Figure 1 The strong product & B B, = Py E Oy,

Introduction

ughout this paper, all the graphs ave simple. Notation and terminology
xplicitly given here can be found in the book by Chartrand and Lesniak

G be a connected graph with vertex set V = V(&) edge set & =
. ordet [V{G} = n and size E(G) = m. The girth of & craph is
rder of a shertest cycle. The distance between two vertices u and
G is denoted Ly de(u,0). The eorentricity in G of a vertex u is
u) = max{de{u, v}l € Vi Let Ni(u) = {v|do(uv) = i},¢ > 1.
tiameter of G s ING) — max{de(u, v}, v € V). The tronsmission
s clfF) = Z d:{u,v) where the sum is taken over all the
[w,w)e [0
2d pairs (u, w) of vertices of . The average distance p{€7} is defined

_ Lawmevnm delny)  0(G)

S0 =
#(C) nir - 1) n{n - 1)’

e strong produect Gy B Gy of two graphs ) and g is defined on
rtesian product of the vertex sets of the generators, such that wwo
ot vertices (21, %3] and (1, y2) of Gy B Gy are adjucent if T, — ]
e € E(G2), or 71y € EfGq) and a3 = ya, or ;& E{(G))
22 € By From the definition, it clearly follows that the strohE
et of bwo graphs is commutative and that it is connected if and only
1 graphis are connected. A picture of ihe strong product of a cyele of
5 and a path of order 3 is shown in Figure 1.

1

It is well-known {see [6]) that for any pair of vertices = =
y = (w1 ye) of £ WGy,

Az B (2] = da e, (e, 2o} (. 1))
= max{de, (T1. 41 ) da, (Ta, 12}

Therefore DGy B G = max{ DG, DG

The product of graphs has been extensively investigatod |
a wide range of subjects, including connectivity [10], geodet
1], bandwidth [T} and independency |11], among others. A
principle for netwark design is extendability. That is to sa
Bility of building larger versions of a notwork preserving cert
properties, For designing large-scale interconnection netmork
product s a useful method to obtain large graphs from smalle
invariants can be easgily calenlated,

Many results exist on the average distance in different kind
ite praphs (sec for mstanee [5, 8, 9, 12]) but very few of them
strong product. In this work we are interested in the averag
the strong product &y Gy of two connected graphs & an
der to avold fractivns, we work on the teansmission, To get t.
gl B0, it s sufficient to divide o{Gh B2 G2) by ayralmyn,
by rying - 1) and o(Ga) by neg{ng — 1) where iy = n{& § and

2 General cxpression of o(G1 & G;) ar
bounds

Tor £ = 1,2, let &g be a connected graph of vertex set ¥, o
ml,, diameter Dy and transmission o

We define #, — f{z, 4] & Vide, i ym) =4} forie {
and r; — | R, Note that H; iz a set of ardered pairs (2,1} &
uncrdered pair 0f vertices at distance © > 0 is counted twine i

Similarly, 5; = {7z, 2] & Wlda, (2o y2) = 7} for 5 £ {
and 5; = 5, With this notution, we have

rn=ay, 7, — 2mr oand sp = A, & = 2mg

) 5
ZJ": =n? and ZSJ = ni
=0 a=0



£y

L2
Zﬂ", =y aid stj = 3. {d)

=T J=1
O EG =G forall &, we suppose g = 2 for & =12

it result provides a general expression of () B &) i terms of g,
nd 55,

m 2.1 For k = 1,2, let Gy, be a connected greph with erder ng,,
+ L and tmnstmission oy, Let 7, and sy be defined as alove. Then

0oy I
(G B Gy) = nary + nioy + Z Z {1 =g | s

=1 YVisfyl

mare, if fh < D,

b~ D
o) E'Gz:l = fgmy +1'1?62 + z Z (i — il Aj. {5}
i=1 i=j41

From the definition of the transmission and Ly {1},

CGIRG) = 3 deme, (71,22, (31, v2))

[Vex Va2

= Z m&x{dnl[Ij,yllhtfc:;{ﬂ?zrw:'}- )

VIQJ'GVQ.:
nsider the partition (R x S_,-]uggg]}, D n, of Viz x sz.
) fiwed, if {;}[.‘119'1] E ;. (ta.ya) € 5. then

Aeme, ({1, 72, (v, v2)) = max {i. 4}

;% 85 vontains ris; elements.

 for (&, ) fixed,

Sa,@me, ({1, T2), {yr, ¥2)) = max{z, j }s;r,.
T €N Ty g2)E 8,

It follows that oy = fo,9; fors < 5, and Ty = e+ (i - jluyr
Henoe

D b
(G B G — ZEC’H

30 =0
L 7 o,
- Z ZJISJ’W + Z (Fsiri + (i — fls7e)
30 4 =0 i=j1+1
2 2, Py iy
=2 in) r+ ) |6 3 o
i=0 £=M =1 f=§+1
o Dz o O, in
RO IREDIELDILED I IS
i=() =1 =10 =1 i= 41
Some lerms may be null. If D) < Dg, thenr, —0ifi> 341>
o g f D=1 0y
a7} = Fﬂziﬁ +Zj5j Zr. + Z &y Z {2 - F)r
a=0 =1 =1 i=1 i=y+1

Wi zet the theorem by {13, (2) and [2). =

Ihe fortnula {5} of Theorem 2.1 easily give the cxact ex)
ol{s: A1) when the graphs &) and &5 are sufliciently regub
the r's and 5,7’ easy to determine. For instanee, in the next
determine 7{(7; B s} for paths and cycles. For general graphs,
to find lower hounds on o7 875). The fullowing theorem pro

of them in terms of the order, the size and the transmission of ¢
G]_ -’l[ll’j {-:r'g

Theorem 2.2 For k& — 1,2, lef € be a connected grupl with
stre my, diometar [3, tromsmission @, minimuwm degree G und

Dl < i

(& oGy W) = ngm ~ ndey,
Eyuabity is attuined if and onty if Dy = 1.

(B I 22, then o(G REG) = npoy njmy + 2malo) —nj +
Eyuality is attarmed if and only i £ =2 .

{tie; ff IN = 3, then ol & Q1) 2 nooy -+ nim + Yrmploy —n
s2(gr + 2y — Ind + 20y, Equality is aftained if and only of I

(i) IF Dy = 3 ond 6o kas girth et st 5, then
C"{G].EGQ) = T12{11+F!¥02+2m2{01—-n.f—l-n,i}+§Z(Qm2-—n2}(al+zﬂ



5 attained if and ondy if Dy = 3 and Gy is regular.

1l the integers »;, ¢ < Dy, and 5, j < L, are positive, Hence we
trict tower bound on o{() & G3) by slopping the formula (5) at
of 7 strictly less than £, — 1 and the equality if and only if all
are taken until 5 = Dy — 1,

sult 15 oblained hy taking no term s,

pping aL j = 1, we obtain a strict lower bound i £ > 2 and the
=2

I
Fel P onge + ﬂ.fdg + 512[1- -1,
i=1

0, o,
= moy +nfoy ey (Ziri - Zr.—)
i=7 =2
= mam 4o+ 2myg (g, —2my) - {nf —ny - 2m,})
by {21, (3}, (4).

Fz) — mop + oy 4 2ng (1 - n? + ).

pping at 7 = 2, we obtain a strict lower bound if Dy = 3 and
v if D)) = 3. Using again (23, {3] and (4), we get

Ih Fah
N2} 2 ongr 4+ ﬂfr:rg + &1 Z[i —1)r = 35 2(1 - 2,
i= i=3
.U] Dl
= fgo + ﬂ%ﬂ'g + ¥1 (Zir._- — Zr;)
=2 i 2
28 oy
+52 (Z ir; — 2 Z?‘t-)
1=3 =3

= maoy + oy + 2mg {oy —7nf +mp)
2 .
+s3 {01 -y +Ing + E;rm} .

aphs Gy, s is dilficult ta determine, We consider in the fourth
v of graphs Gy in which a lower bound on so is known.

raph G2 has givth go = 5, the neighborheod of cach vertex o is

and comtains d{w){d{v)—1) ardered pairs of vertices, all of them

we 2. Moreover any two vertices ¢ and y at distance 2 have

neighbor vin common, Therefore 5, = Z A{uiid(v) — 1) =
1

b2 Z (divy — 1) = &2(2mg — ny) with equality if and only if o
nE Y
fur every vertex v, i e, if 0 Is regular. Sinee the coetlicient

(5] is positive, we get a lower hownd on o (&4 B3] by replaci
dolding — niz) in the heoand of (i),

Note that da(3my — na) > 2ma(dz — 1) with equality if and
7 is regular. Therefore we van get weaker but simpler Jower
on (G B e, still attained if and only if s &5 regular, by
fa(2ria  na) by Zmg(dy — 1) in the expression above. This gives

ol A ) = moy + nioy + 2maba(o) + 2y — Iny(ng — 1))
+2mg{n‘? —ut — Zmy)

> Ny < nf.::rz + 2mnada(oy + 2my — 2ng{my - 1))

Corollary 2.1 For k = 1,2, let Gy e o connected graph with o
stze Mg, digtreter I and tronsmission o

{1} {Paftabiraman and Pawlrge (8, Collorary 6] } If Iy — 1,
) = Koy, then

(Ko, Sy =nq(m — Lz + n%az.
fii) ff D) — 2 then
iy B = 21‘12(?’1? —thy — TR+ r.!.rfc-"z + ‘2.1'11;;{:1.']r —my —2n
Proof. (i) This is the equality case of Thoorem 2.7 {i} sines a|

¥l |.r71] - ].:|

(&) By (2], {3). {4). Iy — 2 implies r; + rp = sy{ny; — 1} ar
A7y bra)— =207 — 2ny — 2y, Henee the result is the equality
Theorem 2.2 (i1) when [ = 2 and comes from {i] when D5 = 1,

We will see at the end of the last section that Corollary 2.1 (
ralizes a rosult in [H].

3 Strong products of paths and cycles

The exact cxpressions of the transmission of strong products of pa
e¥eles are given by the formula (5) of Theorem 2.1, We vsed W



rm the caleoulations.

Ty, if
n?—n :
wath P, of order # has diameter ni— 1, transmission and admits InGooti=2ny boricf{l,... 0. 1}andrg, = o it
1 -
71 urdered pairs of vertices al distanee 1 for 1 <4 <n - 1.
n? Similarly, in Ga, 85 — Zng, for € 41...., Dy — 1} and

. n o
yele € of ordetr 7 has diameter £ = LEJ and transmission |T1ﬂ.

: odd, (7, admits 2n ordered pairs of vertives at distance § for 1 <1 <
" n iz even, O, adinits 2n ordered pairs of vertices at distance 1 for St =% M. if ng is odd,
= [2- 1 and n ordered pairs of vertices at distance [X

stg, il g i5 Fwen

o e _m i
Nary 3.1 Let g,y be twe infegers such that 2 <0y < ng. Then First. suppose that ny is even. Then 1) = 5 and 71 = e H
s & q 2
: 1 nfn 7 z
cr{PmEPM)mz%ﬂz(% ﬂf‘i) —T'(,—;j -y 5). i 2
1 o (O, BC,) ~ Tlﬂ-z + nﬂf]”:
£ Sinee ny < ng, DR, < D{P,,) and we apply Theorem 2.1 with a2 .
P, and Gy = P, Then r; = 2ry — 2 for i € {1,...,m — 1} and 3 n o o _
ey — 25 for 7 {1, .. ma - 1} + L reg [T_”m-l_ Z (-3
=1 i=j+1
-4 n 1 3 2 4 9
i . , Tt n rife mimy
W BFy) = ma ~nioep b 0 | (202 - 25) S i - iH2n - 24) = T‘ng +nﬂf]n2 + ;2 {4_ -
= TR
3 3 .
Lo T 2z — T2 ni n3 1
= = Sty + T 3 = n?n.z (1_;+|_T2J+E)
+“]E n_?_?_n_l.l_l _ﬂ_? ﬂ_@ .
3 2 1 2 a0 G 15 Sevond, suppose that =) is odd. Then [} = ! and oy -
— nn nd N s 1 m ] n? 2 Hener,
IR W T 3\10 2 8}
r| -3 np-L
oy BCay) ~ LT e | S
Ul:-'nj 11.1} = 1 'i"t-3+ﬂ- an Z Tl Z[

i=jll

llary 3.2 et ny.ng be twe ndegers such that 3 <5y < ng. Then p 5
n ﬂ.z ??-'11'1-1

12 4

”-? 3| 73
= '“‘:1“—”2"‘”1 lnz +

P x
2 Tl-l I.;.z
760 B ’"“:':”"”z(ﬁ e +)

ere ¢~ = if 7y 4 even and © = 1—21 i ry i odd,

b

. Sinee 1ty = ng, D(C,, ) = DT, and we apply Theorem 2.1 with

T, and &y =160,
. L An 2 £ a Cumllar}r 3.3 let 22 gnd m = 3 e fu trlegers,



m 2 * 1
S| =) + 1, then FEC,)=ntm{ T o2 1
L3 ot L Y

= L%J +1, then

2 2 3 2
T i 1 ™
P,,):fnﬂn(—+ __)—F?'_(——]),:n £UETL

3712 5] ma g
z 2 R m £ md | 3
p) emtn (4T By _m(mt Gt 3
) m“(3+12 12 T AE T g tgfynedd

ince D(P,) = n—1 and D(C,,) = {gj, D{P,Y < DIC,.} if and
< 5] -1

ie that n < [%l-l—l. Thetn Dy < Dy with Gy = P, and (0 = O,

=dn-—Zforic{l....n-1}and in O, 5, = 2m for §
Ol — 1}

) ﬂﬁ —n . m? mn—2 #—1
)= 3 " +n [TJM + Z 2m Z (i —7)2n — 24)

=1 E=j41
1_ p 4 i 2
L T TrL ot ol nom TEITL
= — i1+ n? | — |m 4 - - —
3 el 5 3 6 "3
2 2
2 L] 1
= e m —_— | — ] - -

m
e that n > [EJ-H' Then Dy < Dy with Gy = Cy and Gy = £,

=dn—Zjforj e {l.....,n-1} and in o, ~ = 2w for
m, if meven,

DICR) -1} and rpe = { Zrr, i odd,

sish two cases depending on the parity of the order of the oycle.

1.

FCwRIR) = netm

i=1 =741
3 k) 4 ki 2
I n n nm TR atis 1
Cm A F = = pmt — — -
7 i ] "yt 3 1z 18
2 s m? 1 m? ol
= m'n| — —_— ] - — ] — =
3 12 7] 24 4
If omt s odld,
m-1 [
. m! o ST —m - i
alCnBIN} = n——0— tm 3 *_Z{zn--m 3
=1 =7+
m3 —m g r—n mm' nam?  am
= qn _|. -
4 3 12 4 12
a A 31’1’1

4 Upper bound

If & is a counected graph of order n, it is known [3] that ¢{G)
with equality if and only if G is the path .. We generalize this
the strong product of two graphs.

Theoremn 4.1 For & £ 11,2}, let G be connected graphs with |
Then
D'[G| NGQ} = le:Pnl Ef:z}

with equelity of and only if ) is the path P,

Proof. We keep on with the notation of Section 2. Without los
erality, we may suppose that n; = 3, Let T he a gpaniing tree of



also suppose G = T as 0{G) RC) = o(T ) with equality if and
f&, =T

he proef is by induction on ny. For ny = 3, we have T = By and
(730 = o{ Py ™ &2). From now on, 1) = 4. Suppose that the result
2 for my - 1, we prove it for .

enote by V) and Vo the verter sets of T and €y, respectively, with
=1 and |Vo| = na. By (8),

AHTRE) = > max{dy{ur. o), dey(na, va)}.

it w1
e denote by p the first projection in V{THEG.), that isp: V=V = V.
uy, el = uj.
't ) be & pendant vertex of T. Consider 4; and A, defined as fullows,

Ay = >

[plulstx JAlpin) =, )

Az = 5

[Plup=x ¥ (pln]=x;)

dm'i-'z |f'1.|!_, “)

dfm,;-;z [,

lear that =[TH Gal = Ay + Ag.

rit, we prove that 4) = o{(T — {5 ) EGy). Let uw = {u), up),v =
} be two vertices of (V1 - {#1}) x Vo, As x1 is a pendant vertex of
ftay, 01 —= d—;-_{n}{tu,v]]. Hence

ey (W) = maxddy_ o (v ) da, (2, 02) ) — dore o, pme, (2, 7]

erefore, it follows that

A= 5

{pfulse) JAlp{e)f ;)

dree, (v.v) = o{{T — (o R G,

induction, we conclude that 4, < a{ Py o RO with equality if
by if T — {} = By

1— 1

ond, we coinpute Ay Notice that there exists a bijection brtween
lowing twea sebs

x Vab e (W0 x VRIhai{V) x ¥ = ({arg ) = Va)), subset of V% Vg)?,

Am

wid {({71] x ViJU{Vy = {x])) x V3, subset of V§:

We ronsider the partition {Hi{z;] » 5], , of the last subs
1 _“"- L}I:

Rim) = Hn(l{m} < Whu (W« e
= {un o) e Biles =11 o1 vy =@ }.
let rifx) = |[Fi{xy)|. Note that ra(z) —= 1 and ths

2|NE, (]| is oven for any i 2 1 and is positive for @ < ceepfi;

Furthermere, Z ro{zyd— 2(ny - 1)
i1

For a fiued ¢ € {L.,..., m}, [filr) x 5| = rizmds, fo
{0, .. rob Then, by (1],

Z drge, (. w] =iz Zmax{i,j}sj)

T lER (= K
= rlry) Eisj + Z is
azi fzadl

Henee, we get

ererin ]

S DD

EN oy n 0 R, (1)

drc, (n.5)

rocp [Ty )

— Z 'J“;{.‘n] ZES_,; - Z _}'.*!J

i=0 $<a T
ercr{ry} -
— Z rilz1) 2_,(3' — )8, + Zi-‘ij :
=l T 0
Let us remark that, since 5; >0 for 0< 7 < £y,
iR the cocficient f; := Z{i - Jks + Zij is & stri
1% JEN

sing function of 1,

ITecor(x) =ng — L then T = P, If evor(ey) <y - 2, 1
g = {1,,..,1-’,1 - l} such that Tip [;r]]- = 2. We note that if wet



= (P10 fig - e 0 00 with g 2 2 for each € and oy =2,
sequence © = (a1 ;o 2,0, 8,,2,0,.,0,0) of the same length,
sequence of the same sum. By the previous remark (R), we Lave

Saf< ¥ A
= p mptl

ratively the previous operation, from the soquence
l::l: rlfI]jn- B 1rz|:c|:zl:||:'r1]|1u1- - |n;|

g, wr oltain the sequenee (1,2, ..,2,2,..., 2b of the same Jenpth
ame sum. This last sequence is ‘-'"::'{ = ]_ r |: }— 2| NE (zh =12
where 1 is o pendant vertex of the graph P,

, We Eet

Hy—1

Az*‘-’fa+22fi= Z

1 tplul=r1]v(pm) 1)

dp, B, (U, v

v, by summing A; and 4; we obtain the desired result o (TG <
2.

W F) = o(F, RG;) then both 4 and A; attain their upper
his imply T — {x1} = P, .y for 4y and ecopf{zy) = ny — 1 for A,
=%, [ ]

llowing corrolary results from Theorem 4.1 by the nommutativity
g product,

v 4.1 Fork € {1,2}, let Gy Be connecied graphs with order .

'G"[G| ﬁ(:‘z} = UI:Pﬂ_I ER‘ZJ
ty if and only if G is the path P, and Gy the path £,

ener and hyper-Wiener indices

al graph theory [see [12]), the transinission o{¢3) is most often
v thr Wiener inder

Wi — % Z dgiu, v) = E{G—}

(om0 VR z

Angther well studied parsmeter is the hyper- Wiener inder

W) - Y (el + i)

(3, mEVI(E)

:i(o(G}+— 3 d?_—;(u,vj).

(e b3S

We can determine the genera) expression of WW((Gh M Ga) by
aame method s in Section 1, We denote WH (7)) by W W
W, and we oherrve that

f i3
dWW, =3 G+ % and dWWR =3 (5 +5%)s

=1 F--1

Theoren 5.1 For k = 1,2, [ef €7, be o connected graph with
digmeter Dy and hyper- Wierer index WW. Then

-1 U‘]
1 e
WWIGRG,) = ngWH) T“Lﬂ""*"W2+4 ) ( (f—4ll+3+

Jul hi=idd

Proof. From the defimition of the hyper-Wiener index,

3 deae, ({22 (v1,92))

[V b2y

E: d?',‘.'lmﬂ: {(r1112]>(y1~ yﬂ}}‘

REEAE

AWW () B ()

To calenlate

Z dza,mc,'[(rz.--fz:':(m.yz}}= Z ﬂlﬁxftff:l{h.-?ﬂ},tig:g'

(¥ kg LR

by (13, it is sufficient to replace everywhere ¢ by & and j hy j2 in
lation of Z max{dg, (F1. 1), de, (T2, y2)} done in the proof of
L s

2.1, This gives by (7)

Iy 2y
LW (G R Ga) —SUZI-IE b Y G x Y
i=U i=1 =0

Iy -1 D.
+ Zb, (fi4 %) (7 4+ 7

1= j‘-l-l



ult fallows from (2}, {3}, (3). m

1 Theoretn 5.1, it is not difficult to obtsin bounds on WG Bi;)
13 those on ¢{G) B G3) in Theorem 2.2, We Just present heve Lhe
us of Cotollary 2.1 for the comparison with (4.

ry 5.1 For k= 1,2, let Gf be o comnerfed graph with erder ny
diameter Dy and hyper. Wicner indes W,
abiraman and Pavirgja 3, Collorary 3} ff Dy =1, & ¢, if G =

£
WW (K, 8GC) = &”;_"_13'”., + I,

1 = 2 then

A Gy) = 12%(3“12 — 3ny —dmy} + nfWW, 4 2maln] -, - dray).

1€ LH =1, (9) only contains the firsi two terms. Moreover, by
. ¥ fty —1

2], “’W1=?1=m1=ﬂ-———1{ ; :J

= 2 then, by (2}, (3), (8), o = ny(n, - 1}—r1 = nifng =11 - 2my,,

T4 3ry = 3(r b ) - 27y = 3(?111} — 1] — dmy and s,r; =

1= 1) — 2m). The result comes fram (9 when I > 2 and from

12 = 1. |

Pattabiraman and Fauvlraja determined the values of WG, "G,
7y B &g} when (7 im a complete multipartite graph and 6y is
cted graph. Replacing our notation by theirs in Corallaries 2.1
1 (1} gives their results. Hence Coroilaries 2.1 and 5.1 goneraliza
1 and 2 of [8] to all graphs @) of diameter 2.

Iy, we can obtain an upper bound on WW{G BT} by adapting
of Throvern 4.1, This gencralizes the known result W () <
oT every connected graph G, of order n 4.

5.2 For k€ {12}, let &4 be a connected graph unth order n,,

BGe) < WWI(ER,, 14G2) with equality if and only if G, = By,
1B ) = WW(R, & F,,] with equality if and enly If (7 =

P =

P,

Proof. [t is sufficient to replace in the proof of Theorem 4.1 A,
Ay by AL defined as follows,

4 =4+ 3

(plaed gz 1aiplv] A2}
= WWH{T — {m }}EC s WW(P, 1 — (1 RC

d?EG; I:t.t ’ U]

A% is abtained by replaving £ by i+i and 7 by 7477 in the dete
aof 42, In the case ecor(m} = ny — 3, the coefficiant §; is re
f=fir Z e+ thz - %)5; which is still a strictly increasin

j=0 =
of i. Ience

=1
Ay fi+2 Y f - 3 (dp,,me, (7] + dh
=1 [plad=rx v (plul=x]
| ]
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Abstract

For two graphs & and . a decomposition ={H,. H;
He, R} of G is called an H-maximal k-decomposition if H;
for 1 =1 < & and R contains no subgraph isomorphic to H
Min(7, H) and Max(, H) be the minimum and maximy
respectively, for which & las an H-maximal k-decompos
A graph H without isolated verticos is sajd to possess the |
mediate decomposition property if for each connected Zra)
and each integer k& with Min{G. H) < & < Max(€, H), ther
tsts an H-maximal k-decompaosition of €. For a st § of pr
anil a graph &, a decomposition P — {H . Ha.....H., F
€ is called an S-naximal k-decomposition if H, = B for
H £ 5 for each integer < with 1 < ¢ < &k and R contain
subgraph isomorphic to any subgraph in 5. Let Min{G, 53
Max((7, 5} be the minimwn and maximum k . Tespectivals
which & has an S-maximal k-decomposition. A set 8 of £r
without isplated vertices is said to possess the interinediate
composition property if for every connected graph G and .
tnteger & with Min(G, §) < k < Max((, &}, there exists &
maximal k-decomposition of & All praphs of size 3 or less
determined that possess the intermediate decomposition p
erty. Sets of graphs having size 3 that possess the inlermed
decomposition property are investigated. In particular, sll :
sets consisting of two graphs are deterinined.

Key Words: maximal decompositions, remainder subgraph, int.
. decomposition property.
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