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Abstract. Neutron-induced fission cross sections of 238U and 235U are used as standards

in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to

experimentally determine other neutron reaction cross sections. Therefore, the detection

efficiency should be corrected by using the angular distribution of the fission fragments

(FFAD), which are barely known above 20 MeV. In addition, the angular distribution

of the fragments produced in the fission of highly excited and deformed nuclei is an

important observable to investigate the nuclear fission process.

In order to measure the FFAD of neutron-induced reactions, a fission detection setup

based on parallel-plate avalanche counters (PPACs) has been developed and successfully

used at the CERN-n_TOF facility. In this work, we present the preliminary results on the

analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV

compared to the existing experimental data.

1 Introduction

The angular distribution of the fragments produced in the fission of an excited nucleus (FFAD) pro-

vides relevant information of the fission barrier structure and the transition levels. A good knowledge

on the FFAD is also required in the calculation of the detection efficiency for fission fragments (FF)

to provide accurate measurements of fission cross sections. The fission cross sections of 235U and
238U are used as standards, the first in the neutron energy from 150 keV to 200 MeV and the second

from 2 MeV up to 200 MeV. The recently published n_TOF data of the 238U/235U fission cross section

ratio [1] were obtained fitting the anisotropy parameter of the FFAD data available in the EXFOR

database. The FFAD experimental data for the (n,f) reactions of 235U and 238U published in the EX-

FOR [2] database reach 20 MeV, the only 238U data exceeding this energy up to 100 MeV are those of

Ryzhov et al. [3]. The recently published data of 238U and 235U by Vorobyev et al. [4] and the data of

Leong [5] reach 200 MeV. Measurements at intermediate neutron energies would be of interest in the

next calculations of the 235U(n,f) and 238U(n,f) cross sections. In this work we present the preliminary

results of the FFAD of 235U and 238U up to 200 MeV measured at the n_TOF facility (CERN).
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2 Experimental setup

The experiment was accomplished in the CERN Neutron Time-of-Flight (n_TOF) facility [6]. The

white neutron beam is produced through spallation induced by a 20 GeV/c bunched proton beam on

a lead target and it is moderated in a 4 cm thick layer of borated water. The neutron beam covers

the energy range from thermal up to 1 GeV travelling along approximately 185 m from the spallation

target to the chamber containing the detectors and targets, which is located in the experimental area

EAR 1. A sweeping magnet is located in the neutron path to remove charged particles from the

beam and two collimators are used to give shape to the beam, where the second determines the beam

diameter of 8 cm for fission measurements.

Nine targets, produced at IPN-Orsay, were used in this experiment: three of 234U, one of 237Np,

two of 235U and three of 238U. They consisted of a thin radioactive layer 8 cm in diameter deposited

on an Aluminium foil of different thickness: 2.5 μm for the first six targets in the beam direction and

0.7 μm for the last three targets (two of them of 238U and one of 235U).

Ten Parallel Plate Avalanche Counters (PPACs), with the targets alternated, were used to measure

the (n,f) reactions. Those are gas detectors constituted by one central anode and two cathodes. The

gaps between the electrodes are filled with C3F8, which is a non-flammable gas, at 4 mbar pressure.

The anode signal has a very fast response, with a time resolution of about 500 ps and the cathodes

are segmented with parallel strips in the X and Y directions in order to provide the impact position of

each fission fragment in the PPAC plane.

Detectors and targets were located inside a stainless steel chamber filled with the gas, tilted 45◦
with respect the neutron beam in order to enlarge the angular range from 0◦ to 90◦ relative to the

non-tilted setup in which the angular acceptance was limited between 0◦ and 60◦; a discussion on the

angular acceptance can be found in Ref. [8].

3 Data analysis and preliminary results

The principle of the fission identification is based on the simultaneous detection of the signals pro-

duced by the back-to-back emitted FFs in the two PPACs flanking the target. For this purpose the

anode signals are used due to their fast response. The coincidence method allows us to discard most

of the α background and of the products of spallation reactions. The cathode signals are used to re-

construct the detection position in both PPACs. Assuming that both FFs are back-to-back emitted in

the laboratory reference system, their trajectory can be reconstructed and the emission angle deter-

mined. This assumption is valid because the error introduced in the angle measurement by the linear

momentum transfer even at large neutron energies is negligible, as explained in Ref. [7].

In the tilted PPACs setup used in this work, the emission angle is calculated as the scalar product

of two vectors, one for the FF trajectory (�VFF), and another for the beam direction (�Vbeam). As shown

in Fig. 1, the cosine of the emission angle is given by (1).

cosθ =
�VFF · �Vbeam

|�VFF | · |�Vbeam|
(1)

Making the assumption that the angular dependence of the FFs detection efficiency is constant

along the whole energy range, we can deduce it from the actual FFAD obtained for the 235U targets

below 1 keV, where it is known to be isotropic [8]. The thickness of the respective targets backings

must be taken into account.

The experimental FFAD (W(θ)) can be fitted by the sum of Legendre polynomials:
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Figure 1. Scheme of the reference frame used to reconstruct the trajectories of the FFs, as is explained in [7, 8].

W(θ) = A0 ·
⎡⎢⎢⎢⎢⎢⎢⎣1 +

Lmax∑

L2

AL · PL(cosθ)

⎤⎥⎥⎥⎥⎥⎥⎦ (2)

where AL are the coefficients and L is the order of the polynomial. Only even terms must be

included due to the symmetry of the fission fragments. In this work we have fitted (W(θ)) by the sum

of Legendre polynomials up to 4th order because the 2nd order polynomial alone is not sufficient to

accurately reproduce the angular distribution behaviour, see Fig. 2.
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Figure 2. Angular distribution measured with one of the 235U targets from 12.59 MeV to 15.85 MeV (left panel)

and with one of the 238U targets from 19.95 MeV to 25.12 MeV(right panel) fitted up to the 2nd and 4th order

Legendre polynomials.

The FFAD dependence on the neutron energy is commonly described in a simple way using the

anisotropy parameter, defined as (W(0◦)/W(90◦)). It can be expressed as:

W(0◦)/W(90◦) =
1 + A2 + A4

1 − 1
2
· A2 +

3
8
· A4

(3)

where the coefficients are obtained from the fit to the experimental FFAD data.
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Our preliminary results on the anisotropy parameter in function of the neutron energy are shown

in Fig. 3, where the mean values have been calculated for both 235U targets and for the three 238U

targets. The error bars include only the propagation of the statistical uncertainties.
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Figure 3. The anisotropy parameter measured in this work with the two 235U targets (left panel) and with the

three 238U targets (right panel) compared with the available experimental datasets.

When compared with the available 235U experimental data up to 20 MeV, the anisotropy parameter

data here presented agree in general within their uncertainties. Above 20 MeV and up to 200 MeV

there are only two datasets, Vorobyev et al. [4] and Leong [5] giving values 8% below the present

data at 100 MeV.
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Figure 4. Evolution of the FFAD found in this work for 235U (left panel) and 238U (right panel) in the energy

range from 1 MeV to 10 MeV.
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Concerning 238U, the anisotropy parameter data presented in this work are in general in good

agreement with previous works in the entire energy range up to 200 MeV. It is worth to note that the

statistics is not enough to describe with accuracy the behaviour of the 238U angular distributions at

the thresholds of the different fission chances where the anisotropy shows large variations for small

changes in the neutron energy. This is better seen in Fig. 4, where the evolution of the FFAD is shown

in the energy range from 1 to 10 MeV. Conversely to 235U, in the case of 238U the A4 parameter in

the Legendre expansion changes very suddenly from positive to negative giving as a result an angular

distribution that can not be described by a simple anisotropy parameter defined as (W(0◦)/W(90◦)).

4 Conclusions

The angular distributions of the 235U(n,f) and 238U(n,f) reactions have been measured at the n_TOF

facility (CERN) using parallel-plate avalanche counters (PPACs). In this work the preliminary results

of the anisotropy parameter up to 200 MeV are presented and compared with the datasets available in

EXFOR and the more recent data reaching 200 MeV [4, 5].

In general, the results for both 235U and 238U are in good agreement with previous measurements

up to 20 MeV. From 20 MeV to 200 MeV, the results for 235U are higher than those of the two

datasets recently published [4, 5] (around 8% at 100 MeV); and for 238U the present data are within

the uncertainties of previous ones [3–5].

The results on 238U show the high complexity of its fission mechanism, already seen for 232Th [7]

and 234U [9]. A better understanding of this behaviour around the thresholds for first and third chance

fission for even-even isotopes requires much higher statistics in order to resolve the sharp changes

of the anisotropy parameter near the fission chance thresholds. Accordingly, new measurements are

planned in the forthcoming n_TOF campaigns, taking advantage of the high resolution of the PPACs

setup at the n_TOF facility.
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