

≤
∫ ∞

0

Ψ1(2t/A)

t
m({Mf > 8t/A}) dt

≤ 2

A

∫ ∞

0

Ψ′
1(2t/A)m({Mf > 8t/A}) dt

=

∫ ∞

0

Ψ′
1(x)m({Mf > 4x}) dx =

∫

T

Ψ1

(1

4
Mf

)
dm

≤ 1

4

∫

T

Ψ1(Mf ) dm.whih leads to the desired result. �For the proofs of Theorem 4.10 and Theorem 4.11, we may restrit ourselvesto the ase of funtions Ψ1 and Ψ2 satisfying ∇2. Indeed, suppose that Ψ1 and
Ψ2 are Orliz funtions and de�ne Ψ̃j(t) = Ψj(t

2), for j ∈ {1, 2}. The funtions
Ψ̃1 and Ψ̃2 are Orliz funtions satisfying ∇2 sine, with β = 2, we have forevery t ≥ 0:

Ψ̃j(βt) = Ψj(4t
2) ≥ 4Ψj(t

2) = 2βΨ̃j(t).Now, we laim that µ satis�es (R), (K), (R0) or (K0) for the ouple (Ψ1,Ψ2

)if and only if µ satis�es it for the ouple (Ψ̃1, Ψ̃2

). This is simply due to thefat that for every A > 0 and t ≥ 0, we have
Ψ̃2

(
AΨ̃1

−1
(t)
)

= Ψ2

(
A2Ψ−1

1 (t)
)
.Moreover, notie that, writing f = Bg2 (where B is a Blashke produt), wehave f ∈ HΨ if and only if g ∈ HΨ̃; thus ‖g‖LΨ̃ =

√
‖f‖LΨ. It is then learthat ∥∥∥Id : HΨ1 −→ LΨ2(µ)

∥∥∥ =
∥∥∥Id : HΨ̃1 −→ LΨ̃2(µ)

∥∥∥
2

,so that the anonial embedding is bounded (resp. ompat) for the ouple(
Ψ1,Ψ2

) if and only if it is so for the ouple (Ψ̃1, Ψ̃2

), thanks to Proposition 4.9.Proof of Theorem 4.10. 1) Let C be the norm of the anonial embedding
j : HΨ1 →֒ LΨ2(µ), and let ξ ∈ T and h ∈ (0, 1). It su�es to test the on-tinuity of j on f = Ψ−1

1 (1/h)uξ,1−h, whih is in the unit ball of HMΨ1 , byCorollary 3.10.But, when z ∈ W (ξ, h) one has, with a = (1 − h)ξ:
|1 − āz| ≤ |1 − āξ| + |āξ − āz| = h+ (1 − h)

[∣∣∣ξ − z

|z|
∣∣∣+
∣∣∣ z|z| − z

∣∣∣
]

≤ h+ (1 − h)[h+ (1 − |z|)] ≤ h+ (1 − h)[h+ h] ≤ 3h;48



hene |uξ,1−h(z)| ≥ 1/9 and |f(z)| ≥ (1/9)Ψ−1
1 (1/h); therefore:

1 ≥
∫

D

Ψ2

( |f |
C

)
dµ ≥ Ψ2

( 1

9C
Ψ−1

1 (1/h)
)
µ
(
W (ξ, h)

)
,whih is (R).2) By Proposition 3.5, the maximal (non-tangential) funtion M is boundedon LΨ1(T): there exists a onstant C ≥ 1 suh that ‖Mf‖Ψ1 ≤ C‖f‖Ψ1 for every

f ∈ LΨ1(T). We �x f in the unit ball of HΨ1 (note that ‖f/C‖Ψ1 remains ≤ 1)and use Lemma 4.14, with E = D and f replaed by f/C (here hA = 1)).Writing C̃ =
π

2
+ µ(D)Ψ2(xA), we get:

∫

D

Ψ2

( A

8CC̃
|f |
)
dµ ≤ 1

C̃

∫

D

Ψ2

( A
8C

|f |
)
dµ

≤ 1

C̃

(
µ(D)Ψ2(xA) +

π

2

∫

T

Ψ1

( 1

C
Mf

)
dm

)

≤ 1

C̃

(
µ(D)Ψ2(xA) +

π

2

)
= 1,whih means that ‖f‖LΨ2(µ) ≤

8CC̃

A
· �Proof of Theorem 4.11. 1) Suppose that the embedding is ompat, but thatondition (R0) is not satis�ed. Then there exist ε0 ∈ (0, 1), A > 0, a sequeneof positive numbers (hn)n dereasing to 0, and a sequene of ξn ∈ T, suh that:

µ
(
W (ξn, hn)

)
≥ ε0

Ψ2

(
AΨ−1

1 (1/hn)
) ·Consider the sequene of funtions

fn(z) = Ψ1
−1(1/hn)

h2
n

(1 − ānz)2
= Ψ1

−1(1/hn)uξn,|an|,where an = (1 − hn)ξn. By Corollary 3.10, fn is in the unit ball of HMΨ1 .Moreover, it is plain that (fn)n onverges to 0 uniformly on every ompatsubset of D. By the ompatness riterion (Proposition 3.6), (fn)n is norm-onverging to 0 in LΨ2(µ).But, as above (proof of Theorem 4.10), for every n ≥ 1, one has |fn(z)| ≥
(1/9)Ψ−1

1 (1/hn) when z ∈W (ξn, hn); hene:
∫

D

Ψ2

(9A

ε0
|fn|

)
dµ ≥ Ψ2

(A
ε0

Ψ−1
1 (1/hn)

)
µ
(
W (ξn, hn)

)

≥ Ψ2

(A
ε0

Ψ−1
1 (1/hn)

) ε0

Ψ2

(
AΨ−1

1 (1/hn)
) ≥ 1,49



by the onvexity of Ψ2. This implies that ‖fn‖LΨ2(µ) ≥ ε0/9A and gives aontradition.2) We have to prove that for every ε > 0, there exists an r ∈ (0, 1) suh thatthe norm of the injetion Ir : HΨ1 −→ LΨ2(D \ rD, µ) is smaller than ε (seeProposition 4.9).Let C ≥ 1 be the norm of the maximal operator, as in the proof of The-orem 4.10: ‖Mf‖Ψ1 ≤ C‖f‖Ψ1 for every f ∈ LΨ1(T), and set A = 16C/ε.Condition (K0) gives us hA ∈ (0, 1) suh that:
Kµ(h) ≤ 1

2

1/h

Ψ2

(
AΨ−1

1 (1/h)
)when h ≤ hA.Let f in the unit ball of HΨ1 and r ∈ (0, 1). By Lemma 4.14:

∫

D\rD

Ψ2

( |f |
ε

)
dµ =

∫

D\rD

Ψ2

( A

16C
|f |
)
dµ ≤ 1

2

∫

D\rD

Ψ2

( A
8C

|f |
)
dµ

≤ 1

2

(
µ
(
D \ rD

)
Ψ2(xA) +

π

2

∫

T

Ψ1

(
Mf

C

)
dm

)

≤ π

4
+ Ψ2(xA)µ

(
D \ rD

)
.As µ(T) = 0, there exists some r0 ∈ (0, 1) suh that π

4 + Ψ2(xA)µ
(
D \ rD

)
≤ 1,for every r ∈ (r0, 1). This ends the proof of 2).3) Assume that Ψ satis�es ondition ∇0 and that ondition (R0) is ful�lled:for every A > 0 and every h ∈ (0, hA) (hA small enough), we have:

ρµ(h) ≤ 1

Ψ
[
AΨ−1(1/h)

] ·This implies that:
Kµ(h) = sup

0<s≤h

ρµ(s)

s
≤ sup

0<s≤h

1/s

Ψ
[
AΨ−1(1/s)

] = sup
x≥Ψ−1(1/h)

Ψ(x)

Ψ(Ax)
·Fix an arbitrary β > 1 and hoose A = βCβ > 1, where Cβ is given by the

∇0 ondition for Ψ and Proposition 4.6. We have, for h small enough and
x ≥ Ψ−1(1/h):

Ψ
[
βΨ−1(1/h)

]

Ψ
[
Ψ−1(1/h)

] ≤ Ψ(βCβ x)

Ψ(x)
=

Ψ(Ax)

Ψ(x)
;we get hene, for h small enough:

Kµ(h) ≤ Ψ
[
Ψ−1(1/h)

]

Ψ
[
βΨ−1(1/h)

] =
1/h

Ψ
[
βΨ−1(1/h)

] ,50



and ondition (K0) is ful�lled.With 1) and 2) previously shown, this �nishes the proof. �Remark. Atually, the proof of Theorem 4.10, 1) gives, for every measure µon D and every Orliz funtion Ψ:
1 ≥

∫

D

Ψ
( |uξ,1−h|
‖uξ,1−h‖LΨ(µ)

)
dµ ≥ Ψ

( 1

9 ‖uξ,1−h‖LΨ(µ)

)
µ
(
W (ξ, h)

)
,and hene:(4.12) µ

(
W (ξ, h)

)
≤ 1

Ψ
( 1

9 ‖uξ,1−h‖LΨ(µ)

) ·In partiular, if µ = µφ is the image of the Haar measure m under a self-map φof D, one has:(4.13) µ
(
W (ξ, h)

)
≤ 1

Ψ
( 1

9 ‖Cφ(uξ,1−h)‖Ψ

) ·Condition (4.12) allows to have an upper ontrol for the µ-measure of Carlesonwindows, with ‖uξ,1−h‖LΨ(µ). It is possible, onversely, to majorize these norms.De�nition 4.15 We shall say that a measure µ on D is a Ψ-Carleson measureif there exists some A > 0 suh that
µ
(
W (ξ, h)

)
≤ 1

Ψ
(
AΨ−1(1/h)

) , for every ξ ∈ T and every h ∈ (0, 1).We shall say that a measure µ on D is a vanishing Ψ-Carleson measure if,for every A > 0,
lim
h→0

Ψ
(
AΨ−1(1/h)

)
.ρµ(h) = 0.Equivalently if, for every A > 0, there exists hA ∈ (0, 1) suh that

µ
(
W (ξ, h)

)
≤ 1

Ψ
(
AΨ−1(1/h)

) , for every ξ ∈ T and every h ∈ (0, hA).We have the following haraterizations:Proposition 4.16 1) µ is a Ψ-Carleson measure on D if and only if there existssome onstant C ≥ 1 suh that :
‖uξ,1−h‖LΨ(µ) ≤

C

Ψ−1(1/h)
, for every ξ ∈ T and every h ∈ (0, 1).

2) µ is a vanishing Ψ-Carleson measure on D if and only if
lim
h→0

sup
ξ∈T

Ψ−1(1/h)‖uξ,1−h‖LΨ(µ) = 0.51



Proof. The su�ieny (both for 1) and 2)) follows easily from (4.12) in thepreeding remark.The onverse is an obvious onsequene of the following lemma.Lemma 4.17 Suppose that there exist A > 0 and h0 ∈ (0, 1) suh that:
ρµ(h) ≤ 1

Ψ
(
AΨ−1(1/h)

) , for every h ∈ (0, h0).Then there exists h1 ∈ (0, 1) suh that:
‖uξ,1−h‖LΨ(µ) ≤

24

AΨ−1(1/h)
,for every ξ ∈ T and every h ∈ (0, h1).Proof of the lemma. This is inspired from [13℄, Chapter VI, Lemma 3.3, page239. We may assume that h ≤ h0/4 ≤ 1/4.First, writing a = (1−h)ξ (where ξ ∈ T), we observe that, when |z− ξ| ≥ bhfor a b > 0, we have:

|1 − āz|2 = 1 + |a|2|z|2 − 2|a|ℜ(ξ̄z)

= |a||ξ − z|2 + (1 − |a|) + |a|2|z|2 − |a||z|2

≥ |a|b2h2 + (1 − |a|)2 ≥ (|a|b2 + 1)h2.So, we have |uξ,1−h(z)| ≤ 1

|a|b2 + 1
≤ min(1, 2/b2), when |z − ξ| ≥ bh.Now, de�ne, for every n ∈ N and ξ ∈ T:

Sn = S(ξ, 2n+1h) = {z ∈ D ; |z − ξ| < 2n+1h} ⊂W (ξ, 2.2n+1h).Our observation implies that |uξ,1−h(z)| ≤ min(1, 2/4n), for every z ∈ D\Sn−1.For z ∈ S0, one has simply |uξ,1−h(z)| ≤ 1.There exists an integer N suh that 2N+2h ≤ h0 < 2N+3h.Let us ompute:
∫

D

Ψ
(
M |uξ,1−h|

)
dµ =

∫

S0

Ψ
(
M |uξ,1−h|

)
dµ+

N∑

n=1

∫

Sn\Sn−1

Ψ
(
M |uξ,1−h|

)
dµ

+

∫

D\SN

Ψ
(
M |uξ,1−h|

)
dµ

≤ Ψ(M)µ(S0) +

N∑

n=1

Ψ
(2M

4n

)
µ(Sn) + Ψ

(2M

4N

)
µ(D)

≤
N∑

n=0

1

2n+1
Ψ
(4M

2n

)
µ(Sn) + Ψ

(2M

4N

)
µ(D).52



But for n ≤ N , we have 2.2n+1h ≤ 2N+2h ≤ h0, so the hypothesis gives:
µ(Sn) ≤ 1

Ψ
(
AΨ−1(1/2n+2h)

) ·Take now:(4.14) M =
A

24
Ψ−1

( 1

h

)
·We have, using that Ψ−1

(
1

2n+2h

)
≥ 1

2n+2 Ψ−1
(

1
h

),
∫

D

Ψ
(
M |uξ,1−h|

)
dµ ≤

N∑

n=0

1

2n+1
+ µ(D)Ψ

(
A

12.4N
Ψ−1

( 1

h

))

≤ 1

2
+ µ(D)Ψ

(
16A.h2

3h2
0

Ψ−1
( 1

h

))
,beause 1

4N
≤
(

8h

h0

)2.We an hoose h1 small enough to have:
µ(D)Ψ

(
16A.h2

3h2
0

Ψ−1
( 1

h

))
≤ 1

2for every h ∈ (0, h1), sine lim
h→0

h2Ψ−1
(

1
h

)
= 0.We get for suh h ∫

D

Ψ
(
M |uξ,1−h|

)
dµ ≤ 1,so that

‖uξ,1−h‖LΨ(µ) ≤
1

M
=

24

A

1

Ψ−1(1/h)
,as it was announed. �Examples and ounterexamples.We are going to give some examples showing that we do not have the reverseimpliations in general in Theorem 4.10 and Theorem 4.11.1. Condition (R) is not su�ient in general to have a ontinuous embedding.Let Ψ(x) = ex−1 (note that this Orliz funtion even ful�lls the ∆1 ondition !).Note that Ψ(AΨ−1(1/h)) ∼ h−A, when h→ 0.a. Let ν be a probability measure on T, supported by a ompat set L ofLebesgue measure zero, suh that ν(I) ≤ |I|1/2, for eah I. We an assoiateto ν the measure on D de�ned by ν̃(E) = ν(E ∩ T). Then the identity mapfrom HΨ to LΨ(ν̃) is not even de�ned. Nevertheless the ondition (R) is learlyful�lled with A = 1/2. 53



b. Now, we exhibit a similar example (less arti�ial) on the open disk. Let
ν be as previously. By a standard argument: for every integer n, there existsa funtion gn in the unit ball of the disk algebra suh that |gn| = 1 on L and
‖gn‖Ψ ≤ 4−n. As L is ompat, there exists some rn ∈ (1/2, 1) suh that
|gn(rnz)| ≥ 1/2 for every z ∈ L. Now, de�ne the measure µ by:

µ(E) =

∞∑

n=1

1

2n
νn(E),where:

νn(E) = ν
(
{z ∈ T| rnz ∈ E}

)
.If W is a Carleson window of �size� h then, for eah n ≥ 1, we have:

ν
(
{z ∈ T| rnz ∈ W}

)
≤ ν(W ∩ T) ≤ (2h)1/2.Hene, µ(W ) ≤ (2h)1/2 and the ondition (R) is ful�lled.Nevertheless, the identity fromHΨ to L1(µ) is not ontinuous: ‖gn‖Ψ ≤ 4−n;but

‖gn‖1 ≥ 1

2n

∫

rnT

|gn| dνn ≥ 1

2n

∫

L

|gn(rnw)| dν(w) ≥ 1

2n+1
·2. Condition (K) is not neessary in general to have a ontinuous embedding.When Ψ satis�es ∆2, the identity from HΨ to LΨ(µ) is ontinuous if and onlyif µ is a Carleson measure. So the onditions (R), (K) and the ontinuity areequivalent in this ase. Atually, when Ψ does not satisfy ∆2, we onstrutbelow a measure µ on D suh that the identity from HΨ to LΨ(µ) is ontinuousand order bounded , but µ is not a Carleson measure (a fortiori does not verify(K)). Note that the measure µ is then Ψ-Carleson but not Carleson. Here isthe example:We have assumed that Ψ does not satisfy ∆2; so there exists an inreasingsequene (an)n≥1 suh that Ψ(an)

n
is inreasing and Ψ(2an)

Ψ(an)
≥ n2n. Now, de�nethe disrete measure

µ =
∞∑

n=1

(
n

Ψ(2an)
− n+ 1

Ψ(2an+1)

)
δxn ,where:

xn = 1 − 1

Ψ(2an)
·As µ([xN , 1]

)
=

N

Ψ(2aN)
, the measure µ is not Carleson: it should bebounded by c(1 − xN ) =
c

Ψ(2aN)
, where c is some onstant.
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We know that for every f in the unit ball of HΨ and every x ∈ (0, 1), wehave |f(x)| ≤ 4Ψ−1

(
1

1 − x

): see Lemma 3.11. So we only have to see that
g ∈ LΨ(µ), where g(x) = Ψ−1

(
1

1 − x

). Indeed, we have:
∫

D

Ψ

( |g|
2

)
dµ =

∞∑

n=1

( n

Ψ(2an)
− n+ 1

Ψ(2an+1)

)
Ψ
( |g(xn)|

2

)

≤
∞∑

n=1

n

Ψ(2an)
Ψ
(1

2
Ψ−1

( 1

1 − xn

))

≤
∞∑

n=1

n
Ψ(an)

Ψ(2an)
≤

∞∑

n=1

1

2n

≤ 1so ‖g‖Ψ ≤ 2.3. Condition (K0) is not neessary in general to have a ompat embedding.We an �nd, for every Orliz funtion Ψ not satisfying ∇0, a measure µ suhthat the identity fromHΨ to LΨ(µ) is ompat but (K0) is not satis�ed. Indeed:sine Ψ /∈ ∇0, we an selet two inreasing sequenes (xn)n≥1 and (yn)n≥1, with
1 ≤ xn ≤ yn ≤ xn+1 and Ψ(xn) > 1, and suh that limxn = +∞ and:

Ψ(2xn)

Ψ(xn)
≥ Ψ(2nyn)

Ψ(yn)
·De�ne rn = 1 − 1

Ψ(yn)
and the disrete measure:
µ =

∞∑

n=1

1

Ψ(2nyn)
δrn .The series onverge sine Ψ(2nyn) ≥ 2n.Thanks to Lemma 3.11, we have, for every f in the unit ball of HΨ andevery n ≥ 1:

|f(rn)| ≤ 4Ψ−1

(
1

1 − rn

)
= 4yn.Given r > r1, there exists an integer N ≥ 1 suh that rN < r ≤ rN+1. Then,
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for every f in the unit ball of HΨ, we have ‖f‖LΨ(D\rD,µ) ≤ 2−N+2, sine:
∫

D\rD

Ψ

( |f |
2−N+2

)
dµ =

∞∑

n=N+1

1

Ψ(2nyn)
Ψ

( |f(rn)|
2−N+2

)

≤
∞∑

n=N+1

Ψ(2Nyn)

Ψ(2nyn)

≤
∞∑

n=N+1

1

2n−N
= 1.This implies that lim

r→1
sup

‖f‖Ψ≤1

‖f‖LΨ(D\rD,µ) = 0. By Proposition 4.9, the identityfrom HΨ to LΨ(µ) is ompat.On the other hand, writing hn =
1

Ψ(xn)
and tn =

1

Ψ(yn)
, we have:

Kµ(hn) ≥ µ([1 − tn, 1])

tn
= Ψ(yn)

∞∑

m=n

1

Ψ(2mym)
≥ Ψ(yn)

Ψ(2nyn)

≥ Ψ(xn)

Ψ(2xn)
=

1/hn

Ψ
(
2Ψ−1(1/hn)

) ,and this shows that (K0) is not satis�ed.4. Condition (R0) is not su�ient in general to have a ompat embedding.We an �nd an Orliz funtion Ψ and a vanishing Ψ-Carleson measure (i.e.(K0) is satis�ed) µ suh that the identity from HΨ to LΨ(µ) is not ompat.We shall use the Orliz funtion introdued in [25℄. The key properties ofthis funtion Ψ are:i) For every x > 0, Ψ(x) ≥ x3/3.ii) For every integer k ≥ 1, Ψ(k!) ≤ (k!)3.iii) For every integer k ≥ 1, Ψ(3(k!)) > k.(k!)3.One again, the job is done by a disrete measure.De�ne xk = k!; yk =
(k + 1)!

k1/3
; rk = 1 − 1

Ψ(yk)
and ρk = 1 − 1

Ψ(xk)
· Ofourse, x2 < y2 < x3 < · · · .Let ν be the disrete measure de�ned by:

ν =
∞∑

k=2

νk,where:
νk =

1

Ψ
(
(k + 1)!

)
∑

ak2=1

δrka.56



Observe that ‖νk‖ ≤ k2

Ψ
(
(k + 1)!

) ≤ 3.k2

(k + 1)!3
so that the series onverges. Notethat ν is supported in the union of the irles of radii rk and not in a subset ofthe segment [0, 1] as in the preeding ounterexamples.In order to show that (R0) is satis�ed, it is learly su�ient to prove that,when 1

Ψ(yk)
≤ h <

1

Ψ(yk−1)
(with k ≥ 3), we have:

ρν(h) ≤ 1

Ψ
(k1/3

2
Ψ−1(1/h)

) ·Supposing then 1

Ψ(yk)
≤ h <

1

Ψ(yk−1)
, we have Ψ−1(1/h) ≤ yk so

Ψ
(k1/3

2
Ψ−1(1/h)

)
≤ 1

2
Ψ
(
(k + 1)!

)
.Therefore, it is su�ient to establish that ρν(h) ≤ 2

Ψ
(
(k + 1)!

) ·A Carleson window W (ξ, h) (where ξ ∈ T) an ontain at most one k2-rootof the unity, sine 2h <
2

Ψ(yk−1)
≤ 6

y3
k−1

≤ 6(k − 1)

(k!)3
≤ 2π

k2
· This implies that

νk

(
W (ξ, h)

)
≤ 1

Ψ
(
(k + 1)!

) ·Nevertheless, when j < k, the window W (ξ, h) annot meet any irle of radius
rj (entered at the origin), so νj

(
W (ξ, h)

)
= 0. We obtain:

ν
(
W (ξ, h)

)
=

∞∑

j=k

νj

(
W (ξ, h)

)
≤ 1

Ψ
(
(k + 1)!

) +
∑

j>k

j2

Ψ
(
(j + 1)!

)

≤ 1

Ψ
(
(k + 1)!

) +

∞∑

j=k+1

3j2

(j + 1)!3

≤ 1

Ψ
(
(k + 1)!

) +
3

(k + 1)!3

∞∑

s=1

(
1

k + 1

)s

≤ 2

Ψ
(
(k + 1)!

) ·This proves that (R0) is satis�ed.Let us introdue the funtion fk(z) = xku1,ρk

(
zk2)

= xk

(
1 − ρk

1 − ρkzk2

)2.It lies in the unit ball of HΨ by Corollary 3.10:57



‖fk‖Ψ = xk‖u1,ρk
‖Ψ ≤ xk

Ψ−1
(

1
1−ρk

) = 1.An easy omputation gives rk2

k ≥ ρk, for every k ≥ 2. So, for every a ∈ Twith ak2

= 1, we have:
fk(ark) ≥ xk

(
1 − ρk

1 − ρ2
k

)2

≥ 1

4
xk.So

∫

D\rk−1D

Ψ(12|fk|) dν ≥
∫

D\rk−1D

Ψ(12|fk|) dνk ≥ k2

Ψ((k + 1)!)
Ψ(3xk)

>
k2

Ψ((k + 1)!)

(
k.(k!)3

)
≥ 1.Therefore, we onlude that sup

‖f‖Ψ≤1

‖f‖LΨ(D\rkD,µ) ≥ 1

12
, though rk → 1. ByProposition 4.9, the identity from HΨ to LΨ(µ) is not ompat.4.4 Charaterization of the ompatness of ompositionoperatorsFor omposition operators, ompatness an be haraterized in terms of

Ψ-Carleson measures, as stated in the following result.Theorem 4.18 For every analyti self-map φ : D → D and every Orliz fun-tion Ψ, the omposition operator Cφ : HΨ → HΨ is ompat if and only if onehas:(R0) ρµ(h) = o
( 1

Ψ
(
AΨ−1(1/h)

)
) as h→ 0, for every A > 0.In other words, if and only if µφ is a vanishing Ψ-Carleson measure.In order to get this result, we shall show that in Theorem 4.11, ondi-tions (R0) and (K0) are equivalent for the pull-bak measure µφ indued by

φ. This is the objet of the following theorem.Theorem 4.19 There exists a onstant k1 > 0 suh that, for every analytiself-map φ : D → D, one has:(4.15) µφ

(
S(ξ, εh)

)
≤ k1 ε µφ

(
S(ξ, h)

)
,for every h ∈ (0, 1 − |φ(0)|), and every ε ∈ (0, 1).58



Note that we prefer here to work with the sets:
S(ξ, h) = {z ∈ D ; |z − ξ| < h} , ξ ∈ T, 0 < h < 1,instead of the Carleson windowsW (ξ, h). Reall also that the pull-bak measure

µφ is de�ned by (4.3).We are going to postpone the proof of Theorem 4.19, and shall give beforesome onsequenes.4.4.1 Some onsequenesAn immediate onsequene of Proposition 4.16 and Theorem 4.18 is thefollowingTheorem 4.20 Let φ : D → D be analyti and Ψ be an Orliz funtion.The operator Cφ on HΨ is ompat if and only if(W) sup
ξ∈T

‖Cφ(uξ,1−h)‖Ψ = o

(
1

Ψ−1
(
1/h

)
)
, as h→ 0.We dedue:Theorem 4.21 Let φ : D → D be analyti.

1) Assume that the Orliz funtion Ψ satis�es ondition ∆0. Then, theoperator Cφ on HΨ is weakly ompat if and only if it is ompat.
2) Assume that the Orliz funtion Ψ satis�es ondition ∇2. Then, theoperator Cφ on HΨ is a Dunford-Pettis operator if and only if it is ompat.Reall that (see Theorem 3.24), under ondition ∆2 for Ψ, the weak om-patness of the omposition operator Cφ is equivalent to its ompatness, andeven to Cφ being order bounded into MΨ(T). However, we shall see below, inTheorem 4.22, that there exist Orliz funtions Ψ ∈ ∆0 (and even Ψ ∈ ∆1) forwhih Cφ is ompat, but not order bounded into MΨ(T).Proof. In both ases, the result follows from Theorem 4.20, sine ondition(W) is satis�ed. Indeed, if Cφ : HΨ → HΨ is weakly ompat and Ψ ∈ ∆0, weuse Theorem 3.20. If Cφ : HΨ → HΨ is a Dunford-Pettis operator, this is dueto Proposition 3.28. �Now, we have:Theorem 4.22 There exist an Orliz funtion Ψ satisfying ∆1, and an analytiself-map φ : D → D suh that the omposition operator Cφ : HΨ → HΨ is notorder bounded into MΨ(T), though it is ompat.Remark. It follows that our assumption that Ψ ∈ ∆2 in Theorem 3.24 is notonly a tehnial one, though it might perhaps be weakened.59



Proof. Let:
Ψ(x) =

{
exp

(
(log x)2

) if x ≥ √
e ,

e−1/4x if 0 ≤ x ≤ √
e.It is plain that Ψ ∈ ∆1 ∩∇0.Moreover, for every A > 0, one has, for h small enough:

1/h

Ψ
(
AΨ−1(1/h)

) = exp
[
− (logA)2 − 2(logA)

√
log(1/h)

]
.Consider now φ = φ2, the analyti self-map of D onstruted in Theorem 4.1.Then Cφ : HΨ → HΨ is not order bounded intoMΨ(T), by Theorem 3.15, sine,otherwise, Cφ1 : HΨ → HΨ would also be order bounded into MΨ(T), whih iseasily seen to be not the ase (we may also argue as follows: Cφ1 : HΨ → HΨwould be ompat, and hene, by Theorem 4.3, Cφ1 would be ompat from H2into H2, whih is false).On the other hand, we have proved that ρµφ

(h) = O
(
h3/2

). So the onlu-sion follows from Theorem 4.11, 3) and the fat that for every c > 0:
−(logA)2 − 2(logA)

√
log(1/h) ≥ −c1

2
log(1/h)when h is small enough. �4.4.2 Preliminary resultsWe shall use the radial maximal funtion N , de�ned for every harmonifuntion u on D by:(4.16) (Nu)(ξ) = sup

0≤r<1
|u(rξ)| , ξ ∈ T.Reall that for every positive harmoni funtion u : D → C whose boundaryvalues u∗ are in L1(T) (i.e. u ∈ h1), one has, for every ξ ∈ T:(4.17) Nu(ξ) ≤Mu∗(ξ) ≤ πNu(ξ) ,where Mu∗ is the Hardy-Littlewood maximal funtion of u∗ (see [2℄, Theo-rem 6.31, and [32℄, Theorem 11.20 and Exerise 19, Chapter 11).We shall denote by Π the right half-plane:

Π = {z ∈ C ; Re z > 0}and by C the one:
C = {z ∈ C ; −π/6 < Arg z < π/6}.The next result follows from Kolgomorov's Theorem, saying that the Hilberttransform is a weak (1, 1) operator (in applying this theorem to the positiveharmoni funtion 2 Re g = g + ḡ, noting that ‖Re g‖1 = Re g(0) = g(0)).60



Lemma 4.23 There exists a onstant c > 0 suh that, if g : D → Π is ananalyti funtion with g(0) > 0, then:
m({|g∗| > λ}) ≤ c

g(0)

λ
, for all λ > 0.Applying Lemma 4.23 to g(z) =

(
f(z) + f(0)

)3, and taking into aountthat |w1 + w2| ≥ |w1|, if w1, w2 ∈ C , we get:Lemma 4.24 Let f : D → C be an analyti funtion with values in the one C ,and write f = u+ iv, with u, v real-valued. Then:
m({|f∗| > λ}) ≤ 8c

(u(0)

λ

)3

, for all λ > 0.The next proposition is one of the keys. We postpone its proof.Proposition 4.25 There exists a onstant k2 > 0 suh that, for every analytifuntion f = u+ iv : D → C with values in the one C , one has:(4.18) m({|f∗| > λ} ∩ I) ≤ k2

(α
λ

)3

m(I), for all λ > 0,where I is the ar I = {eit ; a < t < b}, with a, b ∈ R and α > 0 satisfying
b− a < π/2, α ≥ Nu(eia), and α ≥ Nu(eib).As a orollary we obtain:Proposition 4.26 Let f : D → C be an analyti funtion, and write f = u+iv,as in Proposition 4.25. If α > 0 satis�es m({Nu > α}) < 1/4, then:(4.19) m({|f∗| > λ}) ≤ k2

(α
λ

)3

m({Nu > α}), for all λ ≥ 2α√
3
·Proof. The set {Nu > α} is open, and one an deompose it into a disjointunion of open ars {Ij}j. Eah ar has measure m(Ij) ≤ m({Nu > α}) < 1/4,and so is an ar of length less than π/2. We an then apply Proposition 4.25and we obtain:

m({|f∗| > λ} ∩ Ij) ≤ k2

(α
λ

)3

m(Ij), for every j.Summing up all these inequalities we get:
m
(
{|f∗| > λ} ∩ {Nu > α}

)
≤ k2

(α
λ

)3

m({Nu > α}) .The proposition follows sine |f∗| ≤ 2√
3
u∗ ≤ 2√

3
Nu, and then {|f∗| > λ} isontained in {Nu > α}, for λ ≥ 2α√

3
· �We shall need one more result. 61



Proposition 4.27 There exists a onstant k3 > 0 suh that for every analytifuntion f : D → C with values in the one C , one has, writing f = u+ iv:
m({Mu∗ > α} ≤ k3m({u∗ > α/2}, for every α > 0.In order to prove it, we shall �rst prove the following lemma.Lemma 4.28 There exists a onstant k4 > 0 suh that for every analyti fun-tion f : D → C with values in the one C , one has, writing f = u+ iv:

M
(
(u∗)2

)
(ξ) ≤ k4

(
Mu∗(ξ)

)2
, for all ξ ∈ T.Proof. Observe that u2−v2 is a positive harmoni funtion sine it is the realpart of f2. f2 belongs to H1 (see [12℄, Theorem 3.2), so u2 − v2 ∈ h1 and wean use inequalities (4.17). We also have, sine −π/3 < Arg (f2) < π/3, that

u2 ≥ 3v2, and so u2 − v2 ≥ 2u2/3 and |f | ≤ 2√
3
u. We get:

M
(
(u∗)2

)
≤ 3

2
M
(
(u∗)2 − (v∗)2

)
≤ 3π

2
N(u2 − v2)

≤ 3π

2
N(f2) =

3π

2
(Nf)2 ≤ 3π

2

(
2√
3
Nu

)2

≤ 2π (Mu∗)2 . �Proof of Proposition 4.27. Write A = {Mu∗ > α} and B = {u∗ > α/2}.For every ξ ∈ A, there exists an open ar Iξ entered at ξ suh that:
p =

1

m(Iξ)

∫

Iξ

u∗ dm > Mu∗(ξ)/2 , and p > α .We have, using Lemma 4.28:
1

m(Iξ)

∫

Iξ

(u∗)2 dm ≤M
(
(u∗)2

)
(ξ) ≤ k4

(
Mu∗(ξ)

)2 ≤ 4k4 p
2.Let L be the set L = {u∗ > p/2} ∩ Iξ. We have:

1

m(Iξ)

∫

Iξ\L

u∗

p
dm ≤ 1

2
;hene, using the Cauhy-Shwarz inequality:

1

2
≤ 1

m(Iξ)

∫

Iξ

u∗

p
dm− 1

m(Iξ)

∫

Iξ\L

u∗

p
dm =

1

m(Iξ)

∫

L

u∗

p
dm

≤
√
m(L)

m(Iξ)

(
1

m(Iξ)

∫

Iξ

(u∗
p

)2

dm

)1/2

≤ 2

√
k4m(L)

m(Iξ)
·62



Therefore, 16k4m(L) ≥ m(Iξ), and, sine L ⊆ B ∩ Iξ, we have, for every ξ ∈ A,an ar Iξ ontaining ξ suh that 16k4m(B ∩ Iξ) ≥ m(Iξ). Applying the Hardy-Littlewood overing lemma, we then obtain:
m(A) ≤ 3

n∑

j=1

m(Iξj ) ≤ 3×16×k4×
n∑

j=1

m(Iξj∩B) ≤ k3m(B). �Proof of Proposition 4.25. Composing f with a suitable rotation, we ansuppose that a = −δ and b = δ, for 0 < δ < π/4. Let us all I− and I+ the ars
I− = {eit ; −δ < t < 0} , I+ = {eit ; 0 < t < δ} .We shall prove that:(4.20) m({|f∗| > λ} ∩ I+) ≤ k2

(α
λ

)3

m(I+) ,using just the fat that Nu(eiδ) ≤ α.In the same way one an prove:(4.21) m({|f∗| > λ} ∩ I−) ≤ k2

(α
λ

)3

m(I−) ,using just that Nu(e−iδ) ≤ α.Then, summing up (4.20) and (4.21), Proposition 4.25 will follow.Let Q be the right half-dis
Q = {z ∈ D ; Re z > 0},and denote by ψ the (unique) homeomorphism from D toQ, whih is a onformalmapping from D onto Q and sends 1 to 1, i to i, and −i to −i.We an onstrut ψ as the omposition of a Moebius transformation T , withthe square root funtion and then with T−1. Namely, let:

Tz = −i z + i

z − i
;

T maps D onto the upper-half plane, sending −i into 0, −1 into −1, 1 into 1,and also 0 into i, and i into ∞. The square root funtion maps the upper-halfplane into the �rst quadrant and T−1:
T−1z =

z − i

1 − izmaps this quadrant onto the half-disk Q.It is not di�ult to see that ψ(−1) = 0, ψ(0) =
√

2 − 1, and that thereexist ρ ∈ (0, π/2) suh that ψ(eiρ) = eπi/4 and ψ(e−iρ) = e−πi/4 (we must have
eiρ = 1/3 + (

√
8)i/3; hene ρ = arctan(

√
8)).63



Let J be the ar:
J = {eit ; −ρ < t < ρ}.The map ψ is regular on J , and so there exist two onstants γ1 and γ2 > 0 suhthat for every Borel subset E of J , one has:

γ1m(E) ≤ m
(
ψ(E)

)
≤ γ2m(E).If now β ∈ (0, 1), we put:

ψβ(z) = (ψ(z))β .Then, it is easy to see that for every Borel subset E of J , one has:
m
(
ψβ(E)

)
= β m

(
ψ(E)

)
,and so

γ1β m(E) ≤ m
(
ψβ(E)

)
≤ γ2β m(E).In order to prove (4.20), onsider the funtion F : D → C de�ned by:

F (z) = f
(
eiδψβ(z)

)
, where β = 4δ/π.Then:

Re
(
F (0)

)
= u

(
(1 −

√
2)βeiδ

)
≤ Nu(eiδ) ≤ α.Let us all χ the map:

χ(z) = eiδψβ(z).It is lear that I+ is ontained in χ(J). If A = {|f∗| > λ}∩I+, then E = χ−1(A)is a Borel subset of J , and for every ξ ∈ E, one has |F ∗(ξ)| > λ. Then:
m(A) = m

(
χ(E)

)
= m

(
ψβ(E)

)
≤ γ2β m(E)

≤ 8γ2
δ

2π
m({|F ∗| > λ})

= 8γ2m(I+)m({|F ∗| > λ})and using Lemma 4.24 for F ,
≤ 8γ2m(I+) × 8c3

(
ReF (0)

λ

)3

≤ 64γ2c3

(α
λ

)3

m(I+) = k2

(α
λ

)3

m(I+) .The proof of (4.20) is �nished, and Proposition 4.25 follows. �
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4.4.3 Proof of Theorem 4.19Using the fat h 7→ µφ

(
S(ξ, h)

) is nondereasing, it is enough to prove thatthere exist h0 > 0, and ε0 > 0, suh that (4.15) is true for 0 < h < h0(1−|φ(0)|),and 0 < ε < ε0, beause hanging the onstant k1, if neessary, the theorem willfollow.We an also suppose that ξ = 1.The real part of 1/
(
1 − φ(z)

) is positive, in fat greater than 1/2, for every
z ∈ D. Take 0 < h < h0, and onsider the analyti funtion f de�ned by:

f(z) =

(
h

1 − φ(z)

)1/3

,where the ubi root is taken in order that, for every z ∈ D, f(z) belongs to theone
C = {z ∈ C : −π/6 < Arg (z) < π/6 }.Clearly µφ

(
S(1, h)

)
= m({|f∗| > 1}) and µφ

(
S(1, εh)

)
= m({|f∗| > 1/ 3

√
ε}). Wealso have:

|f(0)| ≤
(

h

1 − |φ(0)|

)1/3

< 3
√
h0.We shall write f = u+ iv where u and v are real-valued harmoni funtions.Observe that:

|v(z)| < 1√
3
u(z), for every z ∈ D.It is known that f ∈ Hp, for every p < 3 (see [12℄, Theorem 3.2), and so u and

v are the Poisson integrals of u∗ and v∗ (in partiular u, v ∈ h1).We are looking for a ontrol of m({|f∗| > 1/ 3
√
ε}) by ε times m({|f∗| > 1}).Proposition 4.26 provides this ontrol replaingm({|f∗| > 1}) bym({Nu > 2}):

m({|f∗| > 1/ 3
√
ε}) ≤ 8k2εm({Nu > 2}),when m({Nu > 2}) < 1/4.As f is valued in C , |f∗| is ontrolled by u∗. Then what we need in fat isa ontrol of the measure of level sets of Nu by the measure of level sets of u∗.This will be done by using Proposition 4.27.Indeed, by Proposition 4.27, we have:

m({Nu > 2}) ≤ m({Mu∗ > 2}) ≤ k4m({u∗ > 1}).We know that ||u∗||1 = u(0) ≤ |f(0)| ≤ h
1/3
0 . Then, hoosing h0 small enough,we an have k4h

1/3
0 < 1/4, and so m({Nu > 2}) < 1/4; therefore, we anuse Proposition 4.26. Moreover we also have {u∗ > 1} ⊆ {|f∗| > 1}. Taking

ε0 < 3
√

3/64, we have, for 0 < ε < ε0, by Proposition 4.26:
m({|f∗| > 1/ 3

√
ε}) ≤ 8k2 εm({Nu > 2}) ≤ 8k4k2 εm({u∗ > 1})

≤ k1 εm({|f∗| > 1}) ,taking k1 = 8k4k2. �65



5 Bergman spaes5.1 Bergman-Orliz spaesDe�nition 5.1 Let dA (z) = dx dy
π (z = x + iy) be the normalized Lebesguemeasure on D. The Bergman-Orliz spae BΨ denotes the spae of analytifuntions f : D → C whih are in the Orliz spae LΨ(D, dA ). The Bergman-Morse-Transue spae is the subspae BMΨ = B

Ψ ∩MΨ(D, dA ).

B
Ψ, equipped with the indued norm of LΨ(D, dA ), is a Banah spae, asan obvious onsequene of the following lemma, analogous to Lemma 3.11.Lemma 5.2 For every a ∈ D, the norm of the evaluation funtional δa, whihmaps f ∈ BΨ to f(a), is:

‖δa‖ ≈ Ψ−1
( 1

(1 − |a|)2
)
·Proof. For every analyti funtion g : D → C, the mean-value property gives:

g(0) =

∫

D

g(z) dA (z).Hene if φa : D → D denotes the analyti automorphism
φa(z) =

z − a

1 − āz
,whose inverse is φ−1

a = φ−a, one has, for every f ∈ BΨ, using the hange ofvariable formula:
f(a) = f ◦ φ−a(0) =

∫

D

f ◦ φ−a(z) dA (z) =

∫

D

f(w) |φ′a(w)|2 dA (w)

=

∫

D

f(w)Ha(w) dA (w) ,where:
Ha(w) = |φ′a(w)|2 =

(1 − |a|2)2
|1 − āw|4 ·The kernel Ha plays for BΨ the role that the Poisson kernel Pa plays for HΨ:the analyti reproduing kernel Ka for B2 being Ka(z) = 1

(1−āz)2 ·We therefore have (using [30℄, Proposition 4, page 61, or [5℄, Theorem 8.14):
|f(a)| ≤ 2‖f‖Ψ‖Ha‖Φ ,whih proves the ontinuity of δa. To estimate its norm, we are going to majorize

‖Ha‖Φ, with the help of Lemma 3.9. Let us notie that, on the one hand,
‖Ha‖1 = 1 (take f = 1I in the above identity); and on the other hand:

‖Ha‖∞ =
(1 − |a|2)2
(1 − |a|)4 =

(1 + |a|)2
(1 − |a|)2 ·66



We get, setting b = ‖Ha‖∞, and using Lemma 3.9 for ‖ ‖Φ:
‖Ha‖Φ ≤ b

Φ−1(b)
·But b ≤ Φ−1(b)Ψ−1(b) (see [30℄, Proposition 1 (ii), page 14). Hene ‖Ha‖Φ ≤

Ψ−1(b). Now:
b ≤ 4

(1 − |a|)2 ·We have Ψ−1(4t) ≤ 4Ψ−1(t) for all t > 0. It follows that
‖Ha‖Φ ≤ CΨ−1

( 1

(1 − |a|)2
)
·Sine ‖δa‖ ≤ 2‖Ha‖Φ, we get the upper bound in Lemma 5.2.For the lower bound, we simply observe that Ha = |Ga|, where Ga(z) =

(1 − |a|2)2
(1 − az)4

, and by Lemma 3.9:
‖δa‖ ≥ |Ga(a)|

‖Ga‖Ψ
=

|Ha(a)|
‖Ha‖Ψ

≥

1

(1 − |a|2)2
b/Ψ−1(b)

=
Ψ−1(b)

b(1 − |a|2)2

=
Ψ−1(b)

(1 + |a|)4 ≥ 1

16
Ψ−1(b) ≥ 1

16
Ψ−1

( 1

(1 − |a|)2
)
,sine b ≥ 1/(1 − |a|)2. �Proposition 5.3 We have the following propertiesi) BMΨ is the losure of H∞(D) in LΨ(D,A ) and atually the algebraipolynomials are dense in BMΨ.ii) On the unit ball of B

Ψ, the weak-star topology σ(LΨ(D,A ),MΦ(D,A )
)oinides with the topology of onvergene on ompat subsets of D.iii) BΨ is losed in LΨ(D,A ) for the weak-star topology.iv) If Ψ ∈ ∇2, B

Ψ is (isometri to) the bidual of BMΨ.Proof. For the �rst point, let us �x f ∈ BMΨ. Setting fr(z) = f(rz) for z ∈ Dand 0 ≤ r < 1, it su�es to show that ‖fr − f‖Ψ −→
r→1

0, sine, being analyti inthe disk rD ⊂ D, fr an be uniformly approximated on D by its Taylor series.But the norm of MΨ is absolutely ontinuous (see [30℄, Theorem 14, page 84)and therefore, for every ε > 0, there is some R > 0, with 1/3 ≤ R < 1, suhthat ‖f1ID\RD‖Ψ ≤ ε; hene:
∫

D\RD

Ψ
( |f |

4ε

)
dA ≤

∫

D\RD

1

4
Ψ
( |f |
ε

)
dA ≤ 1

4
·67



When r ≥ 2R
R+1 ≥ 1/2, we therefore have:

∫

D\ 1+R
2 D

Ψ
( |fr|

4ε

)
dA ≤ 1,and, by onvexity of Ψ:

∫

D

Ψ
( |fr − f |

8ε

)
dA ≤

∫

1+R
2 D

Ψ
( |fr − f |

8ε

)
dA

+

∫

D\ 1+R
2 D

1

2

[
Ψ
( |fr|

4ε

)
+ Ψ

( |f |
4ε

)]
dA

≤
∫

1+R
2 D

Ψ
( |fr − f |

8ε

)
dA

+
1

2

∫

D\ 1+R
2 D

Ψ
( |fr|

4ε

)
dA +

1

2

∫

D\RD

Ψ
( |f |

4ε

)
dA

≤ 1,for r lose enough to 1 sine fr − f tends to 0 uniformly on 1+R
2 D. Hene, forsome r0 < 1, one has ‖fr − f‖Ψ ≤ 8ε for r0 ≤ r < 1. This was the laim.ii) It su�es to use a sequential argument sine the topologies are metrizableon balls (the spaeMΦ(D,A ) is separable). Assume that f ∈ BΨ (with ‖f‖Ψ ≤

1) is the weak-star limit of a sequene of analyti funtions fn ∈ BΨ (with
‖fn‖Ψ ≤ 1). Testing this with the funtion hk(z) = (k + 1)zk, we obtain thatthe kth Taylor oe�ient ak(n) of fn onverges to the kth Taylor oe�ient akof f :

ak(n) =

∫

D

fnhk dA −→
∫

D

fhk dA = ak , for every k ≥ 0.Fix a ompat K ⊂ D, there exists an r ∈ (0, 1) suh that K ⊂ rD. Wehave:
sup
z∈K

|fn(z) − f(z)| ≤
∑

k≥0

|ak(n) − ak|rk −→ 0by the dominated onvergene Theorem (observe that |ak − ak(n)| ≤ 2(k + 1)for every k ≥ 0 and every n ≥ 0).For the onverse, suppose now that fn ∈ BΨ (with ‖fn‖Ψ ≤ 1) onvergesuniformly on every ompat subsets of D to f ∈ BΨ (with ‖f‖Ψ ≤ 1). Fixing
g ∈ MΦ(D,A ) and ε > 0, there exists an r ∈ (0, 1) suh that ‖g1ID\rD‖Φ ≤ ε.We have:
∣∣∣∣
∫

D

(fn − f)gdA

∣∣∣∣ ≤
∣∣∣∣
∫

rD

(fn − f)gdA

∣∣∣∣+ 2ε ≤ sup
z∈rD

|fn(z) − f(z)|.‖g‖1 + 2ε.By hypothesis sup
z∈rD

|fn(z) − f(z)| −→ 0. The onlusion follows.68



iii) By the lassial Theorem of Banah-Dieudonné, it is su�ient to provethat the balls are weak-star losed (equivalently weak-star ompat) and byseparability of MΦ(D,A ), the weak-star topology is metrizable on balls. Theprevious fat ii) shows that it is equivalent to prove that the unit ball of BΨis ompat for the topology of onvergene on ompat subsets. But this iseasy: indeed, if fn in the unit ball of BΨ. This is a normal family thanks toLemma 5.2. A subsequene onverges to an analyti funtion f on ompatsubsets of D and the Fatou Lemma implies that f atually lies in the unit ball.iv) Assume now that Ψ satis�es ∇2. Sine (MΨ)∗∗ = LΨ(D,A ), we have
(BMΨ)∗∗ = BMΨ

w∗ , in the spae LΨ(D,A ). Hene it su�es to show that
BMΨ

w∗

= BΨ. We already know that BΨ is weak-star losed. Now, let
f ∈ BΨ. Obviously, fr ∈ BMΨ for every r ∈ (0, 1), where fr(z) = f(rz).Moreover ‖fr‖Ψ ≤ ‖f‖Ψ. But this is lear that fr is uniformly onvergent to fon ompat subsets of D, when r → 1−. By ii), the onlusion follows. �In the previous proof, we an see the points ii) and iii) in a slighlty di�erentway: the unit ball B of B

Ψ is ompat for the topology τ of uniform onvergeneon ompat subsets. Then observe that the identity from B, equipped withthe topology τ , to B, equipped with the weak-star topology, is ontinuous (thesequential argument is su�ient by metrizability). This implies, sine the weak-star topology is separated, that B is weak-star ompat (hene losed) and thatthe topologies oinide. Now, by Banah-Dieudonné, the spae BΨ is weak-starlosed.5.2 Compat omposition operators on Bergman-OrlizspaesWe shall begin with showing that, as in the Hardy-Orliz ase, every symbol
φ de�nes a bounded omposition operator.Proposition 5.4 Every analyti self-map φ : D → D indues a bounded ompo-sition operator Cφ : BΨ → BΨ. Moreover, Cφf ∈ BMΨ for every f ∈ BMΨ;hene, when Ψ ∈ ∇2, the former operator is the bi-transposed of Cφ : BMΨ →
BMΨ.Proof. It su�es to follow the lines of Proposition 3.12, and to integrate theintegrals written there between 0 and 1, with respet to the measure 2rdr. �Before stating and proving the main theorem, we are going to prove thefollowing auxiliary result, interesting in itself, and whih reinfores an exampleof J. H. Shapiro ([36℄, Example, page 185).Proposition 5.5 There exists a Blashke produt B having angular derivativeat no point of T = ∂D, in the following sense:(5.1) (∀ε > 0) (∃cε > 0) 1 − |B(z)| ≥ cε(1 − |z|)ε , ∀z ∈ D.69



Proof. We shall take:
B(z) =

+∞∏

n=1

|zn|
zn

zn − z

1 − z̄nz
,where:

{zn ; n ≥ 1} =
⋃

n≥1

An,with:
An = {rnωj

n ; ωn = e2πi/pn , 0 ≤ j ≤ pn − 1} ,where (rn)n≥1 is a (stritly) inreasing sequene with 0 < rn < 1, and theintegers pn will have to be adjusted, satisfying the Blashke ondition:
+∞∑

n=1

(1 − |zn|) =
+∞∑

n=1

pn(1 − rn) < +∞.One has:
|B(z)|2 =

+∞∏

n=1

∣∣∣ zn − z

1 − z̄nz

∣∣∣
2

=

+∞∏

n=1

[
1 − (1 − |z|2)(1 − |zn|2)

|1 − z̄nz|2
]
≤ exp

(
− S(z)

)
,where:

S(z) =

+∞∑

n=1

(1 − |z|2)(1 − |zn|2)
|1 − z̄nz|2

·We now proeed to minorize S(z). For this purpose, we shall need thefollowing simple lemma, whose proof will be temporarily postponed.Lemma 5.6 For every positive integer p and every a ∈ D, one has, setting
ω = e2πi/p:

1

p

p−1∑

k=0

1

|1 − aωk|2 =
1 − |a|2p

1 − |a|2
1

|1 − ap|2 ≥ 1

4
p |a|p.Then, setting r = |z|, we have:

S(z) ≥ (1 − r)
+∞∑

n=1

(1 − rn)

pn−1∑

k=0

1

|1 − rnω
−k
n z|2

≥ 1 − r

4

+∞∑

n=1

p 2
n(1 − rn)(rnr)

pn .We shall take:
pn =

[
(1 − rn)εn−1

]
+ 1 ,with:

εn =
1√
n

and rn = 1 − 1

2n70



and where [ ] stands for the integer part. More expliitly:
pn =

[
2n−√

n
]
+ 1.If r ≥ 1/2, let N ≥ 1 be suh that rN < r ≤ rN+1. One has:

S(z) ≥ 1 − r

4
(1 − rN )2εN−1 r 2pN

N ≥ 1

8
(1 − rN )2εN r 2pN

N ,sine 1 − r ≥ 1 − rN+1 = (1 − rN )/2. Moreover:
pN ≤ 2(1 − rN )εN−1 = 2.2N(1−εN) ≤ 2.2N ,so that:

S(z) ≥ 1

8
(1 − r)2εN (1 − 2−N)2

N+1 ≥ c(1 − r)2εN ,where c is a positive numerial onstant.Hene, setting:
ε(z) = 2εN for |z| ≥ 1/2 and rN < r ≤ rN+1 ,one has:

ε(z) −→
|z| <→ 1

0 ,and we get:
1 − |B(z)|2 ≥ 1 − e−S(z) ≥ 1 − e−c(1−|z|)ε(z) ≥ c′(1 − |z|)ε(z) ,where c′ is another positive numerial onstant. This gives ondition (5.1), sine

1 − |B(z)| ≥ 1 − |B(z)|2
2

·Finally, the Blashke ondition is satis�ed, sine:
pn(1 − rn) ≤ 2(1 − rn)εn = 2.2−

√
n.This ends the proof of Proposition 5.5. �Proof of Lemma 5.6. Let Gp be the �nite group of pth roots of unity, equippedwith its normalized Haar measure. For u : Gp → C and 0 ≤ k ≤ p−1, we denoteby û(k) the kth Fourier oe�ient of u, i.e.:

û(k) =
1

p

∑

z∈Gp

u(z)z−k.Then, the Planherel-Parseval formula for Gp reads:
p−1∑

k=0

|û(k)|2 =
1

p

∑

z∈Gp

|u(z)|2.71



Applying this to
u(z) =

1

1 − az
=

∑

l≥0
0≤k≤p−1

alp+kzk =

p−1∑

k=0

û(k)zk ,with
û(k) =

∑

l≥0

alp+k =
ak

1 − ap
,we get:

1

p

p−1∑

k=0

1

|1 − aωk|2 =

p−1∑

k=0

|a|2k

|1 − ap|2 =
1 − |a|2p

(1 − |a|2)|1 − ap|2 ·To �nish, we note that |1 − ap| ≤ 2, and that, by the arithmetio-geometriinequality, we have, with x = |a|2:
1 − |a|2p

1 − |a|2 = 1 + x+ · · · + xp−1

≥ p
(
x1+2+···+(p−1)

)1/p
= p x

p−1
2 ≥ p xp/2 = p |a|p.

�Theorem 5.7 If the omposition operator Cφ : BΨ → BΨ is ompat, then(5.2) Ψ−1

[
1

(1 − |φ(a)|)2
]

Ψ−1

[
1

(1 − |a|)2
] −→

|a| <→ 1

0.This ondition is su�ient if Ψ ∈ ∆2.Before giving the proof of this theorem, let us note that in ase where Ψ =
Ψ2, with Ψ2(x) = ex2 − 1, it reads: the omposition operator Cφ : BΨ2 → BΨ2is ompat if and only if:(5.3) (∀ε > 0) (∃cε > 0) 1 − |φ(z)| ≥ cε(1 − |z|)ε , ∀z ∈ D.Indeed, Ψ2 ∈ ∆2, and:

Ψ−1
2

[
1

(1 − |φ(a)|)2
]

Ψ−1
2

[
1

(1 − |a|)2
] =

√
log

1

(1 − |φ(a)|)2√
log

1

(1 − |a|)2
;hene Cφ is ompat if and only if

log
1

(1 − |φ(a)|)2

log
1

(1 − |a|)2
−→
|a|→1

0.72



Then, for every ε > 0, we an �nd some cε > 0 suh that, for all a ∈ D:
log

1

1 − |φ(a)| ≤ ε log
1

(1 − |a|)2 + cε ;whih is equivalent to (5.3). �That allows to have ompat omposition operators on BΨ2 whih are notompat on HΨ2 . However it is very likely that this is the ase for every Ψ ∈ ∆2,but we have not tried to see this full generality.Theorem 5.8 There exist symbols φ : D → D suh that the omposition opera-tors Cφ is ompat from BΨ2 into itself, but not ompat from HΨ2 into itself,and even Cφ is an isometry onto its image.A similar example is well-known for the Hilbert spaes B2 and H2 (see [36℄,pages 180�186).Proof. Let B be a Blashke produt verifying the ondition of Proposition 5.5.We introdue φ(z) = zB(z). The funtion still veri�es 1− |φ(z)| ≥ Cε(1− |z|)ε,sine |φ(z)| ≤ |B(z)| on D. From Theorem 5.7, it follows, sine Ψ2 ∈ ∆2, that
Cφ : BΨ2 → BΨ2 is ompat.We are now going to see that Cφ : HΨ2 → HΨ2 is an isometry. Indeed, reallthe following well-known fat, that we already used (see [29℄, Theorem 1): sine
φ is an inner funtion, the image φ(m) of the Haar measure m of T under φ isequal to Pa.m, where a = φ(0) and Pa is the Poisson kernel at a. Here φ(0) = 0so φ(m) = m. It follows that for every f ∈ HΨ2 , one has, for C > 0:

∫

T

Ψ2

( |f ◦ φ|
C

)
dm =

∫

T

Ψ2

( |f |
C

)
dmso that ‖f‖Ψ2 = ‖f ◦ φ‖Ψ2 . �We shall need also the following lemma, whih ompletes Lemma 5.2.Lemma 5.9 For every f ∈ BMΨ, one has:

f(a) = o

(
Ψ−1

( 1

(1 − |a|)2
)) as |a| <−→ 1.Proof. This is obvious for the monomials en : z 7→ zn sine |en(a)| ≤ 1, whereas

Ψ−1
(
1/(1 − |a|)2

)
−→
|a|→1

+∞. Sine the evaluation δa is bounded on BMΨ and
∥∥δa/

(
Ψ−1(1/1−|a|2)

)∥∥ = O (1), it su�es to use that the polynomials are densein BMΨ; but this was already proved in Proposition 5.3.
�Proof of Theorem 5.7. If Cφ : BΨ → BΨ is ompat, then so is the restrition

Cφ : BMΨ → BMΨ and its adjoint C∗
φ = Cφ :

(
BMΨ

)∗ →
(
BMΨ

)∗. Sine73



C∗
φ(δa) = δφ(a), Lemma 5.9 gives δa/‖δa‖ w∗

−→
|a|→1

0. Compatness of C∗
φ now leadsus to

C∗
φ

( δa
‖δa‖

) ‖ ‖−→
|a|→1

0.That gives (5.2), in view of Lemma 5.2.Conversely, assume that (5.2) is veri�ed. Observe �rst that, sine Ψ ∈ ∆2,one has:(5.4) Ψ−1(x2) ≤ αΨ−1(x) for x large enough.Indeed, let x0 > 0 be suh that Ψ(αx) ≥
(
Ψ(x)

)2 for x ≥ x0. For x ≥ y0 =√
Ψ(αx0), with y = Ψ−1(x2), one has x2 = Ψ(y) ≥

(
Ψ(y/α)

)2, i.e. x ≥ Ψ(y/α),and hene Ψ−1(x2) = y ≤ αΨ−1(x).Therefore ondition (5.2), whih reads:
Ψ−1

( 1

(1 − |φ(z)|)2
)

= o

(
Ψ−1

( 1

(1 − |z|)2
))

,reads as well, beause of (5.4):(5.5) Ψ−1
( 1

1 − |φ(z)|
)

= o

(
Ψ−1

( 1

1 − |z|
))

, as |z| → 1.We have to prove that (5.5) implies the ompatness of Cφ : BΨ → BΨ. So, byProposition 3.8, we have to prove that: for every sequene (fn)n in the unit ballof BΨ whih onverges uniformly on ompat sets of D, one has ‖fn◦φ‖Ψ −→
n→∞

0.But (5.2) and (5.4) imply that, for some C > 0:(5.6) |fn(z)| ≤ C Ψ−1
( 1

1 − |z|
) , ∀z ∈ D .Let ε > 0 and set ε0 = ε/αC. Due to (5.5), we an �nd some r with 0 < r < 1suh that:(5.7) 




√
1 − r ≤ 1

8
; Ψ−1

( 1

1 − r

)
≥ αx0 ;

Ψ−1
( 1

1 − |φ(z)|
)
≤ ε0Ψ

−1
( 1

1 − |z|
) if z ∈ D \ rD .Then, sine (fn)n onverges uniformly on rD, we have, for n large enough(n ≥ n0): ∫

rD

Ψ
( |fn ◦ φ|

ε

)
dA (z) ≤ 1

2
·
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On the other hand, by (5.7):
∫

D\rD

Ψ
( |fn ◦ φ|

ε

)
dA (z) ≤

∫

D\rD

Ψ

(
C

ε
Ψ−1

( 1

1 − |φ(z)|
))

dA (z)

≤
∫

D\rD

Ψ

(
ε0C

ε
Ψ−1

( 1

1 − |z|
))

dA (z)

=

∫

D\rD

Ψ

(
1

α
Ψ−1

( 1

1 − |z|
))

dA (z)

≤
∫

D\rD

√
Ψ

(
Ψ−1

( 1

1 − |z|
))

dA (z)sine Ψ−1
( 1

1 − r

)
≥ αx0 ,

=

∫

D\rD

1√
1 − |z|

dA (z) = 2

∫ 1

r

ρ dρ√
1 − ρ

≤ 2

∫ 1

r

dρ√
1 − ρ

= 4
√

1 − r ≤ 1

2
·Putting together these two inequalities, we get, for n ≥ n0:

∫

D

Ψ
( |fn ◦ φ|

ε

)
dA (z) ≤ 1

2
+

1

2
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