
Computational complexity of tissue-like P systems

Linqiang Pan a,∗, Mario J. Pérez-Jiménez b
a Key Laboratory of Image Processing and Intelligent Control, Department of Control Science and Engineering, Huazhong University
of Science and Technology, Wuhan 430074, Hubei, China
b Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, University of Sevilla, 41012

Sevilla, Spain

Keywords:
Membrane computing
Tissue P systems
Cell separation
SAT

a b s t r a c t

Membrane systems, also called P systems, are biologically inspired
theoretical models of distributed and parallel computing. This pa-
per presents a new class of tissue-like P systems with cell separa-
tion, a feature which allows the generation of new workspace. We
study the efficiency of the class of P systems and draw a conclusion
that only tractable problems can be efficiently solved by using cell
separation and communication rules with the length of at most 1.
We further present an efficient (uniform) solution to SAT by using
cell separation and communication rules with length atmost 6.We
conclude that a borderline between efficiency and non-efficiency
exists in terms of the length of communication rules (assuming
P 6= NP). We discuss future research topics and open problems.

1. Introduction

Membrane computing is a young branch of natural computing initiated by Păun at the end of
1998 [17]. It has received great attention from the scientific community since then. Computer
scientists, biologists, formal linguists, and complexity theoreticians have contributed greatly to this
new field of research, enriching each others’ with results, open problems and promising new research
lines. Membrane computing was selected by the Institute for Scientific Information, USA, as a fast
Emerging Research Front in computer science, and the paper of Păun and Păun [19] was ranked in [25]
as a highly cited paper in October 2003.

∗ Corresponding author.
E-mail addresses: lqpan@mail.hust.edu.cn (L. Pan), marper@us.es (M.J. Pérez-Jiménez).

http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:lqpan@mail.hust.edu.cn
mailto:marper@us.es
http://dx.doi.org/10.1016/j.jco.2010.03.001

Membrane computing is inspired by the structure and function of living cells, as well as the
organization of cells in tissues, organs, and other higher order structures. The devices investigated
in this field, called P systems, are distributed parallel and non-deterministic computing models.
In general, themain components of P systems are amembrane structure, wheremultisets of symbol-

objects are placed in its compartments. Multisets of symbol-objects evolve in a synchronousmaximally
parallelmanner according to given evolution rules. Evolution rules are associatedwith themembranes.
Please refer to [18] or [4] for an introduction and [26] for further references.
In recent years, many differentmodels of P systems have been proposed. Themost studied variants

are characterized by a cell-like membrane structure, where communication takes place between a
membrane and the surrounding membrane. These models have a set of nested membranes, chosen in
such a way that the graph of neighborhood relations is a tree.
One of the topics in the field is the study of the computational power and efficiency of P

systems. In particular, different models of these cell-like P systems have been successfully used
for designing solutions to NP-complete problems in polynomial time (see [7] and the references
therein). These solutions are obtainedby generating an exponentialworkspace in polynomial time and
simultaneously checking all the candidate solutions in parallel. With inspiration from the living cell,
several ways to obtain exponential workspace in polynomial time have been proposed: membrane
division (mitosis) [16], membrane creation (autopoiesis) [9], membrane separation (membrane
fission) [15]. These three ways have given rise to the corresponding P system models: P systems with
active membranes, P systems with membrane creation, and P systems with membranes separation. These
threemodels are universal from a computational point of view, but technically, they are very different.
To the best of our knowledge, there exists no theoretical result which proves that these models can
simulate each other in polynomial time.
Under the hypothesis P 6= NP, it was shown that P systems without membrane division cannot

solve NP-complete problems in polynomial time [24]. This result was generalized in [21]: an NP-
complete problem cannot be solved in polynomial time by means of language accepting P systems
(without using rules that allow an increase in the size of the structure of membranes).
Here, we focus on P systems of another type, called tissue P systems due to the structure of

their membrane. Instead of considering a hierarchical structure, membranes are placed at the nodes
of a graph. This variant takes inspiration from two biological phenomena (see [14]): intercellular
communication and communication between neurons. The common mathematical model of these
two mechanisms is a net of processors dealing with symbols and communicating these symbols
along channels specified in advance. Communication among cells is based on symport/antiport
rules, which were introduced to P systems in [19]. Symport rules move objects across a membrane
together in one direction, whereas antiport rules move objects across a membrane in opposite
directions.
From the seminal definitions of tissue P systems [13,14], several research lines have been

developed and other variants have arisen (see, for example, [1–3,10,11,23]). One of the most
interesting variants of tissue P systems was presented in [20]. In that paper, the definitions of tissue
P systems and P systems with active membranes are combined. This yields tissue P systems with
cell division, and a polynomial-time uniform solution to the NP-complete problem SAT is shown.
In these kinds of tissue P systems [20], replication is used, that is, the two new cells generated
by a division rule have exactly the same objects except for at most a pair of different objects.
However, in the biological phenomenon of separation, the contents of the two new cells evolved
from the original one can be significantly different, and membrane separation inspired by this
biological phenomenon in the framework of cell-like P systems was proved to be an efficient way
for obtaining exponential workspace in polynomial time [15]. In this paper, a new class of P systems,
called tissue P systems with cell separation, is presented. We study the efficiency of the class of P
systems and draw a conclusion that only tractable problems can be efficiently solved by using cell
separation and communication rules with the length of at most 1. We further present an efficient
(uniform) solution to SAT by using cell separation and communication rules with length at most
6. We conclude that a borderline between efficiency and non-efficiency exists in terms of the
length of communication rules (assuming P 6= NP). We discuss future research topics and open
problems.

2. Preliminaries

An alphabet Σ is a non-empty set, whose elements are called symbols. An ordered sequence of
symbols is a string. The number of symbols in a string u is the length of the string, and it is denoted
by |u|. As usual, the empty string (with length 0) will be denoted by λ. The set of strings of length n
built with symbols from the alphabetΣ is denoted byΣn andΣ∗ = ∪n≥0Σn. A language overΣ is a
subset ofΣ∗.
A multiset m over a set A is a pair (A, f) where f : A→ N is a mapping and N is the set of natural

numbers. If m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f (x) > 0} and
its size is defined as

∑
x∈A f (x). A multiset is empty (resp. finite) if its support is the empty set (resp.

finite).
If m = (A, f) is a multiset over A, and supp(m) = {a1, . . . , ak}, then it will be denoted as m =

{{af (a1)1 , . . . , af (ak)k }}. Superscripts indicate the multiplicity of each element. If f (x) = 0 for any x ∈ A,
then this element is omitted. If m1 = (A, f) and m2 = (A, g) are multisets over A, then the union of
m1 and m2 is defined as the function m1m2 = (A, h), where h = f + g . In the following, we assume
that the reader is already familiar with the basic notions and the terminology of P systems. See [18]
for details.

3. Tissue P systems with cell separation

In the first definition of the model of tissue P systems [13,14], the membrane structure did not
change during the computation.Wewill give a newmodel of tissue P systemswith cell separation based
on the cell-like model of P systems with membrane separation [15]. The biological inspiration is the
following: live tissues are not static networks of cells, since new cells are generated by membrane
fission in a natural way.
Themain features of thismodel, from a computational point of view, are that cells are not polarized

(the opposite holds in the cell-like model of P systems with active membranes; see [18]); the cells
obtained by separation have the same labels as the original cell. If a cell is separated, its interaction
with other cells or with the environment is blocked during the separation process. This means that a
cell closes its communication channels while it is separating.
Formally, a tissue P system with cell separation of degree q ≥ 1 is a tuple

Π = (Γ ,O1,O2, w1, . . . , wq, E,R, i0),

where:

(1) Γ is an alphabet whose elements are called objects, Γ = O1 ∪ O2,O1,O2 6= ∅,O1 ∩ O2 = ∅;
(2) w1, . . . , wq are strings over Γ , representing the multisets of objects placed in the q cells of the
system at the beginning of the computation;

(3) E ⊆ Γ is an alphabet representing the set of objects in the environment in arbitrary copies of
each;

(4) R is a finite set of rules of the following forms:
(a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
communication rules: 1, 2, . . . , q identify the cells of the system, 0 is the environment; when
applying a rule (i, u/v, j), the objects of the multiset represented by u are sent from region i
to region j and simultaneously the objects of the multiset v are sent from region j to region
i (|u| + |v| is the length of the communication rule (i, u/v, j));

(b) [a]i → [O1]i[O2]i, where i ∈ {1, 2, . . . , q} and a ∈ Γ , and i 6= i0;
separation rules: with the presence of an object a, the cell is separated into two cells with the
same label; at the same time, object a is consumed; the objects from O1 are placed in the first
cell, those from O2 are placed in the second cell; the output cell i0 cannot be divided;

(5) The output region i0 is the environment.

The rules of a system like the ones above are used in the non-deterministicmaximally parallelmanner,
as is customary in membrane computing. During each step, all cells which can evolve must evolve in
a maximally parallel way (in each step the system applies a multiset of rules which is maximal: no
further rule can be added). Thisway of applying rules has only one restriction:when a cell is separated,
the separation rule is the only onewhich is applied to that cell during that step; the objects inside that
cell do not evolve by means of communication rules. The new cells can participate in the interaction
with other cells or the environment by means of communication rules in the next step—providing
that they are not separated once again. Their labels precisely identify the rules which can be applied
to them.
A configuration of a tissue P systemwith cell separation is described by themultisets of objects over

Γ associated with all the cells present in the system and themultiset of objects over Γ −E associated
with environment. The tuple (w1, w2, . . . , wq; ∅) is the initial configuration. A halting configuration is
a configuration such that there is no rule which can be applied. The computation starts from the initial
configuration and proceeds as defined before; only halting computations (reaching a configuration
where no rule can be applied) give a result, and the result is encoded by the multiset of objects over
Γ − E appearing in the environment i0 in the halting configuration.

4. Recognizer tissue P systems with cell separation

NP-completeness has usually been studied in the framework of decision problems, that is, pairs
(IX , θX)where IX is a language over an alphabet (whose elements are called instances) and θX is a total
Boolean function over IX .
In order to study the computing efficiency, the notions from classical computational complexity

theory are adapted for membrane computing. A class of cell-like P systems is introduced in [22]:
recognizer P systems. For tissue P systems, with the same idea as for recognizer cell-like P systems,
recognizer tissue P systems are introduced in [20].
A recognizer tissue P system with cell separation of degree q ≥ 1 is a tuple

Π = (Γ ,O1,O2,Σ, w1, . . . , wq, E,R, iin, i0)

where:

• (Γ ,O1,O2, w1, . . . , wq, E,R, i0) is a tissue P system with cell separation of degree q ≥ 1 (as
defined in the previous section).
• The working alphabet Γ has two distinguished objects yes and no, with at least one copy of them
present in some initial multisetsw1, . . . , wq, but none of them present in E .
• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π , then either object yes or object no (but not both) must have been
released into the environment, and only at the last step of the computation.

The computations of the systemΠ with inputw ∈ Σ∗ start from a configuration of the form (w1,
w2, . . . , wiinw, . . . , wq; ∅). That is, the computations start after adding the multisetw to the content
of the input cell iin. We say thatC is an accepting computation (respectively, rejecting computation) if
object yes (respectively, no) appears in the environment associated with the corresponding halting
configuration of C.
We denote by TSC(k) the class of recognizer tissue P systems with cell separation and with

communication rules of length at most k.

Definition 1. A decision problem X = (IX , θX) is solvable in polynomial time by a family5 = {Π(n) |
n ∈ N} of recognizer tissue P systems with cell separation if the following conditions hold:

• The family 5 is polynomially uniform via Turing machines. That is, there exists a deterministic
Turing machine working in polynomial time which constructs the systemΠ(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the system
Π(s(u));

– the family5 is polynomially boundedwith regard to (X, cod, s); that is, there exists a polynomial
function p such that for each u ∈ IX every computation ofΠ(s(u)) with input cod(u) is halting
and it performs at most p(|u|) steps;

– the family5 is soundwith regard to (X, cod, s); that is, for eachu ∈ IX , if there exists an accepting
computation ofΠ(s(u))with input cod(u), then θX (u) = 1;

– the family 5 is complete with regard to (X, cod, s); that is, for each u ∈ IX , if θX (u) = 1, then
every computation ofΠ(s(u))with input cod(u) is an accepting one.

Each recognizer P system with cell separation in Definition 1 is confluent in the sense that all
possible computations must give the same answer for a given instance.
Wedenote byPMCTSC(k) the set of all decision problemswhich can be solved bymeans of recognizer

tissue P systems from TSC(k).

5. The limitation on the efficiency of TSC(1)

In this section, we consider the efficiency of tissue P systems with cell separation and communica-
tion rules of length 1. Specifically, we will prove that such systems can efficiently solve only tractable
problems in the classical sense.
Let Π be a tissue P system with cell separation and let all communication rules be of length 1.

In this case, each rule of the system can be activated by a single object. Hence, there exists, in some
sense, a dependency between the object triggering the rule and the object or objects produced by its
application. This dependency allows us to adapt the ideas developed in [6] for cell-like P systemswith
active membranes to tissue P systems with cell separation and communication rules of length 1.

Definition 2. LetΠ = (Γ ,O1,O2,Σ,M1, . . . ,Mq, E,R, iin, i0) be a tissue P system of degree q ≥ 1
with cell separation and communication rules of length 1. LetH = {0, 1, . . . , q}. The dependency graph
associated withΠ is the directed graph GΠ = (VΠ , EΠ) defined as follows:

VΠ = {(a, i) ∈ Γ × H | there is j ∈ H such that (i, a/λ, j) ∈ R or (j, a/λ, i) ∈ R},

EΠ = {((a, i), (b, j)) | a = b and (i, a/λ, j) ∈ R}.

Note that when a separation rule is applied, objects do not evolve and the labels of membranes
do not change. So separation rules do not add any nodes and edges to the associated dependency
graph.

Lemma 3. Let Π = (Γ ,O1,O2,Σ,M1, . . . ,Mq, E,R, iin, i0) be a tissue P system with cell separation,
in which the length of all communication rules is 1. Let H = {0, 1, . . . , q}. Then there exists a deterministic
Turingmachine that constructs the dependency graphGΠ associatedwithΠ in polynomial time (that is, the
computation time is bounded by a polynomial function depending on the total number of communication
rules).

Proof. A deterministic algorithm that, given a P system Π with the set Rc of communication rules,
constructs the corresponding dependency graph, is the following:

Input:Π (with Rc as its set of communication rules)
VΠ ← ∅; EΠ ← ∅
for each rule r ∈ Rc ofΠ do

if r = (i, a/λ, j) then
VΠ ← VΠ ∪ {(a, i), (a, j)}; EΠ ← EΠ ∪ {((a, i), (a, j))}

The running time of this algorithm is bounded by O(|Rc |). �

Lemma 4. Let Π = (Γ ,O1,O2,Σ,M1, . . . ,Mq, E,R, iin, i0) be a tissue P system with cell separation,
in which the length of all communication rules is 1. Let H = {0, 1, . . . , q}. Let ∆Π be defined as follows:

∆Π =
{
(a, i) ∈ VΠ | there exists a path (within the dependency graph of Π)

from (a, i) to (yes, 0)
}
.

Then, there exists a Turingmachine that constructs the set ∆Π in polynomial time (that is, the computation
time is bounded by a polynomial function depending on the total number of communication rules).

Proof. We can construct the set∆Π fromΠ as follows:

• We construct the dependency graph GΠ associated withΠ .
• Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
∆Π ← ∅

for each(a, i) ∈ VΠ do
if reachability (GΠ , (a, i), (yes, 0)) = yes then
∆Π ← ∆Π ∪ {(a, i)}

The Reachability Problem is the following: given a (directed or undirected) graph G and two nodes a, b,
determine whether or not the node b is reachable from a, that is, whether or not there exists a path in the
graph from a to b. It is easy to design an algorithm running in polynomial time solving this problem.
For example, given a (directed or undirected) graph G and two nodes a, b, we consider a depth-first
search with source a, and we check whether b belongs to the tree having root a in the computation
forest. The total running time of this algorithm is O(|V | + |E|), that is, in the worst case, quadratic in
the number of nodes.
Therefore, the running time of the above algorithm for constructing the set ∆Π is of order

O(|VΠ | · |VΠ |2), hence it is of order O(|Γ |3 · |H|3). �

LetΠ = (Γ ,O1,O2,Σ,M1, . . . ,Mq, E,R, iin, i0) be a tissue P system with cell separation. Letm
be a multiset over Σ . Then we defineM∗j = {(a, j) | a ∈ Mj}, for 1 ≤ j ≤ q, and m∗ = {(a, iin) |
a ∈ m}.
Belowwe characterize accepting computations of a recognizer tissue P systemwith cell separation

and communication rules of length 1 by distinguished paths in the associated dependency graph.

Lemma 5. Let Π = (Γ ,O1,O2,Σ,M1, . . . ,Mq, E,R, iin, i0) be a recognizer tissue P system with cell
separation in which the length of all communication rules is 1. The following assertions are equivalent:

(1) There exists an accepting computation of Π .
(2) There exists (a0, i0) ∈

⋃q
j=1M∗j and a path in the dependency graph associated withΠ , from (a0, i0)

to (yes, 0).

Proof. (1) ⇒ (2). First, we show that for each accepting computation C of every P system Π there
exists (a0, i0) ∈

⋃q
j=1M∗j and a path γC in the dependency graph associated with Π from (a0, i0) to

(yes, 0), by induction on the length n of C.
If n = 1, a single step is performed in C from C0 to C1. A rule of the form (j, yes/λ, 0), with

yes ∈ Γ , j 6= 0, has been applied in that step. Then, (yes, j) ∈ M∗j , for some j ∈ {1, . . . , q}. Hence,
((yes, j), (yes, 0)) is a path in the dependency graph associated withΠ .
Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1) be an accepting

computation of Π . Then C ′ = (C1, . . . , Cn, Cn+1) is an accepting computation of the system Π ′ =

(Γ ,O1,O2,Σ,M′1, . . . ,M
′
q, E,R, iin, i0), where M′j is the content of cell j in configuration C1, for

1 ≤ j ≤ q. By the induction hypothesis there exists an object a0 in a cell j0 from C1, and a path in the
dependency graph associated withΠ ′ from (a0, j0) to (yes, 0) (actually, by the Definition 2, we have
a0 = yes). If (a0, j0) is an element of configuration C0 (that means that in the first step a separation
rule has been applied to cell j0), then the result holds. Otherwise, there is an element (a0, k0) with

k0 6= j0 in C0 producing (a0, j0) by a communication rule. So, there exists a path γC in the dependency
graph associated withΠ from (a0, k0) to (yes, 0).
(2)⇒ (1). Let us prove that for each (a0, j0) ∈

⋃q
j=1M∗j and for each path in the dependency graph

associated with every P systemΠ from (a0, j0) to (yes, 0), there exists an accepting computation of
Π . By induction on the length n of the path.
If n = 1, there is a path ((a0, j0), (yes, 0)). Then, a0 = yes and the computation C = (C0, C1),

where the rule (j0, yes/λ, 0) belongs to a multiset of rules m0 that produces configuration C1 from
C0, is an accepting computation ofΠ .
Let us suppose that the result holds for n. Let(

(a0, j0), (a1, j1), . . . (an, jn), (yes, 0)
)

be a path in the dependency graph of length n + 1. Let C1 be the configuration of Π reached from
C0 by the application of a multiset of rules containing the rule that produces (a1, j1) from (a0, j0).
Then ((a1, j1), . . . (an, jn), (yes, 0)) is a path of length n in the dependency graph associated with the
system

Π ′ = (Γ ,O1,O2,Σ,M′1, . . . ,M
′

q, E,R, iin, i0)

whereM′j is the content of cell j in configuration C1, for 1 ≤ j ≤ q. By the induction hypothesis, there
exists an accepting computation C ′ = (C1, . . . , Ct) ofΠ ′. Hence, C = (C0, C1, . . . , Ct) is an accepting
computation ofΠ . �

Next, given a family5 = (Π(n))n∈N of recognizer tissue P systems with cell separation in which
the length of all communication rules is 1, solving a decision problem, we will characterize the
acceptance of an instance of the problem, w, using the set ∆Π(s(w)) associated with the system
Π(s(w)), that processes the given instancew. More precisely, the instance is accepted by the system if
and only if there is an object in the initial configuration of the systemΠ(s(w))with input cod(w) such
that there exists a path in the associated dependency graph starting from that object and reaching the
object yes in the environment.

Lemma 6. Let X = (IX , θX) be a decision problem. Let 5 = (Π(n))n∈N be a family of recognizer tissue P
systems with cell separation, solving X according to Definition 1, in which the length of all communication
rules is 1. Let (cod, s) be the polynomial encoding associated with that solution. Then, for each instancew
of the problem X the following assertions are equivalent:

(a) θX (w) = 1 (that is, the answer to the problem is yes for w).
(b) ∆Π(s(w)) ∩ ((cod(w))∗ ∪

⋃p
j=1M∗j) 6= ∅, whereM1, . . . ,Mp are the initial multisets of the system

Π(s(w)).

Proof. Letw ∈ IX . Then θX (w) = 1 if and only if there exists an accepting computation of the system
Π(s(w))with inputmultiset cod(w). By Lemma 5, this condition is equivalent to the following: in the
initial configuration ofΠ(s(w)) with input multiset cod(w) there exists at least one object a ∈ Γ in
a cell labelled with i such that in the dependency graph the node (yes, 0) is reachable from (a, i).
Hence, θX (w) = 1 if and only if∆Π(s(w))∩M∗j 6= ∅ for some j ∈ {1, . . . , p}, or∆Π(s(w))∩(cod(w))∗

6= ∅. �

Theorem 7. P = PMCTSC(1).

Proof. WehaveP ⊆ PMCTSC(1) because the classPMCTSC(1) is closed under polynomial-time reduction
and non-empty. In what follows, we show that PMCTSC(1) ⊆ P. Let X ∈ PMCTSC(1) and let 5 =

(Π(n))n∈N be a family of recognizer tissue P systems with cell separation solving X , according to
Definition 1. Let (cod, s) be the polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instancew of X
– Construct the systemΠ(s(w)) with input multiset cod(w).
– Construct the dependency graph GΠ(s(w)) associated withΠ(s(w)).
– Construct the set∆Π(s(w)) as indicated in Lemma 4
answer ← no; j← 1
while j ≤ p ∧ answer = no do

if∆Π(s(w)) ∩M∗j 6= ∅ then
answer ← yes

j← j+ 1
endwhile
if∆Π(s(w)) ∩ (cod(w))∗ 6= ∅ then
answer ← yes

On one hand, the answer of this algorithm is yes if and only if there exists a pair (a, i) belonging
to∆Π(s(w)) such that the symbol a appears in the cell labelled with i in the initial configuration (with
input the multiset cod(w)).
On the other hand, a pair (a, i) belongs to ∆Π(s(w)) if and only if there exists a path from (a, i) to

(yes, 0), that is, if and only if we can obtain an accepting computation ofΠ(s(w))with input cod(w).
Hence, the algorithm above described solves the problem X .
The cost for determining whether or not ∆Π(s(w)) ∩M∗j 6= ∅ (or ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅) is of

order O(|Γ |3 · |H|3).
Hence, the running time of this algorithm can be bounded by f (|w|)+ O(q3 · |Γ |3), where f is the

(total) cost of a polynomial encoding from X to 5, and q is the number of (initial) cells of Π(s(w)).
Furthermore, by Definition 1 we have that all parameters involved are polynomial in |w|. That is, the
algorithm is polynomial in the size |w| of the input. �

Corollary 8. The following two assertions are equivalent:

(a) P = NP.
(b) There is an NP-complete problem that can be solved by a family of systems from TSC(1) in polynomial
time, according to Definition 1.

6. Solving computationally hard problems by using TSC(6)

In this section, we consider the efficiency of tissue P systems with cell separation and communi-
cation rules of length of at most 6. Such systems can efficiently solve computationally hard problems.
In the following, we show how to efficiently solve SAT via such systems.
The SAT is defined as the following: given a Boolean formula in conjunctive normal form (CNF),

determinewhether or not there exists an assignment to its variables such that the formula is evaluated
to be true. This is a well known NP-complete problem [5].
The solution proposed follows a brute force approach in the framework of recognizer P systems

with cell separation. The solution consists of the following stages:

• Generation stage: All truth-assignments for the n variables are produced by using cell separation.
• Checking stage:We determinewhether there is a truth-assignment thatmakes the Boolean formula
evaluate to true.
• Output stage: The system sends to the environment the right answer according to the results of the
previous stage.

Let us consider the polynomial-time computable function 〈n,m〉 = ((m+n)(m+n+1)/2)+m (the
pair function), which is a primitive recursive and bijective function fromN2 toN. We shall construct a
family5 = {Π(t) | t ∈ N} such that each systemΠ(t)will solve all instances of SAT with n variables
andm clauses, where t = 〈n,m〉, provided that the appropriate input multisets are given.

For each n,m ∈ N,

Π(〈n,m〉) = (Γ (〈n,m〉),O1,O2,Σ(〈n,m〉), w1, w2,R(〈n,m〉), E(〈n,m〉), iin, i0),

with the following components:

• Γ (〈n,m〉) = O1 ∪ O2,

O1 = {xi,j, x̄i,j, ci,j, zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {Ai | 1 ≤ i ≤ n} ∪ {a1,i, b1,i, gi, hi | 1 ≤ i ≤ n− 1}
∪ {d1,i, ei, li | 1 ≤ i ≤ n− 2} ∪ {a2,i, b2,i, d2,i | 2 ≤ i ≤ n− 1}
∪ {ai,j,k, bi,j,k, di,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n− 1}
∪ {Bi | 1 ≤ i ≤ 4n} ∪ {Ci | 1 ≤ i ≤ 3n}
∪{Di | 1 ≤ i ≤ 4n+ 2m} ∪ {Ei | 1 ≤ i ≤ 4n+ 2m+ 3}
∪ {rj | 1 ≤ j ≤ m} ∪ {Ti, Fi, ti, fi | 1 ≤ i ≤ n} ∪ {c, p, s, y, z, yes, no},

O2 = {x′i,j, x̄
′

i,j, z
′

i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {T ′i , F

′

i | 1 ≤ i ≤ n} ∪ {y
′, z ′}.

• Σ(〈n,m〉) = {ci,j, xi,j, x̄i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
• w1 = {{a1,1, a2,2, g1, B1, C1,D1, E1, p, yes, no}} ∪ {{ai,j,1 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}}.
• w2 = A1.
• E(〈n,m〉) = Γ (〈n,m〉)− {yes, no}.
• iin = 2 is the input cell.
• i0 = 0 is the output region.
• R(〈n,m〉) is the following set of rules:
(1) Separation rule:
r1 ≡ [s]2 → [O1]2[O2]2.
(With the presence of object s, cells with label 2 are separated. As we will see below, at step
3k− 1 (1 ≤ k ≤ n), cells with label 2 contain object s, and are separated. In this way, in 3n− 1
steps, we get 2n cells with label 2.)

(2) Communication rules:
r2,i,j,k ≡ (1, ai,j,k/bi,j,k, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n− 1;
r3,i,j,k ≡ (1, bi,j,k/c2i,jd

2
i,j,k, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n− 2;

r4,i,j ≡ (1, bi,j,n−1/c2i,j, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r5,i,j,k ≡ (1, di,j,k/ai,j,k+1, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n− 2
(at each step 3k+ 2 (0 ≤ k ≤ n− 2) the cell with label 1 gets 2k+1 copies of object ci,j, which
is used to duplicate xi,j, x̄i,j, x′i,j and x̄

′

i,j (see the following rules r19,i,j–r22,i,j));
r6,i ≡ (1, a1,i/b1,i, 0) for 1 ≤ i ≤ n− 1;
r7,i ≡ (1, b1,i/c2d21,ie

2
i , 0) for 1 ≤ i ≤ n− 2;

r8 ≡ (1, b1,n−1/c2, 0);
r9,i ≡ (1, d1,i/a1,i+1, 0) for 1 ≤ i ≤ n− 2;
r10,i ≡ (1, ei/a2,i+1, 0) for 1 ≤ i ≤ n− 2;
r11,i ≡ (1, a2,i/b2,i, 0) for 2 ≤ i ≤ n− 1;
r12,i ≡ (1, b2,i/c2d22,i, 0) for 2 ≤ i ≤ n− 2;
r13 ≡ (1, b2,n−1/c2, 0);
r14,i ≡ (1, d2,i/a2,i+1, 0) for 2 ≤ i ≤ n− 2
(at each step 3k+ 2 (0 ≤ k ≤ n− 2), the cell with label 1 gets 2k+1(k+ 1) copies of object c ,
which is used to duplicate the objects Ti, T ′i , Fi, F

′

i (see the rules r25,i–r28,i));
r15,i ≡ (1, gi/hi, 0) for 1 ≤ i ≤ n− 1;
r16,i ≡ (1, hi/l2i A

2
i+1, 0) for 1 ≤ i ≤ n− 2;

r17 ≡ (1, hn−1/A2n, 0);
r18,i ≡ (1, li/gi+1, 0) for 1 ≤ i ≤ n− 2
(at each step 3k+2 (0 ≤ k ≤ n−2), the cell with label 1 gets 2k+1 copies of object Ak+2, which
encodes the i-th variable in the propositional formula);
r19,i,j ≡ (2, ci,jxi,j/zi,jz ′i,jxi,jx

′

i,j, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r20,i,j ≡ (2, ci,jx̄i,j/zi,jz ′i,jx̄i,jx̄
′

i,j, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r21,i,j ≡ (2, ci,jx′i,j/zi,jz

′

i,jxi,jx
′

i,j, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r22,i,j ≡ (2, ci,jx̄′i,j/zi,jz

′

i,jx̄i,jx̄
′

i,j, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m
(with the presence of ci,j in cells with label 2, objects xi,j, x̄i,j, x′i,j, x̄

′

i,j are duplicated; at the same
time, auxiliary objects zi,j, z ′i,j are brought into cells with label 2 from the environment);
r23,i ≡ (2, Ai/TiF ′i zz

′yy′s, 0) for 1 ≤ i ≤ n− 1;
r24 ≡ (2, An/TnF ′nyy

′s, 0)
(object Ai introduces objects Ti, F ′i , z, z

′, y, y′, s (in particular, object An introduces Tn, F ′n, y,
y′, s));
r25,i ≡ (2, cTi/zz ′TiT ′i , 0) for 1 ≤ i ≤ n− 1;
r26,i ≡ (2, cT ′i /zz

′TiT ′i , 0) for 1 ≤ i ≤ n− 1;
r27,i ≡ (2, cFi/zz ′FiF ′i , 0) for 1 ≤ i ≤ n− 1;
r28,i ≡ (2, cF ′i /zz

′FiF ′i , 0) for 1 ≤ i ≤ n− 1
(with the presence of object c , objects Ti, T ′i , Fi, F

′

i are duplicated and objects z, z
′ are brought

into cells with label 2);
r29,i,j ≡ (1, ci,j/zi,j, 2) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r30,i,j ≡ (1, ci,j/z ′i,j, 2) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r31 ≡ (1, c/z, 2);
r32 ≡ (1, c/z ′, 2);
r33,i ≡ (1, Ai/y, 2) for 2 ≤ i ≤ n;
r34,i ≡ (1, Ai/y′, 2) for 2 ≤ i ≤ n
(the object ci,j (resp. c, Ai) in cell 1 is exchanged with objects zi,j and z ′i,j (resp. z and z

′, y and
y′) in cells with label 2);
r35,i ≡ (1, Bi/Bi+1, 0) for 1 ≤ i ≤ 2n− 1;
r36,i ≡ (1, Bi/B2i+1, 0) for 2n ≤ i ≤ 3n− 1;
r37,i ≡ (1, Ci/Ci+1, 0) for 1 ≤ i ≤ 2n− 1;
r38,i ≡ (1, Ci/C2i+1, 0) for 2n ≤ i ≤ 3n− 1;
r39,i ≡ (1,Di/Di+1, 0) for 1 ≤ i ≤ 2n− 1;
r40,i ≡ (1,Di/D2i+1, 0) for 2n ≤ i ≤ 3n− 1
(the counters Bi, Ci,Di in the cell with label 1 grow their subscripts at each step; from step 2n
to step 3n − 1, the number of copies of objects is doubled, and hence after 3n − 1 steps, the
cell with label 1 contains 2n copies of B3n, C3n, and D3n; object Bi will check which clauses are
satisfied by a given truth-assignment; object Ci is used to introduce objects ti and fi; object Di
is used to check whether there is at least one truth-assignment which satisfies all clauses);
r41,i ≡ (1, Ei/Ei+1, 0) for 1 ≤ i ≤ 4n+ 2m+ 2
(the counter Ei in the cell with label 1 grows its subscript, and it will be used to bring the object
no to the environment in the end of the computation, if the formula is not satisfiable);
r42,i,j ≡ (1, zi,j/λ, 0);
r43,i,j ≡ (1, z ′i,j/λ, 0);
r44 ≡ (1, y/λ, 0);
r45 ≡ (1, y′/λ, 0);
r46 ≡ (1, z/λ, 0);
r47 ≡ (1, z ′/λ, 0)
(the objects zi,j, z ′i,j, y, y

′, z, and z ′ in the cell with label 1 are removed);
r48 ≡ (1, B3nC3nD3n/y, 2);
r49 ≡ (1, B3nC3nD3n/y′, 2)
(objects B3n, C3n,D3n are moved to cells with label 2 exchanging with objects y and y′);
r50,i ≡ (2, C3nTi/C3nti, 0) for 1 ≤ i ≤ n;
r51,i ≡ (2, C3nT ′i /C3nti, 0) for 1 ≤ i ≤ n;
r52,i ≡ (2, C3nFi/C3nfi, 0) for 1 ≤ i ≤ n;
r53,i ≡ (2, C3nF ′i /C3nfi, 0) for 1 ≤ i ≤ n
(with the presence of object C3n in cells with label 2, objects Ti and T ′i introduce ti, and objects
Fi and F ′i introduce fi; objects ti and fi correspond to the value true and false of variable xi);

r54,i ≡ (2, Bi/B2i+1, 0) for 3n ≤ i ≤ 4n− 1
(from step 3n to step 4n− 1, the number of object Bi is doubled and its subscript is increased
by 1 at each step);
r55,i ≡ (2,Di/Di+1, 0) for 3n ≤ i ≤ 4n− 1
(from step 3n to step 4n− 1, the subscript of object Di is increased by 1 at each step);
r56,i,j ≡ (2, B4ntixi,j/B4ntirj, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r57,i,j ≡ (2, B4ntix̄i,j/B4nti, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r58,i,j ≡ (2, B4ntix′i,j/B4ntirj, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r59,i,j ≡ (2, B4ntix̄′i,j/B4nti, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r60,i,j ≡ (2, B4nfix̄i,j/B4nfirj, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r61,i,j ≡ (2, B4nfixi,j/B4nfi, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r62,i,j ≡ (2, B4nfix̄′i,j/B4nfirj, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r63,i,j ≡ (2, B4nfix′i,j/B4nrj, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m
(these rules are used to check which clauses are satisfied by a given truth-assignment; if the
object rj is introduced into a cell with label 2, then it means that the corresponding truth-
assignment satisfies clauseMj);
r64,i ≡ (2,Di/Di+1, 0) for 4n ≤ i ≤ 4n+m− 1
(from step 4n to step 4n+m− 1, the subscript of object Di is increased by 1 at each step);
r65,i ≡ (2,D4n+m+iri+1/D4n+m+i+1, 0) for 0 ≤ i ≤ m− 1
(in each cell with label 2, we checkwhether or not all clauses are satisfied by the corresponding
truth-assignment; For each clause which is satisfied, the subscript of object Di is increased by
1; hence, the subscript reaches the value 4n+ 2m if and only if all clauses are satisfied);
r66 ≡ (2,D4n+2m/λ, 1)
(if one of the truth-assignments from a cell with label 2 satisfies all clauses, then object D4n+2m
appears in this cell, which is moved to the cell with label 1);
r67 ≡ (1,D4n+2m p yes/λ, 0)
(the object yes leaves the system, signaling the fact that the formula is satisfiable; in the cell
with label 1, the counter Ei will increase its subscript for one more step, but after that it will
remain unchanged—it can leave the cell with label 1 only in the presence of p, but this object
was already moved to the environment);
r68 ≡ (1, E4n+2m+3 p no/λ, 0)
(if the counter Ei reaches the subscript 4n+2m+3 and the object p is still in the cell with label
1, then the object no can exist the system, signaling that the formula is not satisfiable).

6.1. An overview of the computation

A family of recognizer tissue P systems with cell separation is constructed above. For an instance
of SAT ϕ = M1 ∧ · · · ∧ Mm, consisting of m clauses Mi = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
Var(ϕ) = {x1, . . . , xn}, yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li, the sizemapping on the
set of instances is defined as s(ϕ) = 〈n,m〉 = ((m+ n)(m+ n+ 1)/2)+m, and the encoding of the
instance is the multiset cod(ϕ) = {{ci,jxi,j | xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}} ∪ {{ci,jx̄i,j |
¬xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}}.
Now, we informally describe how systemΠ(s(ϕ))with input cod(ϕ)works.
Let us start with the generation stage. This stage has several parallel processes, which we describe

in several items.
– In the initial configuration of the system, the cell with label 2 contains an object A1 (Ai encodes
the i-th variable in the propositional formula). The objects T1, F ′1, z, z

′, y, y′ and s are brought in
the cell with label 2, in exchange for A1, by the rule r23,i. The objects T1 and F ′1 correspond to the
values true and false which the variable x1 may assume (in general, Ti (or T ′i) and Fi (or F

′

i) are for
the variable xi), and in the next step they are separated into the new daughter cells with label 2 by
the separation rule, because T1 ∈ O1 and F ′1 ∈ O2. The object s is used to activate the separation
rule r1, and is consumed during the application of the separation rule. The objects y and y′ are used
to introduce A2 from the cell with label 1, and the process of truth-assignment for variable x2 can
continue. In this way, in 3n − 1 steps, 2n cells with label 2 are generated, and each one contains
one of the 2n possible truth-assignments for the n variables.

– In cells with label 2, by rules r19,i,j–r22,i,j, objects ci,jxi,j, ci,jx̄i,j, ci,jx′i,j, ci,jx̄
′

i,j introduce objects
zi,jz ′i,jxi,jx

′

i,j, zi,jz
′

i,jx̄i,jx̄
′

i,j, zi,jz
′

i,jxi,jx
′

i,j, zi,jz
′

i,jx̄i,jx̄
′

i,j, respectively. In the next step, the objects with
primes and the objects without primes are separated into the new daughter cells with label 2.
The idea is that ci,j is used to duplicate xi,j and x̄i,j (in the sense ignoring the prime), so that one
copy of each of them will appear in each cell with label 2. The objects zi,j and z ′i,j in cells with label
2 are exchanged with the objects ci,j in the cell with label 1 by the rules r29,i,j and r30,i,j. In this way,
the cycle of duplication and separation can be iterated.

– In parallel with the above duplication–separation process, the objects c are used to duplicate the
objects Ti, T ′i , Fi, and F

′

i by the rules r25,i–r28,i; the rules r31 and r32 take care of introducing the
object c from the cell with label 1 to cells with label 2.

– In parallel with the operations in the cells with label 2, the objects ai,j,k+1 from the cell with label
1 are exchanged with objects bi,j,k+1 from the environment at the step 3k+ 1 (0 ≤ k ≤ n− 3) by
the rule r2,i,j,k. In the next step, each object bi,j,k+1 is exchanged with two copies of objects ci,j and
di,j,k+1 by the rule r3,i,j,k. At step 3k+ 3 (0 ≤ k ≤ n− 3), the object di,j,k is exchanged with object
ai,j,k+2 by the rule r4,i,j,k. In particular, at step 3n− 5, ai,j,n−1 is exchanged with bi,j,n−1 by r2,i,j,k; at
step 3n−4, each copy of object bi,j,n−1 is exchangedwith two copies of ci,j by r4,i,j. After step 3n−4,
there is no object ai,j,k that appears in the cell with label 1, and the group of rules r2,i,j,k–r5,i,j,k will
not be used again. Note that the subscript k of the object ai,j,k grows by 1 in every three steps until
the value n−1 is reached, and the number of copies of ai,j,k is doubled in every three steps. At step
3k+ 3 (0 ≤ k ≤ n− 2), the cell with label 1 has 2k+1 copies of object ci,j. At the same time, there
are 2k+1 cells with label 2, and each cell with label 2 contains one copy of object zi,j or one copy of
object z ′i,j. Due to the maximality of the parallelism of using the rules, each cell with label 2 gets
exactly one copy of ci,j from the cell with label 1 by the rules r29,i,j and r30,i,j. The object ci,j in cell
with label 2 is used for duplication as described above.

– The objects a1,i and a2,i in the cell with label 1 have a similar role to object ai,j,k in cell 1, which
introduces appropriate copies of object c for the duplication of objects Ti, T ′i , Fi, and F

′

i by the rules
r6,i–r14,i. Note that at step 3k+ 3 (0 ≤ k ≤ n− 2), there are 2k+1(k+ 1) copies of object c , which
ensure that each cell with label 2 gets k+ 1 copies of object c by the maximality of the parallelism
of using the rules.

– The object gi+1 in the cell with label 1 is exchanged with hi+1 from the environment at step
3i + 1 (0 ≤ i ≤ n − 3) by the rule r15,i. In the next step, the object hi+1 is exchanged with two
copies of objects li+1 and Ai+2 by the rule r13,i. At the step 3i+ 3 (0 ≤ i ≤ n− 3), the object li+1 is
exchanged with two copies of gi+2, so the process can be iterated, until the subscript i of gi reaches
n− 1. In particular, at step 3n− 5, object gn−1 is exchanged with hn−1 by the rule r15,i, and at step
3n − 4, each object hn−1 is exchanged with two copies of An. After step 3n − 4, there is no object
gi that appears in the cell with label 1, and the group of rules r15,i–r18,i will not be used again. At
the step 3i + 3 (0 ≤ i ≤ n − 2), the cell with label 1 contains 2i+1 copies of Ai+2, and there are
2i+1 cells with label 2, each of them containing one copy of object y or one copy of object y′. Due
to the maximality of the parallelism of using the rules, each cell with label 2 gets exactly one copy
of Ai+2 from the cell 1 by the rules r33,i and r34,i. In this way, the truth-assignment for the variable
xi+1 can continue.

– The counters Bi, Ci,Di, and Ei in the cell with label 1 grow their subscripts by the rules r35,i–r41,i.
From step 2n to step 3n − 1, the number of copies of objects of the first three types is doubled;
hence after 3n− 1 steps, the cell with label 1 contains 2n copies of B3n, C3n, and D3n. Objects Bi will
check which clauses are satisfied by a given truth-assignment, objects Ci are used to multiply the
number of copies of ti, fi as we will see immediately, objects Di are used to check whether there is
at least one truth-assignment which satisfies all clauses, and Ei will be used to bring the object no
to the environment, if this is the case, at the end of the computation.

– The objects zi,j, z ′i,j, y, y
′, z, and z ′ in the cell with label 1 are removed by the rules r42,i,j–r47.

(Actually, if the objects zi,j, z ′i,j, y, y
′, z, and z ′ stay in the cell with label 1, they do not influence the

work of the system. The rules r38–r43 are designed just in order to simplify the formal verification.)

In this way, after the (3n − 1)-th step the generation stage finishes and the checking stage starts.
At this moment, the cell with label 1 contains 2n copies of objects B3n, C3n, and D3n, and there are 2n

cells with label 2, each of them containing a copy of y and n− 1 copies of z, or a copy of y′ and n− 1
copies of z ′. The objects z and z ′ in cells with label 2 will not evolve any further, because the cell with
label 1 contains no object c from now on, and the rules r31 and r32 cannot be applied.
At the step 3n, objects y or y′ are exchanged with objects B3n, C3n, and D3n by rules r48 and r49.

(Note that the rules r33,i and r34,i cannot be used, because there is no object Ai in the cell with label
1 at this moment and henceforth. And the cells with label 2 cannot separate any further.) Due to the
maximality of the parallelism of using the rules, each cell with label 2 gets exactly one copy of each
of B3n, C3n, and D3n.
In the presence of C3n, the objects Ti and T ′i , Fi and F

′

i introduce the objects ti and fi, respectively.
Because there is only one copy of C3n available, for each one of ti and fi we need one step. So this phase
needs n steps; that is, this phase ends at step 4n.
In parallel with the previous operations, the counters Bi and Di increase their subscripts, until the

value 4n is reached, by the rules r54,i and r55,i. Each cell with label 2 contains one copy of D4n and 2n
copies of B4n. Simultaneously, Ei increases its subscript in the cell with label 1.
At step 4n + 1, with the presence of B4n, we start to check the values assumed by clauses for the

truth-assignments from each cell with label 2 by the rules r56,i,j–r63,i,j. Each membrane with label 2
contains nm objects xi,j and x̄i,j or nm objects x′i,j and x̄

′

i,j, because each clause contains atmost n literals,
and there arem clauses. Note that eachmembrane with label 2 contains 2n copies of B4n and n objects
ti and fi. At each step, n objects xi,j and x̄i,j, or n objects x′i,j and x̄

′

i,j are checked. So it takes m steps. In
parallel, Di increases the subscript, until the value 4n+m is reached (at step 4n+m), by the rule r64,i.
By the rule r65,i, in each cell with label 2, we check whether or not all clauses are satisfied by the

corresponding truth-assignment. For each clause which is satisfied, the subscript of Di is increased by
1; hence the subscript reaches the value 4n+ 2m if and only if all clauses are satisfied.
The output stage starts at the (4n+ 2m+ 1)-th step.

– Affirmative answer: If one of the truth-assignments from a cell with label 2 has satisfied all clauses,
then in that cell there is an object D4n+2m as described above, which is sent to the cell with label 1
by the rule r66. In the next step, the object yes leaves the system by the rule r67, signaling the fact
that the formula is satisfiable. In cell 1, the counter Ei increases its subscript by the rule r41,i, until
the value 4n+2m+3 is reached, but after that it will remain unchanged—it can leave the cell with
label 1 only in the presence of p, but this object p was already moved to the environment at step
4n+ 2m+ 2. The computation halts at step 4n+ 2m+ 2.

– Negative answer: If the counter Ei reaches the subscript 4n+ 2m+ 3 and the object p is still in the
cell with label 1, then the object no can bemoved to the environment by the rule r68, signaling that
the formula is not satisfiable. The computation finishes at step 4n+ 2m+ 3.

6.2. Formal verification

In this subsection, we prove that the family built previously solves SAT in polynomial time,
according to Definition 1. First of all, the Definition 1 requires that the defined family is consistent,
in the sense that all systems of the family must be recognizer tissue P systems with cell separation. By
the construction (rule type and working alphabet) it is clear that it is a family of tissue P systems with
cell separation. In order to show that all members in5 are recognizer systems it suffices to check that
all the computations halt (this will be deduced from the polynomial bound), and that either an object
yes or an object no is sent out exactly in the last step of the computation (this will be deduced from
the soundness and completeness).

6.2.1. Polynomial uniformity of the family
Wewill show that the family5 = {Π(〈n,m〉) | n,m ∈ N} defined above is polynomially uniform

via Turing machines. To this aim, it will be proved that Π(〈n,m〉) is built in polynomial time with
respect to the size parameter n andm of instances of SAT.
It is easy to check that the rules of a systemΠ(〈n,m〉) of the family are defined recursively from the

values n andm. And the necessary resources for building an element of the family are of a polynomial

order, as shown below:

• Size of the alphabet: 3n2m+ 4nm+ 30n+ 5m− 5 ∈ O(n2m).
• Initial number of cells: 2 ∈ O(1).
• Initial number of objects: nm+ 10 ∈ O(nm).
• Number of rules: 3n2m+ 15nm+ 36n+ 3m− 12 ∈ O(n2m).
• Maximum length of a rule: 6 ∈ O(1).

Therefore, a deterministic Turing machine can buildΠ(〈n,m〉) in polynomial time with respect to
n andm.

6.2.2. The polynomial bound of the family
For an instance of SAT ϕ = M1∧· · ·∧Mm, consisting ofm clausesMi = yi,1∨· · ·∨yi,li , 1 ≤ i ≤ m,

where Var(ϕ) = {x1, . . . , xn}, yi,k ∈ {xj,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li, we recall
the size mapping function s(ϕ) and the encoding function cod(ϕ): s(ϕ) = 〈n,m〉, and cod(ϕ) =
{{ci,jxi,j | xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}} ∪ {{ci,jx̄i,j | ¬xi ∈ {yj,k | 1 ≤ k ≤
li}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}}. The pair (cod, s) can be computed in polynomial time; cod(ϕ) is an input
multiset of the systemΠ(s(ϕ)).
In order to prove that the system Π(s(ϕ)) with input cod(ϕ) is polynomially bounded, it suffices

to find the moment in which the computation halts, or at least, an upper bound for it.

Proposition 9. The family5 = {Π(〈n,m〉) | n,m ∈ N} is polynomially bounded with respect to (SAT,
cod, s).

Proof. We will informally go through the stages of the computation in order to estimate a bound for
the number of steps. The computation will be checked in more detail when addressing the soundness
and completeness proof.
Let ϕ = M1∧· · ·∧Mm be an instance of SAT.We shall studywhat happens during the computation

of the systemΠ(s(ϕ))with input cod(ϕ) in order to find the halting step, or at least, an upper bound
for it.
First, the generation stage has exactly 3n − 1 steps, where at steps 3k + 2 (0 ≤ k ≤ n − 1) the

cells with label 2 are separated. In this way, we get 2n cells with label 2; each of them contains one of
the 2n possible truth-assignments for the n variables.
After onemore step, the objects B3n, C3n, and D3n arrive at cells with label 2, and the checking stage

starts. The object C3nworks for n steps introducing objects ti or fi into cells with label 2, until all objects
Ti, T ′i , Fi and F

′

i are consumed, at the step 4n. From step 4n+ 1, the objects B4n start to work, checking
which clauses are satisfied by the truth-assignment from each cell with label 2. This checking takesm
steps. When the subscript of Di grows to 4n+m at step 4n+m, the system starts to check whether or
not all clauses are satisfied by the corresponding truth-assignment. It takesm steps, and the checking
stage ends at step 4n+ 2m.
The last one is the answer stage. The longest case is obtained when the answer is negative. In this

case there are two steps where only the counter Ei is working. At the step 4n + 2m + 3 the object
E4n+2m+3 works together with object p bringing no from the cell with label 1 into the environment.
Therefore, there exists a linear bound (with respect to n and m) on the number of steps of the

computation. �

6.2.3. Soundness and completeness of the family
In order to prove the soundness and completeness of the family 5 with respect to (SAT, cod, s),

we shall prove that for a given instance ϕ of SAT, the systemΠ(s(ϕ))with input cod(ϕ) sends out an
object yes if and only if the answer to the problem for the instance considered, ϕ, is affirmative and
the object no is sent out otherwise. In both cases the answer will be sent to the environment in the
last step of the computation.
For the sake of simplicity of the notation, we consider the following two functions: ψ(σj(xi)) and

γ (σj(xi)). Let F be the set of all assignments of the variables x1, x2, . . . , xn. We order the set S in

lexicographical order, that is, F = {σ1, σ2, . . . , σ2n}, where σj(xi) ∈ {0, 1} (1 ≤ j ≤ 2n, 1 ≤ i ≤ n) is
an assignment of variables. For 1 ≤ j ≤ 2n, 1 ≤ i ≤ n, we define ψ as follows: if j is odd, then

ψ(σj(xi)) =
{
Ti, if σj(xi) = 1,
Fi, if σj(xi) = 0;

if j is even, then

ψ(σj(xi)) =
{
T ′i , if σj(xi) = 1,
F ′i , if σj(xi) = 0.

For each assignment σj(xi) ∈ {0, 1}, and for i = 1, . . . , n, we define γ as follows:

γ (σj(xi)) =
{
ti, if σj(xi) = 1;
fi, if σj(xi) = 0.

In thisway, each assignment of variablesσj is associatedwith amultiset {{ψ(σj(x1)), ψ(σj(x2)), . . . , ψ
(σj(xn))}} and a multiset {{γ (σj(x1)), γ (σj(x2)), . . . , γ (σj(xn))}}.
Given a computation C we denote the configuration at the i-th step as Ci. Moreover, Ci(1) will

denote the multiset associated with cell 1 in such a configuration.

Lemma 10. Let C be an arbitrary computation of the system, then at step 3k + 2 for all k such that
0 ≤ k ≤ n− 2, the cell with label 1 gets 2k+1 copies of object ci,j, 2k+1(k+ 1) copies of object c, and 2k+1
copies of object Ak+2 from the environment. And after step 3n− 3, the cell with label 1 cannot get objects
ci,j, c, Ai any longer.

Proof. It is not difficult to find that in the set of all rules there are six rule types related to object ci,j,
that is, rules r2,i,j,k–r5,i,j,k, r29,i,j and r30,i,j. The rules r29,i,j and r30,i,j are used to move ci,j from the cell
with label 1 to cells with label 2 in exchange of zi,j or z ′i,j, which happens at steps 3k+ 3 for all k such
that 0 ≤ k ≤ n − 2. Anyway, these two rules do not bring object ci,j into the cell with label 1. So we
need only to check how these four rule types r2,i,j,k–r5,i,j,k work.
First, by induction on k, we prove that at step 3k + 2 (0 ≤ k ≤ n − 3), the cell with label 1 gets

2k+1 copies of object ci,j and the cell with label 1 has exactly 2k+1 copies of di,j,k+1.
In the multiset C0(1), there is one copy of each object ai,j,1 (1 ≤ i ≤ n, 1 ≤ j ≤ m). By application

of rules r2,i,j,1 and r3,i,j,1, the cell with label 1 gets two copies of ci,j and two copies di,j,1 at step 2.
Now suppose the result is true for k < n − 4. We have, by the inductive hypothesis, that at step

3k + 2, the cell with label 1 gets 2k+1 copies of object ci,j and the cell with label 1 has exactly 2k+1
copies of di,j,k+1. At step 3k+ 3, among these four rule types r2,i,j,k+1–r5,i,j,k, only rule r5,i,j,k+1 can be
applied; 2k+1 copies of di,j,k+1 are traded for 2k+1 copies of ai,j,k+2. At step 3(k+ 1)+ 1, 2k+1 copies of
ai,j,k+2 are traded for 2k+1 copies of bi,j,k+2 by r2,i,j,k+2. At step 3(k+1)+2, by the rule r3,i,j,k+2, the cell
with label 1 gets 2k+2 copies of object ci,j and the cell with label 1 has exactly 2k+2 copies of di,j,k+2.
On the basis of the above result, specifically, we have, at step 3(n− 3)+ 2, that the cell with label

1 has exactly 2n−2 copies of di,j,n−2. In the next three steps, the rules r5,i,j,n−2, r2,i,j,n−1, and r4,i,j,n−1 are
applied in order. At step 3(n− 2)+ 2, the cell with label 1 gets 2n−1 copies of ci,j. Note that no object
di,j,k is brought into the cell with label 1 at step 3(n− 2)+ 2, and the group of rules r5,i,j,k, r2,i,j,k, and
r4,i,j,k cannot be used any more. Therefore the cell with label 1 will not get object ci,j any longer, and
the result holds.
For the cases of objects c and Ai, the results can be proved similarly. We omit them here. �

Lemma 11. Let C be an arbitrary computation of the system; then:
(1) For each assignment σj(xi), i = 1, 2, . . . , n, there exists only one cell with label 2 in C3n−1 that
contains the multiset {{ψ(σj(xi)) | i = 1, 2, . . . , n}}.

(2) There exist exactly 2n cells with label 2 in configurationCk (k ≥ 3n−1). In particular, in configuration
C3n−1, each cell with label 2 contains the multiset {{y}} ∪ {{zi,j, xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j, x̄i,j |
x̄i,j ∈ cod(ϕ)}} or the multiset {{y′}} ∪ {{z ′i,j, x

′

i,j | xi,j ∈ cod(ϕ)}} ∪ {{z
′

i,j, x̄
′

i,j | x̄i,j ∈ cod(ϕ)}}.
(3) C3n−1(1) = {{B2

n

3n, C
2n
3n ,D

2n
3n, E3n, p, yes, no}}.

Proof. We prove the items (1) and (2) of Lemma 11 by induction.
In the configuration C0, there is only one cell with label 2, which has multiset {{cij, xi,j, x̄i,j | 1 ≤

i ≤ n, 1 ≤ j ≤ m}} ∪ {{A1}}. The rules r19,i,j–r22,i,j and r23,1 can be applied. At step 1, the cell with
label 2 has multiset {{zi,j, xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j, x̄i,j | x̄i,j ∈ cod(ϕ)}} ∪ {{z ′i,j, x

′

i,j | xi,j ∈
cod(ϕ)}}∪{{z ′i,j, x̄

′

i,j | x̄i,j ∈ cod(ϕ)}}∪{{z, z
′, T1, F ′1, y, y

′, s}}. At step 2, with the appearance of object
s, the separation rule r1 is used to separate the cell with label 2, object s is consumed, and themultiset
{{zi,j, xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j, x̄i,j | x̄i,j ∈ cod(ϕ)}} ∪ {{z, T1, y}} is placed in one new cell with label
2, and the multiset {{z ′i,j, x

′

i,j | xi,j ∈ cod(ϕ)}} ∪ {{z
′

i,j, x̄
′

i,j | x̄i,j ∈ cod(ϕ)}} ∪ {{z
′, F ′1, y

′
}} is placed in

another new cell with label 2. We take the cell with label 2 where ψ(σj(x1)) appears.
By Lemma 10, at step 2, the cell with label 1 has two copies of ci,j, two copies of c , and two copies

of A2. So, at step 3, the rules r29,i,j, r30,i,j, r33,2 and r34,2 can be applied. Due to the maximality of the
parallelism of using rules, each cell with label 2 gets exactly one copy of ci,j, one copy of c , and one
copy of A2 from the cell with label 1. Object ci,j and c are used for duplication, and A2 is used to assign
truth-values to the valuable x2. In this way, the next cycle of duplication and separation can continue.
In general, after step 3k + 2 (0 ≤ k ≤ n − 1) (that is, the second step in the (k + 1)-th cycle

of duplication and separation), we take the cell with label 2 where {{ψ(σj(x1)), . . . , ψ(σj(xk+1))}}
appears. In this way, at step 3n − 1, there exists exactly one cell with label 2 whose multiset is
{{ψ(σj(x1)), . . . , ψ(σj(xn))}}. (Note the difference of the rule r24 and the rules r23,i. The rule r24 does
not bring objects z and z ′ into cells with label 2 from the environment, and this rule is used at step
3n−2. So the object z does not appear in themultiset of cell 2 that corresponds to the assignment σj.)
From the above proof, it is easy to see that the multiset {{ψ(σj(x1)), . . . , ψ(σj(xn))}} appears only

in the corresponding cell with label 2.
In every cycle of duplication and separation, the number of cells with label 2 is doubled. In the

3n− 1 steps, there are n cycles. So there exist exactly 2n cells with label 2 in configuration C3n−1; and
from now on, cells with label 2 will not separate any further.
In the last cycle of duplication and separation, at step 3n − 2, each of the 2n−1 cells with label 2

contains one copy of y and one copy of y′ by the rule r24; at step 3n− 1, the 2n−1 cells with label 2 are
separated by the rule r1, and each of the 2n new cells gets one copy of object y or one copy of object y′.
In order to prove C3n−1(1) = {{B2

n

3n, C
2n
3n ,D

2n
3n, E3n, p, yes, no}}, we will check how all the rules

related to the cell 1 work in the first 3n− 1 steps.
– Checking the rules r2,i,j,k–r18,i.
From the proofs of Lemmas 10 and 11, we can find that after step 3n − 3, there are no objects
ai,j,k, bi,j,k, ci,j, di,j,k, a1,i, b1,i, c, d1,i, ei, a2,i, b2,i, d2,i, gi, hi, li, Ai in the cell with label 1, and the
rules r2,i,j,k–r18,i will not bring any more objects into the cell with label 1.

– Checking the rules r35,i–r40,i.
In the first 2n−1 steps of the computation, by the rules r35,i, r37,i, and r39,i, the subscripts of B1, C1,
andD1 grow to 2n. In the next n steps, by the rules r36,i, r38,i, and r40,i, the subscripts of B2n, C2n, and
D2n grow to 3n, and at every step, the numbers of objects of each type Bi, Ci, and Di are doubled. So
the cell with label 1 has 2n copies of B3n, 2n copies of C3n, and 2n copies of D3n at the step 3n− 1.

– Checking the rule r41,i.
By the rule r41,i, the subscript of E1 grows to 3n in the first 3n− 1 steps of the computation. So the
cell 1 has the object E3n at step 3n− 1.

– Checking the group of rules r29,i,j–r34,i,j and the group of rules r42,i,j–r47.
In the first 3n − 3 steps, the cell with label 1 has communication with cells with label 2 getting
objects zi,j, z ′i,j, z, z

′, y, y′ from cells with label 2, by the rules r29,i,j–r34,i,j. In the next step after the
objects zi,j, z ′i,j, z, z

′, y, y′ reach the cell 1, they are sent to the environment by the rules r42,i,j–r47.
– Checking the group of rules r48–r49.
At the step 3n−1, the subscripts of objects Bi, Ci andDi grow to 3n. The rules r48–r49 can be applied
at step 3n. But, in the first 3n− 1 steps of the computation, they cannot be applied.

– Checking the rules r66–r68.
In the first steps 3n− 1, there are no objects D4n+2m appearing in cells with label 2, and no object
E4n+2m+3 appearing in the cell with label 1. The rules r66–r68 cannot be applied in the first 3n − 1
steps of the computation, so the cell with label 1 has objects yes, no and p at the step 3n− 1.

Therefore, C3n−1(1) = {{B2
n

3n, C
2n
3n ,D

2n
3n, E3n, p, yes, no}}. �

Lemma 12. Let C be an arbitrary computation of the system; then:

(1) C3n(1) = {{y2
n−1
, (y′)2

n−1
, E3n+1, p, yes, no}}.

(2) For each assignment σj there exists only one cell with label 2 inC3n that containsmultiset {{ψ(σj(xi)) |
i = 1, 2, . . . , n}}. In configuration C3n, each cell with label 2 contains the multiset {{B3n, C3n,D3n}}∪
{{zi,j, xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j, x̄i,j | x̄i,j ∈ cod(ϕ)}} or multiset {{B3n, C3n,D3n}} ∪ {{z ′i,j, x

′

i,j |

xi,j ∈ cod(ϕ)}} ∪ {{z ′i,j, x̄
′

i,j | x̄i,j ∈ cod(ϕ)}}.

The configuration C3n is obtained from C3n−1 using the rules r41,i, r48 and r49. So, Lemma 12 can be
proved by checking the application of the rules r41,i, r48 and r49. We here omit the details of the proof
of Lemma 12.

Lemma 13. Let C be an arbitrary computation of the system; then:

(1) C4n(1) = {{E4n+1, p, yes, no}}.
(2) For each assignment σj, there exists only one cell with label 2 inC4n that containsmultiset {{γ (σj(xi)) |
i = 1, 2, . . . , n}}. In configuration C4n, each cell with label 2 contains the multiset {{B2

n

4n, C3n,D4n}}∪
{{zi,j, xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j, x̄i,j | x̄i,j ∈ cod(ϕ)}} or the multiset {{B2

n

4n, C3n,D4n}} ∪ {{z
′

i,j, x
′

i,j |

xi,j ∈ cod(ϕ)}} ∪ {{z ′i,j, x̄
′

i,j | x̄i,j ∈ cod(ϕ)}}.

The configuration C4n is obtained from C3n using the rules r41,i, r44, r45 and r50,i–r55,i. Lemma 13 can
be proved by checking the application of these rules, so the proof is omitted.

Lemma 14. Let C be an arbitrary computation of the system; then:

(1) C4n+m(1) = {{E4n+m+1, p, yes, no}}.
(2) For each assignment σj, there exists only one cell with label 2 in C4n+m that contains multiset

(∪ni=1{{rj1 rj2 · · · rjk | γ (σj(xi)) = ti, and xi,jl ∈ cod(ϕ), l = 1, 2, . . . , k, 1 ≤ j1 < j2 < · · · < jk ≤
n}})∪ (∪ni=1{{rj1 rj2 · · · rjk | γ (σj(xi)) = fi, and x̄i,jl ∈ cod(ϕ), l = 1, 2, . . . , k, 1 ≤ j1 < j2 < · · · <
jk ≤ n}}). In configuration C4n+m, each cell with label 2 contains the multiset {{B2

n

4n, C3n,D4n+m}}.

Proof. By the rule r41,i, the subscript of object E4n+1 in C4n(1) grows to the value 4n+ m+ 1 at step
4n+m. The objects p, yes, no stay unchanged. Therefore, the item (1) of Lemma 14 holds.
By Lemma 13, for each assignment σj, there exists only one cell with label 2 in C4n that

contains multiset {{γ (σj(xi)) | i = 1, 2, . . . , n}}; and each cell with label 2 contains a multiset
{{B4n, C3n,D4n}}∪{{zi,j, xi,j | xi,j ∈ cod(ϕ)}}∪{{zi,j, x̄i,j | x̄i,j ∈ cod(ϕ)}} or amultiset {{B4n, C3n,D4n}}∪
{{z ′i,j, x

′

i,j | xi,j ∈ cod(ϕ)}} ∪ {{z
′

i,j, x̄
′

i,j | x̄i,j ∈ cod(ϕ)}}. In the following, we consider this unique cell
with label 2 that contains multiset {{γ (σj(xi)) | i = 1, 2, . . . , n}}.
The objects C3n remain unchanged, and the subscript of D4n reaches 4n+m at step 4n+m by the

rule r64,i.
With the presence of B4n in C4n (not appearing in Ci (i < 4n)), the rules r56,i,j–r63,i,j can be applied.

We start to checkwhich clauses are satisfied. If σj((xi)) = ti and xi,j ∈ cod(ϕ), then rule r56,i,j or r58,i,j is
applied, and an object rj is introduced into the corresponding cell with label 2. If σj((xi)) = ti and x̄i,j ∈
cod(ϕ), then rule r57,i,j or r59,i,j is applied, and the object x̄i,j or x̄′i,j is removed from the corresponding
cell with label 2. Similarly, if σj((xi)) = fi and x̄i,j ∈ cod(ϕ), then rule r60,i,j or r62,i,j is applied, and
an object rj is introduced into the corresponding cell with label 2. If σj((xi)) = fi and xi,j ∈ cod(ϕ),
then rule r61,i,j or r63,i,j is applied, and the object xi,j or x′i,j is removed from the corresponding cell
with label 2. The sizes of both cod(ϕ) and {{x′i,j | xi,j ∈ cod(ϕ)}} ∪ {{x̄

′

i,j | x̄i,j ∈ cod(ϕ)}} are nm, and
each cell with label 2 contains multiset cod(ϕ) or {{x′i,j | xi,j ∈ cod(ϕ)}} ∪ {{x̄

′

i,j | x̄i,j ∈ cod(ϕ)}}. We
have 2n copies of B4n, n objects ti and fi from the multiset {{γ (σj(xi)) | i = 1, 2, . . . , n}}, so it takes
m steps to check which clauses are satisfied. In total, all the objects introduced, ri, form the multiset
(∪ni=1{{rj1 rj2 · · · rjk | γ (σj(xi)) = ti, and xi,jl ∈ cod(ϕ), l = 1, 2, . . . , k, 1 ≤ j1 < j2 < · · · < jk ≤
n}}) ∪ (∪ni=1{{rj1 rj2 · · · rjk | γ (σj(xi)) = fi, and x̄i,jl ∈ cod(ϕ), l = 1, 2, . . . , k, 1 ≤ j1 < j2 < · · · <
jk ≤ n}}). �

Lemma 15. Let C be an arbitrary computation of the system; then:
(1) C4n+2m(1) = {{E4n+2m+1, p, yes, no}}.
(2) If σj is an assignment that does not satisfy the formula ϕ, then there exists only one cell with label 2 in

C4n+2m associated with σj, and whose associated multiset contains an object D4n+m+α , where 0 ≤
α < m, such that the clauses M1, . . . ,Mα are satisfied by the assignment f , but Mα+1 is not satisfied
by the assignment σj.

(3) If σj is an assignment that satisfies the formula ϕ, then there exists only one cell 2 inC4n+2m associated
with σj, and whose associated multiset contains one copy of object D4n+2m.

Proof. By the rule r41,i, the subscript of object E4n+m+1 in C4n+m(1) grows to the value 4n+ 2m+ 1 at
step 4n+ 2m. The objects p, yes, no remain unchanged. Therefore, the item (1) of Lemma 15 holds.
From the configuration C4n+m, we start to check whether or not all clauses are satisfied by the

corresponding assignment. Such checking is simultaneous in all 2n cells with label 2. Let us consider
an assignment σj. By Lemma 14, with the presence of object D4n+m, the rule r65,i can be applied.
The clauses are checked in the order from M1 to Mm. For each clause which is satisfied (that is, the
corresponding object ri appears), we increase by 1 the subscript ofDi; hence the subscript ofDi reaches
the value 4n + 2m if and only if all clauses are satisfied. If the clauses M1, . . . ,Mα (0 ≤ α < m)
are satisfied, but Mα+1 is not satisfied (that is, r1, . . . , rα appear, but rα+1 does not appear), then the
subscript of Di can only reach the value 4n + m + α. Therefore, the items (2) and (3) of Lemma 15
hold. �

Lemma 16. Let C be an arbitrary computation of the system; let us suppose that there exists an assignment
that satisfies the formula ϕ. Then:

(a) C4n+2m+1(1) = {{E4n+2m+2,D
β

4n+2m, p, yes, no}},
(b) C4n+2m+2(1) = {{E4n+2m+3,D

β−1
4n+2m, no}},

where β is the number of assignments that satisfy the formula ϕ. Furthermore, the object yes appears in
C4n+2m+2(0).

Proof. The configuration of item (a) is obtained by the application of rules r41,i and r66 to the previous
configurationC4n+2m. By the rule r41,i, the object E4n+2m+1 inC4n+2m(1) grows by 1 its subscript at step
4n+ 2m+ 1. By Lemma 15, for each assignment that satisfies the formula ϕ, there exists exactly one
cell associated with label 2 in C4n+2m whose multiset contains an object D4n+2m. The object D4n+2m is
moved to the cell with label 1 by the rule r66. If there are β assignments that satisfy the formula ϕ,
then the cell 1 gets β copies of object D4n+2m.
The configuration of item (b) is obtained by the application of rules r41,i and r67 to the previous

configurationC4n+2m+1(1). By the rule r41,i, the object E4n+2m+2 inC4n+2m+1(1) grows by 1 its subscript
at step 4n + 2m + 2. By the rule r67, the object yes together with objects D4n+2m and p leaves the
system, going into the environment, signaling that the formula ϕ is satisfiable. The one copy of object
p is consumed by the rule r67, so the rule r68 cannot be applied. The object no cannot exit into the
environment. �

Lemma 17. Let C be an arbitrary computation of the system, let us suppose that there does not exist any
assignment that satisfies the formula ϕ. Then:
(a) C4n+2m+1(1) = {{E4n+2m+2, p, yes, no}},
(b) C4n+2m+2(1) = {{E4n+2m+3, p, yes, no}},
(c) C4n+2m+3(1) = {{yes}}.

Furthermore, the object no appears in C4n+2m+3(0).

Proof. If there does not exist any assignment that satisfies the formula ϕ, by Lemma 15, all cells with
label 2 do not contain object D4n+2m. Of course, the cell with label 1 cannot get object D4n+2m.
The configurations of items (a) and (b) are obtained by the application of rules r41,i to the previous

configuration C4n+2m.
The configuration of item (c) is obtained by the application of rules r68 to the previous

configuration. �

6.3. Efficiency results of TSC(6)

The system constructed for the solution of SAT in Section 6 has communication rules with length
at most 6. From the discussion in the previous sections and according to the definition of solvability
given in Section 4, we have the following result:

Theorem 18. SAT ∈ PMCTSC(6).

Corollary 19. NP ∪ co-NP ⊆ PMCTS(6).

Proof. It suffices to make the following observations: SAT is NP-complete, SAT ∈ PMCTS(6) and this
complexity class is closed under polynomial-time reduction and under complement. �

7. Conclusion and further works

This paper studies the efficiency of P systems in solving NP-complete problems. The space–time
tradeoff method is used to efficiently solve NP-complete problems in the framework of cell-like
P systems. Membrane division, membrane creation, and membrane separation are three efficient
approaches for obtaining exponential workspace in polynomial time. In this paper, membrane
separation is introduced into tissue P systems, and a polynomial-time solution for SAT using tissue
P systems with cell separation and communication rules of lengths at most 6 is presented. We also
prove that tissue P systems with cell separation and communication rules of length 1 can only solve
tractable problems in the classical sense. Hence, in the framework of recognizer tissue P systems with
cell separation, the lengths of the communication rules provide a borderline between efficiency and
non-efficiency. Specifically, a frontier exists between length 1 and length 6. The role of the lengths
of communication rules is worthy of further investigation. That is, what does happen if we consider
tissue P systems with communication rules of length k, where k ∈ {2, 3, 4, 5}?
In the framework of tissue P systems, when cell division is used to generate exponential workspace

in polynomial time, there is an advantage: all the other objects in the cell are duplicated except the
objects that activate the cell division operation. Both cell creation and cell separation have no such
duplication feature. In this sense, the solution for SAT presented in this paper gives some hints for
answering the following open problem: how do we efficiently solve NP-complete problems using
tissue P systems with cell creation?
Although SAT is NP-complete (other NP problems can be reduced to SAT in polynomial time), we

wish to stress that up to now there has existed no methodology for computing the reduction process
by using P systems. The solution to SAT using tissue P systems with cell separation can be used as a
scheme for designing solutions to other NP-complete problems such as the vertex-cover problem, the
clique problem, the Hamiltonian path problem, etc.
Recently, a new kind of P systemmodel with a neural-like architecture, called the spiking neural P

systems, was introduced [8]. It was proved that spiking neural P systems are Turing complete [8].
There is an interesting result for the efficiency of spiking neural P systems in solving computa-

tionally hard problems: an spiking neural P system of polynomial size cannot solve an NP-complete
problem in a deterministic way and in polynomial time (unless P = NP) [12]. Hence, under the as-
sumption thatP 6= NP, efficient solutions toNP-complete problems cannot be obtainedwithout intro-
ducing features which enhance the efficiency. One of the possible features is some way of increasing
the workspace exponentially during the computation. Cell division, cell creation and cell separation
are candidates for being introduced into spiking neural P systems for exponential workspace gener-
ation. Although the architectures of spiking neural P systems are similar to those of tissue P systems,
it is not a trivial work to introduce cell division, cell creation and cell separation into spiking neural P
systems and give efficient solutions to NP-complete problems.
In general, it is expected that the research into efficiency and complexity on P systemswill provide

insight into unconventional parallel computing models, and also help us clarify the relations between
classic complexity classes.

Acknowledgments

Comments from three anonymous referees are greatly appreciated. The work of L. Pan was
supported by the National Natural Science Foundation of China (Grant Nos. 60674106, 30870826,
60703047, and 60533010), the Program for New Century Excellent Talents in University (NCET-05-
0612), the Ph.D. Programs Foundation of the Ministry of Education of China (20060487014), the
Chenguang Program of Wuhan (200750731262), HUST-SRF (2007Z015A), and the Natural Science
Foundation of Hubei Province (2008CDB113 and 2008CDB180). The work of M.J. Pérez-Jiménez was
supported by Project TIN2006-13452 of theMinisterio de Educación y Ciencia of Spain and the Project
of Excellence with Investigador de Reconocida Valía, from Junta de Andalucía, Grant P08—TIC 04200.

References

[1] A. Alhazov, R. Freund, M. Oswald, Tissue P systems with antiport rules and small numbers of symbols and cells, Lecture
Notes in Computer Science 3572 (2005) 100–111.

[2] F. Bernardini, M. Gheorghe, Cell communication in tissue P systems and cell division in population P systems, Soft
Computing 9 (9) (2005) 640–649.

[3] R. Freund, Gh. Păun, M.J. Pérez-Jiménez, Tissue P systems with channel states, Theoretical Computer Science 330 (2005)
101–116.

[4] P. Frisco, Computing with Cells: Advances in Membrane Computing, Oxford University Press, 2009.
[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and
Company, 1979.

[6] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-Campero, On the power of dissolution in P
systems with active membranes, Lecture Notes in Computer Science 3850 (2006) 224–240.

[7] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero, A linear solution for QSAT with membrane creation,
Lecture Notes in Computer Science 3850 (2006) 241–252.

[8] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural P systems, Fundamenta Informaticae 71 (2–3) (2006) 279–308.
[9] M. Ito, C. Martín-Vide, Gh. Păun, A characterization of Parikn sets of ET0L languages in terms of P systems, in: M. Ito,
Gh. Păun, S. Yu (Eds.), Words, Semigroups and Transducers, World Scientific, Singapore, 2001, pp. 239–254.

[10] S.N. Krishna, K. Lakshmanan, R. Rama, Tissue P systems with contextual and rewriting rules, Lecture Notes in Computer
Science 2597 (2003) 339–351.

[11] K. Lakshmanan, R. Rama, On the power of tissue P systems with insertion and deletion rules, in: A. Alhazov, C. Martín-
Vide, Gh. Păun (Eds.), Preproceedings of the Workshop on Membrane Computing, Tarragona, Report RGML 28/03, 2003,
pp. 304–318.

[12] A. Leporati, C. Zandron, C. Ferretti, G. Mauri, On the computational power of spiking neural P systems, in: Eleftherakis, G.,
et al. (Eds.), Proceedings of the Eighth Workshop on Membrane Computing, Thessaloniki, June 2007, pp. 405–423.

[13] C. Martín-Vide, J. Pazos, Gh. Păun, A. Rodríguez Patón, A new class of symbolic abstract neural nets: tissue P systems,
Lecture Notes in Computer Science 2387 (2002) 290–299.

[14] C.Martín-Vide, J. Pazos, Gh. Păun, A. Rodríguez Patón, Tissue P systems, Theoretical Computer Science 296 (2003) 295–326.
[15] L. Pan, T.-O. Ishdorj, P systems with active membranes and separation rules, Journal of Universal Computer Science 10 (5)

(2004) 630–649.
[16] Gh. Păun, Attacking NP-complete problems, in: I. Antoniou, C. Calude, M.J. Dinneen (Eds.), Unconventional Models of

Computation, UMC’2K, Springer-Verlag, 2000, pp. 94–115.
[17] Gh. Păun, Computing with membranes, Journal of Computer and System Sciences 61 (1) (2000) 108–143.
[18] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
[19] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport, New Generation Computing 20 (3)

(2002) 295–305.
[20] Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, Tissue P system with cell division, International Journal of Computers,

Communications & Control 3 (3) (2008) 295–303.
[21] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, The P versus NP problem through cellular computing with

membranes, Lecture Notes in Computer Science 2950 (2004) 338–352.
[22] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial complexity class in P systems usingmembrane

division, Journal of Automata, Languages and Combinatorics 11 (4) (2006) 423–434. A preliminary version, in: E. Csuhaj-
Varjú, C. Kintala, D. Wotschke, Gy. Vaszil (Eds.), Proceedings of the Fifth International Workshop on Descriptional
Complexity of Formal Systems, DCFS 2003, Budapest, Hungary, July 12–14, 2003, pp. 284–294.

[23] V.J. Prakash, On the power of tissue P systems working in the maximal-one mode, in: A. Alhazov, C. Martín-Vide, Gh. Păun
(Eds.), Preproceedings of the Workshop on Membrane Computing, Tarragona, Report RGML 28/03, 2003, pp. 356–364.

[24] C. Zandron, C. Ferretti, G. Mauri, Solving NP-complete problems using P systems with active membranes, in: I. Antoniou,
C.S. Calude, M.J. Dinneen (Eds.), Unconventional Models of Computation, UMC’2K, Springer-Verlag, 2000, pp. 289–301.

[25] ISI web page. http://esi-topics.com/erf/october2003.html.
[26] P systems web page. http://ppage.psystems.eu/.

http://esi-topics.com/erf/october2003.html
http://ppage.psystems.eu/

	Computational complexity of tissue-like P systems
	Introduction
	Preliminaries
	Tissue P systems with cell separation
	Recognizer tissue P systems with cell separation
	The limitation on the efficiency of TSC (1)
	Solving computationally hard problems by using TSC (6)
	An overview of the computation
	Formal verification
	Polynomial uniformity of the family
	The polynomial bound of the family
	Soundness and completeness of the family

	Efficiency results of TSC (6)

	Conclusion and further works
	Acknowledgments
	References

