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1 The 3-dimensional planar assignment problem and the number

of Latin squares related to an autotopism∗.

R. M. Falcón J. Mart́ın-Morales

Abstract

There exists a bijection between the set of Latin squares of order n and the set of
feasible solutions of the 3-dimensional planar assignment problem (3PAPn). In this
paper, we prove that, given a Latin square isotopism Θ, we can add some linear con-
straints to the 3PAPn in order to obtain a 1− 1 correspondence between the new set of
feasible solutions and the set of Latin squares of order n having Θ in their autotopism
group. Moreover, we use Gröbner bases in order to describe an algorithm that allows
one to obtain the cardinal of both sets.

Introduction

A Latin square of order n is an n × n array with elements chosen from a set of n distinct
symbols (in this paper, it will be the set [n] = {1, 2, ..., n}) such that each symbol occurs
precisely once in each row and each column. The set of Latin squares of order n is denoted
by LS(n). A partial Latin square of order n, is a n × n array with elements chosen from
a set of n symbols, such that each symbol occurs at most once in each row and in each
column. The set of partial Latin squares of order n is denoted by PLS(n).

The permutation group on [n] is denoted by Sn. Every permutation δ ∈ Sn can be
uniquely written as a composition of nδ pairwise disjoint cycles, δ = Cδ

1 ◦C
δ
2 ◦ ...◦C

δ
nδ
, where

for all i ∈ [nδ], one has Cδ
i =

(

cδi,1 cδi,2 ... cδ
i, λδ

i

)

, with cδi,1 = minj{c
δ
i,j}. The cycle structure

of δ is the sequence lδ = (lδ1, l
δ
2, ..., l

δ
n), where l

δ
i is the number of cycles of length i in δ, for all

i ∈ [n]. Thus, lδ1 is the cardinal of the set of fixed points of δ, Fix(δ) = {i ∈ [n] | δ(i) = i}.
An isotopism of a Latin square L ∈ LS(n) is a triple Θ = (α, β, γ) ∈ In = Sn × Sn × Sn.
Therefore, α, β and γ are permutations of rows, columns and symbols of L, respectively.
The cycle structure of Θ is the triple (lα, lβ, lγ).

An isotopism which maps L to itself is an autotopism. The possible cycle structures of
the set of non-trivial autotopisms of Latin squares of order up to 11 were obtained in [3].
The set of all possible autotopisms of order n is denoted by An. The stabilizer subgroup
of L in An is its autotopism group A(L). Given Θ ∈ An, the set of all Latin squares L
such that Θ ∈ A(L) is denoted by LS(Θ) and the cardinality of LS(Θ) is denoted by
∆(Θ). Specifically, if Θ1 and Θ2 are two autotopisms with the same cycle structure, then
∆(Θ1) = ∆(Θ2). Given Θ ∈ An and P ∈ PLS(n), the number cP = ∆(Θ)/|LSP (Θ)| is
called the P -coefficient of symmetry of Θ, where LSP (Θ) = {L ∈ LS(Θ) | P ⊆ L}.

∗Official printed version avalaible in Proceedings of XI Spanish Meeting on Computational Algebra and
Applications EACA 2008 (2008), pp. 89-92.
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Gröbner bases were used in [4] to describe an algorithm that allows one to obtain the
number ∆(Θ) in a computational way. This algorithm was implemented in Singular [7] for
Latin squares of order up to 7 [5]. However, after applying it to upper orders, the authors
have seen that, in order to improve the time of computation, it is convenient to combine
Gröbner bases with some combinatorial tools. In this paper we study, as a possible tool,
the 1-1 correspondence between LS(n) and the set of feasible solutions of the 3-dimensional
planar assignment problem (3PAPn) [2]:

min
∑

i∈I,j∈J,k∈K

wijk · xijk , s.t.



















∑

i∈I xijk = 1, ∀j ∈ J, k ∈ K.
∑

j∈J xijk = 1, ∀i ∈ I, k ∈ K.
∑

k∈K xijk = 1, ∀i ∈ I, j ∈ J.

xijk ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ K.

(1)

where wijk are real weights and I, J,K are three disjoint n-sets. Thus, any feasible solution
of the 3PAPn can be considered as a Latin square L = (li,j) ∈ LS(n), by taking I = J =

K = [n] and xijk =

{

1, if li,j = k,

0, otherwise.
. The reciprocal is analogous.

1 Constraints related to an autotopism of a Latin square

Given a autotopism Θ = (α, β, γ) ∈ An, let (1)Θ be the set of constraints obtained by
adding to (1) the n3 constraints xijk = xα(i)β(j)γ(k), ∀i ∈ I, j ∈ J, k ∈ K.

Theorem 1.1. There exists a bijection between LS(Θ) and the set of feasible solutions

related to a combinatorial optimization problem having (1)Θ as the set of constraints. �

(1)Θ is a system of 3n2 + 2n3 equations of degrees 1 and 2, in n3 variables, which can
be solved by using Gröbner basis. Thus, if we define F (x) = x · (x− 1), then the following
result is verified:

Corollary 1.2. LS(Θ) corresponds to the set of zeros of the ideal I = 〈
∑

i∈[n] xijk − 1 |
j, k ∈ [n]〉 + 〈

∑

j∈[n] xijk − 1 | i, k ∈ [n]〉 + 〈
∑

k∈[n] xijk − 1 | i, j ∈ [n]〉 + 〈F (xijk) | i, j, k ∈
[n]〉 + 〈xijk − xα(i)β(j)γ(k) | i, j, k ∈ [n]〉 ⊆ Q[x] = Q[x111, ..., xnnn]. �

The symmetrical structure of Θ can be used to reduce the number of variables of the

previous system. To see it, let us consider SΘ =

{

(i, j) | i ∈ Sα, j ∈

{

[n], if i 6∈ Fix(α),

Sβ, if i ∈ Fix(α).

}

as a set of (nα − l1α) · n+ l1α · nβ multi-indices, where Sα = {cαi,1 | i ∈ [nα]} and Sβ = {cβj,1 |
j ∈ [nβ]}.

Proposition 1.3 (Falcón and Mart́ın-Morales [4]). Let L = (li,j) ∈ LS(Θ) be such that all

the triples of the Latin subrectangle RL = {(i, j, li,j) | (i, j) ∈ SΘ} of L are known. Then,

all the triples of L are known. �

Let ϕΘ be a map in the set of n3 variables x = {x111, ..., xnnn} such that ϕΘ(xijk) =
{

xijk, if (i, j) ∈ SΘ,

xαm(i)βm(j)γm(k), otherwise.
, where m = min{l ∈ [n] | (αl(i), βl(j)) ∈ SΘ}.

Theorem 1.4. LS(Θ) corresponds to the set of zeros of the ideal I ′ = 〈
∑

i∈[n] ϕΘ(xijk)−1 |
j, k ∈ [n]〉 + 〈

∑

j∈[n] ϕΘ(xijk)− 1 | i, k ∈ [n]〉 + 〈
∑

k∈[n] ϕΘ(xijk) − 1 | i, j ∈ [n]〉 + 〈xijk |
α(i) = i, β(j) = j, γ(k) 6= k〉 + 〈F (xijk) | (i, j) ∈ SΘ, k ∈ [n]〉 = 〈ϕΘ(I)〉 ⊆ Q[ϕΘ(x)]. �
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Now, let P = (pi,j) ∈ PLS(n) be such that pi,j = ∅, for all (i, j) 6∈ SΘ and let cP be
the P -coefficient of symmetry of Θ. Thus, we know that ∆(Θ) = cP · |LSP (Θ)| and we can
calculate |LSP (Θ)| starting from the set of solutions of an algebraic system of polynomial
equations associated with Θ and P . Specifically, we obtain the following algorithm:

Algorithm 1.5 (Computation of ∆(Θ)).
Input: Θ = (α, β, γ) ∈ In;

nα, the number of cycles of α;
P ∈ PLS(n) such that pi,j = ∅, for all (i, j) 6∈ SΘ;
cP , the P -coefficient of symmetry of Θ.

Output: ∆(Θ), the number of Latin squares having Θ as an autotopism;

I ′ := 〈
∑

i∈[n] ϕΘ(xijk)−1 | j, k ∈ [n]〉 + 〈
∑

j∈[n] ϕΘ(xijk)−1 | i, k ∈ [n]〉 + 〈
∑

k∈[n] ϕΘ(xijk)−1 |

i, j ∈ [n]〉 + 〈F (xijk) | (i, j) ∈ SΘ, k ∈ [n]〉;

I ′ := I ′ + 〈xijl − δlpi,j | pi,j 6= ∅, l ∈ [n] 〉 + 〈xilpi,j − δlj | pi,j 6= ∅, l ∈ [n] 〉 + 〈xljpi,j − δli |
pi,j 6= ∅, l ∈ [n] 〉 ; ⊲ δ is Kronecker’s delta.
G := Gröbner basis of I ′ with respect to any term ordering;
Delta := dimQ(Q[ϕΘ(x)]/I

′); ⊲ Delta is the cardinality of V (I ′)
RETURN cP · Delta;

2 Number of Latin squares related to A8 and A9.

We have implemented Algorithm 1.5 in a Singular procedure [6] which improves running
times of [4]. Moreover, we have obtained the number ∆(Θ) corresponding to autotopisms
of A8 and A9, as we can see in Table 1. The timing information, measured in seconds,
has been taken from an Intel Core 2 Duo Processor T5500, 1.66 GHz with Windows Vista

operating system.
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[4] Falcón, R. M. and Mart́ın-Morales, J. Gröbner bases and the number of Latin squares related to

autotopisms of order ≤ 7. Journal of Symbolic Computation 42 (2007), pp. 1142 - 1154.

[5] http://www.personal.us.es/raufalgan/LS/latinSquare.lib

[6] http://www.personal.us.es/raufalgan/LS/3PAPlatinSquare.lib

[7] Greuel, G.-M., Pfister, G. and Schönemann, H., 2005. Singular 3.0. A Computer Algebra

System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserlautern.

http://www.singular.uni-kl.de.

3

http://arxiv.org/abs/0709.2973
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/3PAPlatinSquare.lib
http://www.singular.uni-kl.de


n lα = lβ lγ ∆
r.t.
(1.5)

8

(0,0,0,2,0,0,0,0) 1152 16
(0,2,0,1,0,0,0,0) 1408 12
(0,4,0,0,0,0,0,0) 3456 10
(2,1,0,1,0,0,0,0) 1408 14

(0,0,0,0,0,0,0,1) (2,3,0,0,0,0,0,0) 3456 13
(4,0,0,1,0,0,0,0) 3456 15
(4,2,0,0,0,0,0,0) 8064 21
(6,1,0,0,0,0,0,0) 17280 34
(8,0,0,0,0,0,0,0) 40320 12
(0,0,0,2,0,0,0,0) 106496 945
(0,2,0,1,0,0,0,0) 188416 1163
(0,4,0,0,0,0,0,0) 811008 255
(2,1,0,1,0,0,0,0) 253952 731

(0,0,0,2,0,0,0,0) (2,3,0,0,0,0,0,0) 1007616 548
(4,0,0,1,0,0,0,0) 712704 600
(4,2,0,0,0,0,0,0) 2727936 660
(6,1,0,0,0,0,0,0) 7741440 73
(8,0,0,0,0,0,0,0) 23224320 1

(0,1,0,0,0,1,0,0) (2,0,0,0,0,1,0,0) 3456 5
(2,0,2,0,0,0,0,0) 19008 3

(1,0,0,0,0,0,1,0) (1,0,0,0,0,0,1,0) 931 76
(0,2,0,1,0,0,0,0) 16384 3

(0,2,0,1,0,0,0,0) (2,1,0,1,0,0,0,0) 16384 3
(4,0,0,1,0,0,0,0) 147456 3

(2,0,0,0,0,1,0,0) (2,0,0,0,0,1,0,0) 19584 72
(0,4,0,0,0,0,0,0) (6,1,0,0,0,0,0,0) 198747095040 6515

(8,0,0,0,0,0,0,0) 828396011520 9027
(2,1,0,1,0,0,0,0) (2,1,0,1,0,0,0,0) 8192 1
(3,0,0,0,1,0,0,0) (3,0,0,0,1,0,0,0) 388800 80
(4,0,0,1,0,0,0,0) (4,0,0,1,0,0,0,0) 7962624 2
(4,2,0,0,0,0,0,0) (4,2,0,0,0,0,0,0) 509607936 10

9

(0,0,0,0,0,0,0,0,1) 2025 50
(0,0,3,0,0,0,0,0,0) 7128 33

(0,0,0,0,0,0,0,0,1) (3,0,2,0,0,0,0,0,0) 12960 61
(6,0,1,0,0,0,0,0,0) 71280 221
(9,0,0,0,0,0,0,0,0) 362880 3
(0,0,1,0,0,1,0,0,0) 15552 46

(0,0,1,0,0,1,0,0,0) (0,3,1,0,0,0,0,0,0) 124416 4
(3,0,0,0,0,1,0,0,0) 62208 16
(3,3,0,0,0,0,0,0,0) 1244160 17

(1,0,0,0,0,0,0,1,0) (1,0,0,0,0,0,0,1,0) 4096 56
(0,0,3,0,0,0,0,0,0) (6,0,1,0,0,0,0,0,0) 403813278720 221

(9,0,0,0,0,0,0,0,0) 948109639680 1846
(1,0,0,2,0,0,0,0,0) (1,0,0,2,0,0,0,0,0) 12189696 11098
(1,1,0,0,0,1,0,0,0) (1,1,0,0,0,1,0,0,0) 69120 557
(2,0,0,0,0,0,1,0,0) (2,0,0,0,0,0,1,0,0) 438256 615
(3,0,0,0,0,1,0,0,0) (3,0,0,0,0,1,0,0,0) 3110400 112
(4,0,0,0,1,0,0,0,0) (4,0,0,0,1,0,0,0,0) 199065600 3

Table 1: Number of Latin squares related to A8 and A9.
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