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Abstract. A procedure is described looking for partial Hadamard matrices, as cliques of a

particular subgraph Gt of Ito’s Hadamard Graph ∆(4t) [9]. The key idea is translating the

problem of extending a given clique Cm to a larger clique of size m + 1 in Gt, into a constraint

satisfaction problem, and look for a solution to this problem by means of Minion [6]. Iteration

of this process usually ends with a large partial Hadamard matrix.
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1 Introduction

Hadamard matrices consist in {1,−1}-square matrices whose rows are pairwise orthogo-
nal. This nice property makes Hadamard matrices being objects for multiple applications
(see [8] and the references therein, for instance).

It may be straightforwardly checked that such a matrix must be of size 1, 2 or a
multiple of 4. The Hadamard Conjecture claims that a matrix of this type exists for
every size multiple of 4. Many attempts have been devoted to prove this conjecture
(both from a constructive way and also from a theoretical point of view in terms of
asymptotic results of existence),but it remains unsolved so far.

From the practical point of view, taking into account possible applications, sometimes
there is no need to consider a full Hadamard matrix. In fact, it suffices to meet a large
amount of pairwise orthogonal rows. This has originated the interest in constructing
partial Hadamard matrices PH , that is, m × 4t (1,−1)-matrices PH satisfying PH ·
PHT = 4tIm, for m ≤ 4t. We call m the depth of PH .

Although partial Hadamard matrices are as useful as Hadamard matrices themselves
with regards to practical purposes, unfortunately it seems that their explicit construction
is equally hard as well.

De Launey proved in [3] that partial Hadamard matrices of size about a third of a
4t× 4t Hadamard matrix exist for large t. The proof gives a polynomial time algorithm
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in t for constructing such a matrix. Furthermore, De Launey and Gordon proved in [4]
that about a half of a Hadamard matrix 4t × 4t exists for large t, assuming that the
Riemann hypothesis is true. The idea is decomposing 2t − i as the sum of i odd prime
numbers pi, 2 ≤ i ≤ 3, so that the juxtaposition of the corresponding Paley conference
matrices provides a partial Hadamard matrix of depth 2 min{pi} + 2. Unfortunately,
none of these methods can provide a partial Hadamard matrix of depth greater than half
of a full Hadamard matrix.

The aim of this work is to describe a procedure for constructing partial Hadamard
matrices in terms of cliques of a certain subgraph Gt of Ito’s Hadamard Graph ∆(4t)
[9], induced by the (1,−1)-vectors simultaneously orthogonal to the three first rows of a
normalized Hadamard matrix,




1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1
1 . . . 1 1 . . . 1 −1 . . . −1 −1 . . . −1
1 . . . 1 −1 . . . −1 1 . . . 1 −1 . . . −1

. . . . . . . . . . . .


 .

It may be straightforwardly checked that the vertices of Gt consist in (1,−1)-vectors
of length 4t where the 2t negative entries are distributed so that exactly k, t−k, t−k and k
negative entries occur respectively among the ranges [1, . . . , t], [t+1, . . . , 2t], [2t+1, . . . , 3t]
and [3t+1, . . . 4t], for some 0 ≤ k ≤ t. In turn, the set of vertices in Gt may be classified
attending to the number k of negative entries which appear in positions 1 through t,
from which the notion of k-vertex naturally follows.

A maximum clique is a clique with the maximum cardinality (which is called the
maximum clique number). This notion is different from that of maximal clique, which
refers to a clique which is not a proper subset of any other clique. Thus maximal cliques
need not be maximum ones, though the converse is always true. Concerning cliques in
Gt, this comes to say that a partial Hadamard matrix does not need to be a submatrix
of a proper Hadamard matrix.

Given a graph, the maximum clique problem (MCP) is to find a maximum clique,
and it is NP-complete [2]. Unfortunately, there is no polynomial-time algorithm for
approximating the maximum clique within a factor of n1−ǫ unless P=NP [7], where n is
the number of the vertices of the graph. Moreover, there is no polynomial-time algorithm

approximating the clique number within a factor of
n

(logn)1−ǫ
unless NP=ZPP [10].

Anyway, our purpose here is to design an algorithm for constructing sufficiently large
cliques in Gt.

To this end, we firstly translate the problem of extending a given clique Cm to a
larger clique of size m + 1 in Gt, into a Constraint Satisfaction Problem [5] (CSP in
brief, hereafter), and look for a solution to this problem by means of Minion [6], one of
the fastest and most scalable constraint solvers using the “model and run” methodology.
Starting from any single vertex (no matter which it is), iteration of this CSP ends in a
large clique in Gt, providing a large partial Hadamard matrix in turn.

The explicit formulation of this CSP relays on a deeper knowledge of the properties of
Gt. In particular, attending to the definition of Gt, it is straightforward to derive that two
given vectors are orthogonal if and only if they share precisely 2t entries. Furthermore,
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fixed a k-vector v, there exist s-vectors orthogonal to v if and only if s ∈ [⌈ t
2⌉ − k, ⌊ t

2⌋].
Surprisingly, there is experimental evidence that most of normalized full Hadamard ma-
trices give row vectors for which s is equal either to t−1

2 or t−3
2 in all cases. We impose

this restriction in order to state our CSP for extending a given clique Cm in Gt.

2 The Constraint Satisfaction Problem on Hadamard
cliques

We have stated a CSP specifically designed for solving the problem of extending a given
clique Cm to a larger clique of size m+ 1 in Gt.

The procedure consists in search for a new k-vertex x = (x1, . . . , x4t), so that the
following constraints are simultaneously satisfied:

(C1) k ∈ { t−3
2 , t−1

2 }.

(C2) The number of −1s in the ranges (x1, . . . , xt), (xt+1, . . . , x2t), (x2t+1, . . . , x3t) and
(x3t+1, . . . , x4t) are k, t− k, t− k and k, respectively.

(C3) The number of coincidences of x with each of the vectors already in Cm is 2t.

In terms of the language and tools provided by Minion, (C1) consists in declaring a
discrete variable neg admitting two possible values; the constraints (C2) translate as con-
straints of the type occurrence([C[i, ]],1,neg); and the constraints (C3) translate as
constraints of the type occurrence([orto[i, ]],1,2t) and reify(element(C[i, ],k,

xk),orto[i,k]), for a boolean matrix orto. Iteration of this process usually ends with
a large partial Hadamard matrix, incomparably faster than any other method known so
far by the authors. Some examples will be provided in the talk, since they cannot be
included in this note for obvious space limitation reasons.

It is remarkable that the method described here may be straightforwardly adapted
to fit to analogous CSPs involving similar graph structures, and opens a door to many
other interesting and potential applications.
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A., Searching for partial Hadamard matrices. arXiv:1201.4021 [math.CO], (2012).

[2] Bomze I.M., Budinich M., Paradalos P.M., and Pelillo M., The maximum clique
problem. Handbook of Combinatorial Optimization, D.Z. Du and P.M. Paradalos
Eds. Norwell, MA: Kluwer, vol. 4 (1999).

[3] de Launey W., On the assymptotic existence of partial complex Hadamard matrices
and related combinatorial objects. Discrete Applied Mathematics 102, 37–45, (2000).

[4] de Launey W., Gordon D.M., A comment on the Hadamard conjecture. Journal of
Combinatorial Theory, Series A 95 (1), 180–184, (2001).



20

[5] Dechter R., Constraint Processing. Morgan Kaufmann, 2003.

[6] Gent I.P., Jefferson C., Miguel I., Minion: a fast scalable constraint solver. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, pp. 98–102. IOS,
Amsterdam (2006).

[7] Hastad J., Clique is hard to approximate within n1−ǫ. Proc. 37th Annu. Symp.
Found. Comput. Sci., Burlington, 627–636, (1996).

[8] Horadam K.J., Hadamard matrices and their applications. Princeton University
Press, 2007.

[9] Ito N., Hadamard Graphs I. Graphs Combin. 1 (1), 57–64, (1985).

[10] Khot S., Improved inapproximability results for maxclique, chromatic number and
approximate graph coloring. Proceedings of 42nd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), 600–609 (2001).




