
Automated Analysis of Cloud Offerings
for Optimal Service Provisioning

José Maŕıa Garćıa, Octavio Mart́ın-Dı́az, Pablo Fernandez, Antonio 
Ruiz-Cortés, and Miguel Toro

Universidad de Sevilla, Seville, Spain
{josemgarcia,omartindiaz,pablofm,aruiz,migueltoro}@us.es

Abstract. Cloud computing paradigm has brought an overwhelming 
variety of cloud services from different providers, each one offering a 
plethora of configuration and purchasing options for them. Users may 
have certain requirements and preferences not only concerning service 
configuration, but also with respect to their usage schedule. In this situ-
ation, an appropriate provisioning plan considering all restrictions would 
help users to achieve their goals while taking into account the different 
available providers, their pricing and even the usage discounts they pro-
vide. In this work, we describe an automated solution that analyzes user 
needs that include scheduling restrictions to obtain optimized provision-
ing plans for different cloud providers, which allow users to compare 
several offerings that possibly consider volume or usage discounts. We 
validate this solution against a realistic use case, while also providing a 
prototype implementation in the form of publicly available microservices.

Keywords: Cloud services · Pricing · Provisioning · Analysis

1 Introduction

The emergence of cloud computing have brought a significant shift in the IT 
industry economics for service providers and consumers alike [1,2]. Cloud ser-
vices such as Amazon Elastic Computing Cloud (EC2) or Google Compute 
Engine offer virtual processing and storage resources (commonly referred to as 
Infrastructure as a Service, or IaaS in short), so that customers can purchase 
them as a way to reduce operational costs if compared with the procurement 
of on-premise, private computing infrastructures. However, the myriad of cloud 
service providers, as well as their overwhelming variety of configuration and pur-
chasing options [3], result in a highly complex provisioning scenario for service 
consumers.

In this setting, there are major heterogeneity issues that make the compar-
ison among providers rather difficult, e.g. different variables for configurations, 
additional purchasing variants apart from the usual pay-as-you-go option, billing 
and charge processes, and particular discount rules, to name a few. Furthermore,



users may also find convenient to specify their needs for cloud services provision-
ing including specific scheduling restrictions. These restrictions provide addi-
tional beforehand information concerning not only the number of instances of
particular configurations that are needed at a certain time, but also the amount
of time they are going to be used.

There are some on-line tools that allow consumers to search for an opti-
mal configuration, such as Cloudorado.com and CloudScreener.com, according
to their particular needs. However, these tools do not take into account schedul-
ing. In this work, we present an automatic analysis framework that analyzes and
compares cloud service offerings from multiple providers to obtain an optimal
provisioning plan according to user needs. This plan specifies the amount and
type of instances that have to be purchased and when they have to be initiated
and terminated in order to fulfill user needs. We have developed a prototype
implementation that has been validated in a particular scenario with two differ-
ent providers.

The rest of the paper is structured as follows. Section 2 introduces a case
study that further motivates our work. Next, Sect. 3 describes the conceptual
model of the provisioning process and our solution to obtain optimal plans.
Then, Sect. 4 presents the architecture of our solution, and Sect. 5 showcases our
validation results. Section 6 discusses the related work. Finally, Sect. 7 concludes
the paper and outlines our future work.

2 Motivation

There are several service provisioning scenarios where the usage schedule is
known a priori. Thus, users can specify their needs including scheduling informa-
tion so that a corresponding provisioning plan can be derived from it. We can
characterize these service scenarios depending on the complexity of the usage
scheduling and the configuration of services needed. On the one hand, the usage
scheduling may consist on a simple interval when the service will be needed, or
rather a complex schedule that includes several intertwined temporal slots. On
the other hand, needed services complexity may range from a single service with
a particular configuration, to a number of highly configurable services [4].

In the following we focus on a case study on the virtualization of laboratory
classes in the context of our Software Engineering courses, which falls on the
most complex scenario since there may be several different software needs for
each course with varying scheduling needs. Furthermore, laboratory classes may
have a dynamic evolution from two viewpoints: (1) the software being used on
those classes may evolve, usually requiring increasing computing resources, and
thus possibly rendering the corresponding hardware obsolete at short notice; and
(2) the demand, due to the number of students, may vary along the academic
year. In order to increase flexibility and save costs, these classes can be virtualized
by purchasing cloud infrastructure to support their dynamic environment.

As an example, let us consider that we need to provide infrastructure for
the laboratory classes of a year course beginning on Monday 19th September

https://www.cloudorado.com/
https://www.cloudscreener.com/


2016, which requires a very simple hardware configuration of a two-core CPU
with 4 GB RAM. The usage scheduling contemplates weekly, 2-hour sessions
for several groups of varying number of students during each semester, which
comprises 15 weeks, in addition to open classrooms and specific examination
days.

In order to actually provision the infrastructural needs for these labora-
tory classes, we need to carry out corresponding provisioning actions against
a cloud infrastructure service provider. Thus, our solution analyzes user needs,
derives their associated provisioning plans aggregating the necessary provision-
ing actions according to the scheduling restrictions, and searches for suitable
service offerings to obtain a corresponding charge plan that sums up the total
cost, hence allowing the user to choose the best option in each case. Note that
we are not considering additional costs, such as communication expenses, due
to the difficulty to estimate a priori these aspects.

3 From User Needs to Cloud Services Provisioning Plans

In order to automatically generate a plan that specifies the provisioning events
that fulfill certain user needs, we first need to model the relevant descriptions so
that our solution can analyze and transform them into the resulting plan. User
needs specifies the client’s requirements on particular services (in our case study
cloud infrastructure services, or IaaS in short). These requirements mainly state
(1) the configurations which are needed to execute the client’s software, and (2)
the expected usage schedule.

Fig. 1. Conceptual model for user needs

Figure 1 shows our conceptual model representing user needs. User needs are
composed of a series of services that represent the different software components
that the client needs to deploy to the cloud. In our example, each course is inter-
preted as a different service, which consists in a virtual machine containing all
the relevant software for that course. According to this, each service is associated
with its required configuration, which describes the hardware requirements for
the requested cloud service instance. Thus, a configuration in case of an IaaS



may contain requirements about CPU, memory, IO performance, and storage,
among others [3].

Regarding the expected usage schedule, each service enumerated in the user
needs is associated with one or more scheduled usage items, which are temporal
composites that detail the number of instances of the same configuration and
the time interval when they are needed. Additionally, a global validity interval
can be also specified. Unlike the latter, usage intervals may be periodic and
disjoint or overlapped with others. In our motivating example, each course is
given in several groups possibly with different timetables. Therefore, each group
corresponds to a scheduled usage that specifies both the time interval when
the course is given and the number of service instances that are needed, which
depends on the group size.

Starting from the user needs, a provisioning plan that contains the actions to
fulfill them is generated. It is optimal since (1) each chosen service is the best fit
for the configuration expressed in the user needs, and (2) it minimizes the number
of instances for each configuration for the whole validity period according to the
usage schedule, favoring reserved instances, and hence decreasing the operational
costs of cloud infrastructure.

The first step involved in the optimal plan generation is the optimization
of usage scheduling. We analyze each service to be deployed separately, since
we aim at minimizing the total number of instances needed for each configura-
tion. Our solution takes the scheduling of every service and removes overlaps
between time intervals. This is achieved by normalizing and coalescing the time
sequence of the scheduling, which are well-known operations in the context of
temporal databases [5]. Note that overlapping intervals leads to a higher number
of instances to be run simultaneously, while disjoint intervals enables reusing of
instances from one interval to the next, increasing their usage percentage so that
reservation becomes a better purchasing option, hence diminishing the overall
operational costs.

Once the optimal usage scheduling for each service is computed, the second
step searches for the optimal service configuration from different providers. Dif-
ferent approaches can be applied to discover a suitable configuration from the
pricing lists advertised by various IaaS providers. Our approach looks for the
instance configuration from each available provider whose parameters are the
closest to those stated in the user needs as in [3].

From the usage scheduling, our solution finally generates a particular pro-
visioning plan for each cloud service provider, describing the minimum number
of deployment actions that fulfills the usage schedule. Furthermore, purchasing
options are also optimized so that the best purchasing type is chosen for each ser-
vice instance in order to minimize the total cost of the cloud infrastructure to pro-
vision. As explained above, if the expected usage for an instance is long enough
then it will be better to make a reservation as long as the provider offers such
option. Otherwise, the instance will be used on-demand or pay-as-you-go basis.
Thus, our approach enables the comparison of several offerings from different
providers, taking into account their available configurations and pricing options.



4 Solution Architecture

In order to realize our approach, we developed a prototype solution that is
based on the models described in Sect. 3 and implemented within a microservice
architecture integrated in the Governify service management platform1. Cur-
rently, the prototype implementation supports two widely used cloud providers:
Amazon EC2 and Google Compute Engine, but the architecture is designed to
provide a systematic extension mechanism by means of adding new RESTful
services that share a common interface.

Fig. 2. Microservice architecture of the prototype.

On the one hand, pricing listings are automatically imported and standard-
ized in our system using a JSON-LD [6] parser that takes JSON files published by
service providers, such as Amazon2 or Google3, and annotate some properties to
identify common properties (such as base price, CPU, or memory) using JSON-
LD facilities. We use some cloud computing ontologies previously developed [7]
as the fundamental schema to annotate configuration and pricing information
from these providers, enabling interoperability of their original JSON schemas.

1 https://governify.io.
2 https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/AmazonEC2/current/

index.json.
3 https://cloudpricingcalculator.appspot.com/static/data/pricelist.json.

https://governify.io
https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/AmazonEC2/current/index.json
https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/AmazonEC2/current/index.json
https://cloudpricingcalculator.appspot.com/static/data/pricelist.json


Then, annotated JSON pricing listings are parsed in order to populate the cat-
alog of service offerings from different providers.

On the other hand, user needs are instantiated according to the model dis-
cussed in Sect. 3. First, the scheduling items are analyzed to optimize the usage
schedule, and then the provisioning plan optimizer component analyzes user
needs with its scheduling restrictions in order to obtain a specific provisioning
plan that optimize costs for each provider.

From a deployment standpoint, Fig. 2 depicts the microservices architecture
of the prototype describing the responsibility distribution and data interaction
among services. As a high level overview, the flow starts when some user needs
are sent (1) to the Plan Optimizer that acts as the main façade of the overall
pricing analysis. This element interacts with the Schedule Analyzer microservice
in order to obtain (2) an optimized version of the usage schedule as described
in Sect. 3. Next, the Plan Optimizer uses the Instance Ranker microservice to
develop a global search over different providers in order to obtain (5) a sorted set
of instance type pricing options based on the preferences in the user needs (i.e.
configurations). This search is based on the data maintained by the Offering Har-
vesters that gather service offerings from different cloud providers (3) to obtain
a unified view annotated with JSON-LD that is fed (4) to the Instance Ranker.
Finally, the Plan Optimizer, based on the ranking of instance types pricing and
the optimized schedule, generates the actual provision plan with lower cost and
send it (6) to the the Provisioning Controller. This controller is in charge of both
(7) storing the plan in the appropriate persistence layer on a MongoDB provider
and deploying (7) a new Instance Manager in an AWS Lambda platform that
is responsible for executing the provisioning plan by means of actions (such as
start or stop an instance) over the provider control API (8).

The implemented services are publicly available4 with their interface doc-
umented following the Open API Initiative Specification5; in order to test the
services, they all integrate an interactive testing on-line tool based on the Swag-
ger6 framework. We also developed a GUI for an end-user consisting on a wizard
prototype7. This tool provides a user-friendly interface for defining needs and
launch the appropriate microservices in a user-friendly way.

5 Case Study Validation Results

In order to validate our solution, we carried out the case study described in
Sect. 2 using the implemented prototype. We considered service offerings from
Amazon and Google. As stated by our user needs, our tool searched for the closer
configuration to “Cpu:2 Mem:4” in their catalogs, using the approach presented
in [3]. According to the on-demand purchasing type, the results of the search
return a t2.medium configuration for Amazon (with a base price of 0.052$/h),
4 https://pricing.governify.io/.
5 https://openapis.org/.
6 https://swagger.io/.
7 https://designer.governify.io/demo/PlanOptimizer/wizard.

https://pricing.governify.io/
https://openapis.org/
https://swagger.io/
https://designer.governify.io/demo/PlanOptimizer/wizard


while in case of Google the most suited configurtion corresponds to n1-std-2-pr
machine with a base price of 0.020$/h, as of price listings retrieved on October,
1st 2016.

Based on these configurations, our solution generates a different provisioning
plan for each provider. These plans allow a fine grained analysis of operational
costs. Concretely, a comparative study of corresponding charge plans can be
carried out, including the different expected charges per month along with the
total cost for the whole provisioning plan. Table 1 shows the optimal charge
plan, including discounts, for each provider derived from the provisioning plan
generated by our prototype. It is interesting to note that in the Amazon case the
maximum savings are derived from a full upfront (advanced payment of reserved
instances) at the beginning which results in a considerable initial charge.

Table 1. Charge plans for our case study, discounts applied.

Amazon Google

Date Type Cost Date Type Cost

Sep 19 2016 Upfront 12080.0$ Sustained-use discounts are being applied.

Oct 01 2016 On-demand 20.12$ Oct 02 2016 On-demand 180.52$

Nov 01 2016 On-demand 67.08$ Nov 02 2016 On-demand 601.72$

Dec 01 2016 On-demand 67.08$ Dec 02 2016 On-demand 601.72$

... ...

Total cost 12884.96$ Total cost 7220.66$

As a consequence of our analysis, we can determine that in our case study
Google is the best option in terms of costs. Moreover, based on a preliminary
analysis we realize that Amazon reserved instances prove to be competitive only
if their usage is greater than approximately 75% of daily-usage, for a full year.
Alternatively Google provides usage-sustained discounts of 25% of monthly-
usage starting at the first month without the need for longer reservation periods
as in the Amazon case.

The performed experiment validates that our proposal actually optimizes
cloud provisioning, automatically generating plans from user needs while con-
sidering pricing models and discount rules of several cloud service providers.
Although our use case has been kept deliberately simple for the sake of clarity,
we can extend the scenario to include multiple courses in order to reach a higher
usage ratio. We have already made some initial experiments on this matter,
resulting in different comparative results. In particular, we found that Amazon
provides more cost-effective options when the instance usage ratio is significant.

6 Related Work

Optimization of cloud provisioning can be considered from different perspec-
tives. From an economic perspective, pricing models are extensively discussed



in [8,9]. In [10] authors present a comprehensive method to calculate the total
cost of ownership of a cloud infrastructure. In [11] the search is modeled as a
multi-objective optimization problem to minimize the overall cost due to data
storage, communication, and execution. In [12] different approaches are pre-
sented to compute the pricing in the context of offering REST APIs to multiple
customers. Modeling pricing and scheduling aspects for edge devices can also
establish sharing economy principles in edge and cloud computing [13].

Regarding scheduling, there are some approaches to the provisioning scenario
which takes into account the scheduling restrictions for optimization issues using
different techniques [14,15]. In [16] authors present a service management which
takes into account the optimal trade-off between cost and QoS in the context
of elasticity of highly variable workloads. Ran et al. apply a probabilistic model
for determining the amount of the reserved instances to minimize the total cost
while keeping QoS [17], as in our approach. Note that over-provisioned instances
may lead to a low usage ratio and a greater cost, while a scarce reservation
will have a poorer waiting time that leads to QoS degradation. Similarly, in [18]
authors also get the optimum number for long-term reservation of resources in
order to minimize provisioning costs.

7 Conclusions and Future Work

Provisioning plans are of utmost importance when trying to optimize computa-
tional resources required to fulfill some user needs during specific time periods.
This article presents a solution to automatically derive provisioning plans from
user needs specification including scheduling restrictions. After modeling user
needs for a particular scenario, our prototype implementation searches for appro-
priate service configurations from different providers and generates correspond-
ing provisioning plans, optimized both in terms of scheduling and purchasing
options, for each provider. Then, our provisioning controller realizes the chosen
plan, which is comprised of events that contain the necessary actions needed to
fulfill user requirements. As future work, we plan to automatically crawl pric-
ing and service configuration options from other cloud providers, to support
multi-cloud provisioning plans, which may provide better performance and cost
minimization in certain scenarios, as well as to analyze log files to improve the
optimization and execution of existing provisioning plans.

Acknowledgments. Authors would like to thank Felipe Serafim and Daniel Arteaga
for their support on the prototype implementation. This work has been partially sup-
ported by the EU Commission (FEDER), Spanish and Andalusian R&D&I programmes
under grants TIN2015-70560-R, and P12-TIC-1867.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)



2. Ma, R.T., Lui, J.C., Misra, V.: On the evolution of the internet economic ecosys-
tem. In: Proceedings of the 22nd International Conference on World Wide Web,
WWW 2013, pp. 849–860. ACM (2013)

3. Garćıa-Galán, J., Trinidad, P., Rana, O.F., Cortés, A.R.: Automated configuration
support for infrastructure migration to the cloud. Future Generat. Comp. Syst. 55,
200–212 (2016)

4. Garćıa-Galán, J., Garćıa, J.M., Trinidad, P., Fernandez, P.: Modelling and
analysing highly-configurable services. In: Proceedings of the 21st International
Systems and Software Product Line Conference, SPLC 2017. vol. A, pp. 114–122.
ACM (2017)

5. Jensen, C.S., et al.: The consensus glossary of temporal database concepts — Feb-
ruary 1998 version. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Temporal Data-
bases: Research and Practice. LNCS, vol. 1399, pp. 367–405. Springer, Heidelberg
(1998). doi:10.1007/BFb0053710

6. Lanthaler, M., Gütl, C.: On using JSON-LD to create evolvable RESTful services.
In: Proceedings of the Third International Workshop on RESTful Design, WS-
REST 2012, pp. 25–32. ACM (2012)

7. Garćıa, J.M., Fernandez, P., Pedrinaci, C., Resinas, M., Cardoso, J., Ruiz-Cortés,
A.: Modeling service level agreements with linked USDL agreement. IEEE Trans.
Serv. Comput. 10(1), 52–65 (2017)

8. Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., Ahmad, I.: Cloud computing pricing
models: a survey. Int. J. Grid Distrib. Comput. 6(5), 93–106 (2013)

9. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: An analysis of RESTful APIs
offerings in the industry. In: Maximilien, M., et al. (eds.) ICSOC 2017. LNCS, vol.
10601, pp. 589–604. Springer, Cham (2017)

10. Li, X., Li, Y., Liu, T., Qiu, J., Wang, F.: The Method and tool of cost analysis for
cloud computing. In: 2009 IEEE International Conference on Cloud Computing,
pp. 93–100 (2009)

11. Wen, Z., Cala, J., Watson, P., Romanovsky, A.: Cost effective, reliable and secure
workflow deployment over federated clouds. IEEE Trans. Serv. Comput. (2016). In
press

12. Vukovic, M., Zeng, L.Z., Rajagopal, S.: Model for service license in API ecosystems.
In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol.
8831, pp. 590–597. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45391-9 51

13. Garćıa, J.M., Fernandez, P., Ruiz-Cortés, A., Dustdar, S., Toro, M.: Edge and cloud
pricing for the sharing economy. IEEE Internet Comput. 21(2), 78–84 (2017)

14. van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in
hybrid IaaS clouds for deadline constrained workloads. In: 2010 IEEE International
Conference on Cloud Computing, pp. 228–235 (2010)

15. Netjinda, N., Sirinaovakul, B., Achalakul, T.: Cost optimal scheduling in IaaS for
dependent workload with particle swarm optimization. J. Supercomput. 68(3),
1579–1603 (2014)

16. Björkqvist, M., Spicuglia, S., Chen, L., Binder, W.: QoS-aware service VM provi-
sioning in clouds: experiences, models, and cost analysis. In: Basu, S., Pautasso,
C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 69–83. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-45005-1 6

17. Ran, Y., Yang, J., Zhang, S., Xi, H.: Dynamic IaaS computing resource provisioning
strategy with QoS constraint. IEEE Trans. Serv. Comput. 10(2), 190–202 (2017)

18. Hwang, R., Lee, C., Chen, Y., Zhang-Jian, D.: Cost optimization of elasticity cloud
resource subscription policy. IEEE Trans. Serv. Comput. 7(4), 561–574 (2014)

http://dx.doi.org/10.1007/BFb0053710
http://dx.doi.org/10.1007/978-3-662-45391-9_51
http://dx.doi.org/10.1007/978-3-642-45005-1_6

	Automated Analysis of Cloud Offerings for Optimal Service Provisioning
	1 Introduction
	2 Motivation
	3 From User Needs to Cloud Services Provisioning Plans
	4 Solution Architecture
	5 Case Study Validation Results
	6 Related Work
	7 Conclusions and Future Work
	References




