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NEW EXAMPLES OF GENERALIZED
SASAKIAN-SPACE-FORMS

Abstract. In this paper we study when a non-anti-invariant slant submanifold of a gen-
eralized Sasakian-space-form inherits such a structure, on the assumption that it is totally
geodesic, totally umbilical, totally contact geodesic or totally contact umbilical. We obtain
some general results (including some obstructions) and we also offer some explicit examples.

1. Introduction.

The study of generalized Sasakian-space-forms has been quickly developed since the
first two named authors (jointly with David E. Blair) defined such a manifold in [1] as
an almost contact metric manifold (M,φ,ξ,η,g) whose curvature tensor is given by

(1) R = f1R1 + f2R2 + f3R3,

where f1, f2, f3 are differential functions on M and

R1(X ,Y )Z = g(Y,Z)X −g(X ,Z)Y,
R2(X ,Y )Z = g(X ,φZ)φY −g(Y,φZ)φX +2g(X ,φY )φZ,
R3(X ,Y )Z = η(X)η(Z)Y −η(Y )η(Z)X +g(X ,Z)η(Y )ξ−g(Y,Z)η(X)ξ,

for any vector fields X ,Y,Z. We denote it by M( f1, f2, f3). Actually, we can refer to
the recent papers [2], [3], [4], [5], [6], [7], [18], [20] and [25].

But, as in any new subject, one of the most important things is the search for
new examples. In this sense, a natural question arises now: if M is a submanifold
isometrically immersed in a generalized Sasakian-space-form M̃(F1,F2,F3), when does
it inherit a generalized Sasakian-space-form structure, with functions f1, f2, f3?

This is a non-trivial question, because two things have to be inherited from the
ambient space. Firstly, the almost contact metric structure. Hence, we must work with
some special classes of submanifolds, tangent to the structure vector field ξ. A natural
election seems to be that of non-anti-invariant slant submanifolds (for some general
background on the theory of slant submanifolds in almost contact metric manifolds,
we recommend the survey paper [12]). But, secondly, in order to be a generalized
Sasakian-space-form, the curvature tensor R of the submanifold M has to be written in
a very special way. By using Gauss equation we have:

(2) F1R̃1(X ,Y,Z,W )+F2R̃2(X ,Y,Z,W )+F3R̃3(X ,Y,Z,W )
= R(X ,Y,Z,W )+g(σ(X ,Z),σ(Y,W ))−g(σ(X ,W ),σ(Y,Z)),
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for any vector fields X ,Y,Z,W tangent to M. Therefore, we must somehow control the
second fundamental form σ of the immersion in order to obtain the correct writing for
R.

Thus, after a preliminaries section containing some definitions and formulae
for later use, in Section 3 we study the raised question for totally geodesic, totally
umbilical, totally contact geodesic and totally contact umbilical non-anti-invariant slant
submanifolds of a generalized Sasakian-space-form. We obtain some general results
(Theorems 1, 2 and 3) as well as some obstructions (Theorems 4 and 5), and we also
construct some explicit examples.

2. Preliminaries.

In this section, we recall some general definitions and basic formulas which we will
use later. For more background on almost contact metric manifolds, we recommend
the reference [8]. Anyway, we will recall some more specific notions and results in the
following sections, when needed.

An odd-dimensional Riemannian manifold (M̃,g) is said to be an almost contact
metric manifold if there exist on M̃ a (1,1) tensor field φ, a vector field ξ (called the
structure vector field) and a 1-form η such that η(ξ) = 1, φ2(X) = −X + η(X)ξ and
g(φX ,φY ) = g(X ,Y )−η(X)η(Y ), for any vector fields X ,Y on M̃. In particular, in an
almost contact metric manifold we also have φξ = 0 and η◦φ = 0.

Such a manifold is said to be a contact metric manifold if dη = Φ, where
Φ(X ,Y ) = g(X ,φY ) is called the fundamental 2-form of M̃. If, in addition, ξ is a
Killing vector field, then M̃ is said to be a K-contact manifold. It is well-known that a
contact metric manifold is a K-contact manifold if and only if

(3) ∇̃X ξ = −φX ,

for any vector field X on M̃. On the other hand, the almost contact metric structure of M̃
is said to be normal if [φ,φ](X ,Y ) = −2dη(X ,Y )ξ, for any X ,Y , where [φ,φ] denotes
the Nijenhuis torsion of φ, given by [φ,φ](X ,Y ) = φ2[X ,Y ] + [φX ,φY ]− φ[φX ,Y ]−
φ[X ,φY ]. A normal contact metric manifold is called a Sasakian manifold. It can be
proved that an almost contact metric manifold is Sasakian if and only if

(∇̃X φ)Y = g(X ,Y )ξ−η(Y )X ,

for any X ,Y .
In [23], J. A. Oubiña introduced the notion of a trans-Sasakian manifold. An

almost contact metric manifold M̃ is a trans-Sasakian manifold if there exist two func-
tions α and β on M such that

(4) (∇̃X φ)Y = α(g(X ,Y )ξ−η(Y )X)+β(g(φX ,Y )ξ−η(Y )φX),

for any X ,Y on M̃. If β = 0, M̃ is said to be an α-Sasakian manifold. Sasakian mani-
folds appear as examples of α-Sasakian manifolds, with α = 1. If α = 0, M̃ is said to
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be a β-Kenmotsu manifold. Kenmotsu manifolds are particular examples with β = 1.
If both α and β vanish, then M is a cosymplectic manifold.

In particular, from (4) it is easy to see that the following equations hold for a
trans-Sasakian manifold:

(5) ∇̃X ξ = −αφX +β(X −η(X)ξ),

dη = αΦ.

Let now M be a submanifold of an almost contact metric manifold (M̃,φ,ξ,η,g),
tangent to the structure vector field ξ. We will denote also by g the induced metric on
M and, if F is a differentiable function on M̃, we will denote also by F the composition
F ◦ x, where x : M → M̃ is the corresponding immersion. We will write the Gauss and
Weingarten formulas for this immersion as

∇̃XY = ∇XY +σ(X ,Y ),(6)

∇̃XU = −AU X +∇⊥
X U,(7)

for any X ,Y (resp. U) tangent (resp. normal) to M. It is well-known that

(8) g(AU X ,Y ) = g(σ(X ,Y ),U).

If we define

(9) (∇X σ)(Y,Z) = ∇⊥
X σ(Y,Z)−σ(∇XY,Z)−σ(Y,∇X Z),

for any X ,Y,Z tangent to M, then Codazzi’s equation is given by

(10) (R̃(X ,Y )Z)⊥ = (∇X σ)(Y,Z)− (∇Y σ)(X ,Z),

where (R̃(X ,Y )Z)⊥ denotes the normal component of R̃(X ,Y )Z.
For any vector field X tangent to M, we write

φX = T X +NX ,

where T X (resp. NX) is the tangential (resp. normal) component of φX . Similarly, for
any vector field U normal to M, we denote by tU the tangential component of φU , and
it is well-known that

(11) g(NX ,U) = −g(X , tU).

If M̃ is K-contact, from (3) and (6) we have

∇X ξ = −T X ,(12)
σ(X ,ξ) = −NX ,(13)
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for any X on M. Similarly, if M̃ is a trans-Sasakian manifold, if follows from (5) and
(6) that:

∇X ξ = −αT X +β(X −η(X)ξ),(14)
σ(X ,ξ) = −αNX .(15)

The submanifold M is said to be invariant (resp. anti-invariant) if φX is tangent
(resp. normal) to M, for any tangent vector field X , i.e., N ≡ 0 (resp. T ≡ 0). On the
other hand, M is said to be slant if for any x ∈ M and any X ∈ TxM, linearly indepen-
dent on ξ, the angle between φX and TxM is a constant θ ∈ [0,π/2], called the slant
angle of M in M̃ [21]. Invariant and anti-invariant immersions are slant immersions
with slant angle θ = 0 and θ = π/2 respectively. A slant immersion which is neither
invariant nor anti-invariant is called a proper slant immersion. In [9], it was proved
that a submanifold M, tangent to the structure vector field ξ of an almost contact metric
manifold, is θ-slant if and only if T 2 = −cos2 θ(I −η⊗ ξ). Moreover, for any vector
fields X ,Y tangent to such a submanifold, we have:

(16) g(T X ,TY ) = cos2 θ(g(X ,Y )−η(X)η(Y )),

(17) g(NX ,NY ) = sin2 θ(g(X ,Y )−η(X)η(Y )).

If M is a non-anti-invariant θ-slant submanifold (i.e., θ ∈ [0,π/2)), then it was proved
in [10] that (φ,ξ,η,g) is an almost contact metric structure on M, where φ = (secθ)T .
If, in addition, the equation

(18) (∇X T )Y = cos2 θ(g(X ,Y )ξ−η(Y )X)

is satisfied for any X ,Y tangent to M, it was pointed out also in [10] that

(∇X φ)Y = cosθ(g(X ,Y )ξ−η(Y )X),

which means that M is a α-Sasakian manifold, with α = cosθ. Actually, it was shown
in [9] that slant submanifolds satisfying equation (18) play a very important role in
that theory. Slant submanifolds in trans-Sasakian manifolds have been investigated in
[15, 16, 17].

With respect to the behavior of its second fundamental form, a submanifold is
said to be totally geodesic if σ vanishes identically, and it is called totally umbilical if

(19) σ(X ,Y ) = g(X ,Y )H

for any tangent vector fields X ,Y , where H denotes the mean curvature vector. Any
totally geodesic submanifold is totally umbilical, and the converse is true if and only if
H = 0, i.e., if and only if the submanifold is minimal. But there are some other kinds
of submanifolds more interesting in almost contact Riemannian geometry. Hence, a
submanifold M of an almost contact metric manifold (M̃,φ,ξ,η,g) is said to be totally
contact geodesic if

(20) σ(X ,Y ) = η(X)σ(Y,ξ)+η(Y )σ(X ,ξ),
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for any X ,Y tangent to M, and it is called totally contact umbilical if there exists a
normal vector field V such that

(21) σ(X ,Y ) = (g(X ,Y )−η(X)η(Y ))V +η(X)σ(Y,ξ)+η(Y )σ(X ,ξ),

for any X ,Y on M. Once again, any totally contact geodesic submanifold is totally
contact umbilical (with V = 0). If M̃ is K-contact or trans-Sasakian, it is easy to see
that V = ((m + 1)/m)H, where m + 1 is the dimension of M. Therefore, in such two
cases, if M is totally contact umbilical, then it is totally contact geodesic if and only if
it is minimal.

3. Slant submanifolds of a generalized Sasakian-space-form.

In this section we obtain some new examples of generalized Sasakian-space-forms, by
working with a non-anti-invariant θ-slant submanifold M of a generalized Sasakian-
space-form M̃(F1,F2,F3), under certain conditions. We always consider on the sub-
manifold the induced almost contact metric structure (φ,ξ,η,g) described in the previ-
ous section. Of course, the key tool to relate curvature tensors on both the submanifold
and the ambient manifold is Gauss’ equation (2). Actually, it is clear that

R̃i(X ,Y )Z = Ri(X ,Y )Z, i = 1,3,

for any tangent vector fields X ,Y,Z. On the other hand, with respect to R̃2, we have

R̃2(X ,Y,Z,W ) = g(X ,T Z)g(TY,W )−g(Y,T Z)g(T X ,W )+2g(X ,TY )g(T Z,W ),

for any X ,Y,Z,W tangent to M. But, since φ = (secθ)T , the above equation can be
written as

R̃2(X ,Y,Z,W ) = cos2 θR2(X ,Y,Z,W ),

and so Gauss’ equation turns into:

(22) F1R1(X ,Y,Z,W )+ cos2 θF2R2(X ,Y,Z,W )+F3R3(X ,Y,Z,W )
= R(X ,Y,Z,W )+g(σ(X ,Z),σ(Y,W ))−g(σ(X ,W ),σ(Y,Z)).

Therefore, we can obtain the following result:

THEOREM 1. Let M be a θ-slant submanifold of a generalized Sasakian-space-
form M̃(F1,F2,F3), with θ ∈ [0,π/2).

i) If M is totally geodesic, then it is a generalized Sasakian-space-form, with func-
tions f1 = F1, f2 = cos2 θF2, f3 = F3.

ii) If M is totally umbilical, then it is a generalized Sasakian-space-form, with func-
tions f1 = F1 + ||H||2, f2 = cos2 θF2, f3 = F3.
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Proof. Statement i) follows directly from (22), because in this case σ ≡ 0. To prove
statement ii), we just have to take into account that

g(σ(X ,Z),σ(Y,W )) = g(X ,Z)g(Y,W )||H||2,
g(σ(X ,W ),σ(Y,Z)) = g(X ,W )g(Y,Z)||H||2,

for any X ,Y,Z,W tangent to M, and so

(23) g(σ(X ,Z),σ(Y,W ))−g(σ(X ,W ),σ(Y,Z)) = −||H||2R1(X ,Y,Z,W ).

Therefore, the aimed writing (1) for R is obtained from (22) and (23).

Of course, a particular case in Theorem 1 is that of invariant submanifolds (θ =
0). In such a case, φ = φ so statement i) is more than expected. Moreover, if M̃
is K-contact or (α,β) trans-Sasakian with α ̸= 0 at any point of M, then it follows
from either (13) or (15) and the totally geodesic condition that N ≡ 0, which means
that the invariant case is the only one under such two conditions. Nevertheless, if
α = 0, we can find nice examples of proper slant submanifolds satisfying statement
i) of Theorem 1. To show them, let us consider a function f > 0 on R and a θ-slant
submanifold M2 of a complex-space-form M̃2(c), where θ ∈ [0,π/2). It is clear that
R× f M2 is a submanifold isometrically immersed in R× f M̃2, and it was proved in [1]
that this manifold can be endowed with a natural structure of β-Kenmotsu generalized
Sasakian-space-form, with β = f ′/ f and functions

(24) F1 =
c−4 f ′2

4 f 2 , F2 =
c

4 f 2 , F3 =
c−4 f ′2

4 f 2 +
f ′′

f
.

Moreover, it is easy to see that R× f M2 is also a θ-slant submanifold, and it follows
from [14, Theorem 1] that it is totally geodesic in R× f M̃2 if M2 is a totally geodesic
submanifold of M̃2. Therefore, by using [13, Example 2.1] we have:

EXAMPLE 1. For any differentiable function f > 0 on R and any θ ∈ [0,π/2),

x(t,u,v) = (t,ucosθ,usinθ,v,0)

defines a 3-dimensional, totally geodesic, θ-slant submanifold M in R× f C2. Thus, by
virtue of Theorem 1 and (24), we obtain that M is a generalized Sasakian-space-form,
with functions:

f1 = − f ′2

f 2 , f2 = 0, f3 = − f ′2

f 2 +
f ′′

f
.

The above example can be easily extended to some others with higher dimen-
sions.

Concerning statement ii) of Theorem 1, let us first point out that, if M̃ is K-
contact or trans-Sasakian, then it follows from either (13) or (15) and (19) that M
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should be minimal, and so totally geodesic. On the other hand, it was proved in [3]
that, if M is a connected and totally umbilical submanifold, and F2 ̸= 0 at any point of
M, then M is also an invariant manifold. In such a case, statement ii) of Theorem 1 was
already obtained in [3, Theorem 6.2].

With respect to totally contact geodesic submanifolds, we have to impose the
additional condition of being trans-Sasakian to the ambient manifold in order to obtain
a suitable writing for R:

THEOREM 2. Let M be a θ-slant submanifold of an (α,β) trans-Sasakian gen-
eralized Sasakian-space-form M̃(F1,F2,F3), with θ ∈ [0,π/2). If M is totally contact
geodesic, then it is a generalized Sasakian-space-form, with functions

f1 = F1, f2 = cos2 θF2, f3 = F3 +α2 sin2 θ.

Proof. As before, we start at (22). Now, if M is totally contact geodesic, then it follows
from (15) and (20) that

(25) σ(X ,Y ) = −αη(X)NY −αη(Y )NX ,

for any X ,Y tangent to M. Therefore, a direct calculation from (17) and (25) gives:

(26) g(σ(X ,Z),σ(Y,W ))−g(σ(X ,W ),σ(Y,Z)) = −α2 sin2 θR3(X ,Y,Z,W ),

for any X ,Y,Z,W tangent to M. The result is then obtained by putting (26) in (22).

In particular, if the ambient manifold M̃ is a Sasakian-space-form with constant
φ–sectional curvature c, the functions in Theorem 2 would be given by

(27) f1 =
c+3

4
, f2 = cos2 θc−1

4
, f3 =

c−1
4

+ sin2 θ,

taking into account that such a manifold is Sasakian (i.e., α = 1 and β = 0).
Now again, there are nice examples of proper slant submanifolds satisfying The-

orem 2. To show some of them, let (R2n+1,φ,ξ,η,g) denote the manifold R2n+1 with
its usual Sasakian structure given by

η = 1/2(dz−
n

∑
i=1

yidxi), ξ = 2
∂
∂z

,

g = η⊗η+1/4

(
n

∑
i=1

(dxi ⊗dxi +dyi ⊗dyi)

)
,

φ(
n

∑
i=1

(Xi
∂

∂xi +Yi
∂

∂yi )+Z
∂
∂z

) =
n

∑
i=1

(Yi
∂

∂xi −Xi
∂

∂yi )+
n

∑
i=1

Yiyi ∂
∂z

,
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where (xi,yi,z), i = 1 . . .n are the cartesian coordinates. It is well-known that, with this
structure, R2n+1 is a Sasakian-space-form with constant φ–sectional curvature −3 (see
for example [8]). Then, by virtue of Theorem 2 and (27), any totally contact geodesic
θ-slant (θ ∈ [0,π/2)) submanifold of R2n+1(−3) is a generalized Sasakian-space-form
with functions:

(28) f1 = 0, f2 = f3 = −cos2 θ.

Actually, we do have examples of such a submanifold:

EXAMPLE 2. For any θ ∈ [0,π/2),

x(u,v, t) = 2(ucosθ,usinθ,v,0, t)

defines a 3-dimensional minimal θ-slant submanifold in R5(−3) [9]. Moreover, it was
proved in [11] that all these submanifolds are totally contact geodesic.

EXAMPLE 3. For any θ ∈ [0,π/2),

x(u,v,w,s, t) = 2(u,0,w,0,vcosθ,vsinθ,scosθ,ssinθ, t)

defines a 5-dimensional minimal θ-slant submanifold in R9(−3) [9]. As in Example 2,
it can be checked that all these submanifolds are also totally contact geodesic.

We can now ask what is the structure of new generalized Sasakian-space-forms
given by above examples. In fact, it was proved in [9] that all of them satisfy equation
(18) and so, as we pointed out in the preliminaries section, they are α-Sasakian mani-
folds, with α = cosθ. In this way, we can obtain examples of α-Sasakian generalized
Sasakian-space-forms for any constant value 0 < α ≤ 1. Let us mention how functions
f1, f2, f3 given by (28) satisfy Theorem 4.2 of [2], saying that if M( f1, f2, f3) is a con-
nected α-Sasakian generalized Sasakian-space-form, with dimension greater than or
equal to 5 (which is the case of submanifolds given in Example 3) then, f1, f2, f3 are
constant functions such that f1 −α2 = f2 = f3.

On the other hand, submanifolds given in Example 1 also satisfy Theorem 2,
because it follows from (15) and (20) that a submanifold of a β-Kenmotsu manifold is
totally contact geodesic if and only if it is totally geodesic.

Moreover, with the techniques we have been using in this paper, we can also
obtain a new obstruction result for totally contact geodesic slant submanifolds:

COROLLARY 1. Let M be a θ-slant submanifold of a Sasakian-space-form
M̃(c), with θ ∈ [0,π/2). If M is of dimension greater than or equal to 5, it satisfies
(18) and it is totally contact geodesic, then M is invariant or c = −3.

Proof. Under these conditions, it follows from Theorem 2 and the above remarks
that M is a α-Sasakian generalized Sasakian-space-form with α = cosθ and functions
f1, f2, f3 satisfying (27). But, by applying Theorem 4.2 of [2], we have f2 = f3, which
implies that sin2 θ(c+3)/4 = 0, and so θ = 0 or c = −3.
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Let us point out that the condition of M satisfying (18) is not strange at all.
Actually, it was proved in [9] that any 3-dimensional proper slant submanifold of a
K-contact manifold does. On the other hand, the result of M̃(c) being a Sasakian-
space-form with c = −3 means that, if it is complete and simply connected, it must be
R2n+1 with its usual Sasakian structure (by virtue of the well-known classic result of
S. Tanno given in [24]).

Now, in order to study what happens with totally contact umbilical θ-slant sub-
manifolds, we state the following lemma:

LEMMA 1. Let M be an (m + 1)-dimensional θ-slant submanifold of an (α,β)
trans-Sasakian generalized Sasakian-space-form M̃(F1,F2,F3), with θ ∈ [0,π/2). If M
is totally contact umbilical, then

(29)

R(X ,Y )Z = (F1 + ||V ||2)R1(X ,Y )Z
+cos2 θF2R2(X ,Y )Z
+(F3 +α2 sin2 θ+ ||V ||2)R3(X ,Y )Z
+α{η(X)g(Z, tV )Y −η(Y )g(Z, tV )X
+g(X ,Z)η(Y )tV −g(Y,Z)η(X)tV
+g(X , tV )η(Z)Y −g(Y, tV )η(Z)X
+g(X ,Z)g(Y, tV )ξ−g(Y,Z)g(X , tV )ξ},

for any vector fields X ,Y,Z tangent to M, where V = ((m+1)/m)H.

Proof. It follows from (15) and (21) that

(30) σ(X ,Y ) = (g(X ,Y )−η(X)η(Y ))V −αη(X)NY −αη(Y )NX ,

for any X ,Y tangent to M. Thus, equation (29) follows from (11), (17), (22) and (30),
through a quite long computation.

Lemma 1 shows that, in general, a totally contact umbilical slant submanifold
does not inherit the aimed structure from the ambient manifold. Nevertheless, with
some additional conditions, it does:

THEOREM 3. Let M be an (m+1)-dimensional θ-slant submanifold of an (α,β)
trans-Sasakian generalized Sasakian-space-form M̃(F1,F2,F3), with θ ∈ [0,π/2). Let
us suppose that M is totally contact umbilical and at least one of the following condi-
tions holds:

i) α = 0, ii) M is minimal, iii) M is invariant.

Then, M is a generalized Sasakian-space-form, with functions

f1 = F1 +((m+1)2/m2) ||H||2, f2 = cos2 θF2, f3 = F3 +α2 sin2 θ+((m+1)2/m2) ||H||2.
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Proof. It is clear that, in both cases i) and ii), the last terms of (29) vanish. It also
happens in case iii), because M being invariant implies t ≡ 0.

Let us now see what can we say about conditions i)− iii) of the above theorem.
Firstly, if condition i) holds, then we have the following direct corollary:

COROLLARY 2. Let M be an (m + 1)-dimensional totally contact umbilical
θ-slant submanifold of a β-Kenmotsu generalized Sasakian-space-form M̃(F1,F2,F3),
with θ ∈ [0,π/2). Then, M is a generalized Sasakian-space-form, with functions

f1 = F1 +((m+1)2/m2) ||H||2, f2 = cos2 θF2, f3 = F3 +((m+1)2/m2) ||H||2.

Secondly, if condition ii) of Theorem 3 holds, then M is a totally contact geodesic
submanifold, and so the corresponding result was already obtained in Theorem 2.
Thirdly, with some additional conditions, we can see that condition iii) holds. We
obtain this result as a particular case of the following theorem:

THEOREM 4. Let M be a connected, totally contact umbilical submanifold,
tangent to the structure vector field of an (α,β) trans-Sasakian generalized Sasakian-
space-form M̃(F1,F2,F3). If dimM > 3 and

(31) F2 ̸= −α2

at any point of M, then M is either invariant or anti-invariant.

Proof. A direct computation from (9) and (21) gives

(32)

(∇X σ)(Y,Z) = (g(Y,Z)−η(Y )η(Z))∇⊥
X V

+g(Y,∇X ξ)σ(Z,ξ)+g(Z,∇X ξ)σ(Y,ξ)
−g(Y,∇X ξ)η(Z)V −g(Z,∇X ξ)η(Y )V
+η(Y )σ(Z,∇X ξ)+η(Z)σ(Y,∇X ξ)
+η(Y )(∇X σ)(Z,ξ)+η(Z)(∇X σ)(Y,ξ),

for any vector fields X ,Y,Z tangent to M. Thus, by using (14), (15) and (32), Codazzi’s
equation can be written as

(33)

(R̃(X ,Y )Z)⊥ = g(Y,Z)∇⊥
X V −g(X ,Z)∇⊥

Y V
+α2g(Z,T X)NY −α2g(Z,TY )NX
−αβg(X ,Z)NY +αβg(Y,Z)NX
−2α2g(X ,TY )NZ,

for any tangent X ,Y,Z, orthogonal to ξ. Since dimM > 3, given a tangent vector field X ,
orthogonal to ξ, we can choose an unit tangent vector field Y such that it is orthogonal
to X , φX and ξ. Then, for such a choice, equation (33) reduces to

(34) (R̃(X ,Y )Y )⊥ = ∇⊥
X V +αβNX .
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But, as M̃ is a generalized Sasakian-space-form,

(35) (R̃(X ,Y )Y )⊥ = F2(R̃2(X ,Y )Y )⊥ = 0.

Therefore, from (34) and (35) we deduce that

(36) ∇⊥
X V = −αβNX ,

for any X orthogonal to ξ, and from (33) and (36) it follows that

(37)
(R̃(X ,Y )Z)⊥ = +α2g(Z,T X)NY −α2g(Z,TY )NX

−2α2g(X ,TY )NZ
= −α2(R̃2(X ,Y )Z)⊥,

for any tangent X ,Y,Z, orthogonal to ξ. But, once again, as M̃ is a generalized Sasakian-
space-form,

(38) (R̃(X ,Y )Z)⊥ = F2(R̃2(X ,Y )Z)⊥.

Thus, from (37) and (38) we obtain that

(F2 +α2)(R̃2(X ,Y )Z)⊥ = 0,

which gives that (R̃2(X ,Y )Z)⊥ = 0, for any tangent X ,Y,Z orthogonal to ξ, since we
are working under the assumption of F2 ̸=−α2 at any point of M. In particular, for any
X ,Y orthogonal to ξ, we have:

(39) (R̃2(X ,Y )X)⊥ = 3g(X ,TY )NX = 0.

Since M is connected, (39) implies that either T ≡ 0 (i.e., M is anti-invariant) or N ≡ 0
(i.e., M is invariant) and the proof concludes.

If M̃ has dimension greater than or equal to 5 (which it what happens if M is a
slant submanifold with dimension greater than 3), then it was proved by J. C. Marrero
in [22] that it is either an α-Sasakian or a β-Kenmotsu manifold. In the first case, it
was proved in [2] that α,F1,F2,F3 are constant functions such that F1 −α2 = F2 = F3.
Therefore, condition (31) is equivalent to F1 ̸= 0. Thus, Theorem 4 is a generalization
to trans-Sasakian manifolds of a classical result of I. Ishihara and M. Kon, given in
[19] for a Sasakian-space-form with constant φ-sectional curvature c ̸= −3, because in
such a space F1 = (c + 3)/4. In the second case, i.e., if M̃ is a β-Kenmotsu manifold,
condition (31) just means that F2 does not vanish on M. Hence, Theorem 4 also implies
that, if we want to look for non-invariant slant submanifolds satisfying Corollary 2, then
we should ask F2 to vanish. We can obtain such a β-Kenmotsu generalized Sasakian-
space-form by considering a warped product R× f Cn.

For 3-dimensional slant submanifolds in a 5-dimensional ambient manifold, we
have that at least one of conditions ii) and iii) of Theorem 3 holds, with no assumptions
about functions F1,F2,F3:
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THEOREM 5. Let M be a connected 3-dimensional totally contact umbilical
θ-slant submanifold of a 5-dimensional (α,β) trans-Sasakian manifold M̃, with θ ∈
[0,π/2). Then M is minimal or invariant.

Proof. Let M be a 3-dimensional θ-slant submanifold of an (α,β) trans-Sasakian man-
ifold. Then, it was proved in [17] that

(40) ANXY = ANY X +αsin2 θ(η(X)Y −η(Y )X),

for any vector fields X ,Y tangent to M, which means that

(41) ANXY = ANY X

for any tangent X ,Y , orthogonal to ξ. If, in addition, M is totally contact umbilical, a
direct computation by using (8), (15) and (21) gives

(42) ANXY = g(NX ,V )Y −αg(NX ,NY )ξ.

Thus, from (41) and (42), we obtain that

g(NX ,V )Y = g(NY,V )X ,

which means that

(43) g(NX ,V ) = 0,

for any tangent vector field X , orthogonal to ξ. But, as dimM̃ = 5, we know that, if M
is not invariant, then T⊥

p (M) is spanned at any point p ∈ M by

{(NX)p| X is orthogonal to ξ}.

Therefore, equation (43) implies that, if M is not invariant, then V ≡ 0 and so it is
minimal.

Theorem 5 can be extended to an (m+1)-dimensional totally contact umbilical
θ-slant submanifold M of an (2m + 1)-dimensional (α,β) trans-Sasakian generalized
Sasakian-space-form, such that

(44) (∇X T )Y = αcos2 θ(g(X ,Y )ξ−η(Y )X)+β(g(T X ,Y )ξ−η(Y )T X),

for any vector fields X ,Y tangent to M, because it was proved in [17] that equation
(44) is equivalent to (40), and so the above proof works. Actually, slant submanifolds
satisfying (44) play a similar role in trans-Sasakian manifolds to those satisfying (18)
in Sasakian ones.

Finally, we can give more information for a totally contact umbilical anti-invariant
submanifold M, tangent to the structure vector field of an α-Sasakian generalized
Sasakian-space-form M̃(F1,F2,F3). From (14) and (32) we have

(45) (∇X σ)(Y,Z) = (g(Y,Z)−η(Y )η(Z))∇⊥
X V

+η(Y )(∇X σ)(Z,ξ)+η(Z)(∇X σ)(Y,ξ),
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for any vector fields X ,Y,Z tangent to M. Assume that M has parallel second funda-
mental form. Then from (45) we have

(g(Y,Z)−η(Y )η(Z))∇⊥
X V = 0,

which gives us ∇⊥
X V = 0. Hence M has parallel mean curvature vector and we can state

the following result:

THEOREM 6. Let M be a totally contact umbilical anti-invariant submanifold,
tangent to the structure vector field of an α-Sasakian generalized Sasakian-space-form
M̃(F1,F2,F3). If M has parallel second fundamental form, then the mean curvature
vector of M is parallel.
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