
Implementing P Systems Parallelism

by Means of GPUs

Jose M. Cecilia2, José M. Garćıa2, Ginés D. Guerrero2,
Miguel A. Mart́ınez–del–Amor1, Ignacio Pérez–Hurtado1,

and Mario J. Pérez–Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{mdelamor,perezh,marper}@us.es
2 Grupo de Arquitectura y Computación Paralela
Dpto. Ingenieŕıa y Tecnoloǵıa de Computadores

Universidad de Murcia
Campus de Espinardo, 30100 Murcia, Spain

{chema,jmgarcia,gines.guerrero}@ditec.um.es

Abstract. Software development for Membrane Computing is growing
up yielding new applications. Nowadays, the efficiency of P systems sim-
ulators have become a critical point when working with instances of large
size. The newest generation of GPUs (Graphics Processing Units) pro-
vide a massively parallel framework to compute general purpose compu-
tations. We present GPUs as an alternative to obtain better performance
in the simulation of P systems and we illustrate it by giving a solution
to the N-Queens problem as an example.

1 Introduction

Membrane Computing is an emerging branch within Natural Computing that
was introduced by Gh. Păun [24]. The main idea is to consider biochemical
processes taking place inside living cells from a computational point of view,
in a way that gives us a new nondeterministic model of computation by using
cellular machines.

Up to now, it has not been possible to have implementations neither in vivo
nor in vitro of P systems, so the computation and analysis of these devices are
performed by simulators. Therefore, P systems simulators are tools that help
the researchers to extract results from models. Since P systems was presented,
many software applications have been produced [11]. These simulators have to
be as much efficient as possible when handling large problem sizes. Thus, the
massively parallel nature of P systems computations points out to look for a
massively parallel technology where the simulator can run efficiently.

Parallel computation on clusters is the traditional environment to speed-
up parallel applications. Particularly, many simulators of P systems have been

designed for clusters of computers [4]. However, this computation is relatively
expensive and it is available for organizations that have enough resources to buy
and maintain those clusters. Nowadays, there are other cheaper solutions in the
computer market that also provides parallel environments. Among these solu-
tions, the newest generation of graphics processor units (GPUs) are massively
parallel processors which allow to develop a wide range of parallel applications.
We also recall that other parallel computing platforms for P systems simulators
are being investigated, such as special hardware circuits [6] and FPGAs [20].

GPUs can support several thousand of concurrent threads providing a mas-
sively parallel environment where parallel applications can obtain huge perfor-
mance [14][17][29]. Current Nvidia’s GPUs, for example, contain up to 240 scalar
processing elements per chip [16], they are programmed using C and CUDA
[32][21], and they have low cost compared with a cluster of computers.

In this paper, we use CUDA as parallel programming environment for P sys-
tems simulator in order to speedup the simulation. The input of the simulator is
a P system which is defined by using the P-Lingua [5] programming language,
and the output is a detailed list of information of every configuration of the
computation. The simulation is divided in two main stages: selection stage and
execution stage. At this stage of development, the simulator simulates recognizer
P systems with active membranes, the selection stage is executed on the GPU
and the execution stage is executed on the CPU.

The rest of the paper is structured as follows. In Section 2 several definitions
and concepts are given for a correct understanding of the paper. Section 3 in-
troduces the Compute Unified Device Architecture (CUDA) and some concepts
of programming on GPUs are specified. In Section 4 we explain the design of
the simulator. In Section 5 we implement a solution to the N-Queens problem
using the simulator and P-Lingua. Finally, in Section 6 we show some results
and compare them with the sequential version of the simulator. The paper ends
with some conclusions and ideas for future work in Section 7.

2 Preliminaries

Polynomial time solutions to NP-complete problems in Membrane Computing
are achieved by trading time for space. This is inspired by the capability of
cells to produce an exponential number of new membranes in polynomial time.
There are many ways a living cell can produce new membranes: mitosis (cell
division), autopoiesis (membrane creation), gemmation, etc. Following these in-
spirations a number of different models of P systems has arisen, and many of
them proved to be computational completeness (they are equivalent in power to
Turing machines).

In this paper we focus on the model of P systems with active membranes. It
is one of the most studied models in Membrane Computing and one of the first
models presented by Gh. Păun [25]. P systems with active membranes is formed
by a membrane structure, where a label and a polarization is associated to each
membrane. In this model, every elementary membrane is able to divide itself by
reproducing its content into a new membrane.

Here we provide a short recall of its features (see [25] for details). The model
of P system with active membranes is a construct of the form
Π = (O, H, μ, ω1, . . . , ωm, R), where m ≥ 1 is the initial degree of the system; O
is the alphabet of objects, H is a finite set of labels for membranes; μ is a mem-
brane structure (a rooted tree), consisting of m membranes injectively labelled
with elements of H , ω1, . . . , ωm are strings over O, describing the multisets of
objects placed in the m regions of μ; and R is a finite set of rules, where each
rule is of one of the following forms:

(a) [a → v]αh where h ∈ H , α ∈ {+,−, 0} (electrical charges), a ∈ O and v is a
string over O describing a multiset of objects associated with membranes and
depending on the label and the charge of the membranes (evolution rules).

(b) a []αh → [b]βh where h ∈ H , α, β ∈ {+,−, 0}, a, b ∈ O (send-in communi-
cation rules). An object is introduced in the membrane, possibly modified,
and the initial charge α is changed to β.

(c) [a]αh → []βhb where h ∈ H , α, β ∈ {+,−, 0}, a, b ∈ O (send-out communica-
tion rules). An object is sent out of the membrane, possibly modified, and
the initial charge α is changed to β.

(d) [a]αh → b where h ∈ H , α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A
membrane with a specific charge is dissolved in reaction with a (possibly
modified) object.

(e) [a]αh → [b]βh [c]γh where h ∈ H ,α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division rules).
A membrane is divided into two membranes. The objects inside the mem-
brane are replicated, except for a, that may be modified in each membrane.

Rules are applied according to the following principles:

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– Rules associated with label h are used for all membranes with this label, no
matter whether the membrane is an initial one or whether it was generated
by division during the computation.

– Rules from (a) to (e) are used as usual in the framework of membrane com-
puting, i.e., in a maximal parallel way. In one step, each object in a membrane
can only be used by at most one rule (non-deterministically chosen), but any
object which can evolve by a rule must do it (with the restrictions indicated
below).

– Rules (b) to (e) cannot be applied simultaneously in a membrane in one
computation step.

– An object a in a membrane labelled with h and with charge α can trigger a
division, yielding two membranes with label h, one of them having charge β
and the other one having charge γ. Note that all the contents present before
the division, except for object a, can be the subject of rules in parallel with
the division. In this case we consider that in a single step two processes take
place: “first” the contents are affected by the rules applied to them, and
“after that” the results are replicated into the two new membranes.

– If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin is never dissolved
neither divided.

Note that P systems can be seen as devices with two levels of parallelism:
among membranes (every membrane works independently, with the exception of
when there are communication across them) and among objects inside a mem-
brane (the rules are applied to the existing multiset of objects in a maximal
parallel way).

Recognizer P systems were introduced in [26], and constitute the natural
framework to study the solvability of decision problems. The data representing
an instance of the problem has to be provided to the P system to compute the
appropriate answer. This is done by codifying each instance as a multiset placed
in an input membrane. The output of the computation, yes or no, is sent to the
environment in every halting configuration.

Furthermore, the act of simulating something generally entails representing
certain key characteristics or behaviours of some physical, or abstract, system.
However, an emulation tool duplicates the functions of one system by using a
different system, so that the second system behaves like (and appears to be) the
first system. With the current technology, we can not emulate the functionality
of a cellular machine by using a conventional computer to solve NP-complete
problems in polynomial time, but we can simulate these cellular machines, not
necessarily in polynomial time, in order to aid researchers. However, depending
on the underlying technology where the simulator is executed, the simulations
can take too much time.

The technology used for this work is called CUDA (Compute Unified De-
vice Architecture). CUDA is a co-designed hardware and software solution to
make easier developing general-purpose applications on the Graphics Processor
Unit (GPU) [34]. GPUs, that are one of the main components of traditional
computers, originally were specialized for math-intensive, highly parallel com-
putation which is the nature of graphics applications. These characteristics of
the GPU were very attractive to accelerate scientific applications which have
massively parallel computations. However, the problem was the way to pro-
gram general purpose applications on the GPU. This way involved to deal with
GPUs designed for video games, so they have had to tune their applications
using programming idioms tied to computer graphics, programing environment
tightly constrained, etc [17] [14]. The CUDA extensions developed by Nvidia
provides an easier environment to program general-purpose applications onto
the GPU, because it is based on ANSI C, supported by several keywords and
constructs. ANSI C is the standard published by the American National Stan-
dards Institute (ANSI) for the C programming language, which is one of the
most used.

P systems devices are massively parallel, what fits, in a similar way, into mas-
sively parallel nature of the GPUs with thousands of threads running in parallel.

These threads are units of execution which execute the same code concurrently
on different pieces of data.

3 Graphics Processing Unit

Driven by the video games market, programmable GPUs (Graphics Processing
Units) have evolved into a highly parallel, multithreaded, manycore processor.
They were designed to accelerate graphics applications, which transform three-
dimensional data (coordinates of triangle vertices) into pixels that are displayed
on a screen, using for this task programming interfaces such as OpenGL and
DirectX. The massively parallel nature of graphics applications and its arith-
metic intensity leads the researches to explore more general non-graphics ap-
plications onto the GPU, creating a new programming field called GPGPU
(General-Purpose on GPUs).

GPUs have become an inexpensive and readily available single-chip massively
parallel system. However, GPGPU programmers had to deal with the limitations
and difficulties of constrained graphics primitives to compute their non-graphics
computations. The emergence of Compute Unified Device Architecture (CUDA)
[34] programming model, proposed by Nvidia Corporation in 2007, has helped
to develop highly-parallel applications onto the GPU easier than it was before.
CUDA allows GPGPU programmers to develop their applications in a more fa-
miliar environment by using C/C++ programming language, with some exten-
sions to manipulate special aspects of the GPU. Moreover, Nvidia consolidated
this trend launching a line of GPUs optimized for general purpose computations
called TESLA [16].

In this work we use a Tesla C1060 graphics processor unit (GPU) from
Nvidia as hardware target for its study. This section introduces the Tesla C1060
computing architecture. In addition, it analyses the threading model of Tesla
architectures, and also the most important issues in the CUDA programming
environment.

3.1 Tesla C1060 Base Microarchitecture

The Tesla C1060 [16] is based on a scalable processor array which has 240
streaming-processor (SP) cores organised as 30 streaming multiprocessor (SM).
The applications start at the host side (the CPU) which communicates with the
device side (the GPU) through a PCI-Express x16 bus (see the top of figure 1).

The SM is the processing unit, and it is unified graphics and computing mul-
tiprocessor. Every SM contains eight SPs arithmetic cores, one double precision
unit, 16-Kbyte read/write shared memory, a set of 16384 registers, and access
to the off-chip memory (global/local memory). The access to shared memory
is very cheap, however, the access to the off-chip memory has low performance
because it is out of the chip, as it is shown on figure 1. In addition, table 1 shows
all memories available on the GPU and also the cost to access them.

Fig. 1. Tesla C1060 GPU with 240 SPs: Streamming Processors, organised in 30 SMs:
Streamming Multiprocessors

Table 1. Memory System on the Tesla C1060

Memory Location Size Latency Access

Registers On-Chip 16384 32-bits Registers per SM � 0 cycles R/W

Shared Memory On-Chip 16 KB per SM � registers R/W

Constant On-Chip 64 KB � registers R

Texture On-Chip Up to Global > 100 cycles R

Local Off-Chip 4 GB 400-600 cycles R/W

Global Off-Chip 4 GB 400-600 cycles R/W

3.2 Parallel Computing with CUDA

The GPU is seen as a cooprocessor that executes data-parallel kernel functions.
The user creates a program encompassing CPU code (Host code) and GPU code
(Kernel code). They are separated and compiled by nvcc (Nvidia’s compiler for
CUDA code) as shown in figure 2.

Firstly, the host code is responsible for transfering data from the main memory
(RAM or host memory) to the GPU memory (device memory), using CUDA in-
structions, such as cudamemcpy. Moreover, the host code has to state the number
of threads executing the kernel function and the organization of them. Threads
execute the kernel code, and they are organized into a three-level hierarchy as
it is shown in figure 3. At the highest level, each kernel creates a single grid
that consists of many thread blocks. Each thread block can contain up to 512

C/C++ with CUDA

Extensions

NVCC
CPU Code

PTX Code

PTX to Target

Compiler

G80

PTX Code

T10

Fig. 2. Nvcc compilation process

threads, which can share data through Shared Memory and can perform bar-
rier synchronization by invoking the –syncthreads primitive [31]. Besides, thread
blocks can not perform synchronization. The synchronization across blocks can
only be obtained by terminating the kernel.

Furthermore, the host code calls the kernel function like a C function by
passing parameters if it is needed, and also by specifying the number of threads
per block and the number of blocks making up the grid. Each block within
the grid has their own identifier [22]. This identifier can be one, two or three

Fig. 3. Thread organization in CUDA programming model

dimensions depending on how the programmer has declared the grid, accessed
via .x, .y, and .z index fields. Each thread within the block have their own
identifier which can be one, two or three dimensions as well. Combining thread
and block identifiers, the threads can access to different data address, and also
select the work that they have to do.

The kernel code is specified through the key word global and the syntax is:
global kernelName <<< dimGrid, dimBlock >>> (...parameter list...) where

dimGrid and dimBlock are three-elements vectors that specify the dimensions of
the grid in blocks and the dimensions of the blocks in threads, respectively [21].

3.3 Threading Model

A SM is a hardware device specifically designed with multithreaded capabil-
ities. Each SM manages and executes up to 1024 threads in hardware with
zero scheduling overhead. Each thread has its own thread execution state and
can execute an independent code path. The SMs execute threads in a Single-
Instruction Multiple-Thread (SIMT) fashion [16]. Basically, in the SIMT model
all the threads execute the same instruction on different piece of data. The SMs
create, manage, schedule and execute threads in groups of 32 threads. This set
of 32 threads is called Warp. Each SM can handle up to 32 Warps (1024 threads
in total, see table 2). Individual threads of the same Warp must be of the same
type and start together at the same program address, but they are free to branch
and execute independently.

Table 2. Major Hardware and Software Limitations programing on CUDA

Configuration Parameters Limitation

Threads/SM 1024

Thread Blocks/SM 8

32-bit Registers/SM 16384

Shared Memory/SM 16KB

Threads/Block 512

Threads/Warp 32

Warps/SM 32

The execution flow begins with a set of Warps ready to be selected. The instruc-
tion unit selects one of them, which is ready for issue and executing instructions.
The SM maps all the threads in an active Warp per SP core, and each thread ex-
ecutes independently with its own instructions and register state. Some threads
of the active Warp can be inactive due to branching or predication, and it is also
another critical point in the optimisation process. The maximum performance is
achieved when all the threads in an active Warp takes the same path (the same
execution flow). If the threads of a Warp diverge, the Warp serially executes each
branch path taken, disabling threads that are not on that path, and when all the
paths complete, the threads reconverge to the original execution path.

4 Design of the Simulator for Recognizer P Systems

In this section we briefly describe the simulator of recognizer P systems with ac-
tive membranes, elementary division and polarization. Firstly, we explain the pre-
vious work that we have done in order to prepare the development of the parallel
simulator on the GPU. Then, we introduce the algorithm design in the CUDA
programming language, and finally, we finish with our simulator’s design.

4.1 Design of the Baseline Simulator

As previously mentioned, CUDA programming model is based on C/C++ lan-
guage. Therefore, the first recommended step when developing applications in
CUDA is to start from a baseline algorithm written in C++, where some parts
can be susceptible to be parallelized on the GPU.

In this work, we have based on the simulator for P systems with active mem-
branes developed in PLinguaCore [5]. This sequential (or single-threaded) simu-
lator is programmed in JAVA, so the first step was to translate the code to C++.

The simulator is executed into two main stages: selection stage and execution
stage. The selection stage consists of the search for the rules to be executed in
each membrane. Once the rules have been selected, the execution stage consists
of the execution of these rules.

The input data for the selection stage consists of the description of the mem-
branes with their multisets (strings over the working alphabet O, labels associ-
ated with the membrane in H , etc.), and the set of rules R to be selected. The
output data of this stage is the set of selected rules. Only the execution stage
changes the information of the configuration. It is the reason because execution
stage needs synchronization when accessing to the membrane structure and the
multisets. At this point of implementation, we have parallelized the selection
stage on the GPU, and the execution stage is still executed on the CPU because
of the synchronization problem.

We also have developed an adapted sequential simulator for the CPU (called
fast sequential simulator), which has the same constraints as the CUDA simu-
lator explained in the next subsections to make a fair comparison among them.
This simulator achieves much better performance than the original sequential
simulator.

4.2 Algorithm Design in CUDA

Whenever we design algorithms in the CUDA programming model, our main
effort is dividing the required work into processing pieces, which have to be
processed by TB thread blocks of T threads each. Using a thread block size of
T=256, it is empirically determined to obtain the overall best performance on
the Tesla C1060 [28]. Each thread block access to one different set of input data,
and assigns a single or small constant number of input elements to each thread.

Each thread block can be considered independent to the other, and it is at this
level at which internal communication (among threads) is cheap using explicit

barriers to synchronize, and external communication (among blocks) becomes
expensive, since global synchronization only can be achieved by the barrier im-
plicit between successive kernel calls. The need of global synchronization in our
designs requires successive kernel calls even to the same kernel.

4.3 Design of the Parallel Simulator

In our design, we identify each membrane as a thread block where each thread
represents at least an element of the alphabet O. Each thread block runs in
parallel looking for the set of rules that has to select for its membrane, and each
individual thread is responsible for selecting the rules associated with the object
that it represents (each thread selects the rules that need to be executed by
using the represented object).

As result of the execution stage, the membranes can vary including news
elements, dissolving membranes, dividing membranes, etc. Therefore, we have
to modify the input data for the selection stage with the newest structure of
membranes, and then call the selection again. It is an iterative process until a
halting configuration is reached.

Finally, our simulator presents some limitations, constrained by some pecu-
liarities in the CUDA programming model. The main limitations are showed in
table 3, and the following stand out among them: it can handle only two levels
of membrane hierarchy for simplicity in synchronization (the skin and the rest of
elementary membranes), which is enough for solving lots of NP-complete prob-
lems; and the number of objects in the alphabet must be divisible by a number
smaller than 512 (the maximum thread block size), in order to distribute the
objects among the threads equally.

Table 3. Main limitations in the parallel simulator

Parameter Limitation

Levels of membrane hierarchy 2

Maximum alphabet size 65535

Maximum label set size 65535

Maximum multiplicity of an object in an
elementary membrane

65535

Alphabet size Divisible by a number smaller than 512

5 A Case Study: Implementing a Solution to the
N-Queens Problem

In this section, we briefly present a solution to the N-Queens problem by means
of P systems, given by Miguel A. Gutiérrez–Naranjo et al in [10]. This family of
P systems is our case study for the performance analysis of our simulator.

5.1 A Family of P Systems for Solving the N-Queens Problem

The N-Queens problem can be expressed as a formula in conjunctive normal
form, in such way that one truth assignment of the formula is considered as a
solution of the puzzle. A family of recognizer P systems for the SAT problem
[27] can state whether exists a solution to the formula or not sending yes or no
to the environment.

However, the yes ot no answer from the recognizer P system is not enough
because it is also important to know the solutions. Besides, the system needs to
give us the way to encode the state of the N-Queens problem.

The P system designed for solving the N-Queens problem is a modification
of the P system for the SAT problem. It is an uniform family of deterministic
recognizer P system which solves SAT as a decision problem (i.e., the P system
sends yes or no to the environment in the last computation step), but also stores
the truth assignments that makes true the formula encoded in the elementary
membranes of the halting configuration.

5.2 Implementation

P-Lingua 1.0 [5] is a programming language useful for defining P system models
with active membranes. We use P-Lingua to encode a solution to the N-Queens
problem, and also to generate a file that our simulator can use as input. Figure 4
shows the P-Lingua process to generate the input for our simulator.

Fig. 4. Generation of the simulator’s input

P-Lingua 2.0 [7] is able to translates a P system written in P-Lingua language
into a binary file. A binary file is a file whose information is encoded in Bytes
and bits (not understandable by humans like plain text), which is suitable for
trying to compress the data. This binary file contains all the information of the
P system (Alphabet, Labels, Rules, . . .) which is the input of our simulator.

In our tests, we use the P system for solving the 3-Queens and 4-Queens
problems. The former creates 512 membranes and up to 1883 different objects.
The latter creates 65536 membranes and up to 8120 different objects, and now
the simulator can handle it because we have decreased the memory requirement

by the simulator in [18]. On one hand, the P system for 5-Queens needs to
generate 33554432 membranes and 25574 objects, what leads in a memory space
limitation (requires up to 1.5TB). On the other hand, we point out that 2-
Queens is a system with only 4 membranes, what are not enough for exploiting
the parallelism in P systems.

6 Performance Analysis

We now examine the experimental performance of our simulator. Our perfor-
mance test are based on the solutions to 3-Queens and 4-Queens problems pre-
viously explained in 5.2. We report the selection stage time which is executed on
the GPU, and compare it with the selection stage for the fast sequential code.
We do not include the cost of transferring input (and output) data from (and to)
host CPU memory across the PCI-Express bus to the GPU’s on board memory,
which negatively affects to the overall simulation time. Selection is one building
block of a larger-scale computation. Our aim is to get a full implementation of
the simulator on the GPU. In such case, the transfers across PCI-Express bus
will be close to zero.

We have used the Nvidia GPU Tesla C1060 which has 240 execution cores and
4GB of device memory, plugged in a computer server with a Intel Core2 Quad
CPU and 8GB of RAM, using the 32bits ubuntu server as Operating System.

The selection stage on the GPU takes about 171 msec for the 3-Queens. So
it is 2.7 times faster than the selection stage on the CPU which takes 465 msec.
For the 4-Queens problem our simulator is 2 times faster than the fast sequential
version, taking 315291 and 629849 msec in selection respectively.

Our experimental results demonstrate the results we expect to see: a mas-
sively parallel problem such as selection of the rules in a P system with active
membranes achieves faster running times on a massively parallel architecture
such as GPU.

7 Conclusions and Future Work

In this paper, we have presented a simulator for P systems using CUDA. P sys-
tem computations have a double parallel nature. The first level of parallelism is
presented by the objects inside the membranes, and the second one is presented
between membranes. Hence, we have simulated these P systems in a platform
which provides those levels of parallelism. This platform is the GPU, with paral-
lelism between thread blocks and threads. Besides, we have used a programming
language called P-Lingua to encode P systems as input for our simulator. This
tool helped us to encode the P system for solving the N-Queens problem in order
to test our simulator.

Using the power and parallelism that provides the GPU to simulate P systems
with active membranes is a new concept in the development of applications for
membrane computing. Even the GPU is not a cellular machine, its features help

the researches to accelerate their simulations allowing the consolidation of the
cellular machines as alternative to traditional machines.

The first version of the simulator is presented for recognizer P systems with
active membranes, elementary division and polarization, specifically, we have
developed the selection stage of the simulator on the GPU. In forthcoming ver-
sions, we will include the execution version on the GPU. This issue allows a
completely parallel execution on the GPU, avoiding CPU-GPU transfers in ev-
ery step, which degrades system performance.

Moreover, we are working to obtain fully simulation of P systems with active
membranes, deleting the limitations showed in table 3. Besides, we will include
new funcionality in the simulator like not elementary division. Our aim is to de-
velop a framework of P systems simulators running on the GPU, so we will study
the simulation of other P systems models by using this parallel architecture.

It is also important to point out that this simulator is limited by the resources
available on the GPU as well as the CPU (RAM, Device Memory, CPU, GPU).
They limit the size of the instances of NP-complete problems whose solutions
can be successfully simulated. Although developing general purpose programs
on the GPU is easier than several years ago with tools such as CUDA, to extract
the maximum performance of the GPU is still hard, so we need to make a deep
analysis to obtain the maximum performance available for our simulator. For
instance, in the following versions of the simulator we will reduce the memory
requirements in order to simulate bigger instances of NP-complete problems
and avoid idle threads, by deleting objects with zero multiplicity. For this task
we can use spare matrix in our simulator’s design.

The massively parallel environment that provides the GPUs is good enough
for the simulator, however, we need to go beyond. The newest cluster of GPUs
provides a higher massively parallel environment, so we will attempt to scale to
those systems to obtain better performance in our simulated codes.

Finally, we will study new simulation algorithms based on algebra, and the
adaptation of the design of P systems to the constraints of the GPU to make
faster simulations. Furthermore, it would be interesting to avoid the brute force
algorithms in P system computations, and start to design heuristics in the design
of membrane solutions (i.e., avoiding membrane division as possible).

Acknowledgement

The first three authors acknowledge the support of the project from the Fun-
dación Séneca (Agencia Regional de Ciencia y Tecnoloǵıa, Región de Murcia)
under grant 00001/CS/2007, and also by the Spanish MEC and European Com-
mission FEDER under grant CSD2006-00046. The last three authors acknowl-
edge the support of the project TIN2006–13425 of the Ministerio de Educación y
Ciencia of Spain, cofinanced by FEDER funds, and the support of the “Proyecto
de Excelencia con Investigador de Reconocida Vaĺıa” of the Junta de Andalućıa
under grant P08-TIC04200.

References

1. Alhazov, A., Pérez–Jiménez, M.J.: Uniform solution of QSAT using polarizationless
active membranes. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS,
vol. 4664, pp. 122–133. Springer, Heidelberg (2007)

2. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan,
P.: Brook for GPUs: stream computing on graphics hardware. In: SIGGRAPH
2004, pp. 777–786. ACM Press, New York (2004)

3. Ciobanu, G., Pérez–Jiménez, M.J., Păun, G. (eds.): Applications of membrane
computing. Springer, Heidelberg (2006)

4. Ciobanu, G., Wenyuan, G.: P systems running on a cluster of computers. LNCS,
vol. 2993, pp. 123–139. Springer, Heidelberg (2004)

5. Dı́az–Pernil, D., Pérez–Hurtado, I., Pérez–Jiménez, M.J., Riscos–Núñez, A.: A P-
Lingua programming environment for Membrane Computing. In: Corne, D.W.,
Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS,
vol. 5391, pp. 187–203. Springer, Heidelberg (2009)

6. Fernández, L., Mart́ınez, V.J., Arroyo, F., Mingo, L.F.: A hardware circuit for se-
lecting active rules in transition P systems. In: Proceedings of the Seventh Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
p. 415 (2005)

7. Garćıa–Quismondo, M., Gutiérrez–Escudero, R., Mart́ınez–del–Amor, M.A., Ore-
juela, E., Pérez–Hurtado, I.: P–Lingua 2.0. A software framework for cell-like P
systems. Intern. J. Computers, Communications and Control IV(3), 234–243 (2009)

8. Garland, M., Grand, S.L., Nickolls, J., Anderson, J., Hardwick, J., Morton, S.,
Phillips, E., Zhang, Y., Volkov, V.: Parallel computing experiences with CUDA.
IEEE Micro 28(4), 13–27 (2008)

9. Govindaraju, N.K., Manocha, D.: Cache–efficient numerical algorithms using
graphics hardware. Parallel Computing 33(10-11), 663–684 (2007)

10. Gutiérrez–Naranjo, M.A., Mart́ınez–del–Amor, M.A., Pérez–Hurtado, I., Pérez–
Jiménez, M.J.: Solving the N–queens puzzle with P systems. In: Proc. 7th Brain-
storming Week on Membrane Computing, vol. I, pp. 199–210 (2009)

11. Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A.: Available mem-
brane computing software. In: Applications of Membrane Computing, ch. 15, pp.
411–436. Springer, Heidelberg (2006)

12. Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A.: Towards a pro-
gramming language in cellular computing. Electronic Notes in Theoretical Com-
puter Science 123, 93–110 (2005)

13. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (Scan) with CUDA.
GPU Gems 3 (2007)

14. Hartley, T.D., Catalyurek, U., Ruiz, A., Igual, F., Mayo, R., Ujaldon, M.: Biomed-
ical image analysis on a cooperative cluster of GPUs and multicores. In: ICS 2008:
Proce. 22nd annual international conference on Supercomputing, pp. 15–25. ACM,
New York (2008)

15. Lam, M.D., Rothberg, E.E., Wolf, M.E.: The cache performance and optimizations
of blocked algorithms. In: ASPLOS-IV: Proceedings of the fourth international
conference on Architectural support for programming languages and operating
systems, pp. 63–74. ACM, New York (1991)

16. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia Tesla. A unified
graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

17. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg – a system for program-
ming graphics hardware in a C–like language. In: SIGGRAPH 2003, pp. 896–907.
ACM, New York (2003)

18. Mart́ınez–del–Amor, M.A., Pérez–Hurtado, I., Pérez–Jiménez, M.J., Cecilia, J.M.,
Guerrero, G.D., Garćıa, J.M.: Simulation of Recognizer P Systems by using Many-
core GPUs. In: Proc. 7th Brainstorming Week on Membrane Computing, vol. II,
pp. 45–58 (2009)

19. Michalakes, J., Vachharajani, M.: GPU acceleration of numerical weather predic-
tion. In: IPDPS, pp. 1–7 (2008)

20. Nguyen, V., Kearney, D., Gioiosa, G.: An algorithm for non-deterministic ob-
ject distribution in P systems and its implementation in hardware. In: Corne,
D.W., Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS,
vol. 5391, pp. 325–354. Springer, Heidelberg (2009)

21. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. Queue 6(2), 40–53 (2008)

22. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: Gpu
computing. Proceedings of the IEEE 96(5), 879–899 (2008)

23. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A.E.,
Purcell, T.J.: A survey of general–purpose computation on graphics hardware.
Computer Graphics Forum 26(1), 80–113 (2007)

24. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000); Turku Center for Computer Science-TUCS Report
No 208

25. Păun, G.: Membrane Computing, An introduction. Springer, Berĺın (2002)
26. Pérez–Jiménez, M.J., Romero–Jiménez, A., Sancho–Caparrini, F.: Complexity

classes in models of cellular computing with membranes. Natural Computing 2(3),
265–285 (2003)

27. Pérez–Jiménez, M.J., Romero–Jiménez, A., Sancho–Caparrini, F.: A polynomial
complexity class in P systems using membrane division. Journal of Automata,
Languages and Combinatorics 11(4), 423–434 (2006)

28. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core GPUs. To Appear in Proc. 23rd IEEE International Parallel and Distributed
Processing Symposium (2009)

29. Ruiz, A., Ujaldon, M., Andrades, J.A., Becerra, J., Huang, K., Pan, T., Saltz,
J.H.: The GPU on biomedical image processing for color and phenotype analysis.
In: BIBE, pp. 1124–1128 (2007)

30. Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D., Mei Hwu, W.: Op-
timization principles and application performance evaluation of a multithreaded
GPU using CUDA. In: Proc. 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 73–82 (2008)

31. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.-Z., Baghsorkhi,
S.S., Hwu, W.W.: Program optimization carving for GPU computing. J. Parallel
Distrib. Comput. 68(10), 1389–1401 (2008)

32. Nvidia CUDA Programming Guide 2.0. (2008),
http://developer.download.nvidia.com/compute/cuda/2 0/docs/

NVIDIA CUDA Programming Guide 2.0.pdf

33. GPGPU organization. World Wide Web electronic publication,
http://www.gpgpu.org

34. Nvidia CUDA. World Wide Web electronic publication,
http://www.nvidia.com/cuda

http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://www.gpgpu.org
http://www.nvidia.com/cuda

	Implementing P Systems Parallelism by Means of GPUs
	Introduction
	Preliminaries
	Graphics Processing Unit
	Tesla C1060 Base Microarchitecture
	Parallel Computing with CUDA
	Threading Model

	Design of the Simulator for Recognizer P Systems
	Design of the Baseline Simulator
	Algorithm Design in CUDA
	Design of the Parallel Simulator

	A Case Study: Implementing a Solution to the N-Queens Problem
	A Family of P Systems for Solving the N-Queens Problem
	Implementation

	Performance Analysis
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

