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ABSTRACT

Latin squares have been historically used in order to cr&tatestical designs in which, starting from
a small number of experiments, it can be obtained a largeriexpetal space. In this sense, the opti-
mization of the selection of Latin squares can be decisiviacfor to take into account is the symmetry
that the experimental space must verify and which is estaddi by the autotopism group of each Latin
square. Although the size of this group is known for Latinasgs of order up ta0, a classification of
the different symmetries has not yet been done. In this pagpam a cycle structure of a Latin square
autotopism, it is studied the regularity of the incidencacture formed by the set of autotopisms having
this cycle structure and the set of Latin squares remairiggles by at least one of the previous auto-
topisms. Moreover, it is proven that every substructuremgivy the isotopism class of a Latin square is
a1-(v, k,r) design. Since the corresponding paraméter known for Latin squares of order up o
we obtain the rest of the parameters of all these substagctamd, consequently, a classification of all
possible symmetries is reached for these orders.

1 Introduction

An incidence structureS of v pointsandb blocksis uniformif every block contains exactly points and
it is regular if every point is exactly om blocks. Two blocks arequivalentf they contain the same set
of points. Themultiplicity mult(x) of a blockz is the size of the equivalence classwofA designis an
uniform structure such thatult(x) = 1, for all block z. Given two integerg and\, S is at-structure
for \ if each subset of points is incident with exactlyt common blocks. If the-structuresS is uniform
with block sizek, thenS is said to be &-(v, k, ) structure Everyt-(v, k, X) structure is regular. If

is the number of blocks trough any point®fit must beb - k = v - r. The integers, v, b, k, A, r are the
parameterof S. A t-(v, k, \) structureS without repeated blocks is calleddv, k, \) design

A Latin squareL of ordern is ann x n array with elements chosen from a setafistinct symbols such
that each symbol occurs precisely once in each row and e&smeoFrom now onjn] = {1,2,...,n}
will be this set of symbols andS,, will denote the set of Latin squares of orderGivenL = (I, ;) €
LS, theorthogonal array representation df is the set of.? triples{(i, j, ; ;) | i, € [n]}. Thecycle
structure of§ € S,, is the sequench = (1,13, ...,12), wherel! is the number of cycles of lengiin 6.
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Everys € S, can be uniquely written as a composition of pairwise digjoyeles,d = C{oCSo...0C?

neg?

whereC? = (cf’1 g ) A?), with A < n andc), = min;{c} ;} and such that, for all, j € [ny],
5> )0 18 _ )0 5o

one has\; > )\j and, if \¢ = )\j, thencL1 < G-

An isotopismof L = (I;;) € LS, is a triple® = (o, 8,7) € I, = S3. Thus,«,3 and~ are
permutations of rows, columns and symbolsigfrespectively. Theycle structureof © is the triple
lo = (1u,15,1,). The resulting squaré® = {(a(i), 3(j),~ (li;)) | 4,7 € [n]} is also a Latin square,
which is called to bésotopicto L. The set of Latin squares isotopic fas its isotopism clas$L]. The
number of isotopism classes 66, is known for alln < 10 [7]. Given© € Z,,, if L® = L, then®is
called anautotopismof L. 2, is the set of all possible autotopisms of Latin squares ofratcand the
set of cycle structures &, is denoted by¥'S,,, which was determined in[2] for < 11. The stabilizer
subgroup off_ in 2L, is its autotopism grou@l;, = {© € Z,, | L® = L}. Given® ¢ 2,,, the set of all
Latin squared. such tha®® € 2(;, is denoted byCS¢ and the cardinality o£Se is denoted by\(©).
Givenl € CS,,, itis defined the sell; = {0 € A, | lo =1}. If ©1,02 € 2, thenA(O©1) = A(O2).
Thus, givenl € CS,,, A(1) denotes the cardinality fSg for all © € ;. Grobner bases were used
in [3] in order to obtain the numbek(1) for autotopisms of Latin squares of order ugrtd=inally, we
consider the set8S) = Ugeq, LSo and2i(L) ={© € | L € LSe}.

In this paper, givel € CS,,, we study the incidence structufg = (LSy, 2y, J1), where, giverl. € LS
and® € 2, itis (L,0) € Jyifand only if L € LSe. SinceA(0;) = A(BO3) = A(1), for all
01,0, € 2, itis verified thatS is uniform with block sizeA(l). In Section 2, we prove that any
O € 2 restricts the study of the regularity & to the setLSeg. Moreover, it is proved that the
substructureSy (1 of Sy, given by the isotopism class dfis regular. In order to obtain the parameters
of Sy;z;, we implement in Section 3 all the previous results in an@ligm in SNGULAR [5] and we
obtain the parameters 6f |1, for all cycle structures related with Latin squares of omgeto7.

2 Regularity of the structure &

Lemma 2.1. Itis verified thatl; s 5-1 = 1s,, for all 41,02 < Sy

Lemma 2.2. Givendy, d2 € S, such thatl;, = ls,, let us define the permutatian * 2, such that
81 % 0a(c)y) = ¢, for all i € [ng,] andj € [A)]. Itis verified thatsy = (51 * 62)d1 (51 * 62) .

Proposition 2.3. Letl € CS,,. Given©; = (a1, 51,71),02 = (ag,B2,72) € 2, let us define the

isotopismO * Oy = (g * az, B1 * Ba, 71 *72) € Ty,. Itis verified thats = (01 x02)01 (01 xOy) !
and that©; = O is a bijection between the sefsSeo, andLSe, .

Proof. The first assertion is an immediate consequence of LEmMm&a,2f ©* = O x ©,, then it is
0,0 = ©*0;. Thus, givenL, € LSe,, itis (L)% = 190" = 0761 — (101)®" = 9" and,
therefore ©0* (LSe,) C LSe,. Analogously, it can be seen that ~! (£Se,) C LSe,. O

Theorem 2.4. Givenl € CS,,, every block of;, has the same multiplicity.

Proof. Let ©, 0, € A, and let us defin®* = ©; x ©,. From Lemma 211, it i®*00*~! ¢ A,, for
all © € A;. So, itis enough to prove th#lSe, = LSg.gg--1, for all © € A; such thatLSe, =

LSe. Let us take one such@. GivenL € LSe,, from Propositio 213, it must bB® ' € £Se, .

- © *— * *— *— Ch
SinceLSe = LSe,, it is <L9* 1) — 197" and therefore[©*©9" ™" = (Le 1) = L. So,
LSe, C LSg-gg+-1- The uniformity ofS; finishes the proof.



Theorem 2.5. Letl € CS,,. If there exists an autotopis@ € 2l; such thati2l,(L)| = |24;(L")|, for all
L,L' € LSe, then the structure is regular.

Proof. Let © € 2(; be an autotopism verifying the hypothesis andllet LSeo. Given L' € LS;,

it is enough to prove thaRl(L')| = |2(L)|. Let ® € 2, be such that’ € LSg. If © = O,
then the proof is immediate from the hypothesis. Otherwssgceleg = lg/, We can consider the
isotopism©* = O x ©’. From Propositiof_2]3, there must exist € LS such thatL”®” = L'
Let us see that(L")| = [24(L')|: Since24 (L") C 24, if 24(L") = {©7,04,...,0! }, it must
be, from Lemmd 2]11{0*070*~! | i € [m]} C 2. Now, giveni € [m], it is L'©"®70 " —
(L,,@*)e*e;’e*-l _ prerejer~ter _ rnerey _ <L//e;’>®* N Y/Ch Thus,@*@é’@*_l c

20, (L), for all i € [m] and, therefore2(;(L")| < |2;(L’)|. The opposite inequality can be analogously
obtained by considering the isotopiss ' ©,0*, for all ©/ € 2A;(L’). O

Proposition 2.6. Given©, 0’ € 2, © x O’ is a bijection betweeflL]o = [L] N LSe and[L]er =
[L]NLSe.

Proof. From Propositior 2]39* = © *x ©' is a bijection betweerSg and LS¢.. Besides, since
O* € T, itis [L'®"] = [L'] = [L], forall L’ € [L]. O

Proposition 2.7. It is verified that gy, [Lle = [L].

Proof. Since[L]e C [L], forall© € 2y, itis Ugey,[Lle C [L]. Let Ly € [L] and Ly € Ugeqy, [L]o-
Let © € 2, be such thall® = L, and let®’ e 2; such thatL® = L;. Then, from Lemm&2]1,
lope-1 = lo and s00/00' ! € A Moreover,L; € LS(©/00' ™), becausd.9'©9" = 19'© =
LY = Ly. Thus,L; € Ugeq,[Lle and, thereforelL] C Ugeq[Lle- O

Let us denote byA;(1) the cardinality of[L]e, for all © € 2l;. From Proposition5 216 arid 2.7, we
can define the uniform incidence structdig,; = ([L], 2, jl,m)’ with blocks of sizeA (1), where,
givenL € [L] and© € 2, itis (L,0) € 3, if and only if L € LSe. Then, by keeping in mind
Propositiorl 2.6, next results can be proven analogoushhemiieni 2.4 and 2.5:

Theorem 2.8. GivenL € LS,, andl € CS,, every block of5; ;) has the same multiplicity. d

Theorem 2.9. Let L € LS,, andl € CS,,. If there exists an autotopis@ € 2; such that|2,(L;)| =
[R,(L2)], forall Ly, Ly € [L]e, then the structure, (1, is regular. O

Let us denote bynult(z)(1) the multiplicity of Theorenf 218. We obtain the main resulttu section:

Theorem 2.10. Sy 1 is regular, for all L € LS, andl € CS,,.

Proof. Let© € 2 and L, Ly € [L]o. There must exis®’ € Z,, such thatL® = L. If 2;(L,) =
{61,0,,...,0,,}, then,{6/6,0'"! | i € [m]} C (L), because, given € [m], log,o-1 = lo,
and L9'9© = 199 = 18" = L, S0,|2(L1)| < |24(L2)|. The opposite inequality can be
analogously obtained by considering the isotopisis'©;0’, for all i € [m]. From Theoreni_2]9,
Sy,(z) must be regular. O



3 Structures of Latin squares of order up to7.

In this section, givem < 7, the parameters o, ;) are obtained, for all = (1;,13,13) € CS,, and

L € LS,,. The general procedure to obtain them has been the follodimge the parametér= ||

of §;j1) can be obtained from a simple combinatorial calculus, tisedifficulty is indeed the calculus
of the parametek. In this sense, give® € 2, the algorithm indicated ir_[3] and implemented in
SINGULAR [4] can show as output all the elements of the &8, which can be classified according
to their isotopism classes. From Proposition 2.6, it alléwsbtain the parametér = A (1). The
identification of the isotopism classes has been done byiniigasome isotopic invariants of each
Latin square of the previous sétSe, like the numbers of transversals, intercalages, 3 subsquares
and2 x 3 and3 x 2 subrectangles. Specifically, for ordérand7, the list of isotopism classes given by
McKay [8] has been used to identify those classes with theesseh of isotopic invariants. Moreover,
the previous invariants can be used to know, according ttathles given in[[1] (pp137-141) and those
of the appendix of [[7], the size of the autotopism group ohdaotopism class. Thus, it is also obtained
the parameter = |[L]| = % Finally, the parameter is attained from the expression k = v - r.

(AT L=L [ & [ v=1fS. [ b=To [ F= AW [+ [ mal@ |
2 oo Tey [ 2 T 1 | =2 Ti[ 1
(0,0,1) 8 3
3 | ©0) 550 12 Z 3 2 2
(1,10 (1,10 27 7 £l 1

Table 1: Parameters of the(v, k, ) structuresS;, forl € CS, UCSs.

n [ 11 =1 13 (L] [ v=TLh [ b=10] | k=A(0) | r | mult) (@)
02,00 | ca1 732 108 8 2 2
0001 [(ZL00) | cas 142 216 8 12 Z
@0.00) | cs1 732 36 20 2 2
0200 | csn 144 27 7, 5
4| o200 [2L0D) i1 igg 54 2 s )
4.1
(4000) (o1 e 9 48 X
L0100 | (LOL0) | cas 144 512 9 2 7
[ 432 4
(2100) | @100) (=Ll - 216 8 3 4
00000 | 51 17280 13824 5 =
00000 —55060.0) [ cat 17280 576 20 7 4
5 [(T00L0) [ (LOOLO) | s 17280 27000 7] 50 7
ool 17280 75
(12000) | (12000) |21 Eap) 3375 128 & 1
Z0.1.00) | (Z0.100) | cs 2 14000 8000 44 8 7

Table 2: Parameters of the(v, k, ) structuresS; 1), forl € CS, UCSs andL € LS, U LS5, where:

1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4 5
2 3 4 5 1 2 1 4 5 3
2 1 4 3 2 1 4 3
cq1 = ,C42 = c51 = 3 4 5 1 2 ,C5,2 = 3 4 5 1 2
g 3 4 2 1 > 3 4 1 2
4 3 1 2 4 3 2 1 4 5 1 2 3 4 5 2 3 1
5 1 2 3 4 5 3 1 2 4
C6.1 (0,0,4,12,12,108) C6.7 (0,15,0,0,8,12) C6.13 (8,5,0,4,8,4) C6.19 (24,15,0,0,0,120)
cg,2 (0,9,4,12,12,72) c6.8 (0,15,0,8,0,12) c6.14 (8,5,0,8,4,4) c6.20 (24,15,0,0,20,120)
6.3 (0,9,4,12,12,36) €6.9 (0,19,0,4,4,8) €6.15 (8,7,0,0,0,8) c6.21 (24,15,0,20,0,120)
C6.4 (0,9,4,12,12,36) C6.10 (0,27,4,12,12,216) C6.16 (8,7,0,0,12,8) C6.22 (32,9,0,12,12,24)
6.5 (09,412,12,36) || c6.11 (8,4,0,4,4,4) c6.17 | (8,7,012,08)
€6.6 (0,15,0,0,0,12) 6,12 (8,5,0,4,4,4) ce,18 | (8110444

Table 3: Number of transversals, intercalafes,3 subsquares x 3 subrectangles} x 2 subrectangles
and size of the autotopism group of tb2isotopism classes aS.



1 Iy 13 L] v=ILhl [ b=10] [ k=A@ | r | mult)(1)
2 5184000 18
(0,0,2,0,0,0) - e y—| 576000 - 2
19 3110400 20
(1,1,1,0,0,0) . S oon—| 1728000 36 a
(0,0,00,01) | (0,0,00,0,1) 10 728000 78
(2,2,0,0,0,0) . ey 648000 i 18
G0.1000) 10 728000 3 ¥
5 31104000 | /0000 08 7
@1,0000) 3 10368000 | 216000 288 5
(6.0,0.0,0,0) 2 5184000 14200 720 7
10 1728000 6
(00,000,1) | (002000 | (030,000 . sy 72000 144 S )
2 5184000 62
(0.0.2,00,0) 7 T5552000 64000 756 2
10 728000 08 .
T 3456000 216
(3,0,1,0,0,0) 3 10368000 64000 324 2
(0,0.2,00,0) | (0,02,000) 19 3110400 P, 20
5 31104000 2
10 1728000 2160
T 3456000 7320
(6.00.0,0.0) 2 5184000 1600 5480 2
3 T0368000 2960
T0.005,0) | (1L0.005,0) | (L00.0L,0)| 19,20,21 | 3110400 | 2985084 %5 24 7
0 1728000 1536
T 3456000 3072 9
2 5184000
(2,2,0,0,0,0) 7 5552000 10125 4608 3
9 46656000 1
5 31104000 3
I 93312000 9216 T
(03,00,00) | (03,00,00) D R R 10 1
(4 1000 0) 3 0368000 3375 843 6
""" 15 76656000 27648 5
¥ 93312000 55296
120 l/gsggU 23040 3
(6,0,0,0,0,0) 5184000
""" 7 T5552000 225 59120 .
5 31104000 38240
3 76656000 207360
19,20, 21 | 3110400 30
(200100) | (200,100 | (200,100) g Tg o t—msarns— 729000 128 > 2
10 1728000 27
19,20, 21 | 3110400 512 15
2 5184000 3
22 15552000 3
3 76656000 T
(220000) | (220000)| 220000) 545 G 91125 5 1
65.7,8 31104000 1024 3
17,13, 14 | 93312000 T
15,16, 17 | 46656000 1536 3
T8 93312000 3072 3
10 1728000 216 .
(3.0,1,0,00) | (30,1,0,00) | (30,1,0,0,0) T 3456000 64000 732 2
3,45 T0368000 78 7

Table 4: Parameters of the(v, k, r) structuresS; 1), forl € CSg and L € LS.
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I =1 =13 [L] v = [[L]] b=124] | k=AM [ r | multip1()
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(70.0,0000) 149 35456000 | 518400 5040 5
149 435456000 98
(L0.000.10) g g = 51a373q955| 592704000 72 X
149 435456000 98
148 762048000 56
23 5334336000 1944 g
83, 84,85 | 21337344000 2
(1,0,2,0,0,0,0) > S aaoo] 21952000 z 2
24,2576
T30, 131, 132 42674688000 3888 2
133
148 762048000 72
(L1010,00) [ | 250047000 128 2
10,11
(2000.1,0.0) |35 2itrr| 25604812800 128024064 800 4 4
149 435456000 9
83,84, 85 | 21337344000 18432 T
(1,3,0,0,0,0,0) 23 5334336000 | 1157625 27648 3 1
145, 146, 147 | 16003008000 38240 »
10, 1T 25604812800 221184
123 5334336000 450 5
(3001000) 9> 11‘;6’11447 16003008000]  g,61 00 ) 2
e 32006016000 6912
148 762048000 71
3 5334336000 13824 p
1 10668672000
121319 | 32006016000 27648 1
145, 146, 147 | T6003008000 31472 3
(3,2,0,0,0,0,0) 7,8,9 1157625 1
15,16, 17
o ess—| 64012032000 55296 1
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70,71,72 16003008000 69120 5
37
=1 32006016000 82944 3
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